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Abstract: Matrix differential equations are at the heart of many science and engineering problems. In
this paper, a procedure based on higher-order matrix splines is proposed to provide the approximated
numerical solution of special nonlinear third-order matrix differential equations, having the form
Y(3)(x) = f (x, Y(x)). Some numerical test problems are also included, whose solutions are computed
by our method.

Keywords: higher-order matrix splines; third-order matrix differential equations

1. Introduction

In different areas of engineering and applied science, such as those described in [1,2],
third-order ordinary differential equation arise in the form of:

y(3) = f (x, y) , x ∈ [a, b], (1)

with initial conditions y(a) = ya, y′(a) = y′a, and y′′(a) = y′′a . Here, first and second
derivatives are not part of the equation to be solved.

For the resolution of this type of equation, various different numerical techniques
have been developed and exist in the literature [3–7]. Nonetheless, they frequently depend
on very well-known numerical methods, once the original equations have been converted
into a system of first-order ordinary differential equations. However, this conversion
requires an increase in the number of unknowns of the problem, with the unavoidable
growth in the computational cost that this entails. On the other hand, it is possible to use
direct-integration methods to solve higher-order differential equations, such as (1), which
have been proven to be computationally efficient and offer results with a very satisfactory
accuracy (see [8–10] and the references therein).

In this paper, we present a new algorithm for solving matrix third-order differential
equations of the type shown in Equation (1). Regarding the mathematical notation to be
used hereinafter, we decided to adopt the formulation commonly used in matrix calculus,
which is also part of the papers [11,12], previously written by the authors. Accordingly,

given a vector x ∈ Cn, its Euclidean norm is defined as ‖x‖2 =
(
x>x

)1/2
and its 1-norm as

‖x‖1 =
s

∑
i=1
|xi|. Likewise, for a rectangular m× n matrix A ∈ Cm×n, its 2-norm is:

‖A‖2 = sup
x 6=0

‖Ax‖2
‖x‖2

.

Suppose A ∈ Cm×n and B ∈ Cp×q. Then, the Kronecker product A⊗ B is the pm× qn
block matrix:
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A⊗ B =




a11B . . . a1nB
...

...
am1B . . . amnB


.

If A ∈ Cm×n, the column-vector operator on it is defined by:

vec(A) =




A•1
...

A•n


, being A•k =




a1k
...

amk


.

The derivative of a matrix A ∈ Cm×n with respect to a matrix B ∈ Cp×q was defined
by [13] as:

∂A
∂B

=




∂A
∂b11

. . .
∂A
∂b1q

...
...

∂A
∂bp1

. . .
∂A

∂bpq




, where
∂A
∂bij

=




∂a11

∂bij
. . .

∂a1n
∂bij

...
...

∂am1

∂bij
. . .

∂amn

∂bij




.

In addition, the derivative of the product of two matrices A ∈ Cm×n and B ∈ Cn×s

with respect to another matrix C ∈ Cp×q is given by:

∂AB
∂C

=
∂A
∂C
[
Iq ⊗ B

]
+
[
Ip ⊗ A

] ∂B
∂C

, (2)

Iq and Ip being, respectively, identity matrices of orders q and p. Moreover, given the
above matrices, even the chain rule is also applicable:

∂C
∂A

=

[
∂[vec(B)]>

∂A
⊗ Ip

][
In ⊗

∂C
∂[vec(B)]

]
. (3)

This paper is organized as follows. In Section 2, the proposed method is described in
detail. Then, in Section 3, an algorithm for solving this type of equation and its correspond-
ing implementation in MATLAB are included. Next, in Section 4, distinct problems are
numerically solved via the suggested method. Finally, conclusions are given in Section 5.

2. Description of the Method

Let the following third-order matrix differential equation be:

Y(3)(x) = f (x, Y(x))

Y(a) = Ya

Y′(a) = Y′a

Y′′(a) = Y′′a





, a ≤ x ≤ b, (4)

where Y(x) ∈ Cp×q is the unknown matrix and Ya, Y′a, Y′′a ∈ Cp×q are matrices that col-
lect the initial solution. f : [a, b] × Cp×q → Cp×q is a matrix-valued function and, as
the differentiability class, f ∈ Cs(T), being s ≥ 1, with:

T =
{
(x, Y); a ≤ x ≤ b, Y ∈ Cp×q}. (5)

To ensure the uniqueness and the existence of Y(x) as the differentiable continuously
solution of problem (4) (see [14], p. 99), f also complies with the global Lipschitz condition:
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‖ f (x, Y1)− f (x, Y2)‖ ≤ L‖Y1 −Y2‖, a ≤ x ≤ b, Y1, Y2 ∈ Cp×q, (6)

where L > 0 is the Lipschitz constant.
The initial interval [a, b], in which the solution must be provided, is partitioned into n

subintervals, each of size h = (b− a)/n, as follows:

∆[a,b] = {a = x0 < x1 < . . . < xn = b}, xi = a + ih, i = 0, 1, . . . , n. (7)

In each of the n aforementioned intervals and taking s as the order of the differentiabil-
ity class of the function f , a matrix spline S(x) of order m ∈ N, with 3 ≤ m ≤ s, is defined.
Thus, the differential Equation (4) is approximately solved so that S(x) ∈ C3([a, b]).

For the first subinterval, the spline is designed as:

S|[a,a+h]
(x) = Y(a) + Y′(a)(x− a) +

1
2!

Y′′(a)(x− a)2 +
1
3!

Y(3)(a)(x− a)3

+
1
4!

Y(4)(a)(x− a)4 + · · ·+ 1
(m− 1)!

Y(m−1)(a)(x− a)m−1 (8)

+
1

m!
A0(x− a)m.

As can be easily verified, this spline fulfills Equation (4) at x = a, since:

S|[a,a+h]
(a) = Y(a) = Ya , S′|[a,a+h]

(a) = Y′(a) = Y′a , S′′|[a,a+h]
(a) = Y′′(a) = Y′′a

and:

S(3)
|[a,a+h]

(a) = Y(3)(a) = f (a,Y(a)) = f (a,S|[a,a+h]
(a)).

Obviously, the values corresponding to Y(4)(a), Y(5)(a), Y(6)(a), . . . , Y(m−1)(a) and the
matrix A0 ∈ Cp×q must be previously determined to fully define the spline (8). Based on
this, the procedure given in [12] can be followed to calculate the fourth-order derivative
Y(4)(x), that is,

Y(4)(x) = ∂ f (x,Y(x))
∂x +

[
[vec f (x, Y(x))]> ⊗ Ip

]
∂ f (x,Y(x))
∂ vec Y(x)

= g1(x, Y(x), Y′(x)),
(9)

where g1 ∈ Cs−1(T). As a result, Y(4)(a) can be estimated as:

Y(4)(a) = g1
(
a, Y(a), Y′(a)

)
= g1

(
a, Ya, Y′a

)
.

Let us assume that f ∈ Cs(T), for s ≥ 2. Thus, the second partial derivatives of f exist
and are also continuous. The fifth-order derivative Y(5)(x) can be expressed as:

Y(5)(x) = ∂2 f (x,Y(x))
∂x2 +

(
[vec f (x, Y(x))]> ⊗ Ip

)
∂

∂x

(
∂ f (x,Y(x))
∂ vec Y(x)

)

+

(
∂[vec f (x,Y(x))]>

∂x ⊗ Ip

)
∂ f (x,Y(x))
∂ vec Y(x)

+
(
[vec f (x, Y(x))]> ⊗ Ip

)
∂

∂ vec Y(x)

(
∂ f (x,Y(x))

∂x

)

+
(
[vec f (x, Y(x))]> ⊗ Ip

)(
∂[vec f (x,Y(x))]>

∂ vec Y(x) ⊗ Ip

)
∂ f (x,Y(x))
∂ vec Y(x)

+
(
[vec f (x, Y(x))]> ⊗ Ip

)(
[vec f (x, Y(x))]> ⊗ Ip2q

)
∂2 f (x,Y(x))
(∂ vec Y(x))2

= g2(x, Y(x), Y′(x), Y′′(x)) ∈ Cs−2(T).

(10)

Therefore, Y(5)(a) = g2(a, Y(a), Y′(a), Y′′(a)) = g2(a, Ya, Y′a, Y′′a ) can be immediately
evaluated. For the calculation of all the other higher-order derivatives, from Y(6)(x) to
Y(m−1)(x), the same previously described procedure can be carried out. In this way, we have:
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Y(6)(x) = g3(x, Y(x), Y′(x), Y′′(x), Y′′′(x)) ∈ Cs−3(T)
...

Y(m−1)(x) = gm−4

(
x, Y(x), Y′(x), . . . , Y(m−4)(x)

)
∈ Cs−(m−4)(T)





. (11)

At this point, Y(6)(a), . . . , Y(m−1)(a) can be determined by just replacing x = a in (11).
Once all these derivatives have been worked out, the matrix parameter A0 should be

determined as well. For this purpose, suppose that (8) is the solution of Equation (4) at the
point x = a + h. Then, one obtains:

S(3)
|[a,a+h]

(a + h) = f
(

a + h, S|[a,a+h]
(a + h)

)
, (12)

Precisely, it is from here that the following implicit matrix equation can be formulated,
with A0 being its only unknown:

A0 = (m−3)!
hm−3

[
f
(

a + h, Y(a) + Y′(a)h + · · ·+ hm−1

(m−1)! Y
(m−1)(a) + hm

m! A0

)

−Y(3)(a)−Y(4)(a)h− · · · − 1
(m−4)! Y

(m−1)(a)hm−4
]
.

(13)

Once this equation has been solved for A0, under the assumption that this solution
is unique, all the parameters that form the spline in the interval [a, a + h] will have been
determined, and its analytical expression can be obtained.

For the next interval [a + h, a + 2h], the matrix spline can be expressed as:

S|[a+h,a+2h]
(x) = ∑2

j=0

S(j)
|[a,a+h]

(a + h)

i!
(x− (a + h))j +

m−1

∑
j=3

Y(j)(a + h)
j!

(x− (a + h))j

+ A1
m! (x− (a + h))m,

(14)

where
Y(3)(a + h) = f

(
a + h, S|[a,a+h]

(a + h)
)

. (15)

After having evaluated the corresponding derivates of Y(x) using S|[a,a+h]
(a + h) in

(9)–(11), the expressions for Y(4)(a + h), . . . , Y(m−1)(a + h) are obtained, and they can be
rewritten in the form:

Y(4)(a + h) = g1

(
a + h, S|[a,a+h]

(a + h), S′|[a,a+h]
(a + h)

)

...

Y(m−1)(a + h) = gm−4

(
a + h, S|[a,a+h]

(a + h), . . . , S(m−4)
|[a,a+h]

(a + h)
)





. (16)

The matrix spline S(x), defined by means of (8) and (14), is of differentiability class
C3([a, a + h] ∪ [a + h, a + 2h]), and therefore, it satisfies Equation (4) at the point x = a + h.
Similar to the previous interval, all spline coefficients have already been identified, with the
exception of A1 ∈ Rp×q. Nevertheless, its value can be determined if the mentioned spline
is considered as a solution of (4) at x = a + 2h:

S(3)
|[a+h,a+2h]

(a + 2h) = f
(

a + 2h, S|[a+h,a+2h]
(a + 2h)

)
,

which leads to the following matrix equation, whose only unknown is precisely A1:
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A1 = (m−3)!
hm−3


 f


a + 2h, ∑2

j=0

S(j)

|[a,a+h]
(a+h)

j! hj + ∑m−1
j=3

Y(j)(a+h)
j! hj

+ A1hm

m!

)
−Y(3)(a+h)−Y(4)(a+h)h−. . .− hm−4

(m−4)! Y
(m−1)(a+h)

]
.

(17)

Assuming once again the uniqueness of the solution of the above equation for A1,
the spline is completely specified in the interval [a + h, a + 2h].

Now, repeating this procedure iteratively, the interval [a + ih, a + (i + 1)h] is reached,
whose resulting spline then would be defined in the form:

S|[a+ih,a+(i+1)h]
(x) =

2

∑
j=0

S(j)
|[a+(i−1)h,a+ih]

(a + ih)

j!
(x− (a + ih))j

+
m−1

∑
j=3

Y(j)(a + ih)
j!

(x− (a + ih))j (18)

+
Ai
m!

(x− (a + ih))m,

where:
Y(3)(a + ih) = f

(
a + ih, S|[a+(i−1)h,a+ih]

(a + ih)
)

, (19)

and, similarly to what has been described previously,

Y(4)(a + ih) = g1

(
a + ih, S|[a+(i−1)h,a+ih]

(a + ih), S′|[a+(i−1)h,a+ih]
(a + ih)

)

...

Y(m−1)(a + ih) = gm−4

(
a+ih, S|[a+(i−1)h,a+ih]

(a+ih),. . . ,S(m−4)
|[a+(i−1)h,a+ih]

(a+ih)
)





. (20)

Under this premise, the matrix spline S(x) ∈ C3




i⋃

j=0

[a + jh, a + (j + 1)h]


 satisfies

the differential Equation (4) at the point x = a + ih. If we additionally consider that
S|[a+ih,a+(i+1)h]

(x) fulfills the mentioned equation at point x = a + (i + 1)h, then:

S(3)
|[a+ih,a+(i+1)h]

(a + (i + 1)h) = f
(

a + (i + 1)h, S|[a+ih,a+(i+1)h]
(a + (i + 1)h)

)
.

After expanding this previous formulation, one arrives at:

Ai = (m−3)!
hm−3


f


a+(i + 1)h, ∑2

j=0

S(j)
|[a+(i−1)h,a+ih]

(a+ih)

j!
hj +

m−1

∑
j=3

Y(j)(a+ih)
j!

hj

+ Ai
m! h

m
)
−Y(3)(a+ih)− · · · − hm−4

(m−4)! Y
(m−1)(a + ih)

]
.

(21)

Note that Equations (13) and (17) can be derived from Equation (21) when i = 0 or
i = 1, respectively.

Let us now demonstrate the uniqueness of the solution for these equations by using a
fixed-point argument. Thus, let the matrix-valued function g : Cp×q → Cp×q be defined as
follows for given values of h and i:
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g(T) = (m−3)!
hm−3


f


a+(i + 1)h, ∑2

j=0

S(j)
|[a+(i−1)h,a+ih]

(a+ih)

j!
hj+

m−1

∑
j=3

Y(j)(a+ih)
j!

hj

+ T
m! h

m
)
−Y(3)(a + ih)− · · · − hm−4

(m−4)! Y
(m−1)(a + ih)

]
.

(22)

Equation (21) is satisfied if and only if Ai = g(Ai), i.e., if the matrix Ai is a fixed point
for function g(T). Considering this definition for function g(T) and the global Lipschitz
condition (6) for f , we have:

‖g(T1)− g(T2)‖ ≤
Lh3

m(m− 1)(m− 2)
‖T1 − T2‖.

If we take h < 3
√

m(m− 1)(m− 2)/L, the matrix function g(T) will be contractive,
and the solutions Ai, i = 0, 1, . . . , n− 1, of Equation (21) will be unique and, as a conse-
quence, entirely determine the matrix spline. We can therefore state that the following
theorem has been proven.

Theorem 1. Take the third-order matrix differential equation expressed in (4) and the Lipschitz
constant L described in (6). If the interval [a, b] is partitioned as in (7) by considering a step size h
such as:

h < 3
√

m(m− 1)(m− 2)/L,

then the matrix spline S(x) of order m, 3 ≤ m ≤ s, s being the order of the differentiability
class of the function f , is of class C3[a, b], and it can be defined as in (18) for each subinterval
[a + ih, a + (i + 1)h], i = 0, 1, . . . , n− 1.

If an analysis similar to the one performed in [15] were carried out, we could conclude
that the defined splines have a global error of O(hm−1).

3. Algorithm for the MATLAB Program

Consider the following third-order ordinary differential equation for the k-th step:

Y(3)(x) = f (x, Y(x))

Y(xk) = Y0 , Y′(xk) = Y1, Y′′(xk) = Y2



 xk ≤ x ≤ xk + h, (23)

where h is the step size, xk = a + kh and Y0, Y1, and Y2 are, respectively, the matrices Y, Y′,
and Y′′ obtained in the previous step at xk. If we denote by Sk(x) the spline of order m in
the interval [xk, xk + h], then:

Sk(xk + h) =
m−1

∑
i=0

Y(i)(xk)hi

i!
+

hm

m!
Ak ≡ B(0)

k +
hm

m!
Ak, (24)

S
′
k(xk + h) =

m−1

∑
k=1

Y(i)(xk)hi−1

(i− 1)!
+

hm−1

(m− 1)!
Ak = B(1)

k +
hm−1

(m− 1)!
Ak, (25)

S
′′
k (xk + h) =

m−1

∑
k=2

Y(i)(xk)hi−2

(i− 2)!
+

hm−2

(m− 2)!
Ak ≡ B(2)

k +
hm−2

(m− 2)!
Ak, (26)

S
′′′
k (xk + h) =

m−1

∑
k=3

Y(i)(xk)hi−3

(i− 3)!
+

hm−3

(m− 3)!
Ak ≡ B(3)

k +
hm−3

(m− 3)!
Ak. (27)

If we substitute expressions (24) and (27) into differential Equation (23), we obtain:

B(3)
k +

hm−3

(m− 3)!
Ak = f

(
x, B(0)

k +
hm

m!
Ak

)
.



Mathematics 2021, 9, 2262 7 of 17

Then, the matrix Ak can be found by using the following fixed-point iteration:

Ak =
(m− 3)!

hm−3

[
f
(

x, B(0)
k +

hm

m!
Ak

)
− B(3)

k

]
. (28)

Hence, the approximated values for Y, Y′, and Y′′ at xk + h are:

Y(xk + h) = B(0)
k + hm

m! Ak,
Y′(xk + h) = B(1)

k + hm−1

(m−1)! Ak,

Y′′(xk + h) = B(2)
k + hm−2

(m−2)! Ak.

Figure 1 shows the MATLAB code that approximately computes the solution matrices
Y(b), Y′(b), and Y′′(b) of the third-order ordinary differential Equation (4). This code uses
the cell-array data type for storing sets of matrices. In Line 31, Y(i)(xk), i = 0, 1, . . . , m, are
obtained and stored in the cell-array variable ym by invoking the f MATLAB function to
return the matrices that appear in expressions (24)–(27). In Lines 11–16, the expressions
B(0)

k , B(1)
k , B(2)

k , and B(3)
k from Equations (24)–(27) are computed. In Lines 38–47, the matrix

Ak is worked out by using the fixed-point iteration. Finally, in Lines 48–50, Y(xk + h),
Y′(xk + h), and Y′′(xk + h) are computed approximately.

Mathematics 2021, 1, 0 8 of 19

1 funct ion [ x , y]= sp l ine3order ( f , y , a , b , h ,m)
2 % This funct ion computes the s o l u t i o n of a third −order
3 % matrix d i f f e r e n t i a l equation y ’ ’ ’ = f ( x , y ) , a t x in [ a , b ] , with
4 % the i n i t i a l condi t ions y {1 } = y ( a ) , y {2 } = y ’ ( a ) and y { 3 } = y ’ ’ ( a ) .
5 %
6 % Input data :
7 % − f i s a MATLAB funct ion which re turns y and i t s
8 % d e r i v a t i v e s y ’ , y ’ ’ , y ’ ’ ’ , . . . , y (m) .
9 % − y i s a c e l l array of 3 elements with the matr ices y , y ’

10 % and y ’ ’ a t the point x=a .
11 % − a and b def ine the considered i n t e g r a t i o n i n t e r v a l .
12 % − h i s the step s i z e .
13 % − m i s the s p l i n e order .
14 %
15 % Output data :
16 %
17 % − x s t o r e s the value , near a t b , in which the s o l u t i o n i s
18 % computed .
19 % − y i s a c e l l array of 3 elements with the s o l u t i o n y , y ’
20 % and y ’ ’ a t the previous point x in the form y { 1 } = y ( x ) ,
21 % y { 2 }= y ’ ( x ) and y {3 } = y ’ ’ ( x ) .
22 %
23 [ n1 , n2 ]= s i z e ( y { 1 } ) ;
24 ph (1 ) = h ;
25 f o r k =2:m
26 ph ( k)=ph ( k −1)*h ;
27 end
28 nt=round ( ( b−a )/h ) ;
29 x=a ;
30 f o r k =1: nt
31 ym= f ( x , y , 1 ) ;
32 f o r j =1:4
33 Bk { j }=ym{ j } ;
34 f o r i = j +1:m
35 Bk { j }=Bk { j }+ym{ i } * ph ( i − j )/ f a c t o r i a l ( i − j ) ;
36 end
37 end
38 x=x+h ;
39 aux= f a c t o r i a l (m−3)/ph (m− 3 ) ;
40 Ak=ones ( n1 , n2 ) ;
41 ea =1;
42 while ea>=eps/2
43 Skm{1 } = Bk {1 } +Ak*ph (m)/ f a c t o r i a l (m) ;
44 Ak1=aux * ( f ( x , Skm,0) − Bk { 4 } ) ;
45 ea=norm (Ak−Ak1 ) ;
46 Ak=Ak1 ;
47 end
48 f o r j =1:3
49 y { j }=Bk { j }+Ak*ph (m− j +1)/ f a c t o r i a l (m− j + 1 ) ;
50 end
51 end
52 end

Figure 1. MATLAB code for computing approximate solutions by means of m-th order splines.Figure 1. MATLAB code for computing approximate solutions by means of m-th order splines.
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Figure 2 reproduces the MATLAB function f for the thin-film flow of problem (33).
The dotted Line 24 indicates the completion of the list of all derivates until the m-th one, m
being the spline order.

The memory requirements for this function are (m + 10) matrices, i.e., m matrices
for the cell-array variable ym, 4 matrices for the cell-array variable Bk, 3 matrices for the
variables Ak, Ak1, and Skm, and 3 matrices for the cell-array variable y.

Mathematics 2021, 1, 0 9 of 19

1 funct ion ym= f ( x , y , f l a g _ o u t )
2 % Example of the thin −f i lm flow problem .
3 % This funct ion re tu rns y and i t s d e r i v a t i v e s y ’ , y ’ ’ , y ’ ’ ’ , . . . ,
4 % y (m) , where m i s the s p l i n e order , corresponding to the
5 % d i f f e r e n t i a l equation y ’ ’ ’ ( x ) = f ( x , y ( x ) ) .
6 %
7 % Input data :
8 % − x i s the point a t the X a x i s .
9 % − y i s a c e l l array of 3 elements with the matr ices y , y ’

10 % and y ’ ’ a t the previous point x .
11 % − f l a g _ o u t i s a boolean value : i f i t i s equal to 0 , the
12 % funct ion j u s t re turn s y ’ ’ ’ . Otherwise , i t re tu rns
13 % y , y ’ , y ’ ’ , y ’ ’ ’ , . . . , y (m) .
14 %
15 % Output data :
16 % − ym i s a c e l l array t h a t e i t h e r s t o r e s y and i t s
17 % d e r i v a t i v e s or j u s t y ’ ’ ’ .
18 %
19 i f f l a g _ o u t
20 ym=y ;
21 ym{ 4 } = y { 1 } ^ ( − 2 ) ;
22 ym{5}= −2* y { 1 } ^ ( − 3 ) * y { 2 } ;
23 ym{ 6 } = 6 * y { 1 } ^ ( − 4 ) * y {2}^2 −2* y { 1 } ^ ( − 3 ) * y { 3 } ;
24 . . . . .
25 e l s e
26 ym=y { 1 } ^ ( − 2 ) ;
27 end
28 end

Figure 2. Function f for the thin-film flow of Problem (33).

4. Numerical Test Examples

This section discusses the approximation for solutions of seven distinct third-order
differential equations. For all of them, special Mathematica and MATLAB software packages
were employed to obtain the solutions of the algebraic equations that emerge after applying
the algorithm described in the preceding section.

4.1. A Scalar Inhomogeneous Non-Linear Problem

Consider this simple test problem from [1]:

y(3)(x) = (cos(x)− 1) cos(x) + y2 − 1

y(0) = 0

y′(0) = 1

y′′(0) = 0





, 0 ≤ x ≤ 1, (29)

whose exact solution y(x) = sin (x) is known. The function f (x, y) = (cos(x)− 1) cos(x) +
y2− 1 is not Lipschitz for all of R2. However, the particular region D = (0, 1)× (−1, 1) ⊂ R2

can be chosen, because with constant L = 2, function f (x, y) is locally Lipschitz. Therefore, it
is possible to apply the proposed method, obtaining sixth-order splines (m = 6) by taking
h < 3
√

60 ≈ 3.91. The analytical expressions of the distinct polynomials that compose the
spline for h = 0.1 are listed in Table 1. The maximum errors incurred are shown in Table 2 for
each subinterval.

Figure 2. Function f for the thin-film flow of problem (33).

4. Numerical Test Examples

This section discusses the approximation for solutions of seven distinct third-order
differential equations. For all of them, special Mathematica and MATLAB software packages
were employed to obtain the solutions of the algebraic equations that emerge after applying
the algorithm described in the preceding section.

4.1. A Scalar Inhomogeneous Non-Linear Problem

Consider this simple test problem from [1]:

y(3)(x) = (cos(x)− 1) cos(x) + y2 − 1

y(0) = 0

y′(0) = 1

y′′(0) = 0





, 0 ≤ x ≤ 1, (29)

whose exact solution y(x) = sin (x) is known. The function f (x, y) = (cos(x)− 1) cos(x) +
y2− 1 is not Lipschitz for all of R2. However, the particular region D = (0, 1)× (−1, 1) ⊂ R2

can be chosen, because with constant L = 2, function f (x, y) is locally Lipschitz. Therefore, it
is possible to apply the proposed method, obtaining sixth-order splines (m = 6) by taking
h < 3
√

60 ≈ 3.91. The analytical expressions of the distinct polynomials that compose the
spline for h = 0.1 are listed in Table 1. The maximum errors incurred are shown in Table 2 for
each subinterval.
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Table 1. Approximation spline for the problem (29).

Subinterval Approximation Polynomials

[0, 0.1] −0.0000347107x6 + 0.00833333x5 − 0.166667x3 + x

[0.1, 0.2] −0.00031184x6 + 0.00849961x5 − 0.0000415695x4 − 0.166661x3 − 4.15695× 10−7x2 + 1.x− 2.7713× 10−10

[0.2, 0.3] 0.0000383134x6 + 0.00807943x5 + 0.000168523x4 − 0.166717x3 + 7.9880× 10−6x2 + 0.999999x + 2.2133× 10−8

[0.3, 0.4] −0.00190054x6 + 0.0115694x5 − 0.00244893x4 − 0.16567x3 − 0.000227583x2 + 1.00003x− 1.3913× 10−6

[0.4, 0.5] 0.00470998x6 − 0.00429589x5 + 0.0134163x4 − 0.174132x3 + 0.00231086x2 + 0.999621x + 0.0000256854

[0.5, 0.6] −0.0205597x6 + 0.0715132x5 − 0.081345x4 − 0.110957x3 − 0.0213795x2 + 1.00436x− 0.000369154

[0.6, 0.7] 0.0731793x6 − 0.265947x5 + 0.424846x4 − 0.51591x3 + 0.160849x2 + 0.960625x + 0.00400433

[0.7, 0.8] −0.277197x6 + 1.20563x5 − 2.15042x4 + 1.88767x3 − 1.10103x2 + 1.31395x− 0.0372171

[0.8, 0.9] 1.02995x6 − 5.06866x5 + 10.3982x4 − 11.4975x3 + 6.93007x2 − 1.256x + 0.305443

[0.9, 1.0] −3.8489x6 + 21.2771x5 − 48.8798x4 + 59.6361x3 − 41.0851x2 + 16.0295x− 2.28737

Table 2. Approximation errors for the problem (29).

Subinterval [0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5]

Max. error 1.4872× 10−11 6.3015× 10−11 6.9036× 10−10 6.2645× 10−10 6.6951× 10−9

Subinterval [0.5, 0.6] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9] [0.9, 1.0]

Max. error 1.2629× 10−8 6.8791× 10−8 2.2188× 10−7 8.8033× 10−7 8.7895× 10−7

4.2. A Scalar Nonhomogeneous Linear Problem

Here, we consider the following equation, studied in [8]:

y(3)(x) = y + cos (x)

y(0) = 0

y′(0) = 0

y′′(0) = 1





, 0 ≤ x ≤ 1, (30)

whose exact solution is given by y(x) =
1
2
(ex − cos (x)− sin (x)). In this case, func-

tion f (x, y) = y + cos (x) is Lipschitz over all R2, with constant L = 1. If we choose
h < 3
√

120 ≈ 4.93, sixth-order splines (m = 6) will be achieved. The approximation spline
for step size h = 0.1 is given in Table 3, and the corresponding maximum errors for each
subinterval are shown in Table 4.

Table 3. Approximation spline for the problem (30).

Subinterval Approximation Polynomials

[0, 0.1] 0.00142361x6 + 0.166667x3 + 0.5x2

[0.1, 0.2] 2.77797× 10−10 − 1.66678× 10−8x + 0.5x2 + 0.166661x3 + 0.0000416695x4 − 0.000166678x5 + 0.00170141x6

[0.2, 0.3] −2.1931× 10−8 + 6.49596× 10−7x + 0.499992x2 + 0.166717x3 − 0.000166538x4 + 0.000249737x5 + 0.0013544x6

[0.3, 0.4] 1.39603× 10−6 − 0.0000277096x + 0.500228x2 + 0.165666x3 + 0.00245931x4 − 0.0032514x5 + 0.00329947x6

[0.4, 0.5] −0.0000256191 + 0.000377517x + 0.497696x2 + 0.174109x3 − 0.0133699x4 + 0.0125778x5 − 0.00329602x6

[0.5, 0.6] 0.000369394− 0.00436264x + 0.521397x2 + 0.110906x3 + 0.0814334x4 − 0.0632648x5 + 0.0219848x6

[0.6, 0.7] −0.0040011 + 0.0393423x + 0.339292x2 + 0.515582x3 − 0.424411x4 + 0.273965x5 − 0.0716901x6

[0.7, 0.8] 0.0372102− 0.313898x + 1.60086x2 − 1.88741x3 + 2.15022x4 − 1.19726x5 + 0.2786x6

[0.8, 0.9] −0.305309 + 2.255x− 6.42693x2 + 11.4922x3 − 10.3932x4 + 5.07446x5 − 1.02801x6

[0.9, 1.0] 2.28658− 15.0243x + 41.571x2 − 59.6158x3 + 48.8635x4 − 21.2619x5 + 3.84909x6
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Table 4. Approximation errors for the problem (30).

Subinterval [0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5]

Max. error 1.4881× 10−11 6.3053× 10−11 6.9130× 10−10 6.3575× 10−10 6.7183× 10−9

Subinterval [0.5, 0.6] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9] [0.9, 1.0]

Max. error 1.256× 10−8 6.8932× 10−8 2.2147× 10−7 8.8065× 10−7 3.2087× 10−6

4.3. A Scalar Nonlinear Problem

Our next test example focuses on the problem posed in [8]:

y(3)(x) = −e−y + 3e−2y − 2e−3y

y(0) = log (2)

y′(0) = 1
2

y′′(0) = 1
4





, 0 ≤ x ≤ 1. (31)

The exact solution to this problem is y(x) = log (ex + 1). Considering the region
D = (0, 1)× (0, 10) ⊂ R2, function f (x, y) = −e−y + 3e−2y − 2e−3y has a partial derivative
with respect to its second variable y bounded by L = 13 in D. Thus, function f (x, y) is

locally Lipschitz for constant L = 13. For h < 3
√

120
13 ≈ 2.09771, our method is applied,

providing this time sixth-order splines (m = 6). Table 5 displays the approximation spline
for h = 0.1. In addition, the maximum errors for each subinterval are listed in Table 6.

Table 5. Approximation spline for the problem (31).

Subinterval Approximation Polynomials

[0, 0.1] log (2) + 0.5x + 0.125x2 − 0.00520833x4 + 0.000346486x6

[0.1, 0.2] 0.693147 + 0.5x + 0.125x2 + 3.51111× 10−7x3− 0.00521097x4 + 0.0000105333x5 + 0.00032893x6

[0.2, 0.3] 0.693147 + 0.5x + 0.125x2 + 2.9433× 10−6x3 − 0.00522069x4 + 0.0000299747x5 + 0.000312729x6

[0.3, 0.4] 0.693147 + 0.500001x + 0.124989x2 + 0.0000484757x3 − 0.00533452x4 + 0.000181749x5 + 0.00022841x6

[0.4, 0.5] 0.693148 + 0.499994x + 0.125035x2 − 0.000102835x3 − 0.00505081x4 − 0.000101957x5 + 0.000346621x6

[0.5, 0.6] 0.693137 + 0.500121x + 0.124401x2 + 0.00158826x3 − 0.00758746x4 + 0.00192736x5 − 0.000329818x6

[0.6, 0.7] 0.693243 + 0.499064x + 0.128805x2 − 0.00819903x3 + 0.00464666x4 − 0.00622872x5 + 0.00193576x6

[0.7, 0.8] 0.692217 + 0.50786x + 0.0973911x2 + 0.0516366x3 − 0.059463x4 + 0.0304054x5 − 0.00678664x6

[0.8, 0.9] 0.700682 + 0.444372x + 0.29579x2 − 0.279029x3 + 0.250536x4 − 0.124594x5 + 0.0255049x6

[0.9, 1.0] 0.636507 + 0.872202x− 0.892627x2 + 1.48159x3 − 1.21665x4 + 0.527487x5 − 0.0952508x6

Table 6. Approximation errors for the problem (31).

Subinterval [0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5]

Max. error 4.7340× 10−13 2.5465× 10−12 3.9703× 10−11 1.1270× 10−10 3.9472× 10−10

Subinterval [0.5, 0.6] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9] [0.9, 1.0]

Max. error 4.6335× 10−10 2.6369× 10−9 3.8893× 10−9 2.4363× 10−8 7.5564× 10−8

4.4. A Scalar Nonhomogeneous Problem

An interesting scalar problem, being nonhomogeneous and involving convoluted
combinations of trigonometric functions, is:
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y(3)(x) = −3
2

y sin (2x) + sin (x)
(

1 + sin2 (x)
)

cos (cos (x))

y(0) = sin (1)

y′(0) = 0

y′′(0) = − cos (1)





, 0 ≤ x ≤ 1. (32)

Surprisingly, this complicated problem has an exact solution, for details see [8].
The known solution is y(x) = sin (cos (x)) (there are mistakes both in the initial con-
ditions and in the solution of the problem, y(x) = cos (sin (x)), given in [8], p. 146). In this
case, function:

f (x, y) = −3
2

y sin (2x) + sin (x)
(

1 + sin2 (x)
)

cos (cos (x))

is Lipschitz with constant L = 3/2, and the proposed method will yield sixth-order splines

(m = 6) if h < 3
√

240
3 ≈ 4.30887. For step size h = 0.1, this spline is summarized in Table 7.

All corresponding maximum errors are also listed in Table 8.

Table 7. Approximation spline for problem (32).

Subinterval Approximation Polynomials

[0, 0.1] sin[1]− cos (1)
2 x2 +

(
cos (1)

24 − sin (1)
8

)
x4 + 0.0279824x6

[0.1, 0.2] 0.841471 + 7.96286× 10−8x− 0.270153x2 + 0.0000265429x3 − 0.0828703x4 + 0.000796286x5 + 0.0266552x6

[0.2, 0.3] 0.841471 + 3.18879× 10−6x− 0.270192x2 + 0.00028564x3 − 0.083842x4 + 0.00273951x5 + 0.0250359x6

[0.3, 0.4] 0.841466 + 0.000109689x− 0.27108x2 + 0.00423011x3 − 0.0937031x4 + 0.0158877x5 + 0.0177313x6

[0.4, 0.5] 0.841488− 0.000229253x− 0.268961x2 − 0.00283119x3 − 0.0804632x4 + 0.0026478x5 + 0.0232479x6

[0.5, 0.6] 0.840672 + 0.00956559x− 0.317935x2 + 0.127767x3 − 0.27636x4 + 0.159365x5 − 0.0289912x6

[0.6, 0.7] 0.847811− 0.0618259x− 0.0204706x2 − 0.533266x3 + 0.549931x4 − 0.391495x5 + 0.124026x6

[0.7, 0.8] 0.774658 + 0.565197x− 2.25984x2 + 3.7322x3 − 4.02021x4 + 2.22001x5 − 0.497762x6

[0.8, 0.9] 1.36838− 3.88771x + 11.6555x2 − 19.4601x3 + 17.7225x4 − 8.65135x5 + 1.76711x6

[0.9, 1.0] −3.15253 + 26.2517x− 72.0651x2 + 104.57x3 − 85.6362x4 + 37.2859x5 − 6.73979x6

Table 8. Approximation errors for problem (32).

Subinterval [0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5]

Max. error 3.4875× 10−11 1.811× 10−10 2.989× 10−9 9.2962× 10−9 3.2810× 10−8

Subinterval [0.5, 0.6] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9] [0.9, 1.0]

Max. error 4.8765× 10−8 2.1830× 10−7 2.0686× 10−7 1.845× 10−6 5.095× 10−6

4.5. A Nonlinear Scalar Problem

The following problem consists of modeling the spreading of a thin oil drop on a
horizontal surface. It is the thin-film problem given by Example 4.3 in [16]:

y(3) = y−2

y(0) = y′(0) = y′′(0) = 1

}
, x ∈ [0, b]. (33)

Table 9 details the relative errors for the method by Mechee et al. (M1) [17], the method
by Khataybeh et al. (M2), and our spline-based method of order m = 9 (M3), for h = 0.01
and b = 1. For the numerical comparison, the exact solution was obtained from Duffy and
Wilson [1].



Mathematics 2021, 9, 2262 12 of 17

Table 9. Relative errors of the Mechee (M1), Khataybeh (M2), and spline-based (M3) methods in the
film flow problem (33).

x M1 M2 M3

0.2 8.397402× 10−7 8.399040× 10−7 8.397170× 10−7

0.4 7.596544× 10−8 7.643561× 10−8 7.598801× 10−8

0.6 3.485744× 10−9 4.315684× 10−9 3.496411× 10−9

0.8 4.587537× 10−11 1.192760× 10−9 3.625209× 10−11

1 3.659122× 10−7 3.674458× 10−7 3.659145× 10−7

These results were produced with the MATLAB code shown in Figure 2, which
calculates function y and its derivatives.

4.6. A Linear Matrix Problem

Consider the matrix problem:

Y(3)(x) = AY(x), A =




817
68

1393
68

448
68

− 1141
68 − 2837

68 − 896
68

3059
136

4319
136

1592
136




y(0) =




2
−2
12




y′(0) =



−12

28
−33




y′′(0) =




20
−52

5








, 0 ≤ x ≤ 1. (34)

As in the other cases above, its solution (see [18], p. 334) is also known:

y(x) =




ex − 2e2x + 3e−3x

3ex + 2e2x − 7e−3x

−11ex − 5e2x + 4e−3x


.

The matrix function f (x, Y) = AY is Lipschitz with constant L = ‖A‖2 ≈ 90.1136.

Therefore, for h < 3
√

210
90.1136 ≈ 1.32579, we employ our method and seventh-order splines

(m = 7) are obtained. Maximum errors for h = 0.1 are given in Table 10.

Table 10. Approximation errors for the problem (34).

Subinterval [0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5]

Max. error 7.5906× 10−11 7.2457× 10−11 4.3608× 10−10 1.4836× 10−9 3.7673× 10−9

Subinterval [0.5, 0.6] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9] [0.9, 1.0]

Max. error 7.9945× 10−9 1.5020× 10−8 2.5835× 10−8 4.1559× 10−8 6.3425× 10−8

Figures 3 and 4 display errors committed when considering distinct values of h or
different spline orders, respectively. As expected, the errors become smaller as either the
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value of h decreases or as the spline order increases. MATLAB software was employed to
provide these graphs.
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Figure 3. Approximation errors (m = 7) for the matrix problem (34) with various step sizes.
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Figure 4. Approximation errors (h = 0.1) for the matrix problem (34) with distinct spline orders.

4.7. A Nonlinear Matrix Problem

In the next example, we focus on the following matrix problem with a nonlinear term:

Y(3) = Y2

Y(0) = 0n
Y′(0) = 10−2 In
Y′′(0) = 10−21n





, x ∈ [0, b], (35)
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where 0n, In, and 1n are the null, the identity, and the all-ones matrices of dimension n,
respectively.

To compute the “exact” solution, we employed the MATLAB Symbolic Math Tool-
box (with 256 digits of precision) using the vpa (variable-precision floating-point arith-
metic) function. All computations have IEEE double-precision arithmetic with round
off u = 2−53 ≈ 1.11× 10−16. The “exact” solution is obtained whenever two consecutive
spline orders (for fixed step size) present a relative error lower than the unit round off
for this precision. For b = 10 and n = 10, we found that for h = 0.01 and for the spline
orders 10 and 11, the relative error when the “exact” solution is calculated is equal to
1.2019× 10−17 < u.

Table 11 shows the relative errors at x = 2, 4, 6, 8, and 10, with a spline order m = 12,
considering the step sizes h = 0.1, h = 0.05, and h = 0.01. As we can see, in general, the error
committed at any point x becomes smaller and smaller for decreasing h values. Nevertheless,
for h = 0.01, the results obtained are worse than those ones for h = 0.05, due to a larger
number of floating-point operations and reaching the limit of the machine accuracy.

Table 11. Relative errors for the nonlinear matrix problem (35) solved by a spline of order m = 12.

x 2 4 6 8 10

h = 0.5 1.46× 10−14 4.32× 10−13 8.68× 10−12 4.77× 10−10 4.24× 10−07

h = 0.1 6.10× 10−16 8.35× 10−16 1.47× 10−15 3.37× 10−15 2.48× 10−13

h = 0.05 1.05× 10−15 6.27× 10−16 1.23× 10−15 2.27× 10−15 4.58× 10−15

h = 0.01 1.58× 10−15 2.48× 10−15 3.16× 10−15 8.77× 10−15 2.11× 10−14

Figure 5 plots the relative errors at x = 10 for distinct step sizes when varying the
spline order. The relative errors decrease as we use smaller values of h and as the order
of the spline m increases. When h = 0.05, the error can even be larger if we use a very
high-degree spline versus lower degrees. Moreover, for h = 0.01, using a value of m
greater than or equal to nine does not reduce the relative error committed. As explained
for Table 11, this is because of the round off errors that appear when computing a large
number of floating-point operations.

Additionally, Figure 6 displays the execution time required for different degrees of the
spline and for distinct values of h. As expected, a higher value of h and m leads to an increase
in the computational cost and, consequently, in the execution time. For the same value of h, it
is possible that the execution time will not always rise with the degree of the spline. This is
because the number of iterations required by the fixed-point method is not always identical.

Finally, Figure 7 depicts the response time versus the relative error committed, also
with different step sizes. Clearly, higher values of h result in larger execution times. On
the other hand, for a constant step size, a smaller relative error leads to a higher execution
time, since this is achieved by working with higher spline orders.
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Figure 5. Relative errors, for the nonlinear matrix problem (35), depending on the spline order.
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Figure 6. Execution time, for the nonlinear matrix problem (35), depending on the spline order.
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Figure 7. Execution time, for the nonlinear matrix problem (35), versus relative error.

5. Conclusions

This work outlined a numerical method for solving a specific type of third-order matrix
differential equations and presents the corresponding algorithmic recipes. For illustration
purposes, several standard test problems were included. All results demonstrated that
our procedure provides solutions with very acceptable accuracy. Of course, the degree of
accuracy can always be readjusted by decreasing the step size and/or increasing the order
of the approximation spline accordingly.
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