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1 Introduction

Water distribution network (WDN) operation may be improved by district metered area (DMA)
design [1]. A first step to create DMAs uses graph theory and non-supervised learning, where
physical features of the WDN, such as node coordinates, elevation and demand, are used for
clustering purposes [2]. A second step is related to the necessary isolation of the clustered
elements. For isolation purposes, it is important to determine the DMA entrances and, con-
sequently, the needed cut-off valves. Closure of pipes and definition of DMA entrances can
be set as an optimization problem with the costs associated to the valves, which are linked to
pipe diameters, as a primary objective. However, placement and operation of pressure reducing
valves (PRVs) change the hydraulic conditions, and the optimization process should respect
operation limits, such as minimum and maximum pressure and minimum and maximum tank
levels. The optimization process can be written as:

Nv∑
i=1

c(Di) s.t. Pmin ≤ Pt,j ≤ Pmax and Tmin,k ≤ Tt,k ≤ Tmax,k, (1)

where c(Di) is the cost of a valve placed in a pipe with diameter Di; Nv is the number of valves;
Pmin and Pmax are the limit pressures allowed; Pt,j is the operational pressure at time step t in
pipe j; Tmin,k and Tmax,k are the minimum and maximum tank levels allowed for tank k; and
Tt,k is the operational level of tank k at time step t.

Constrained problems are frequently handled by using penalty functions. However, as discussed
in [3], penalty approaches modify the search space, impairing the search process by the creation

1e-mail: jizquier@upv.es
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of new local minima. To solve this problem, a bio-inspired algorithm widely applied in water
distribution problems [4], adapted for a multi-objective approach, is applied. In this context,
constraints become objectives to be reached, which turns the problem unconstrained.

Moreover, as observed in [5], such crucial water distribution parameters as resilience, pressure
uniformity and water quality strongly depend on DMA configurations. These parameters are
known to depend on pressures and water tank levels and, together with cost, will be the other
objectives of our optimization.

A multi-objective approach gives a set of solutions, the so-called Pareto front. To select, within
that front, which non-dominated solution will be implemented may be hard task. To help this
process, this work presents: a) multi-level optimization process for entrance location and set
point definition of PRVs, and b) a post-processing based on a multi-criteria method, which
ranks the non-dominated solutions based on the relative importance of the said four main ob-
jectives: implementation cost, resilience, pressure uniformity and water quality.

Among the wide range of MCDM (multi-criteria decision-making) methods used in the liter-
ature, the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) effec-
tively works across various application areas [6]. Such a technique was developed by Hwang
and Yoon [7] as a simple way to solve decision-making problems by means of the ranking of
various decision alternatives [8, 9]. In this context, the objective of the TOPSIS application
to the multi-objective problem consists in selecting the solution representing the best trade-off
(among the set of optimal solutions belonging to the Pareto front) under the perspective of the
considered evaluation criteria.

2 Clustering process based on a k-means algorithm

The first step for DMA design is to cluster the nodes of the network. Among the various
methods suitable for this step, a simple and effective one is the k-means algorithm. The
method uses the Euclidean distance between samples and centroids, and clusters are defined
according to the smallest distances. For a simple explanation, let’s take a set with m data points
χ = [x1, x2, . . . , xm] where each point xi = [xi,1, xi,2, . . . , xi,n]. Taking a pre-defined number
of clusters k, the method starts distributing randomly the k centres in the data space. The
Euclidean distance di,j between each center j and each data point xi is computed. The data
points are classified as belonging to cluster j if the distance di,j is minimum when compared for
all other centres. After the classification step, the centres are replaced to the mean value of all
points belonging to a cluster. The process is repeated (distance calculation, point classification,
and centre replacement) until the distance between the centres at iteration t−1 and t is smaller
than a tolerance value.

3 The non-dominated sorting genetic algorithm (NSGA-II)

Different from single objective optimization algorithms, multi-objective approaches do not find
just one optimal solution, but a set of compromise solutions, so-called Pareto front. Among sev-
eral algorithms proposed for multi-objective optimization, population based algorithms, such
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as NSGA-II [10], are widely applied for engineering problems, highlighting their applications in
the water distribution domain [11,12].

NSGA-II evaluates all the N possible solutions composing a population. The solutions are
evaluated for all the objectives finding non-dominated solutions. Considering two solutions xa

and xb, it is said that xa dominates xb if and only if both conditions a) and b) below are
satisfied.

a) xa is no worse than xb for all objectives, and

b) xa is strictly better than xb at least for one objective.

For each single solution xp it is possible to know the number np of solutions dominating xp and
the set of solutions Sp dominated by xp. By definition, non-dominated solutions have np = 0,
and integrate the so-called primary Pareto front. Now, for all solutions q in the sets Sp included
in that primary Pareto front, the value of nq is reduced by one and those solutions q with new
nq = 0 for all p are collected into a new set, so-called secondary Pareto front. This procedure
is repeated until finding new high-level fronts.

The algorithm starts with a random population P0 of size N . Individuals are evaluated for all
the objectives and the non-dominated front is found as described next. Genetic operations (bi-
nary tournament selection, recombination, mutation) are used to create a new set of solutions.
The new population, now sizing 2N , is sorted according to non-domination, and the Pareto
fronts for all the levels are found; if the number of solutions belonging to the primary Pareto
front is smaller than N , all solutions are preserved and the new population is completed with
the higher-level Pareto fronts, according to the ranking. Otherwise, the N first solutions of the
primary Pareto front are selected. One important feature of population-based algorithms is
the maintenance of the solution spread. This is fundamental for good convergence to a Pareto-
optimal set [10]. To this purpose, NSGA-II uses a crowded-comparison approach, based on
crowding distances (see [10]).

The process re-starts with the new population by re-evaluating each solution under all objectives
and re-ranking solutions based on the non-domination criterion. The algorithm stops when
reaching some termination criteria, such as maximum number of iterations, or no improvements
in the Pareto front. The method results in a set of non-dominated solutions with an optimal
compromise relation for all the objectives. However, for practical problems, the evaluation of
the Pareto front by experts could be hard task. To help, a post-processing step, based on
MCDM is proposed.

4 The TOPSIS to rank solutions
As mentioned, TOPSIS is a MCDM method aimed at ranking various alternatives, such as
the solutions of the decision-making problem under analysis. The method calculates distances
from each solution to a positive ideal solution and to a negative ideal solution. The solution
representing the best trade-off under the considered criteria is the one characterised by the
shortest distance to the positive ideal solution, and the farthest to the negative one.
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First of all, the TOPSIS technique needs the preliminary collection of the following input data
to be applied: a decision matrix (collecting the evaluations gij of each alternative i under each
criterion j), the weights of criteria (representing their mutual importance), and their preference
directions (to establish if criteria have to be minimised or maximised).

The implementation of the procedure is led by following five main steps:

- Building the weighted normalized decision matrix, for which the generic element uij is
calculated as:

uij = wj · zij, ∀i, ∀j; (2)

where wj is the weight of criterion j and zij is the score of the generic solution i under
the criterion j, normalized by means of the equation:

zij =
gij√∑n
i=1 g2

ij

, ∀i, ∀j. (3)

- Identifying the positive ideal solution A∗ and the negative ideal solution A−, calculated
through the following equations:

A∗ = (u∗
1, . . . , u∗

k) = {(uij|j ∈ I ′), (uij|j ∈ I ′′)}; (4)

A− = (u−
1 , . . . , u−

k ) = {(uij|j ∈ I ′), (uij|j ∈ I ′′)}; (5)

I ′ and I ′′ being the sets of criteria to be, respectively, maximized and minimized.

- Computing the distance from each alternative i to the positive ideal solution A∗ and to
the negative ideal solution A− as follows:

S∗
i =

√√√√√
k∑

j=1
(uij − u∗

j)2, i = 1, . . . , n; (6)

S−
i =

√√√√√
k∑

j=1
(uij − u−

j )2, i = 1, . . . , n. (7)

- Calculating, for each alternative i, the closeness coefficient C∗
i which represents how the

solution i performs with respect to the ideal positive and negative solutions:

C∗
i = S−

i

S−
i + S∗

i

, 0 ≤ C∗
i ≤ 1, ∀i. (8)

- Obtaining the final ranking of alternatives on the basis of the closeness coefficients calcu-
lated above. In particular, with relation to two generic solutions i and z, solution i must
be preferred to solution z when C∗

i ≥ C∗
z .
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5 Case study

The methodology proposed is applied to the literature water network called Exnet [13]. The
system supplies 400,000 consumers approximately, requiring a delivery minimum pressure of
20m. The network is composed by 1,891 nodes, and 2,465 pipes. Two reservoirs and five in-
jection nodes (wells) feed the network. For clustering analysis, each node is used as a data
point, endowed with its topological features, namely geographical position, elevation and base
demand. The number of clusters is defined using the Davies-Bouldin (BD) criterion [14], which
evaluates the final clustered data, considering the distances among data points in a cluster and
the corresponding centre (intra-criterion), and the distances among centres (inter-criterion).
The best cluster number minimizes the intra-criterion and maximizes the inter-criterion. Vary-
ing from two to 15 clusters, the best DB criterion is found to be nine clusters. Fig. 1 shows
the clustered network.

Once clustered, the network should pass by the optimization step in order to define the entrances
and, consequently, those pipes where PRVs will be installed. The application of NSGA-II at
this step results in a Pareto front with 115 non-dominated solutions, as shown in Fig. 2.

Figure 1: Clustered Exnet with optimal BD criterion, resulting in 9 clusters.

Figure 2: Pareto’s front showing bi-objective problem of PRV placement in clustered networks.
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The TOPSIS method described in the previous section has been applied to rank the 115 so-
lutions belonging to the Pareto front. Obviously, resiliency is maximized whereas the other
four criteria (pressure uniformity, dissipated energy, lack of pressure, and cost) are minimised.
Moreover, at this stage of analysis, all the criteria have been considered as having the same
importance. It means a weight equal to 20% has been assigned to each criterion. Results of
TOPSIS application are reported in Table 1. Just the first five positions are given for sake of
brevity.

Ranking
position

Pareto
Solution Resilience Pressure

Uniformity
Energy
dissipated

Lack of
Pressure Costs

Closeness
Coefficient
value

1 5 2,12E-01 8,30E+01 6,16E+03 7,54E+04 2,20E+06 0,758828
2 82 2,12E-01 8,30E+01 6,16E+03 7,54E+04 2,20E+06 0,758828
3 43 2,21E-01 8,38E+01 5,98E+03 7,94E+04 1,20E+06 0,754085
4 90 2,21E-01 8,38E+01 5,98E+03 7,94E+04 1,20E+06 0,754085
5 37 2,22E-01 8,38E+01 5,96E+03 8,07E+04 0,00E+00 0,750996

Table 1: TOPSIS results.

The solutions in the first positions present higher values of closeness coefficient, since they have
large distance to the negative ideal solution and small distance to the positive ideal solution.
Similar solutions appear in Table 1, such as 5 and 82, or 43 and 90. This happens by the close-
ness of those solutions in the Pareto front, with identical rounded values. Solution 37 exhibits
an implementation cost equal to zero. This is a solution for the multi-objective problem from
the mathematical point of view. From the engineering point of view, this means that all the
boundary pipes remain open, thus resulting in a non-segregated network. Despite solution 37
is the last of the five top solutions, it still can help decision makers to find the benefits of DMA
creation on that network.

To provide readers with an effective comparison of the results in terms of the values of the
considered parameters, we also provide in Table 2 the last five positions of the ranking, those
with the lowest closeness coefficient. It is possible to note as these last positions present
higher associated costs (an objective to be minimised) and lower values of operation parameters
(objectives to be maximise, instead).

Ranking
position

Pareto
Solution Resilience Pressure

Uniformity
Energy
dissipated

Lack of
Pressure Costs

Closeness
Coefficient
value

111 11 0,00E+00 1,92E+06 1,71E+04 1,42E+04 7,22E+08 0,249465
112 10 0,00E+00 1,92E+06 1,82E+04 1,29E+04 7,79E+08 0,249008
113 113 0,00E+00 1,92E+06 1,82E+04 1,29E+04 7,79E+08 0,249008
114 93 0,00E+00 1,92E+06 1,80E+04 1,32E+04 7,67E+08 0,248811
115 13 0,00E+00 1,92E+06 1,80E+04 1,35E+04 7,64E+08 0,248037

Table 2: TOPSIS results: last five positions of the ranking.

This ranking approach shows the interest of MCDMs to select trade-off scenarios under the
considered criteria. The first solution shows the best pressure uniformity and lack of pressure,
but the highest cost and lowest resilience. That means, the best hydraulic and operation
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conditions will appear in the most expensive scenario. The relation of resilience and pressure
uniformity can also be highlighted. Scenarios with lower pressure uniformity present lower
resilience, since resilience is calculated based on overpressure, and pressure uniformity tries to
minimize overpressure.

6 Conclusions and future developments
The present work proposes a fully automated algorithm for DMA design based on clustering
analysis, multi-objective optimization and multi-criteria analysis. The clustering analysis is
done by a k-means algorithm evaluated under the Davies-Bouldin criterion, resulting in nine
DMAs. Multi-level optimization for entrance location and set point definition of pressure reduc-
ing valves achieve network clustering. NSGA-II finds 115 non-dominated solutions in a trade-off
between various objectives. In addition, a MCDM is applied to rank the non-dominated so-
lutions, to identify the one representing the best trade-off in fulfilling the objectives to be
matched. Operational and hydraulic criteria are used to evaluate the solutions.

Regarding MCDM, the TOPSIS method has been applied to obtain the final ranking of non-
dominated solutions. In particular, this application has been carried out under the evaluation
of four criteria: implementation cost, resilience, pressure uniformity and water quality. In the
presented case study, we assumed these criteria as having the same weight, in other terms, the
same degree of mutual importance.

Results point to solution number 5 as the best trade-off among all the 115 non-dominated
solutions, since it is the first in the ranking. While this solution embodies the best operational
criteria, is the most expensive and least resilient.

Future developments of the present work may regard a further integration between the multi-
objective and the multi-criteria perspectives, though with a different purpose: for example,
instead of getting just a rank of the non-dominated solutions, the application of a MCDM
method to classify them into proper clusters will be worth it.
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