

Doctoral Program in Technologies for Health and Well-being

Enrichment of Archetypes with

Domain Knowledge to Enhance the Consistency of

Electronic Health Records

Doctoral Thesis

Author

Vicente Miguel Giménez Solano

Supervisors

José Alberto Maldonado Segura

Montserrat Robles Viejo

Vicente Traver Salcedo

Valencia, October 2021

3

ACKNOWLEDGEMENTS

I would like to thank the following people for helping me, not only in the development of

this thesis, but in my professional career. Please, accept my gratitude.

First of all, I would like to express my sincere gratitude to Montserrat Robles and José

Alberto Maldonado. They gave me the opportunity to enter in the exciting world of medical

informatics seven years ago with a specialization grant that later became a pre-doctoral

contract. I started with them, and they have always been by my side.

I also want to thank professor Vicente Traver, who later joined as co-director of my thesis

and has helped me with good ideas to be able to finish it in a timely manner.

I want to express my gratitude to Kirstine Rosenbeck, who helped me to develop an

important part of my thesis, and for giving me the opportunity to work for a few months in

such a beautiful city as Aalborg.

I would like to thank professors Mar Marcos and Begoña Martínez for gave me the

opportunity to work at Universitat Jaume I for a year, and for making me feel so

comfortable working with them.

I also want to thank professor Jesualdo Fernández of Universidad de Murcia for allowing

me to work in his research group, and for having allowed me to meet Francisco Abad, a

great researcher and person.

Of course, I would like to thank Dr. Arturo Romero, CEO in Veratech for Health, and all my

colleagues, for being the best people and professionals anyone would want to work with:

Maryna, Cristina, Diego, David, Santi, Pablo, and ex-Veratech’s Christian.

Finally, I would like to thank my family, who have always supported and trusted in me, and

to whom I dedicate this thesis.

This thesis was partially funded by Ministerio de Economía y Competitividad, “Doctorados

Industriales”, grant DIN2018-009951, and by Universitat Politècnica de València, “Formación de

Personal Investigador” (FPI-UPV).

4

5

CONTENTS

Acknowledgements ... 3

Contents .. 5

List of figures ... 9

List of tables .. 13

Abbreviations and acronyms ... 15

Glossary ... 17

Abstract ... 21

Resumen .. 23

Resum .. 25

Chapter 1. Introduction ... 27

1.1 Motivation ... 27

1.2 Hypothesis, research questions and objectives ... 28

1.2.1 Hypothesis ... 28

1.2.2 Specific research questions and objectives ... 28

1.3 Contributions ... 30

1.3.1 Main contributions .. 30

1.3.2 Journal publications and conference contributions 33

1.3.3 Projects .. 35

1.3.4 Software .. 36

1.3.5 Grants .. 37

1.3.6 Research visits ... 37

1.3.7 Other contributions ... 38

1.4 Structure of the thesis ... 39

Chapter 2. Background .. 41

2.1 Introduction.. 41

2.2 Objectives .. 44

2.3 Consistency of EHR .. 45

2.4 Archetype-based EHR architectures .. 46

2.5 Terminology binding .. 49

6

2.6 SNOMED CT ... 55

2.6.1 Introduction ... 55

2.6.2 Logical model ... 57

2.6.3 Concept model .. 64

2.6.4 Expressions .. 65

2.7 SNOMED CT Expression Constraint Language ... 67

2.7.1 Simple ECs ... 71

2.7.2 Refined ECs .. 72

2.7.3 Compound ECs .. 75

2.7.4 Graphical representation of ECs .. 75

2.8 openEHR Expression Language .. 79

Chapter 3. Methods for the definition, validation, execution and visualization of SNOMED

CT subsets using ECL .. 81

3.1 Introduction ... 81

3.2 Storage of the SNOMED CT database .. 82

3.3 EC simplification .. 85

3.3.1 Subsumption based ... 86

3.3.2 MRCM-based ... 88

3.3.3 Logic definition-based ... 90

3.3.4 Post-execution simplification .. 94

3.4 EC execution .. 97

3.5 Subset visualization ... 101

Chapter 4. SNQuery: ECL execution engine based on graph databases 107

4.1 Overview of SNQuery .. 107

4.2 Other functionalities .. 111

4.2.1 MSSSI refsets list .. 111

4.2.2 Multilingual interface .. 112

4.2.3 Mapping to ICD-10 .. 112

4.2.4 Conversion from brief to long syntax and vice versa 112

4.3 Evaluation .. 113

4.4 Discussion .. 118

Chapter 5. Consistency rules in archetypes ... 125

7

5.1 Introduction ... 125

5.2 Requirements for the consistency language in archetypes 127

5.2.1 Introduction ... 127

5.2.2 Constraints .. 129

5.2.3 Rules .. 129

5.2.4 Exists operator ... 131

5.2.5 For_all operator ... 131

5.2.6 Inclusion operator ... 132

5.2.7 Considerations about the use of ‘EXISTS’, ‘FOR_ALL’ and ‘IN’ 133

5.2.8 Considerations about paths ... 134

5.2.9 Considerations about nesting rules ... 134

5.2.10 Data types, operators and functions ... 135

5.3 Review of existing languages ... 136

5.3.1 Comparison between GDL and EL ... 141

5.4 Justification of choosing EL as basis ... 149

5.5 Extensions to EL ... 151

Chapter 6. The EHRules Language ... 153

6.1 Overview.. 153

6.2 Execution model .. 154

6.3 Language specification .. 154

6.3.1 General structure .. 154

6.3.2 Syntax style .. 155

6.3.3 Typing .. 155

6.3.4 Variable declaration and assignation ... 157

6.3.5 Expressions .. 159

6.3.6 Paths, contexts and conditions .. 160

6.3.7 Functions ... 161

6.3.8 Operators .. 165

6.3.9 Rules .. 166

6.3.10 Value set bindings .. 169

6.4 Uses cases ... 174

8

6.4.1 Guidelines for acute stroke care .. 174

6.4.2 FSIII Danish standard ... 185

6.4.3 Requisition for radiology procedures .. 189

6.5 Validation of EHR data ... 192

6.6 Discussion .. 202

Chapter 7. Conclusions and future work ... 205

7.1 Conclusions .. 205

7.2 Future work ... 207

Bibliography ... 209

Annex 1 - List of ECs examples .. 219

Annex 2 - EHRules ABNF syntax specification .. 223

Annex 3 - FSIII Condition-Interventions ... 253

Annex 4 - From EHRules to Schematron examples .. 261

9

LIST OF FIGURES

Figure 1. A SNOMED CT subset visualized using the Neo4j browser ________________ 41

Figure 2. Archetypes status in the CKM repository _____________________________ 42

Figure 3. Consistency rules help solving consistency errors in EHR _________________ 43

Figure 4. Reference model of the ISO13606 standard ___________________________ 47

Figure 5.Example of a combination of the reference model classes of the ISO13606 ___ 48

Figure 6. Example of a patient summary archetype ____________________________ 49

Figure 7. The three fundamental pillars of semantic interoperability _______________ 50

Figure 8. A draw showing terminology bindings between elements of an EHR model and

SNOMED CT concepts ___ 51

Figure 9. Example of semantic binding ______________________________________ 52

Figure 10. Example of Simple value set binding ________________________________ 53

Figure 11. Example of Conditional value set binding ____________________________ 53

Figure 12. Example of Dependency value set binding ___________________________ 54

Figure 13. Example of Compositional value set binding __________________________ 54

Figure 14. Local extensions of SNOMED CT __________________________________ 55

Figure 15. Member map of SNOMED International ____________________________ 56

Figure 16. Overview of the SNOMED CT logical model __________________________ 57

Figure 17. Examples of descriptions for the concept 22298006 |Myocardial infarction| 58

Figure 18. Example of IS A and attribute relationships __________________________ 59

Figure 19. Example of multi-parent IS A relationships 1 __________________________ 59

Figure 20. Logical definition of the concept 425548001 |Abscess of heart| __________ 60

Figure 21. Three types of graphs ___ 60

Figure 22. Abstract representation of some SNOMED CT top-level hierarchies ________ 61

Figure 23. Visualization of the relationships between clinical concepts in SNOMED CT _ 61

Figure 24. SNOMED CT overview scheme with examples ________________________ 62

Figure 25. Logical definition of the concept 2704003 |Acute disease| ______________ 63

Figure 26. Logical definition of the concept 64572001 |Disease| __________________ 63

Figure 27. Logical definition of the concept 69449002 |Drug action| _______________ 63

Figure 28. Examples of the domain and range specified for the attributes 363698007

|Finding site| and 425391005 |Using access device (attribute)| __________________ 64

10

Figure 29. Examples of attribute relationships according to the concept model _______ 65

Figure 30. Logic definition of the concept 174041007 |Laparoscopic emergency

appendectomy| __ 66

Figure 31. SNOMED CT concept model, expressions and ECs summary _____________ 68

Figure 32. Comparison between the SNOMED CT Compositional Grammar and ECL ___ 68

Figure 33. Abstract model of a SNOMED CT EC _______________________________ 70

Figure 34. SNOMED CT EC components 16 ____________________________________ 71

Figure 35. Simple EC showing those concepts that are a type of diabetes mellitus _____ 76

Figure 36. Simple EC showing those concepts that are a type of diabetes mellitus and

diabetes mellitus itself ___ 76

Figure 37. Simple EC showing those concepts that are a supertype of diabetes mellitus 76

Figure 38. Simple EC showing those concepts that are a supertype of diabetes mellitus and

diabetes mellitus itself ___ 76

Figure 39. Refined EC showing those clinical findings caused by organisms __________ 77

Figure 40. Refined EC showing those clinical findings caused by 2 or 3 organisms _____ 77

Figure 41. Refined EC showing those substances that causes clinical findings caused by 3

substances __ 78

Figure 42. Compound EC showing those lung disorders with any type of edema of trunk 78

Figure 43. Properties of the concepts “444827008 |Erythema of skin (finding)|” and

“39937001 |Skin structure (body structure)|”, relationship “363698007 |Finding site

(attribute)|” between them, and relationships with ancestors (SNOMED CT July 2020

International __ 85

Figure 44. Syntax tree of EC example 7 ______________________________________ 87

Figure 45. Syntax tree of EC example 2, which is the simplification of EC example 7 ___ 88

Figure 46. Syntax tree of EC example 9 ______________________________________ 89

Figure 47. Syntax tree of the simplification of EC example 9 ______________________ 90

Figure 48. Syntax tree of EC example 10 _____________________________________ 92

Figure 49. Logic definition of 106063007 |Cardiovascular finding (finding)| _________ 92

Figure 50. Logic definitions of the concept “106063007 |Cardiovascular finding (finding)|”

and some of its descendants. Only “363698007 |Finding site|” attribute relationships are

represented ___ 93

Figure 51. Syntax tree of the simplification of EC example 10 _____________________ 93

11

Figure 52. Syntax tree of EC example 11 _____________________________________ 95

Figure 53. Syntax tree of EC example 13, which is the simplification of EC example 11 _ 97

Figure 54. Circle packing visualization of EC example 2 (using the SNOMED CT July 2020

International Edition). First level of visualization is displayed in (a); (b) shows the most

relevant sub-hierarchy (in orange, pointed out by an arrow); (c) shows the result of

zooming ___ 105

Figure 55. SNQuery showing some disorders of lung whose associated morphology is any

type of edema __ 108

Figure 56. Diabetes mellitus hierarchy ______________________________________ 108

Figure 57. Diabetes mellitus hierarchy after applying the ForceAtlas2 Graph Layout

Algorithm [41] __ 109

Figure 58. Tree-based visualization showing three levels in depth of those disorders of lung

associated with edema (only intermediate concepts are shown) _________________ 109

Figure 59. Visual ECs authoring tool _______________________________________ 110

Figure 60. Domains D1 to Dn over which the subset is calculated (note that Dn is

represented by all the SNOMED CT substrate) _______________________________ 116

Figure 61. Scatter plot showing the relation between domain size and execution time, and

standard deviation error bars (in milliseconds) of ECs in Table 10 _________________ 118

Figure 62. The PROforma task model ______________________________________ 136

Figure 63. Selection tree of the analysed medical logic languages ________________ 150

Figure 64. IF-THEN (left), IF-THEN-ELSE (center), and nested IF-THEN-ELSE (right) rules

diagrams __ 167

Figure 65. Original Danish radiology procedures requisition re-designed and translated

into English __ 189

Figure 66. The definition of consistency rules in archetypes is used to validate the EHR

data __ 192

Figure 67. The definition of consistency rules in archetypes is used to support structured

data entry ___ 193

12

13

LIST OF TABLES

Table 1. Structure of the thesis and relationship with the research questions, objectives,

contributions, and publications __ 40

Table 2. Capabilities required by ECL __ 70

Table 3. ECL constraint operators __ 72

Table 4. ECL binary operators ___ 75

Table 5. Patterns of ECs and its translation into Cypher Query Language ___________ 100

Table 6. Combination between EC patterns 14 and 17 translated into Cypher Query

Language __ 101

Table 7. Features showed by the circle packing visualization ____________________ 103

Table 8. Examples of ECs before and after applying the SNQuery simplification process 114

Table 9. Result subset size, domain size, execution time (in milliseconds), and standard

deviation obtained before and after applying the simplification process of each EC ___ 115

Table 10. Result subset size, domain size, execution time and standard deviation (in

milliseconds) of EC11 to EC19 set of equivalent ECs. “REF” is equivalent to “363698007

|Finding site (attribute)| = < 127903009 |Male genital organ structure (body structure)|”

 __ 117

Table 11. Comparison between general features of Arden Syntax, GELLO, GDL and EL 140

Table 12. Comparison of features between GDL and EL ________________________ 143

Table 13. EHRules primitive data types _____________________________________ 156

Table 14. EHRules subset data type __ 156

Table 15. EHRules container data type _____________________________________ 157

Table 16. Examples of declaration of Terminology_code variables and assignation of

values___ 158

Table 17. Examples of declaration of Snomed_ec variables and assignation of values _ 158

Table 18. Built-in functions supported by EHRules _____________________________ 164

Table 19. Operators supported by EHRules __________________________________ 166

Table 20. IF-THEN, IF-THEN-ELSE and nested IF-THEN-ELSE rules syntax and examples 169

Table 21. Syntax and examples of simple, conditional, dependency and conditional plus

dependency intensional value set bindings __________________________________ 173

Table 22. 19 thrombolysis contraindications _________________________________ 176

14

Table 23. Archetypes involved and contraindications by ID ______________________ 177

Table 24. FSIII conditions together with its associated sets of interventions _________ 186

Table 25. EHRrules variable declaration and assignation translated to Schematron___ 194

Table 26. EHRrules data types translated to Schematron _______________________ 194

Table 27. EHRrules functions and operators translated to Schematron ____________ 195

Table 28. EHRrules quantifier expressions translated to Schematron ______________ 196

Table 29. EHRrules IF-THEN-ELSE rules translated to Schematron ________________ 196

Table 30. EHRrules boolean expressions translated to Schematron _______________ 196

Table 31. EHRrules simple value set binding translated to Schematron ____________ 197

Table 32. EHRrules conditional value set binding translated to Schematron _________ 197

Table 33. EHRrules dependency value set binding translated to Schematron ________ 197

Table 34. EHRrules conditional plus dependency value set binding translated to

Schematron __ 198

Table 35. Translation of the 4th contraindication into Schematron rules ___________ 199

Table 36. Translation of the 5th contraindication into Schematron rules ___________ 200

Table 37. Translation of the 7th contraindication into Schematron rules ___________ 201

15

ABBREVIATIONS AND ACRONYMS

ABNF Augmented Backus–Naur form

ADL Archetype Definition Language

AML Archetype Modelling Language

AOM Archetype Object Model

AQL Archetype Query Language

AM Archetype Model

CDSS Clinical Decision Support System

CM Clinical Model. Detailed, reusable and domain-specific definition of a

clinical concept.

CKM Clinical Knowledge Manager

DCM Detailed Clinical Models

EC Expression Constraint

ECL Expression Constraint Language

EL openEHR Expression Language

EHR Electronic Health Record

GDL Guideline Definition Language

ICD International Classification of Diseases

IHTSDO International Health Terminology Standards Development Organization

IM Information Model, a conceptual model of the information needed to

support a business function or process

ISO International Organization for Standardization

MRCM Machine Readable Concept Model

OCL Object Constraint Language

OWL Web Ontology Language

RM Reference Model

SNS Spanish health system (Sistema Nacional de Salud)

SNOMED CT Systematized Nomenclature of Medicine – Clinical Terms

XML Extensible Mark-up Language

XSD XML Schema Definition

16

17

GLOSSARY

Archetype: representation of clinical concepts in a formal way. They link to clinical

terminology. They are a hierarchical combination of reference model structures

constrained to fit the definition of the modelled concept.

Clinical Information Model: standard data structure for EHR storage and communication,

such as openEHR, ISO 13606, or HL7 CDA.

Consistency: a dimension of quality. Health data are considered to be consistent when

there is agreement or compatibility between the data elements.

Consistency rule: expression that can be evaluated to a truth value depending on whether

it satisfies an offset of conditions. They are associated with the quality of the EHR data.

Content (or value set) binding: it is a type of terminological content binding where the

associated set depends on a condition.

Content (or value set) binding: type of terminological binding where an element of the

archetype is associated with a set of terminological concepts to define its possible content.

That is, the element of the archetype can only contain as a value, one concept from that

set. Otherwise, the archetype will be semantically inconsistent.

Detailed clinical information model: data structure built from a standardized reference

model whose main purpose is the communication of EHR data. For example, archetypes,

templates, or forms.

Electronic Health Record (EHR): set of electronic documents where the medical history of a

patient throughout his life is recorded. Accordingly with the standard CEN/ISO 13940, a

health record is a data repository regarding the health and healthcare of a subject of care.

EHR systems currently in use merely records the resulting information from the interaction

18

among a patient and healthcare professionals. The health record should carry out several

functionalities: to act as a reminder and help in the clinical management of the patient; to

facilitate the communication among the different components of the clinical team and the

continuity of care; to represent the care provided, enabling the retrospective analyses of

clinical practice.

Extensional subset: subset defined by a list of concepts. For example, type I diabetes, type

II diabetes, etc.

ICD: the International Classification of Diseases (ICD) is a classification of diseases,

symptoms, abnormal findings, etc. It is the most widely used disease coding system in EHR

systems in the Spanish Sistema Nacional de Salud (SNS).

Intensional (or comprehension) subset: subset defined by an expression. For example, 'all

types of diabetes'.

Interoperability levels: Level 0: no interoperability at all. Level 1: technical and syntactical

interoperability (no semantic interoperability). Systems in this level are capable to

communicate data among them, but not its meaning. Level 2: Partial semantic

interoperability. Systems in this level are capable to understand the meaning of some of

the communicated data. Level 2a: unidirectional semantic interoperability. Level 2b:

bidirectional semantic interoperability of meaningful fragments. Level 3: full semantic

interoperability, sharable context, seamless co-operability between systems.

Medical ontology: formal description of the concepts and relationships in the biomedical

domain, where the meanings and hierarchical relationships between the terms and

concepts of such domain are specified.

Organizational interoperability: based on business rules. It deals with the possible

cooperation between different organizations under the same context and workflows.

19

Post-coordinated concept: unlike pre-coordinated, post-coordinated concepts are

concepts that do not exist in terminology. They are created according to the particular

requirements following the rules defined in the conceptual model so that they are

semantically correct.

Pre-coordinated concept: concept defined by its attribute and hierarchical relationships,

that is, by its logical definition. Pre-coordinated concepts are part of the terminology and

do not need to be created.

Semantic binding: one of the two types of terminological binding in which an element of

the archetype is associated with a concept of the terminology to define the meaning of the

element unequivocally.

Semantic interoperability: ability of two or more computer systems to understand the

meaning of the information that is transmitted between them, automatically and without

human intervention.

SNOMED CT: Systematized Nomenclature of Medicine - Clinical Terms is the most

comprehensive, multilingual and codified clinical terminology developed in the world. It is

structured as a directed and acyclic graph. It is therefore a medical ontology.

SNOMED CT Concept Model: set of rules that govern how SNOMED CT concepts can be

related through their attributes. Both post-coordinated expressions and expression

constraints must be defined following their rules to be semantically correct. It is made up

of domains, attributes, and ranges.

SNOMED CT expressions: there are two types of expressions, pre-coordinated, made up of

a single identifier, and post-coordinated, made up of more than one identifier. At the

syntactic level, post-coordinated expressions are built based on the compositional

grammar of SNOMED CT and, at the semantic level, following the conceptual model.

20

SNOMED CT Expression Constraints: computable rules (in other words, evaluable /

executable expressions) whose purpose is to define a subset of clinical concepts. To do this,

it uses constraint operators to navigate through SNOMED CT hierarchies, refinements to

filter by attributes, and logical operators, among others.

SNOMED CT Expression Constraint Language: the language used to define SNOMED CT

expression constraints.

SNOMED CT Machine Readable Concept Model (MRCM): a version of the SNOMED CT

Concept Model. It is expressed using the SNOMED CT Expression Constraint Language.

Subset (of clinical concepts): set of clinical concepts that generally belong to the same

subdomain. For example, pulmonary diseases associated with edema, types of diabetes

mellitus, clinical findings, radiological procedures on the heart, etc.

Syntactic interoperability: ability of two or more systems to transfer data and documents.

It ensures that the structure of the documents is correct.

Technical interoperability: ability of two or more systems to communicate at the physical

level (cabling, plugs, protocols, etc.). It deals with the transfer of bytes.

Terminology binding: association between an element of the clinical information model,

such as an archetype, and a concept or set of concepts in a clinical terminology, such as

SNOMED CT. Its main function is to define the meaning and content of the information

model unequivocally in order to achieve a high degree of semantic interoperability.

Terminological model or medical terminology: set of terms that represent the concepts in

the specific field of medicine.

21

ABSTRACT

Consistency of EHR data, as a dimension of quality, is considered an essential requirement to

the improvement of healthcare delivery, clinical decision-making processes, and the promotion

of clinical research. In this context, cooperation between information and domain models has

been considered essential in the literature, but it has not been adequately addressed by the

scientific community to date.

The main contribution of this thesis is the development of methods and tools for the inclusion

of terminology binding expressions in consistency rules. Specific contributions are:

- Definition of a method to execute ECs over a SNOMED CT graph-oriented database.

- Definition of methods to simplify ECs before and after its execution and semantic

validation according to the SNOMED CT Machine Readable Concept Model (MRCM).

- Definition of a method to visualize, dynamically explore, understand and validate

SNOMED CT subsets.

- Development of SNQuery, an execution platform that executes, simplifies and

validates ECs, and visualizes the resulting subsets.

- Definition of EHRules, an expression language based on the openEHR Expression

Language for the specification of consistency expressions in archetypes, including

value set bindings, in order to enrich archetypes with domain knowledge.

- Definition of a method to execute EHRules expressions in order to validate the

consistency of EHR data by executing such rules over patient data instances.

Our objective is that these contributions help to enhance the quality of EHR, as they provide

methods and tools for the validation and enhancement of the EHR data consistency. We also

intend, by defining value set bindings between information models and clinical terminologies,

to raise the level of semantic interoperability, for which the definition of terminological

bindings is crucial.

22

23

RESUMEN

La consistencia de los datos de la HCE, como dimensión de la calidad, se considera un requisito

esencial para la mejora de la prestación de la asistencia sanitaria, los procesos de toma de

decisiones clínicas y la promoción de la investigación clínica. En este contexto, la cooperación

entre la información y los modelos de dominio se considera esencial en la literatura, pero la

comunidad científica no la ha abordado adecuadamente hasta la fecha.

La contribución principal de esta tesis es el desarrollo de métodos y herramientas para la

inclusión de expresiones de enlaces terminológicos en reglas de consistencia. Las

contribuciones específicas son:

- Definición de un método para ejecutar ECs sobre una base de datos de SNOMED CT

orientada a grafos.

- Definición de métodos para simplificar ECs antes y después de su ejecución, y su

validación semántica conforme al Machine Readable Concept Model de SNOMED CT

(MRCM).

- Definición de un método para visualizar, explorar dinámicamente, comprender y

validar subconjuntos de SNOMED CT.

- Desarrollo de SNQuery, una plataforma que ejecuta, simplifica y valida ECs y visualiza

los subconjuntos resultantes.

- Definición de EHRules, un lenguaje de expresiones basado en el openEHR Expression

Language para la especificación de reglas de consistencia en arquetipos, incluido el

enlace terminológico de contenido, con el fin de enriquecer los arquetipos con

conocimiento del dominio.

- Definición de un método para ejecutar las expresiones de EHRules con el fin de validar

la consistencia de los datos de la HCE mediante la ejecución de dichas expresiones

sobre instancias de datos de pacientes.

Nuestro objetivo es que estas contribuciones ayuden a mejorar la calidad de la HCE, ya que

proporcionan métodos y herramientas para la validación y mejora de la consistencia de los

datos de la HCE. Pretendemos, además, mediante la definición de enlaces de contenido entre

modelos de información y terminologías clínicas, elevar el nivel de interoperabilidad semántica,

para lo cual la definición de enlaces terminológicos es crucial.

24

25

RESUM

La consistència de les dades de la HCE, com a dimensió de la qualitat, es considera un requisit

essencial per a la millora de la prestació de l'assistència sanitària, els processos de presa de

decisions clíniques i la promoció de la investigació clínica. En aquest context, la cooperació

entre la informació i els models de domini es considera essencial en la literatura, però la

comunitat científica no l'ha abordada adequadament fins hui.

La contribució principal d'aquesta tesi és el desenvolupament de mètodes i ferramentes per a

la inclusió d’expressions d’enllaços terminològics en regles de consistència. Les contribucions

específiques són:

- Definició d'un mètode per a executar ECs sobre una base de dades de SNOMED CT

orientada a grafs.

- Definició de mètodes per a simplificar ECs abans i després de la seua execució, i la seua

validació semàntica conforme al Machine Readable Concept Model de SNOMED CT

(MRCM).

- Definició d'un mètode per a visualitzar, explorar dinàmicament, comprendre i validar

subconjunts de SNOMED CT.

- Desenvolupament de SNQuery, una plataforma que executa, simplifica i valida ECs i

visualitza els subconjunts resultants.

- Definició de EHRules, un llenguatge d'expressions basat en l’openEHR Expression

Language per a l'especificació de regles de consistència en arquetips, inclòs l'enllaç

terminològic de contingut, amb la finalitat d'enriquir els arquetips amb coneixement

del domini.

- Definició d'un mètode per a executar les expressions de EHRules amb la finalitat de

validar la consistència de les dades de la HCE mitjançant l'execució d'aquestes

expressions sobre instàncies de dades de pacients.

El nostre objectiu és que aquestes contribucions ajuden a millorar la qualitat de la HCE, ja que

proporcionen mètodes i ferramentes per a la validació i millora de la consistència de les dades

de la HCE. Pretenem, a més, mitjançant la definició d'enllaços de contingut entre models

d'informació i terminologies clíniques, elevar el nivell d'interoperabilitat semàntica, per a la

qual cosa la definició d'enllaços terminològics és crucial.

1.1 Motivation

27

CHAPTER 1. INTRODUCTION

1.1 MOTIVATION

The quality of the biomedical data contained in the Electronic Health Record (EHR) is a

matter of special importance today, both for the improvement and reduction of errors in

healthcare activity, as well as for either human or automatic decision-making processes

(Clinical Decision Support Systems - CDSS). There are several conceptual frameworks for

assessing the quality of biomedical data [1–3] and in all of them the dimension of

consistency appears as basic.

The data are integrated into a specific medical domain, and it is necessary to assure the

consistency of these data in accordance with the rest of the data in the domain. Despite

the importance of the consistency of data and its relationship with semantic

interoperability, it is a field that needs to be explored in depth. Concepts such as semantic

binding and value set binding of information models, which are essential when developing

semantically interoperable EHR systems, are key points and need to be strongly addressed

from the point of view of research and development of standard EHR modelling tools.

In the particular case of clinical archetypes, the definition of semantic consistency rules has

not been given the attention it deserves. Although it is true that the Archetype Definition

Language (ADL) has a section of rules and a basic language for the definition of simple

invariants, in general it is a section that, in practical terms, is yet to be defined and

therefore is not currently implemented. In this sense, it is required to develop a language

for expressing the clinical knowledge contained in the EHR by means of rules, including

terminological bindings. In this context, SNOMED CT, which is considered the most

comprehensive, multilingual and codified clinical healthcare terminology in the world [4],

plays a key role, as well as the SNOMED CT Expression Constraint Language (ECL) [5] for

the definition of intensional subsets of medical concepts.

As a consequence, the development of methods and tools for the specification of

consistency rules involving archetypes and terminologies may represent a significant leap

Chapter 1. Introduction

28

in the total evaluation capacity of health data, as well as a competitive advantage over

classic data profiling tools.

1.2 HYPOTHESIS, RESEARCH QUESTIONS AND OBJECTIVES

1.2.1 Hypothesis

The main hypothesis of this thesis is that the combination and joint exploitation of the most

advanced techniques for information and domain models will facilitate the specification of

the domain knowledge necessary to specify, improve, and measure the consistency of

clinical data. Cooperation between information and domain models has been considered

essential in the literature, but it has not been adequately addressed by the scientific

community to date. Achieving consistency, together with common used data quality

dimensions, such as completeness, correctness, plausibility, and currency, can contribute

to the improvement of healthcare delivery, clinical decision-making processes, and clinical

research. Unreliable data (e.g., incorrect or incomplete data, or missing data entries) will

lead to biased analysis and wrong efforts to enhance the quality of clinical data, and also

wrong conclusions in research studies. Quality assessment of clinical data is primordial to

identify and alleviate problems in data quality for proper use and reuse [6].

1.2.2 Specific research questions and objectives

In order to confirm the hypothesis, the following research questions are identified:

R1
Can SNOMED CT Expression Constraints (ECs) be efficiently executed over a

SNOMED CT graph-oriented database for the definition of subsets?

R2
Can ECs be simplified before and after its execution, and semantically

validated?

R3 Can SNOMED CT subsets be visualized, explored, understood and validated?

R4
Can methods presented in R1, R2 and R3 be efficiently implemented into an

execution engine?

1.2 Hypothesis, research questions and objectives

29

R5
Can an expression language for the specification of consistency rules in

archetypes, including value set bindings that make use of ECs, be defined?

R6
Can the expression language presented in R5 be applied to enrich the rules

section of archetypes with domain knowledge?

R7

Can expressions defined with the language presented in R5 be executed over

EHR data, including the execution of ECs in the engine presented in R4, in

order to validate the consistency of the EHR data?

The following research objectives will answer satisfactorily the previous research

questions:

O1 To define a method for the execution of ECs over a graph-oriented database.

O2
To define methods for pre- and post-execution simplification and semantic

validation of ECs.

O3 To provide a method for the visual exploration of SNOMED CT subsets.

O4
To develop an EC execution platform that makes use of the methods

presented in O1, O2 and O3.

O5
To define an expression language for the specification of consistency rules in

archetypes.

O6 To enrich the rules section of the archetypes with the language of O5.

O7

To validate the consistency of EHR by executing the expressions inside of the

rules section of archetypes, including the execution of ECs by using the engine

of O4.

Chapter 1. Introduction

30

1.3 CONTRIBUTIONS

1.3.1 Main contributions

Main contributions included in this thesis are shown below. Contributions are associated

with objectives. Additionally, they are associated with journal or conference publications

where they have been published (see section 1.3.2).

C1

Definition of a method to execute ECs over a SNOMED CT graph-oriented

database.

Contributes to research objective O1.

Published in P1, P3, P5, P6, P7

For the representation of SNOMED CT, we have used a graph database

model where the schema and instances are represented as graphs and the

data manipulation is expressed by graph-oriented operations. Specifically,

we have used Neo4j, a graph-oriented database software. Neo4j is a highly

scalable native property graph database, purpose-built to leverage data and

data relationships, which comes with a powerful query language called

Cypher. The structurally similar data model facilitates the execution of

complex queries that go beyond subsumption queries. We have

implemented a mechanism for translating ECs into Cypher clauses that are

executed over the SNOMED CT database in order to obtain the result

subset.

C2

Definition of methods to simplify ECs before and after its execution and

semantic validation according to the SNOMED CT Machine Readable

Concept Model (MRCM).

Contributes to research objective O2.

Published in P1, P4

1.3 Contributions

31

The main idea of the EC simplification is to reduce the complexity of the

expression and, in turn, the execution time. It can be achieved by removing

redundant concepts, superfluous refinements or by narrowing down the

focus concept without affecting the completeness of the computed subset.

Performing such simplification has several advantages. First, it diminishes

the number of comparisons to be carried out during query execution,

therefore it may have impact on query answering time. Second, the cut-

down query is more amenable to human reading. Third, it may help to

validate the terminology itself. We have defined three different methods to

simplify ECs before they are executed (pre-execution): subsumption-based,

MRCM-based, and logic definition-based; and one method based on the

mining of the result subset (post-execution). The methods based on the

MRCM and the logic definition check whether the EC satisfies the rules

defined in the SNOMED CT Concept Model and the logical definition of the

involved concepts.

C3

Definition of a method to visualize, dynamically explore, understand and

validate SNOMED CT subsets.

Contributes to research objective O3.

Published in P1, P3, P4, P5, P6, P7

Understanding and validating a result subset require to provide users with

information about how the concepts that make up the subset are related in

terms of hierarchies and which of these hierarchies are more relevant in

terms of recall and precision. The visual representation of this information

may facilitate the validation of the subset at a glance, for instance by

detecting irrelevant concepts or hierarchies. A key requirement is to provide

the possibility to dynamically explore sub-hierarchies by zooming into them

to see their details. It is important to note that the presentation of all this

information to the user requires a compact visual representation in order

to see as much information as possible at a glance. To collect and present

Chapter 1. Introduction

32

this information, a graphical visualization based on the circle packing is

proposed that fits particularly well with our requirements.

C4

Development of SNQuery, an execution platform that executes, simplifies

and validates ECs, and visualizes the resulting subsets.

Contributes to research objective O4.

Published in P1, P3, P4, P5, P6, P7

We have developed SNQuery, an EC execution platform that makes use of

the methods that we have defined for execution, simplification, semantic

validation and visual representation. Simplification methods are applied by

SNQuery iteratively, i.e., the methods are executed sequentially in a loop

until the EC cannot be further simplified. This process yields both the

semantic validation and the simplification of the EC. To execute the EC,

SNQuery performs a translation process between the EC and the Cypher

Query Language, which yields a single or multiple target Cypher queries that

are executed over the Neo4j graph database to produce the intended result

subset. Additionally, an analysis of SNQuery in terms of execution times has

been performed.

C5

Definition of EHRules, an expression language based on the openEHR

Expression Language for the specification of consistency expressions in

archetypes, including value set bindings, in order to enrich archetypes with

domain knowledge.

Contributes to research objective O5 and O6.

Published in P2

After a survey on existing languages for expressing clinical knowledge

formally, we have defined EHRules, a language that extends the openEHR

EL with some elements that are particularly needed for the specification of

1.3 Contributions

33

nested rules and value set bindings, including the ability to support

SNOMED CT ECL. EHRules is provided as a way of authoring expressions and

rules in textual form. This approach is the same as with any programming

language, where the usual form for learning and programming is the

abstract language form, while the computational form is an abstract syntax

tree (AST). The EHRules language provides a syntax that may be used to

specify archetype rules. Our objective is to provide a mechanism to define

scenario-dependant constraints in clinical information models, specifically

archetypes.

C6

Definition of a method to execute EHRules expressions in order to validate

the consistency of EHR data by executing such rules over patient data

instances.

Contributes to research objective O7.

Published in P2

The main objective of the definition of consistency rules in the rules section

of archetypes is to improve and validate the EHR data consistency, as a

dimension of quality. For this purpose, we have developed an automatic

translation process that converts EHRules expressions into a set of

Schematron rules that are executed against EHR data instances. Specifically,

the process creates a Schematron file that is capable of being opened in any

tool that includes a Schematron rules execution engine to validate XML files

and check whether these rules are met or not by the XML data, i.e., to set

whether EHR instances are valid or not from a consistence point of view.

1.3.2 Journal publications and conference contributions

The work presented in this thesis spreads through over seven years of research and

development. The following journal publications and conference contributions describe

the results achieved and reflect the work done in the context of specific research projects

Chapter 1. Introduction

34

that required the use of SNOMED CT for the definition of terminological bindings with

clinical information models, and to enrich the definition of archetypes with specific domain

knowledge in order to achieve high levels of EHR data quality and, in turn, high levels of

semantic interoperability between EHR systems.

Journal publications

P1*

Vicente Miguel Giménez Solano; José Alberto Maldonado Segura; Diego

Boscá Tomás; Santiago José Salas García; Montserrat Robles Viejo.

Definition and validation of SNOMED CT subsets using the expression

constraint language. Journal of Biomedical Informatics. 117, pp. 1 - 15.

2021. ISSN 1532-0464

*This publication directly contributes to the results of this thesis. It describes

the methods and tools included in Chapters 3 and 4.

P2

José Alberto Maldonado Segura; Mar Marcos; Jesualdo Tomás Fernández-

Breis; Vicente Miguel Giménez Solano; María Del Carmen Legaz-García;

Begoña Martínez-Salvador. CLIN-IK-LINKS: A platform for the design and

execution of clinical data transformation and reasoning workflows.

Computer Methods and Programs in Biomedicine. 197. 2020.

Conference contributions

P3

Vicente Miguel Giménez Solano; José Alberto Maldonado Segura; Diego

Boscá Tomás; David Moner Cano. Terminology binding for the measurement

of consistency of health data. SNOMED CT Expo. Online, 2021.

P4

Vicente Miguel Giménez Solano; José Alberto Maldonado Segura; Diego

Boscá Tomás; Santiago José Salas García. SNQuery: un motor para ejecutar

consultas sobre SNOMED CT. XXIII Congreso Nacional de Informática de la

Salud. Madrid, 2020.

P5

Vicente Miguel Giménez Solano; José Alberto Maldonado Segura; Diego

Boscá Tomás; David Moner Cano. Validation and simplification of expression

constraints. SNOMED CT Expo. Online, 2020.

1.3 Contributions

35

P6

Vicente Miguel Giménez Solano; José Alberto Maldonado Segura; Santiago

José Salas García; Diego Boscá Tomás; Montserrat Robles Viejo.

Implementation of an execution engine for SNOMED CT Expression

Constraint Language. Medical Informatics Europe Conference. Munich,

2016.

P7

Vicente Miguel Giménez Solano; José Alberto Maldonado Segura;

Montserrat Robles Viejo. Definición de subconjuntos en SNOMED CT. XXXIII

Congreso Anual de la Sociedad Española de Ingeniería Biomédica. Madrid,

2015.

P8

Vicente Miguel Giménez Solano; José Alberto Maldonado Segura;

Montserrat Robles Viejo. Definición de Subconjuntos en SNOMED CT. XIV

Congreso Nacional de Documentación Médica. Granada, 2015.

1.3.3 Projects

The author of the thesis has participated in three R&D projects in the field of semantic

interoperability of health information. These projects served to learn about the problems

and needs for creating semantically interoperable EHR systems. Specifically, the author has

focused its work in the enrichment of archetypes using consistency rules and value set

bindings with SNOMED CT subsets. Projects are listed below:

Project
Semantic Enrichment of Archetypes Applied to the Validation and

Measurement of Health Data Quality

Entity Ministerio de Ciencia, Innovación y Universidades

Project
Clinical Knowledge and Information Models to Link the Electronic

Health Record with Clinical Decision Support Systems I

Entity Universitat Politècnica de València

Chapter 1. Introduction

36

Project

Elaboration of Archetypes of Clinical Documents of the Minimum Set

of Data of Clinical Reports and Electronic Prescription of The Spanish

Sistema Nacional de Salud (SNS), and Implementation of Digital

Services for Provision of Models for the Electronic Health Record and

Electronic Prescription

Entity Universitat Politècnica de València

1.3.4 Software

The author of this thesis has been involved in the design and development of two web

applications required for the adequate development of the thesis. They are listed next.

SNQuery is a web platform that includes an execution

engine for the ECL SNOMED CT language. It allows to edit,

parse, simplify, semantically validate and execute ECs in

order to specify valid and efficient SNOMED CT subsets. It

includes a visual tool for exploring and analyzing the result

subset. Additionally, for training purposes, SNQuery

incorporates a visual authoring tool that is particularly

useful for users without a deep knowledge of ECL. The tool

provides a series of predefined templates that can be

combined to create simple and complex ECs.

1.3 Contributions

37

SNLoader is a web application that includes a module to

import and transform RF2 SNOMED CT files into a Neo4j

graph-oriented database. SNLoader has the ability to create

both international editions of SNOMED CT and local

extensions, such as the Spanish SNS clinical and drugs

extensions, including reference sets (refsets). Additionally,

SNLoader contains a validator module of extensions able to

search for consistency errors in RF2 extensions. The results

of both validation of extensions and creation of databases

are presented in two separate reports.

1.3.5 Grants

The author was beneficiary of grant DIN2018-009951 (Doctorados Industriales) of the

Ministerio de Economía y Competitividad of Spain between 2020 and 2021. The objective

of this grant is to support the development of doctoral thesis inside private companies.

Thus, the research results are grounded in real needs of the market and provide a direct

benefit to the company activity. In this case, the thesis was partially developed in VeraTech

for Health, a spin-off company of Universitat Politècnica de València.

Additionally, the author was beneficiary of a pre-doctoral contract for the training of

research staff (Formación de Personal Investigador - FPI) of Universitat Politècnica de

València between 2015 and 2018. The objective of this grant is to enable the research

training of recent graduates by allowing their exclusive dedication to research training

activities through the completion of a doctoral thesis. In this case, the thesis was partially

developed in Instituto Universitario de las Tecnologías de la Información y las

Comunicaciones - ITACA of Universitat Politècnica de València.

1.3.6 Research visits

The author of the thesis did a research stay in the Department of Health Science and

Technology at the University of Aalborg (Denmark), from April 1st 2017 to June 30th 2017.

During the stay, a literature review of existing languages to express medical logic was

Chapter 1. Introduction

38

performed, including PROforma, GLIF3, Asbru, SAGE, EON, Arden Syntax, GELLO, Guideline

Definition Language (GDL) and openEHR Expression Language (EL). Two real use cases from

the host group were analysed: the Danish standard FSIII for the specification of inter-

municipal guidelines for documenting social- and healthcare observations and

interventions in home nursing, rehabilitation, exercising and home care; and a requisition

for radiology procedures from the North Denmark Region clinical information system. After

the survey on existing languages, a comprehensive comparison between the Guideline

Definition Language (GDL) and the openEHR Expression Language (EL) was carried out. The

rationale of comparing these two languages was that both are rule-based with inbuilt

mechanisms for accessing archetype instances and they can accommodate terminology

bindings. Requirements for an expression language that was proposed for the definition of

consistency rules in archetypes were defined, including conditional value set binding rules.

This language later became the EHRules language, which is part of this thesis.

1.3.7 Other contributions

During the development of the thesis, the author has been involved in the preparation of

material and teaching of both theoretical and practical classes in the subject Information

Systems and Telemedicine II of the Degree in Biomedical Engineering of the Universitat

Politècnica de València for two years. Practical classes included basic learning and handling

of SNQuery.

Additionally, the author has participated as teacher focused in SNOMED CT and UMLS

terminologies in the Master in Medical Documentation at Universitat de València. Practical

classes included basic learning and handling of SNQuery.

SNQuery is included in the list of implementations of the ECL language of SNOMED

International1.

Since 2018, the author is member of the SNOMED International Languages Project Group

(SLPG), where he participates actively in the development and improvement of the ECL

language.

1 https://confluence.ihtsdotools.org/display/slpg/snomed+ct+expression+constraint+language

1.4 Structure of the thesis

39

1.4 STRUCTURE OF THE THESIS

The thesis is structured as follows. Chapter 1 introduces the motivation and the main

hypothesis, together with the research questions, research objectives, and contributions

of the thesis. Chapter 2 presents an introduction to the thesis including an explanation of

its objectives. It also introduces the fundamentals of consistency as a dimension of quality

of EHR, and the basic elements of semantic interoperability, namely archetype-based EHR

architectures, terminology binding, and SNOMED CT, including the ECL language. The

chapter ends with an introduction to the openEHR EL language. In Chapter 3 we present a

series of methods that we have defined to execute, simplify and semantically validate ECs

over a graph-oriented database, and a method to visualize and explore the result subsets.

Chapter 4 describes SNQuery, an execution platform that the author has developed in

collaboration with his research colleagues, which incorporates the methods presented in

Chapter 3, together with a validation of the platform in terms of execution times. The

chapter ends with a discussion than involves the content of both Chapter 3 and Chapter 4,

which are closely related. Chapter 5 identifies the requirements for the definition of

consistency rules in archetypes, including value set binding rules, for which it is necessary

to provide an expression language allowing such abilities. The chapter ends with a

literature review of existing languages for specifying medical knowledge and logics, and the

justification of choosing EL to be the basis of our expression language, along with a list of

extensions to be made on EL to support our specific requirements. Chapter 6 describes the

EHRules expression language for the definition of consistency rules in archetypes, together

with three real uses cases to validate the language. The chapter ends with an explanation

of the rule execution process for the validation of EHR data instances from a consistency

point of view, and a discussion. Finally, Chapter 7 presents the conclusions of the thesis

and introduces future works.

At the end of the thesis four annexes are added, namely: Annex 1: List of ECs examples;

Annex 2: EHRules ABNF syntax specification; Annex 3: FSIII Condition-Interventions; and

Annex 4: From EHRules to Schematron examples

Table 1 shows the overall structure of the thesis, where each chapter in associated with its

research questions, objectives, contributions, and publications.

Chapter 1. Introduction

40

Chapter Title
Research

questions
Objectives Contributions Publications

1 Introduction

2 Background

3

Methods for the definition, validation, execution and

visualization of SNOMED CT subsets using the

Expression Constraint Language

R1, R2, R3 O1, O2, O3 C1, C2, C3
P1, P4, P5, P6,

P7, P8

4
SNQuery: ECL execution engine based on graph

databases
R4 O4 C4

P1, P4, P5, P6,

P7, P8

5 Consistency rules in archetypes R5, R6 O5, O6 C5 P3

6 The EHRules Language R7 O7 C6 P3

7 Conclusions and future work

Table 1. Structure of the thesis and relationship with the research questions, objectives, contributions, and publications

2.1 Introduction

41

CHAPTER 2. BACKGROUND

2.1 INTRODUCTION

An EHR represents the set of information about a person's health, as well as the care

processes and health procedures received over the years. Ideally, this information should

cover from birth to death.

However, the enormous variability of health information is a problem when building a

unified EHR from existing data in different health centres or information systems. For

example, SNOMED CT2, the world-wide reference terminology in medicine, defines more

than 300,000 different concepts and more than 1,500,000 relationships between these

concepts (see Figure 1).

Figure 1. A SNOMED CT subset visualized using the Neo4j browser

2 www.snomed.org

Chapter 2. Background

42

In the case of clinical information models, such as types of clinical documents, the public

repository of openEHR archetypes (i.e., the Clinical Knowledge Manager - CKM3) contains

almost 800 different definitions either in published, draft or pre-draft states (see Figure 2).

Figure 2. Archetypes status in the CKM repository

Faced with the problem of accessing, communicating and aggregating health information

that is distributed and represented in different formats, it is necessary to create definitions

of the contents of the EHR through formal mechanisms such as detailed clinical models

(such as archetypes) and applying a clear and well specified methodology. It is also

necessary to have tools that facilitate the management and use of these definitions.

On the other hand, clinical information systems are essential to facilitate patient care and

follow-up through access to up-to-date information about them at different stages of care.

However, the use of such data for the extraction of knowledge or decision-making, or to

offer reliable and shareable healthcare reports, requires having the data of adequate

quality. The lack of quality can hinder both the information and knowledge generation

processes and lead to biased results in health processes such as research or the monitoring

of indicators. From a data quality point of view, the complexity and variability of medical

data makes it necessary to verify its quality from various points of view, which are generally

3 https://ckm.openehr.org/ckm/

2.1 Introduction

43

known as data quality dimensions. One of these dimensions is consistency, that is, data

should satisfy a set of constraints that ensure its integrity and coherence. These constraints

can be of multiple types, such as formats, ranges, allowed values, references to external

terminologies, compliance with data structures, domain rules (for example, an EHR should

not contain obstetric data if the patient is male), presence of mandatory values or

consistency of calculated values (see Figure 3).

Figure 3. Consistency rules help solving consistency errors in EHR

The development of the consistency dimension requires the specification of complex

domain rules. We have detected that these rules must include medical terminologies,

conditional value set bindings, intensional specification of subsets and the exploitation of

its concept model if it exists, as is the case of SNOMED CT.

The consistency dimension is completely dependent on the use scenario, and therefore it

is necessary to explicitly define the conditions that the data must satisfy in order to be

considered of quality. The approach that we follow in this thesis is to use standards for the

communication and representation of health data [7], including terminologies [8,9], for the

specification of these conditions. This approach brings several advantages. On the one

hand, it facilitates the interoperability of project developments with EHR systems. On the

other hand, due to its generality it allows the representation of any type of data structure,

facilitating the reuse of structures and quality criteria between different scenarios. To this

end, there are standard languages for the definition of complex clinical concepts such as

Chapter 2. Background

44

ADL. ADL natively supports in both version 1.4 (ISO standard) and version 1.5 various types

of constraints completely related to this quality dimension. ADL incorporates constructors

for the basic specification of constraints on the domain of attributes (consistency) and

enforceability (completeness and contextualization). Therefore, it is a suitable base for this

work.

2.2 OBJECTIVES

The execution of this thesis is intended to address the problem of having quality medical

data with a high level of consistency, which will help to alleviate the problem of

accessibility, communication and aggregation of the health data. In this regard, the main

purpose of this thesis is the development of methods and tools for the specification of

domain rules. This rules include SNOMED CT Expression Constraints (ECs) [5] for the

intensional specification of subsets, and value set bindings to enhance the consistency of

health data. Performing such terminology bindings will also help achieving semantic

interoperability between EHR systems.

The objectives are:

1. To define and implement a method for the execution of ECs for the definition of

subsets of medical concepts over a graph-oriented SNOMED CT database.

2. To define and implement methods for the simplification and semantic validation

of ECs pre- and post-execution.

3. To provide a method for the visual representation of SNOMED CT subsets in order

to explore, understand and validate its content.

4. To develop an EC execution platform which makes use of the methods presented

in objectives 1, 2 and 3 to define and provide validated SNOMED CT subsets.

5. To define an expression language for the specification of consistency rules,

including simple, conditional and dependency value set bindings in clinical models,

such as archetypes, to define the meaning and content of the elements and data

structures contained in the EHR.

6. Based on the expression language, to enrich the rules section of the archetypes

with multi-attribute consistency rules with support to clinical terminologies for the

explicit and computable definition of constraints on the structure and domain of

2.3 Consistency of EHR

45

EHR extracts. Such consistency rules should make use of the SNOMED CT ECL for

the definition and binding to SNOMED CT subsets.

7. To validate EHR data instances from a consistency point of view by executing

consistency rules over patient data contained in the EHR.

2.3 CONSISTENCY OF EHR

In the context of EHRs, one of the most broadly adopted conceptualizations of data quality

is based on the ‘fitness for use’ concept, i.e., data are of enough quality when they serve

the needs of a given user pursuing specific goals. Five of the most important dimensions of

data quality are completeness, correctness, concordance (i.e., consistency), plausibility,

and currency [1]. Such dimensions answer the following questions:

- “Completeness: Is a truth about a patient present in the EHR?

- Correctness: Is an element that is present in the EHR true?

- Concordance: Is there agreement between elements in the EHR, or between the

EHR and another data source?

- Plausibility: Does an element in the EHR makes sense in light of other knowledge

about what that element is measuring?

- Currency: Is an element in the EHR a relevant representation of the patient state

at a given point in time?”

Additionally, Weiskopf and Weng [1] identify up to seven broad categories of methods for

the assessment of data quality: comparison with gold standards, data element agreement,

data source agreement, distribution comparison, validity checks, log review, and element

presence. These assessment methods are defined as follows:

- “Gold standard: A dataset drawn from another source or multiple sources, with or

without information from the EHR, is used as a gold standard.

- Data element agreement: Two or more elements within an EHR are compared to

see if they report the same or compatible information.

- Element presence: A determination is made as to whether or not desired or

expected data elements are present.

Chapter 2. Background

46

- Data source agreement: Data from the EHR are compared with data from another

source to determine if they are in agreement.

- Distribution comparison: Distributions or summary statistics of aggregated data

from the EHR are compared with the expected distributions for the clinical

concepts of interest.

- Validity check: Data in the EHR are assessed using various techniques that

determine if values ‘make sense’.

- Log review: Information on the actual data entry practices (e.g., dates, times, edits)

is examined.”

According to the literature, there exist four terms to describe concordance: agreement,

consistency, reliability and variation [1] (note that, in this thesis, we use such terms as

synonyms). Health data are consistent when there is agreement or compatibility between

the data elements [1]. This means that the values stored by a set of different data items

make sense when considered together, especially diagnoses and associated information

such as medications or procedures. The measurement of consistency is generally based on

elements contained by the EHR, although some researchers also include information from

other sources. These other sources included billing information, paper records, patient-

reported data, and physician-reported data. In both cases, it is mandatory to have a

detailed specification of the conditions that data must satisfy to be considered as

consistent, which includes the validation of the terminological concepts that are used.

Another approach was to compare distributions of data within the EHR with distributions

of the same information from similar medical practices or with national rates [1].

2.4 ARCHETYPE-BASED EHR ARCHITECTURES

The complete and reliable representation of the clinical information that is part of the EHR

of a patient is a complex problem to solve that has been a focus of attention of Spanish

and European R & D & I policies for more than a decade [1]. The problem includes both the

formal definition of the contents of the EHR and its semantic interoperability [7].

Traditional development models require a deep analysis of the requirements for the

correct operation of the systems. This means that systems must be continuously modified

2.4 Archetype-based EHR architectures

47

due to changing requirements and transformed and adapted to new needs. Furthermore,

it is difficult to represent all the different concepts or clinical business objects that the

system works with.

The dual model of development [7] proposes a clear separation between the information

and the business concepts used by the system. Information is structured data that is stored

in the system and that does not change over time. The set of business concepts with which

professionals work represents the implicit knowledge of the domain that influences in how

the information system works. For example, in the healthcare case, the concepts include

the different types of clinical reports, tests, laboratory results, etc. In the dual model, these

concepts are represented through archetypes that can be modified in their definition

without affecting the operation of the rest of the system or the data already stored. In

addition, archetypes provide information with a semantic layer that describes its exact

meaning.

A reference model (RM) represents the global characteristics of the components of the

EHR, defines how they are aggregated, and the information of context required to comply

with the ethical, legal and provenance requirements of health information. This model

defines the set of classes that make up the basic and generic components of the EHR. Due

to this genericity, a RM is considered a stable model over time, which will require little or

no change to adapt to new information recording needs (see Figure 4 and Figure 5).

Figure 4. Reference model of the ISO13606 standard

Chapter 2. Background

48

Figure 5.Example of a combination of the reference model classes of the ISO13606

Once this generic RM has been defined, the way to define specific information structures,

i.e., the definition of the so-called clinical concepts, remains pending. This task is satisfied

through detailed clinical models in the form of archetypes [10]. An archetype is the formal

definition of a clinical concept through the combination and constraint of the classes

defined in the RM for specific clinical domains. These definitions will guide systems in how

to create data instances (RM instances) that meet all the characteristics and constraints

defined in the archetype. From the point of view of information structures, an archetype

provides a default structure for EHR information based on elements of the RM, as well as

constraints on values, types, and cardinalities, among others, of those elements that give

rise to valid data instances. From a semantic or knowledge point of view, an archetype

provides a high-level semantic description of clinical concepts that can be automatically

processed by health information systems and regardless of computer systems facing

changes in the knowledge domain.

The approach based on archetypes is currently receiving the attention of multiple

organizations, both public and private, since it is a future option for the management of

health information and documentation [11,12] and its reuse in clinical research [13,14]. As

2.5 Terminology binding

49

an example, the Spanish Ministerio de Sanidad, Servicios Sociales e Igualdad has developed

within its national EHR project (Historia Clínica Digital del Sistema Nacional de Salud) a set

of ISO 13606 archetypes that define the contents of the Minimum Reporting Data Set

Clinics that must be shared by the different Autonomous Communities (see Figure 6).

Figure 6. Example of a patient summary archetype

2.5 TERMINOLOGY BINDING

Decision support and information retrieval, which are two important objectives of EHR

systems, require the information to be computable in a meaningful way. To interpret the

meaning of information correctly depends on:

- The way information is structured

- The way clinical concepts are represented

- The way the terminology is used within the structure

Therefore, to make EHR meaningful, it is required a consistent approach to the interface

between structural and terminological representations of information4.

Chapter 2. Background

50

In general terms, terminology binding between clinical information models and

terminologies is a required step in order to achieve a high level of semantic interoperability

between EHR systems, and therefore a high level of quality of EHR (see Figure 7).

Figure 7. The three fundamental pillars of semantic interoperability

Historically, designers of information models assumed that codes from any terminology

could be used within their information models. At the same time, the developers of medical

code systems and terminologies had the assumption that their products could be used in

any model. Both parts made assumptions about the nature of each other’s work. This

usually leads to overlaps and problems between the structured models and representation

of meaning, which in turn increases the possibility of having ambiguities and different ways

of specifying the same clinical meaning. As a result, the consistent retrieval of information

based on semantics is hindered.

Currently it is widely accepted that information models and terminologies are

interdependent. There is a need to design and build on the strengths of both models and

terminologies, and to define guidelines in order to avoid ambiguities and set manners of

representing meaningful information. It should be noted that these guidelines should

define the way in which terminologies, such as SNOMED CT, are bound to EHR. These

2.5 Terminology binding

51

binding is known as terminology binding (see Figure 8), and it provides the key to the

consistent use of SNOMED CT in EHR systems4.

Figure 8. A draw showing terminology bindings between elements of an EHR model and SNOMED

CT concepts 4

Such guidelines should be defined to stablish the way in which information models should

be bounded to SNOMED CT. To support the creation of such guidelines, a literature review

has recently been performed in [15] about terminology binding processes regarding

SNOMED CT to find both recommendations and knowledge gaps. After analyzing 55 papers

published from 2004 to 2020, the authors have given recommendations for practitioners

and researchers. They have concluded that a better knowledge of SNOMED CT and a better

cooperation between informaticians and domain experts could solve the problems on how

information models and SNOMED CT should be combined using terminology bindings to

share EHR data unambiguously and, in turn, improving semantic interoperability.

Specifically, the authors have identified three topics about the recommendations found in

the papers.

- Ensure domain knowledge and informatics competence: more than a half of the

papers analysed that include recommendations emphasize the need of knowledge

of both medical domain and informatics inside the project [16–19].

4 Dr Linda Bird (SNOMED International) - Introduction to Terminology Binding

Chapter 2. Background

52

- Follow a process including validation: the papers included in the review involving

descriptions of processes start with domain analysis, making process flow diagrams

or sorting of the input material [17]. Additionally, either a validation step or a

continuous validation process is recommended [19]. In one paper the authors have

found recommendations regarding hierarchies and granularity when choosing a

concept [20].

- Plan for maintenance: plans and systems for the maintenance of subsets and maps

are required [21], which can be an important expense [22].

Finally, the authors give a set of recommendations for both practice and research based

on the findings reported, including to sort input data, to select relevant concepts and to

validate them, to involve domain experts and invest time in educating them in informatics

and SNOMED CT, to use general concepts for unspecified terms, to enable free text entries

when subsets are incomplete, to report incorrect terms to National Release Centre (NRC)

or SNOMED International, and to develop local extensions when required, among many

others.

There exist two types of terminology binding. First, semantic (or model meaning) binding,

which binds an element of the information model with a concept or expression in the

terminology in order to define the meaning of such element (see Figure 9).

Figure 9. Example of semantic binding

2.5 Terminology binding

53

And second, value set (or content) binding, which associates an element of the information

model with a subset of concepts of the terminology. In other words, a value set binding

records the subset of possible values which can populate a coded data element or coded

attribute in the information model. At the same time, there exist four types of value set

binding: simple, where a given coded data element is bound to a single value set (see Figure

10); conditional, where a condition is used to determine which value set is used (see Figure

11); dependency, where the value of one data element depends on the value of another

(see Figure 12); and compositional, where the value of a data element is composed from

the values of more than one data element (see Figure 13).

Figure 10. Example of Simple value set binding

Figure 11. Example of Conditional value set binding

Chapter 2. Background

54

Figure 12. Example of Dependency value set binding

Figure 13. Example of Compositional value set binding

Additionally, terminology bindings include metadata, such as scope or type. Metadata

allows understanding the binding rightly. The information model artefact, such as an

archetype, to which the terminology is bound, could be either a whole information model,

a single data group or data element, a datatype attribute, or a data value. The terminology

artefact bound to the model could be a code, a set of codes either extensionally or

intensionally defined by means of an EC, an expression, or a set of expressions.

2.6 SNOMED CT

55

2.6 SNOMED CT

2.6.1 Introduction

SNOMED CT is the acronym of Systematized Nomenclature of Medicine - Clinical Terms.

SNOMED International is the organization that maintains and distributes SNOMED CT. It is

considered the most complete terminology. In 2016 it was judged “the best available core

reference terminology for cross border, national, and regional eHealth deployments in

Europe” [23]. It is scalable, that is, it offers the possibility of adding new concepts using

some mechanisms (i.e., pre- and post-coordinated expressions). It is translated from

English into several languages: Spanish, Danish, Dutch, Swedish, etc. It contains local

extensions that contain new concepts created specifically for each extension according to

particular requirements (see Figure 14). SNOMED CT releases include mappings to other

terminological standards, such as the International Classification of Diseases (ICD).

Figure 14. Local extensions of SNOMED CT 5

The founding nine charter Members were Australia, Canada, Denmark, Lithuania, Sweden,

the Netherlands, New Zealand, the United Kingdom and the United States. Trading as

SNOMED International, the organization has grown to 40 Members (see Figure 15) and has

issued Affiliate Licenses to more than 5,000 individuals and organizations.

5 https://browser.ihtsdotools.org/

Chapter 2. Background

56

Figure 15. Member map of SNOMED International 6

Using SNOMED CT requires an Affiliate License. The obtaining process depends on where

SNOMED CT is to be used. If it is a member country, such as Spain7 then it is possible to

download the files from SNOMED CT directly. In the case of Spain, they can be downloaded

after obtaining a license from Ministerio de Sanidad, Consumo y Bienestar Social 8. It is

important to note that SNOMED International releases two annual versions of SNOMED

CT, one in January and one in July. In addition, the Spanish translation is released three

months later (April and October) and the Spanish extension is released five months later

(June and December).

SNOMED CT is distributed to its affiliates through a series of downloadable files. The RF2

(Release Format 2) is the format currently used to represent the SNOMED CT content.

These files contain a set of records whose fields (columns) are separated by tabs. In

6 https://www.snomed.org/our-customers/members
7 https://www.snomed.org/our-customers/member/spain
8 https://snomed-ct.sanidad.gob.es/snomed-ct/solicitudLicencia.do

2.6 SNOMED CT

57

addition, the UTF-8 encoding system is used. There are three individual files with specific

fields for each of the SNOMED CT components: concepts, descriptions, and relationships.

All components of SNOMED CT have unique and permanent identifiers that are reflected

in their corresponding files. Likewise, there are also individual files with specific fields for

each refset. The RF2 format is also used for SNOMED CT extensions.

The three distributions released by SNOMED CT are:

- Full Release: contains all the versions of all the components to date in the form of

a history, so that the status of SNOMED CT can be seen at a specific time.

- Delta Release: contains only the changes (creations and deactivations) compared

to the previous version.

- Snapshot Release: contains the latest version of all components.

2.6.2 Logical model

The SNOMED CT logical model defines the components and the structure that represent

its content, specifically: concepts, descriptions and relationships (see Figure 16).

Figure 16. Overview of the SNOMED CT logical model 9

9 https://confluence.ihtsdotools.org/display/DOCSTART/5.+SNOMED+CT+Logical+Model

Chapter 2. Background

58

A SNOMED CT concept is a numerical identifier that represents a unique clinical meaning.

For example, 277170006, 217082002, 31978002, 43706004 ...

A description is a text that is assigned to a concept to be human readable. For example,

277170006 |Edema of ear canal|, 217082002 |Accidental fall|, 31978002 |Fracture of

tibia| or 43706004 |Ascorbic acid|. Each concept is assigned to a complete description

that contains a semantic tag at the end of the description enclosed in parentheses (i.e.,

Fully Specified Name - FSN) and several synonyms (one preferred and the rest acceptable).

Likewise, the descriptions themselves also have an associated identifier (see Figure 17).

Figure 17. Examples of descriptions for the concept 22298006 |Myocardial infarction|10

A relationship is an association between two concepts. There are two types of

relationships: subtype (i.e., IS A) and attribute relationships. IS A relationships define

hierarchies, i.e., specializations. In SNOMED CT a concept can be a specialization of more

than one concept (i.e., poly-hierarchy/multi-parent). We say parent concepts and children

concepts. The deeper a concept is in a hierarchy, the greater its level of granularity or

10 https://confluence.ihtsdotools.org/display/DOCSTART/5.+SNOMED+CT+Logical+Model

2.6 SNOMED CT

59

detail. And the higher it is in the hierarchy, the more general or grouping concept it will be.

Attribute relationships are used to define the meaning of concepts by linking concepts from

different hierarchies. There are about 120 types of attributes. For example, laterality,

severity, has active ingredient, priority, associated morphology, causative agent, finding

site, associated with, etc. (see Figure 18 and Figure 19).

Relationships is what makes SNOMED CT so powerful as it can be considered as an

ontology. Concepts are not mere lists (as is the case in classifications like ICD-9), but are

connected to each other.

Figure 18. Example of IS A and attribute relationships 11

Figure 19. Example of multi-parent IS A relationships 11

11 https://confluence.ihtsdotools.org/display/DOCSTART/5.+SNOMED+CT+Logical+Model

Chapter 2. Background

60

In SNOMED CT concepts are associated with a logical definition comprising by subtype

relationships and their attribute relationships. See Figure 20 for an example.

Figure 20. Logical definition of the concept 425548001 |Abscess of heart|12

SNOMED CT is, by definition, a directed, acyclic graph, i.e., the set of concepts are

connected to one another by lines (edges) in which each connection has a specified

direction such that no route that follows the direction of the connections enters a loop (see

Figure 21).

Figure 21. Three types of graphs

SNOMED CT contains more than 350,000 active concepts (more than 480,000 including

also inactive concepts), and more than 1,100,000 active relationships, including both IS A

and attribute relationships. Concepts are arranged into 19 top-level hierarchies, such as:

12 https://confluence.ihtsdotools.org/display/DOCSTART/5.+SNOMED+CT+Logical+Model

2.6 SNOMED CT

61

procedures, clinical findings, organisms, substances and body structures, among others

(see Figure 22). Figure 23 shows a visualization of the SNOMED CT content. This is how

SNOMED CT looks like, where black points are the concepts and grey lines are the IS A

relationships. Top-level hierarchies correspond to the darkest areas. Figure 24 shows an

overview of the components and associated information of SNOMED CT.

Figure 22. Abstract representation of some SNOMED CT top-level hierarchies

Figure 23. Visualization of the relationships between clinical concepts in SNOMED CT 13

13https://www.reddit.com/r/dataisbeautiful/comments/1zas7r/visualization_of_the_relationships
_between/

Chapter 2. Background

62

Figure 24. SNOMED CT overview scheme with examples 14

Considering its state of definition (i.e., its defining characteristics), there are two types of

concepts in SNOMED CT: primitive concepts and fully defined concepts.

A concept is fully defined when its defining characteristics are sufficient to distinguish its

meaning from other similar concepts. For example, Figure 25 shows the logical definition

of the fully defined concept 2704003 |Acute disease|15.

14 https://confluence.ihtsdotools.org/display/DOCSTART/4.+SNOMED+CT+Basics
15 For more information on SNOMED CT diagrammatic notation:

https://confluence.ihtsdotools.org/display/DOCDIAG

2.6 SNOMED CT

63

Figure 25. Logical definition of the concept 2704003 |Acute disease|

Any SNOMED CT concept that includes these relationships in its logical definition is a

descendant (i.e., subtype) of 2704003 |Acute disease|.

In contrast to fully defined concepts are primitive concepts, whose defining characteristics

are not sufficient to distinguish their meaning from other concepts. For example, the

concepts 64572001 |Disease| and 69449002 |Drug action| are primitive concepts, as

shown in Figure 26 and Figure 27, respectively.

Figure 26. Logical definition of the concept 64572001 |Disease|

Figure 27. Logical definition of the concept 69449002 |Drug action|

Chapter 2. Background

64

2.6.3 Concept model

The SNOMED CT Concept Model is a set of rules that specify how two concepts of two

different hierarchies can be related through attribute relationships. In other words, the

concept model establishes how concepts are related in the terminology. The concept

model defines the domain (i.e., the source concepts of the relationship), the attribute, and

the range (i.e., the destination concept/s of the relationship). The domain is the hierarchy

or hierarchies where a certain attribute can be applied. On the other hand, the range is the

concept, hierarchy or hierarchies allowed as values for a certain attribute. The concept

model is the mechanism that specifies the semantics of SNOMED CT. Figure 28 and Figure

29 show some examples.

Figure 28. Examples of the domain and range specified for the attributes 363698007 |Finding site|
and 425391005 |Using access device (attribute)|

2.6 SNOMED CT

65

Figure 29. Examples of attribute relationships according to the concept model

The Machine Readable Concept Model (MRCM) represents the rules of the concept model

in a way that can be read by a computer and applied to assure that the definitions of the

concepts and expressions comply with these rules. The MRCM can be used for a variety of

purposes, including the creation and validation of SNOMED CT concepts, expressions,

queries and ECs, natural language processing (NLP), and terminology binding to

information models to support queries and interoperability. The MRCM has recently been

developed by SNOMED International using ECL, which defines the subsets that can be used

as the domain and range of a given attribute relationship.

2.6.4 Expressions

A SNOMEDCT expression is a set of concepts that, syntactically combined, represent a

certain clinical meaning at the required level of detail. There are two types of SNOMED CT

expressions: on the one hand, pre-coordinated expressions, made up of a single identifier

(i.e., a concept) and, on the other hand, post-coordinated expressions, made up of more

than one identifier. Both type of expressions are defined syntactically by means of the

SNOMED CT Compositional Grammar [24].

Chapter 2. Background

66

For example, the concept 174041007 |Laparoscopic emergency appendectomy| is a pre-

coordinated expression, whose logical definition is presented in Figure 30.

Figure 30. Logic definition of the concept 174041007 |Laparoscopic emergency appendectomy|

The pre-coordinated concept 174041007 |Laparoscopic emergency appendectomy| has

the desired level of detail. But what if this concept did not exist in SNOMED CT? We could

build it thanks to the post-coordination mechanism. To post-coordinate it is necessary to

consider the rules of the SNOMED CT concept model so that the expression makes sense

(i.e., it is semantically valid). The following would be the equivalent post-coordinated

expression:

80146002 |Excision of appendix (procedure)|:

260870009 |Priority (attribute)| = 25876001 |Emergency (qualifier value)|,

425391005 |Using access device (attribute)| = 86174004 |Laparoscope, device|

It should be noted that post-coordinated expressions are defined by using the SNOMED CT

Compositional Grammar. The previous post-coordinated expression defines an

appendectomy whose priority is emergency and whose access device is a laparoscope.

The following more complex example also defines a post-coordinated expression.

Specifically, it is a skin burn with an associated morphology of third-degree burn caused by

hot water located in the index finger of the left hand:

2.7 SNOMED CT Expression Constraint Language

67

284196006 |Burn of skin|:

116676008 |Associated morphology| = 80247002 |Third degree burn injury|,

246075003 |Causative agent| = 47448006 |Hot water|,

363698007 |Finding site| = 83738005 |Index finger|,

272741003 |Laterality| = 7771000 |Left|

2.7 SNOMED CT EXPRESSION CONSTRAINT LANGUAGE

ECL is a development of SNOMED International that enables the intensional definition of

sets of clinical meanings by defining ECs.

ECs are built by adding constraint and set operators to expressions to define subsets of

concepts instead of just one clinical meaning (like in post-coordination) according to the

SNOMED CT Concept Model. These subsets are useful in value binding between

information models, such as archetypes, and SNOMED CT, in order to obtain high levels of

semantic interoperability (see Figure 31).

ECL is a formal syntax for representing SNOMED CT ECs. ECs are computable rules for

defining bounded subsets of clinical meanings represented by both pre-coordinated or

post-coordinated expressions. ECs can be used to constrain the valid values of a data item

in an EHR. They also can be used as the intensional definition of a set of concept references,

as a computer processable query that identifies a set of expressions, or as a constraint that

restricts the domain and range of an attribute defined in the SNOMED CT Concept Model.

Chapter 2. Background

68

Figure 31. SNOMED CT concept model, expressions and ECs summary

Figure 32. Comparison between the SNOMED CT Compositional Grammar and ECL

2.7 SNOMED CT Expression Constraint Language

69

The SNOMED CT ECL must support the capabilities listed in Table 2.

Capability Description

Concept reference

Ability to reference pre-coordinated SNOMED CT concepts

using their identifier and an optional natural language

description.

Concept hierarchies

Ability to select a set of concepts, such as the descendants of

a concept, the descendants and the concept itself, the

ascendants, and the ascendants and the concept itself.

Parents and children
Ability to select a set of concepts, such as parents and

children.

Conjunction
Ability to connect two ECs, attribute groups or attribute sets

by using the logical AND operator.

Disjunction
Ability to connect two ECs, attribute groups or attribute sets

by using the logical OR operator.

Refinement
Ability to refine (i.e., filter) the meaning of an EC through one

or more attribute values.

Reverse

Ability to constrain the source concepts of a set of

relationships and refer to the target concepts of such

relationships.

Dotted attribute
Ability to refer the value (or set of values) of an attribute that

is included in the definition of a set of concepts.

Attribute group
Ability to group a collection of attributes that work together

as part of a refinement.

Attribute

Ability to specify an attribute name-attribute value pair that

refines the meaning of the expressions resulting from the

constraint.

Nesting
Ability to use an EC to represent the valid set of focus

concepts or attribute values.

Attribute values

comparator

Ability to compare the attribute value of the resulting

expressions with the attribute value in the EC using

comparison operators (i.e., =, <>, ! =).

Chapter 2. Background

70

Member of
Ability to select a set of concepts that are referenced by the

members of a reference set.

Exclusion

Ability to filter a set of expressions from the result by either

removing expressions whose focus concept is on a specific

set, or removing expressions whose attribute value is equal

to a certain value.

Any
Ability to reference any concept of the substrate, without

depending on the availability of a root concept.

Table 2. Capabilities required by ECL

Figure 33. Abstract model of a SNOMED CT EC 16

16 https://confluence.ihtsdotools.org/display/DOCECL/4.+Logical+Model

2.7 SNOMED CT Expression Constraint Language

71

Figure 34. SNOMED CT EC components 16

ECL presents two logically equivalent syntaxes: brief syntax and long syntax. The brief

syntax, which is considered the normative syntax and whose use is recommended in

interoperable communications, uses a set of symbols with the objective of being as

compact as possible. The long syntax, whose aim is to increase the human readability of

the ECL, replaces the set of symbols of the brief syntax by English-based texts [5]. There

are three types of ECs: simple, refined and compound. They are explained below using both

brief and long syntaxes.

2.7.1 Simple ECs

To define a simple EC, a constraint operator is applied to a focus concept, which is

composed by a numerical identifier and, optionally, a description enclosed by a pair of “|”

characters. Constraint operators traverse the hierarchical relationships (i.e., “116680003

|Is a (attribute)|” relationship) to return the set of concepts that are connected (either

directly or transitively) to the focus concept. There are different operators traversing the

hierarchy in diverse ways. Constraint operators are presented in Table 3.

Chapter 2. Background

72

Brief syntax Long syntax Description

<! childOf Children

<<! childOrSelfOf Concept itself and children

< descendantOf Descendants

<< descendantOrSelfOf Concept itself and descendants

>! parentOf Parents

>>! parentOrSelfOf Concept itself and parents

> ancestorOf Ascendants

>> ancestorOrSelfOf Concept itself and ascendants

^ memberOf Members of a reference set

Table 3. ECL constraint operators

Note that the term “descendants” can be understood as “types” or “subtypes”, and

“ascendants” or “ancestors” as “supertypes”. Furthermore, it is also possible to reference

all the concepts in the given substrate with the wildcard symbol (i.e., “*”) or with ”any”. As

an example, EC example 1 defines the subset of all types of disorders of blood vessel,

including the concept “27550009 |Disorder of blood vessel (disorder)|” itself.

EC example 1

<< 27550009 |Disorder of blood vessel (disorder)|

2.7.2 Refined ECs

Refinements allow filtering matching concepts by adding conditions in form of attribute

relationships. Only those concepts whose defining attributes satisfy the given refinements

are selected. As with the SNOMED CT Compositional Grammar (SCG) [24], refinements are

placed after a “:” symbol. For example, EC example 2 defines the subset of disorders of

body system located in the blood vessel structure.

2.7 SNOMED CT Expression Constraint Language

73

EC example 2

< 362965005 |Disorder of body system (disorder)|:

363698007 |Finding site (attribute)| = << 59820001 |Blood vessel structure (body structure)|

Multiple attributes can be defined in an EC. They can be combined using logical operators

(i.e., ‘AND’ -or comma- and ‘OR’), grouped, or both. As in SCG, EC uses curly braces to

define an attribute group, i.e., a set of attributes that should be grouped. For instance, EC

example 3 represents the subset of clinical findings whose associated morphologies are a

stenosis located in the pulmonary valve structure and a congenital septal defect located in

the interatrial septum structure.

EC example 3

< 404684003 |Clinical finding (finding)|:

{363698007 |Finding site (attribute)| = << 39057004 |Pulmonary valve|,

116676008 |Associated morphology (attribute)| = << 415582006 |Stenosis|},

{363698007 |Finding site (attribute)| = << 58095006 |Interatrial septum structure|,

116676008 |Associated morphology| = << 396351009 |Congenital septal defect|}

Attribute refinements may be preceded by a cardinality (i.e., “[min..max]” or “[min to

max]”) that represents a constraint on the minimum and maximum number of times that

the given attribute may appear in a matching clinical meaning (default “[1..*]”). For

example, EC example 4 is satisfied only by those allergy conditions that are caused by two

or more substances.

EC example 4

< 473011001 |Allergic condition (disorder)|:

[2..*] 246075003 |Causative agent (attribute)| = < 105590001 |Substance

(substance)|

It is important to mention that only non-redundant attribute relationships are considered

in the cardinality count. Two attribute relationships are redundant if they meet any of the

next two cases:

Chapter 2. Background

74

1) For the same attribute, attribute values have a subsumption relationship. For

example, in the following attribute relationships: “246075003 |Causative agent

(attribute)| = 373265006 |Analgesic (substance)|” and “246075003 |Causative

agent (attribute)| = 387494007 |Codeine (substance)|”, the first one is redundant

since both use a “246075003 |Causative agent (attribute)|” attribute and

“387494007 |Codeine (substance)|” is a subtype of “373265006 |Analgesic

(substance)|”.

2) Both attributes and attribute values have a subsumption relationship. For example,

in “47429007 |Associated with (attribute)| = 373265006 |Analgesic (substance)|”

and “246075003 |Causative agent (attribute)| = 387494007 |Codeine

(substance)|”, the first attribute relationship is redundant since the “246075003

|Causative agent (attribute)|” attribute is a subtype of the “47429007 |Associated

with (attribute)|” attribute and “387494007 |Codeine (substance)|” is a subtype

of “373265006 |Analgesic (substance)|”.

Note that a relationship that is part of a relationship group is only regarded as redundant

if the relationship group as a whole subsumes another relationship group [25].

Sometimes, it may be necessary to select the destination concept of a relationship and

constrain the source concept to a given value. To achieve this, it is possible to add a reverse

flag (i.e., “R” or “reverseOf”) that makes the matching relationships to be traversed in the

reverse of the normal direction (reversed attributes). For example, EC example 5

represents the subset of foods that cause any type of allergic condition.

EC example 5

< 255620007 |Food (substance)|:

R 246075003 |Causative agent (attribute)| = < 473011001 |Allergic condition

(disorder)|

2.7 SNOMED CT Expression Constraint Language

75

2.7.3 Compound ECs

Compound ECs can be defined by using binary operators between simple, refined or nested

compound ECs. ECL binary operators are presented in Table 4.

Brief and long syntax Description

AND (or comma) Conjunction

OR Disjunction

MINUS Exclusion

Table 4. ECL binary operators

For instance, EC example 6 defines the subset that contains the tetanus, diphtheria and

pertussis vaccines.

EC example 6

871742003 |Tetanus vaccine (medicinal product)| OR 871729003 |Diphtheria vaccine

(medicinal product)| OR 871758000 |Pertussis vaccine (medicinal product)|

2.7.4 Graphical representation of ECs

We show some additional examples of ECs and its corresponding graphical representation

in Figure 35.

Chapter 2. Background

76

Figure 35. Simple EC showing those concepts

that are a type of diabetes mellitus

Figure 36. Simple EC showing those concepts

that are a type of diabetes mellitus and
diabetes mellitus itself

Figure 37. Simple EC showing those concepts

that are a supertype of diabetes mellitus

Figure 38. Simple EC showing those concepts
that are a supertype of diabetes mellitus and

diabetes mellitus itself

2.7 SNOMED CT Expression Constraint Language

77

Figure 39. Refined EC showing those clinical findings caused by organisms

Figure 40. Refined EC showing those clinical findings caused by 2 or 3 organisms

Chapter 2. Background

78

Figure 41. Refined EC showing those substances that causes clinical findings caused by 3

substances

Figure 42. Compound EC showing those lung disorders with any type of edema of trunk

2.8 openEHR Expression Language

79

2.8 OPENEHR EXPRESSION LANGUAGE

Semantics of openEHR computable expressions are defined by the Expression Object

Model (EOM). These computable expressions can be used in healthcare and life sciences

in those scenarios where it is required to specify rules and expressions on data. The model

is designed as an extensible core formalism and therefore it can be used in other

formalisms, such as archetypes.

EL is an abstract syntax counterpart to the EOM, and may be considered a default syntax,

although it is possible to define other syntaxes. The first use of EL is to specify and explain

the semantics of the EOM, and the second one is to author expressions and rules by means

of text.

EL formalism requires extensions for use, such as operators, functions, leaf types, and other

features that are needed in specific contexts. The semantic requirements are for

expressions, including arithmetic, boolean, and relational operators, functions, quantifier

operators, operator precedence, parentheses, constant values, and certain kinds of

variables. However, there is no support in the core specification for procedural semantics

or most of the other complexities of full-blown programming languages.

One use of the EL language is for writing boolean expressions inside a computational

context. It is expected to include a multi-section self-standing EL text with strong

similarities with archetypes.

The primitive data types of EL include the most common ones, such as Boolean, Integer,

Real, and so on. It also includes container types, such as List, Set, and Hash. It also includes

quantification operators, which can make use of container types and an Interval type,

which is the same as in the openEHR Foundation Types.

An EL text is a series of statements. They can be either declarations, assignments or

assertions. Variables read the values from the data context. EL allows either bounding and

local variables to be used without restrictions. However, if a bound variable cannot be

evaluated from the data context, it should be thrown an exception indicating that such

variable cannot be evaluated.

Chapter 2. Background

80

The terminal entities of EL include constants, variables, literals, function calls and raw

paths, among others. On the other hand, non-terminal entities include operators and

functions. EL allows using common date and time functions, as well as aggregate functions.

It supports three groups of operators: arithmetic, which include subtraction, addition,

multiplication and the most common; comparison operators, such as equal, distinct, and

greater than; and boolean operators.

3.1 Introduction

81

CHAPTER 3. METHODS FOR THE DEFINITION, VALIDATION,

EXECUTION AND VISUALIZATION OF SNOMED CT SUBSETS USING

ECL

3.1 INTRODUCTION

SNOMED CT is the most comprehensive, multilingual and codified clinical healthcare

terminology in the world [4]. Each SNOMED CT concept has a formal logic definition

represented by a set of defining relationships to other concepts. These relationships are

governed by the SNOMED CT Concept Model, which is a set of rules that determine the

ways in which concepts are permitted to be modelled [4]. The MRCM represents these

rules in a form that can be read by a computer [26].

SNOMED CT ECL is a declarative language developed by SNOMED International for the

definition of SNOMED CT ECs. ECs are executable expressions that define bounded sets of

clinical meanings. In ECL, these sets are defined by stating constraints over the logic

definition of concepts. The execution of the constraints on some substrate (typically a

SNOMED CT edition) yields the intended subset, i.e., the set of clinical meanings that

satisfies the constraints.

Intensional definition of subsets in general, and ECs in particular, are important in several

use cases. They are used in terminology binding between clinical information models and

terminologies for defining the set of valid values of codified data [27]. They are also useful

to define intensional refsets, such as language preferences or map refsets. They provide a

means to query SNOMED CT content, including the content of a SNOMED CT edition or

SNOMED CT expressions stored within an EHR. Additionally, ECs are used in the definition

of the MRCM.

The evaluation of ECL rules requires an execution engine able to receive an EC as input,

parse it, generate an execution plan, execute the plan against a given SNOMED CT

substrate and return the matching concepts or expressions to the client. Additionally,

although not mandatory, it is recommended to check ECs for conformance against the

Chapter 3. Methods for the definition, validation, execution and visualization of SNOMED CT
subsets using ECL

82

MRCM prior to execution [5] and to provide methods for representing, understanding and

validating the resulting subsets.

Potential users of such engine include SNOMED CT designers and developers of

information models, data entry interfaces, storage systems, decision support systems,

retrieval and analysis systems, communication standards and terminology services. An EC

engine is also useful for SNOMED CT terminology developers, such as concept model

designers, content authors, map developers, subset and constraint developers, and release

process managers [5].

One of the key aspects when developing an EC execution engine is how to represent

SNOMED CT in a database in a way that allows the execution of the complete set of EC

clauses efficiently in terms of execution time. Due to the intrinsic nature of SNOMED CT, a

directed and acyclic graph, storing its content in a graph database seems to be a logical

choice [28,29]. A contribution of this chapter is the analysis and use of a graph database

[30] to store and manage the SNOMED CT content, and to simplify and execute ECs. For

this purpose, we use Neo4j, a highly scalable native graph database, purpose-built to

leverage data and relationships, which is available in an open source community edition

[31]. Specifically, we address three important challenges: representation of SNOMED CT

content, simplification and execution of ECs, and rendering of the subsets in order to

understand and validate them. All these methods have been implemented in a publicly

accessible EC execution platform called SNQuery17 [32].

3.2 STORAGE OF THE SNOMED CT DATABASE

Since SNOMED CT is a directed and acyclic graph, the use of a graph database seems to be

a logical choice for the representation of the SNOMED CT content. In this regard, graph

databases bring several potential advantages over traditional database systems, such as

relational [33]. Graph databases emphasize connectedness of data that fits the

polyhierarchical and ontological nature of SNOMED CT. They provide a great flexibility to

add new nodes and relationships to the graph without affecting existing queries [30].

17 https://snquery.veratech.es

3.2 Storage of the SNOMED CT database

83

Finally, the structurally similar data model facilitates the execution of complex queries that

go beyond subsumption queries (i.e., the descendants of a given concept) as required by

ECL.

For the representation of SNOMED CT, we have used a graph database model where the

schema and instances are represented as graphs and the data manipulation is expressed

by graph-oriented operations. Concretely, we have used the Property Graph Data Model

[34,35]. Currently, it is the most common graph data model in industry and is gaining

prevalence in academy [36]. A property graph is a directed labelled multigraph where

nodes and edges could be associated with any number of attributes (also called properties)

in the form of key-value pairs. From a data modelling point of view, nodes represent

entities (for instance, SNOMED CT concepts), edges represent the relationships between

the entities, and properties represent specific characteristics (i.e., attributes) of an entity

or relationship.

We have used Neo4j, a graph-oriented database software, for the persistence of SNOMED

CT. Neo4j is a highly scalable native property graph database, purpose-built to leverage

data and data relationships, which is available in an open source community edition. It

comes with a powerful query language called Cypher [36,37].

SNOMED CT is stored as follows. SNOMED CT concepts are represented by graph nodes

labelled with a “Concept” label. In Neo4j, labels are used to group nodes into sets where

all nodes that have a certain label belong to the same set, in our case the set of concepts.

For each concept, we have stored its identifier and Fully Specified Name (FSN) as

properties, which are required for query execution and presentation of results. SNOMED

CT relationships between concepts are represented by graph edges. Note that relationship

types in SNOMED CT are defined as concepts (for instance, the “finding site” attribute

relationship is represented by the concept “363698007 |Finding site (attribute)|”, and the

“is a” hierarchy relationship by the concept “116680003 |Is a (attribute)|”). We store four

types of relationships in the graph:

Chapter 3. Methods for the definition, validation, execution and visualization of SNOMED CT
subsets using ECL

84

- ‘IS A’ to model parent-child concepts association.

- ‘RELCL’ as the transitive closure of the ‘IS A’ relationship, i.e., each concept is

directly associated with all its ancestors. It has been calculated and stored for

efficiency purposes since it speeds up query execution time.

- Attribute relationships by means of the prefix ‘REL’ followed by the concept

identifier. For example, the “clinical course” attribute, which corresponds to the

concept “263502005 |Clinical course (attribute)|”, is stored in the graph as the

relationship type ‘REL263502005’ 18. Edges representing attribute relationships

have a “relGroup” property containing the group number.

- ‘MEMBER OF’ relationships to define refsets in the graph. For instance, the

concept “840539006 |Disease caused by Severe acute respiratory syndrome

coronavirus 2 (disorder)|” has a ‘MEMBER OF’ relationship to the concept

“64401000122105 |SARS-CoV-2 (foundation metadata concept)|”, which defines

the SARS-CoV-2 refset in the Spanish SNS SNOMED CT extension.

In addition, we have calculated and stored for each concept its minimum depth in the

graph (property “minDepth”) and the total number of descendants (property

“descsNum”), since they are necessary to build the circle packing visualization presented

in section 3.5. Figure 43 shows an example of the representation of the SNOMED CT

components using the previous graph database modelling.

We have implemented a loading module to populate the graph database from the

SNOMED CT Snapshot Release Format 2 (RF2) files (i.e., concepts, relationships and

descriptions) into the Neo4j database.

18 Another option we considered, which is discussed in section 4.4, was to define a single ‘REL’

relationship type and make use of a property to store the concept identifier of the SNOMED CT

attribute.

3.3 EC simplification

85

Figure 43. Properties of the concepts “444827008 |Erythema of skin (finding)|” and “39937001
|Skin structure (body structure)|”, relationship “363698007 |Finding site (attribute)|” between

them, and relationships with ancestors (SNOMED CT July 2020 International

3.3 EC SIMPLIFICATION

The main idea of the EC simplification is to reduce the complexity of the expression and, in

turn, the execution time. It can be achieved by removing redundant concepts, superfluous

refinements or by narrowing down the focus concept. It is important to note that the

simplification must not affect the completeness of the computed subset of concepts. Note

that the result of the simplification depends on the SNOMED CT edition, since editions

potentially contain changes from one to another regarding concepts and relationships.

Performing such simplification has several advantages. First, it diminishes the number of

comparisons to be carried out during query execution. Therefore, it may have impact on

Chapter 3. Methods for the definition, validation, execution and visualization of SNOMED CT
subsets using ECL

86

query answering time. Second, the cut-down query is more amenable to human reading.

Third, it may help to validate the terminology itself (as discussed in section 4.4).

We have defined three different methods to simplify ECs before they are executed (pre-

execution): subsumption-based, MRCM-based, and logic definition-based; and one

method based on the mining of the result subset (post-execution). The methods based on

the MRCM and the logic definition check whether the EC satisfies the rules defined in the

SNOMED CT Concept Model and the logical definition of the involved concepts,

respectively. If the EC does not conform to them, it will be regarded as semantically invalid

since the EC cannot be satisfied by any concept. It should be noted that the simplification

methods should be applied iteratively until the EC cannot be further simplified.

3.3.1 Subsumption based

In this section, we provide a method for the elimination of redundant concepts or

relationships in ECs to improve the efficiency of EC engines. A concept or a relationship in

a given EC is redundant if it can be removed from the EC without affecting the result, i.e.,

the subset defined. We detect redundant concepts or relationships by analyzing

subsumption relationships between concepts. When there is subsumption between the

concepts involved in a domain, range or attribute relationships, it may be possible to

simplify the EC by applying the following rules (note that they are also valid for the “<”

constraint operator):

Let “A”, “B” be concepts. Let “r”, “s” be attributes.

1) <<A = (<<A OR <<B) if “A” is the same as or subsumes “B”

2) <<B = (<<A AND <<B) if “A” is the same as or subsumes “B”

3) (r=<<A) = (r=<<A OR s=<<B) if “r” is the same as or subsumes “s”, “A” is the same

as or subsumes “B”, and both relationships are within the same group

4) (s=<<B) = (r=<<A AND s=<<B) if “r” is the same as or subsumes “s”, “A” is the same

as or subsumes “B”, and both relationships are within the same group

As an example, EC example 7 defines the subset that contains those disorders of body

system and disorders of hematopoietic structures that are in any blood vessel structure

and in any soft tissues (see Figure 44).

3.3 EC simplification

87

EC example 7

(< 362965005 |Disorder of body system (disorder)| OR

< 414027002 |Disorder of hematopoietic structure (disorder)|):

363698007 |Finding site (attribute)| =

<< 59820001 |Blood vessel structure (body structure)|,

363698007 |Finding site (attribute)| = << 87784001 |Soft tissues (body structure)|

We observe that the domain (i.e., “< 362965005 |Disorder of body system (disorder)| OR

<414027002 |Disorder of hematopoietic structure (disorder)|”) is a disjunction expression

in which the concept “414027002 |Disorder of hematopoietic structure (disorder)|” is

subsumed by “< 362965005 |Disorder of body system (disorder)|”. Therefore, “414027002

|Disorder of hematopoietic structure (disorder)|” is redundant. Additionally, the

relationship “363698007 |Finding site (attribute)| = << 87784001 |Soft tissues (body

structure)|” is redundant because “59820001 |Blood vessel structure (body structure)|”

is subsumed by “87784001 |Soft tissues (body structure)|”. Therefore, EC example 7 can

be rewritten as EC example 2 (see Figure 45).

Figure 44. Syntax tree of EC example 7

Chapter 3. Methods for the definition, validation, execution and visualization of SNOMED CT
subsets using ECL

88

Figure 45. Syntax tree of EC example 2, which is the simplification of EC example 7

3.3.2 MRCM-based

The main goal of the MRCM-based simplification method is to optimize the execution time

of the EC by removing attribute relationships that are not compliant with the MRCM. Note

that conditions that contain non-compliant attribute relationships are never satisfied.

Therefore, it is necessary to compare the triplets domain-attribute-range of the EC against

the rules defined in the MRCM, including whether they are correctly grouped. Our

approach is to evaluate the triplets from a logical point of view, i.e., a triplet that is

equivalent to a MRCM rule is evaluated to True, and a triplet that does not conform to the

MRCM is evaluated to False (it is never satisfied). Logical combinations between True and

False triplets are evaluated according to the propositional logic conjunction and disjunction

truth tables, leading in the empty set as a simplification when the final result is False. For

instance, the execution of EC example 8 does not return any concept since it does not

conform to the MRCM.

3.3 EC simplification

89

EC example 8

<< 404684003 |Clinical finding (finding)|:

39133001 |With severity (attribute)| = << 272141005 |Severities (qualifier value)|

Note that the attribute “39133001 |With severity (attribute)|” is not an active concept in

the SNOMED CT substrate, and thus, the triplet is evaluated to False. In such case, the

simplification results in the empty set, and the EC can be logically represented with a

refinement that is never met, i.e., “<< 404684003 |Clinical finding (finding)|: False”. In EC

example 9, the first triplet is evaluated to False, whereas the second conforms to the

MRCM, therefore it must remain (see Figure 46).

EC example 9

<< 404684003 |Clinical finding (finding)|:

39133001 |With severity (attribute)| = << 272141005 |Severities (qualifier value)| OR

246075003 |Causative agent (attribute)| = << 410942007 |Drug or medicament

(substance)|

Figure 46. Syntax tree of EC example 9

Chapter 3. Methods for the definition, validation, execution and visualization of SNOMED CT
subsets using ECL

90

As a result, the refinement is simplified to “False OR 246075003 |Causative agent

(attribute)| = << 410942007 |Drug or medicament (substance)|”, which is equivalent to

“246075003 |Causative agent (attribute)| = << 410942007 |Drug or medicament

(substance)|” (see Figure 47).

Figure 47. Syntax tree of the simplification of EC example 9

3.3.3 Logic definition-based

We leverage the logic definition of the focus concept of the EC to provide a method for the

deletion of superfluous attribute relationships to improve EC execution time. Considering

the mechanism of inheritance of SNOMED CT, we know that the descendants of the focus

concept have, as minimum, the same attributes and attribute values -or descendants- as

the focus concept. Therefore, we can detect superfluous attribute relationships by

analyzing subsumption between concepts. Specifically, it may be possible to simplify the

EC by applying the following rule (note that it is also valid for the “<” constraint operator):

3.3 EC simplification

91

Let “A”, “B”, “C” be concepts. Let “r”, “s” be attributes. Let “s=C” be part of the

logic definition of “A”.

1) <<A = (<<A: r=<<B) if “r” is the same as or subsumes “s” and “B” is the same as or

subsumes “C”

Let us consider EC example 10 as an example (see Figure 48). The focus concept (i.e.,

“106063007 |Cardiovascular finding (finding)|”) has as finding site a structure of the

cardiovascular system (see Figure 49). Therefore, its descendants must have as finding site

a descendant of “113257007 |Structure of cardiovascular system (body structure)|” or the

concept itself. Figure 50 shows some descendants of “106063007 |Cardiovascular

finding|” and its logic definitions (note that only “363698007 |Finding site|” attribute

relationships are shown while dotted |Is a| relationships indicate that there exist concepts

in that path but they are not represented in order to simplify the figure). Consequently, in

EC example 10, the attribute relationship is superfluous since it subsumes the attribute

relationship defined in the logic definition of the focus concept, i.e., “113257007

|Structure of cardiovascular system (body structure)|” is a subtype of “91723000

|Anatomical structure (body structure)|”. Therefore, the refinement can be removed (see

Figure 51). In other words, given that we are looking for cardiovascular findings located in

any anatomical structure, and all cardiovascular findings are in the cardiovascular system,

it is superfluous to define this condition in the EC.

EC example 10

< 106063007 |Cardiovascular finding (finding)|:

363698007 |Finding site (attribute)| = < 91723000 |Anatomical structure (body

structure)|

Chapter 3. Methods for the definition, validation, execution and visualization of SNOMED CT
subsets using ECL

92

Figure 48. Syntax tree of EC example 10

Figure 49. Logic definition of 106063007 |Cardiovascular finding (finding)|

3.3 EC simplification

93

Figure 50. Logic definitions of the concept “106063007 |Cardiovascular finding (finding)|” and
some of its descendants. Only “363698007 |Finding site|” attribute relationships are represented

Figure 51. Syntax tree of the simplification of EC example 10

Chapter 3. Methods for the definition, validation, execution and visualization of SNOMED CT
subsets using ECL

94

3.3.4 Post-execution simplification

In addition to pre-execution simplification, it is possible to further simplify the EC by

analyzing its result subset. The general idea is to try to find a descendant of the focus

concept whose set of descendants includes the whole result subset. If such concept exists,

it can be used as new focus concept without altering the result. The substitution of the

focus concept by a more specialized one may have a significant impact on the execution

time as the number of comparisons performed in the execution of the EC is reduced.

Furthermore, the refinements can be removed if the set of descendants of the new focus

concept matches with the result subset.

To illustrate our method, we use recall and precision. In our context, recall stands for the

fraction of concepts in the result subset that are included in a sub-hierarchy, while

precision is the fraction of concepts in a sub-hierarchy that belong to the result subset. We

define them as:

𝑟𝑒𝑐𝑎𝑙𝑙(𝐸, 𝐶) =
|{𝑎𝑛𝑠𝑤𝑒𝑟(𝐸)} ∩ {≪ 𝐶}|

⌈{𝑎𝑛𝑠𝑤𝑒𝑟(𝐸)}⌉

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐸, 𝐶) =
|{𝑎𝑛𝑠𝑤𝑒𝑟(𝐸)} ∩ {≪ 𝐶}|

⌈{≪ 𝐶}⌉

where 𝐸 is an EC, 𝐶 is each descendant of the focus concept of 𝐸, 𝑎𝑛𝑠𝑤𝑒𝑟(𝐸) is the result

subset of 𝐸, and {≪ 𝐶} ({< 𝐶} if 𝐶 does not belong to the result subset) is the set of

descendants of concept 𝐶. If both recall and precision are equal to 1, then we can assure

that {≪ 𝐶} is equal to the result subset. Therefore, the original EC can be rewritten simply

as ≪ 𝐶. Otherwise, if only recall is equal to 1 (and, therefore, precision is less than 1), we

can conclude that {≪ 𝐶} includes the result subset, but also contains non-relevant

concepts, therefore we must keep the refinements. Finally, if only precision is equal to 1

(and, therefore, recall is less than 1), we can assure that {≪ 𝐶} is included in the result

subset. In this case, it is not possible to simplify the EC since the result subset contains

more concepts than those included in {≪ 𝐶}.

3.3 EC simplification

95

Taking EC example 2 as an example, the application of the previous method yields as result

the much simpler EC example 1. In this case, both recall and precision are equal to 1. In

other words, {𝑎𝑛𝑠𝑤𝑒𝑟(𝐸)} and {≪ 𝐶} define the same subset of concepts.

It may be the case that multiple concepts have a recall equal to 1 and a precision less than

1. In those cases, we select the concept with the maximum precision (i.e., the concept with

the highest F1 score). As an example, EC example 11 defines the subset of those clinical

findings that are located in the lower respiratory tract structure and whose associated

morphology is any subtype of malignant neoplasm (see Figure 52).

EC example 11

< 404684003 |Clinical finding (finding)|:

363698007 |Finding site (attribute)| = << 82094008 |Lower respiratory tract structure

(body structure)|,

116676008 |Associated morphology (attribute)| = << 367651003 |Malignant

neoplasm (morphologic abnormality)|

Figure 52. Syntax tree of EC example 11

Chapter 3. Methods for the definition, validation, execution and visualization of SNOMED CT
subsets using ECL

96

If we apply the post-execution simplification, we obtain EC example 12.

EC example 12

< 301226008 |Lower respiratory tract finding (finding)|:

363698007 |Finding site (attribute)| = << 82094008 |Lower respiratory tract structure

(body structure)|,

116676008 |Associated morphology (attribute)| = << 367651003 |Malignant

neoplasm (morphologic abnormality)|

Note that the refinement is retained and the original focus concept “404684003 |Clinical

finding (finding)|” (115537 descendants) is replaced by the much more specialized concept

“301226008 |Lower respiratory tract finding (finding)|” (1753 descendants).

The substitution of the focus concept allows further simplification of EC example 11 by

applying the pre-execution simplifications. The logic definition of the focus concept of EC

example 12 states that it has as finding site the lower respiratory tract structure. This

means that all descendants of the focus concept have as finding site a descendant of

“82094008 |Lower respiratory tract structure (body structure)|” or itself. Therefore,

according to the logic definition-based simplification, it is possible to remove this attribute

relationship since it is redundant. As a result, we obtain EC example 13 (see Figure 53).

EC example 13

< 301226008 |Lower respiratory tract finding (finding)|:

116676008 |Associated morphology (attribute)| = << 367651003 |Malignant

neoplasm (morphologic abnormality)|

3.4 EC execution

97

Figure 53. Syntax tree of EC example 13, which is the simplification of EC example 11

3.4 EC EXECUTION

Since the SNOMED CT graph database is stored as a property graph, the execution of ECs

requires translating them from ECL to a query language for such databases, in our case to

the Cypher Query Language. Therefore, we have implemented a mechanism for translating

ECs into Cypher clauses that are executed over the SNOMED CT database in order to obtain

the result subset.

Cypher is a declarative query language that provides capabilities for both querying and

modifying data in property graphs. It allows users to store and retrieve data from a Neo4j

graph database. Cypher has been designed intentionally similar to SQL to help users in the

transition between the two languages.

Pattern matching is the pivotal concept in Cypher queries. Its syntax provides a visual form

as “ASCII-Art” to express patterns, such as “(c1)-[r]->(c2)”. Nodes are enclosed in

parentheses and can have zero to many labels. Labels are written after the node separated

Chapter 3. Methods for the definition, validation, execution and visualization of SNOMED CT
subsets using ECL

98

with a “:” symbol (e.g., “(node: Concept)”). Relationships are enclosed in square brackets

and are represented using an arrow between two nodes (“-->” or “<--”) (e.g., “- [:REL] ->”).

Properties are represented using curly braces within the parentheses of a node or the

square brackets of a relationship (e.g., “(node: Concept {conceptId: ’816994007’})”, “[:REL

{relId: ’116676008’}]”).

To search for patterns, Cypher provides the “MATCH” clause. There are as minimum three

components on every Cypher “MATCH” clause when looking for simple paths in a graph:

the source node, the destination node and an edge between them. In terms of our

serialization of SNOMED CT, simple paths are represented by a source concept, a

destination concept, and a relationship between them. For instance, the following

“MATCH” clause matches all concepts that are descendants of the concept “85828009

|Autoimmune disease (disorder)|”: “MATCH (a: Concept {conceptId: '85828009'}) <-

[:RELCL] - (r: Concept)” (note that ‘RELCL’ is the transitive closure of the ‘IS A’ relationship).

This produces several bindings for the variable “r”, one for each descendant concept.

Cypher allows traversing relationships of a variable length by using “- [:REL*min..max] ->”,

where “min” and “max” are optional and default to 1 and many, respectively. Note that

min=0 allows including concepts that do not participate in any “REL” relationship. For

instance, in “(c: Concept) - [:RELCL*0..1] -> (d: Concept {conceptid: '59820001'})” the

variable “c” is bound not only to the descendants of the concept “59820001”, but also to

the concept “59820001” itself.

The “WITH” clause is used to pipe the results from one query part to be used as starting

point or criteria in the next query part. This clause allows the manipulation of the output

before passing it on to the following query part, including aggregation functions.

The “RETURN” clause computes and projects expressions, in our case: nodes, relationships,

properties or patterns.

The expressive power of Cypher makes it possible to translate an EC into a single or multiple

target queries whose execution produces the subset defined by the source EC. Cypher

query takes as input a property graph and returns a table. In our case, the return table is

composed of two columns: concept identifier and FSN. The strategy when querying the

SNOMED CT graph using the Cypher language is to look for paths that match the constraints

3.4 EC execution

99

imposed by the given EC for both nodes and relationships. Let us take as an example EC

example 2. The focus concept is “362965005 |Disorder of body system (disorder)|”,

therefore the result concepts must be descendants of it. The set of descendants can be

calculated using the following MATCH clause: “MATCH (a: Concept {conceptId:

'362965005'}) <- [:RELCL] - (r: Concept)”, where “r” is bound to each descendant concept

of “362965005 |Disorder of body system (disorder)|”. The set of valid concepts, i.e., the

values of variable “r”, must also satisfy the refinement condition, which can be expressed

by the following “MATCH” clause: “MATCH (r: Concept) - [:REL363698007] -> (c: Concept)

- [:RELCL*0..1] -> (d: Concept {conceptid: '59820001'})”, where “REL363698007” is the

“363698007 |Finding site (attribute)|” attribute and “59820001” is the identifier of the

concept “59820001 |Blood vessel structure (body structure)|”. As a result, the Cypher

query equivalent to EC example 2 is:

MATCH (a: Concept {conceptId: '362965005'}) <- [:RELCL] - (r: Concept)

- [:REL363698007] -> (c: Concept) - [:RELCL*0..1] ->

(d: Concept {conceptid: '59820001'})

RETURN DISTINCT r.conceptId AS CONCEPTID, r.fsn AS FSN

Table 5 shows the translation into Cypher of some basic EC patterns.

 Simple EC pattern Cypher translation pattern

1 <A
MATCH R - [:RELCL] -> A
RETURN R

2 <<A
MATCH R - [:RELCL*0..1] -> A
RETURN R

3 >A
MATCH R <- [:RELCL] – A
RETURN R

4 >>A
MATCH R <- [:RELCL*0..1] – A
RETURN R

5 <!A
MATCH R - [:ISA] -> A
RETURN R

6 ^A
MATCH R - [:MEMBEROF] -> A
RETURN R

 Compound EC pattern

7 <A AND <B
MATCH A <- [:RELCL] - R - [:RELCL] -> B
RETURN R

Chapter 3. Methods for the definition, validation, execution and visualization of SNOMED CT
subsets using ECL

100

8 <A OR <B
MATCH R - [:RELCL] -> C
WHERE C.id = A.id OR C.id = B.id
RETURN R

9 <A MINUS <B
MATCH R - [:RELCL] -> A
WHERE NOT R – [:RELCL] -> B
RETURN R

 Refined EC pattern

10 <A : B = <C
MATCH A <- [:RELCL] - R - [:RELB] -> D - [:RELCL] -> C
RETURN DISTINCT R

11 <A : {B = <C}
MATCH A <- [:RELCL] - R - [r:RELB] -> D - [:RELCL] -> C
WHERE r.relGroup <> '0'
RETURN DISTINCT R

12 <A : rev B = <C
MATCH A <- [:RELCL] - R <- [:RELB] - D - [:RELCL] -> C
RETURN DISTINCT R

13 <A : B != <C
MATCH A <- [:RELCL] - R - [:RELB] -> D
WHERE NOT D - [:RELCL] -> C
RETURN DISTINCT R

14 <A : [a..b] B = <C

MATCH A <- [:RELCL] - R - [r:RELB] -> D - [:RELCL] -> C
WITH R, COUNT(r) AS N
WHERE N >= a AND N <= b
RETURN R

15 <A : B = (<C OR <D)
MATCH A <- [:RELCL] - R - [:RELB] -> F - [:RELCL] -> E
WHERE E.id = C.id OR E.id = D.id
RETURN DISTINCT R

16 <A : B = (<C AND <D)
MATCH C <- [:RELCL] - E - [:RELCL] -> D
MATCH A <– [:RELCL] - R - [:RELB] -> E
RETURN DISTINCT R

17 <A : B = (<C MINUS <D)

MATCH E - [:RELCL] -> C
WHERE NOT E - [:RELCL] -> D
MATCH A <- [:RELCL] - R - [:RELB] -> E
RETURN DISTINCT R

18 <A : B = (<C : D = <E)
MATCH C <– [:RELCL] – F - [:RELD] -> G – [:RELCL] -> E
MATCH A <– [:RELCL] – R - [:RELB] -> F
RETURN DISTINCT R

19 (<A : B = <C) : D = <E
MATCH A <– [:RELCL] – R - [:RELB] -> F – [:RELCL] -> C
MATCH R - [:RELD] -> G – [:RELCL] -> E
RETURN DISTINCT R

Table 5. Patterns of ECs and its translation into Cypher Query Language

3.5 Subset visualization

101

It should be noted that more complex EC patterns could be translated by combining basic

ones. As an example, a complex EC containing attribute cardinality and a compound range

can be translated into Cypher by combining patterns 14 and 17 of Table 5 as shown in Table

6.

 Refined EC pattern Cypher translation pattern

20 <A : [a..b] B = (<C MINUS <D)

MATCH E - [:RELCL] -> C
WHERE NOT E - [:RELCL] -> D
MATCH A <- [:RELCL] - R - [r:RELB] -> E
WITH R, COUNT(r) AS N
WHERE N >= a AND N <= b
RETURN R

Table 6. Combination between EC patterns 14 and 17 translated into Cypher Query Language

3.5 SUBSET VISUALIZATION

Understanding and validating a result subset require to provide users with information

about how the concepts that make up the subset are related in terms of hierarchies and

which of these hierarchies are more relevant in terms of recall and precision. The visual

representation of this information may facilitate the validation of the subset at a glance,

for instance by detecting irrelevant concepts or hierarchies. Requirements for such

visualization also include showing the FSN of concepts, whether the represented concept

is included in the result subset, and the heterogeneity of the concepts contained in a sub-

hierarchy. In addition, a key requirement is to provide the possibility to dynamically explore

sub-hierarchies by zooming into them to see their details. It is important to note that the

presentation of all this information to the user requires a compact visual representation in

order to see as much information as possible at a glance. To collect and present this

information, a graphical visualization based on the circle packing [38] is proposed that fits

particularly well with our requirements. Circle packing is a geometrical concept that defines

a collection of circles that are connected without overlapping in a way that each circle

touches another. It has been implemented using the D3 Javascript library [39], which allows

to explore subsets dynamically, the customization of colors, sizes and border styles to

represent particular meanings, as well as to show textual information and numerical data

Chapter 3. Methods for the definition, validation, execution and visualization of SNOMED CT
subsets using ECL

102

inside or around circles. The data shown by the circle packing is first calculated by SNQuery

and stored in a JSON file, which can be integrated with other visualization methods to

represent the same or part of the data in a different way, such as a tree.

We have applied the circle packing to represent the concepts of the result subset arranged

in sub-hierarchies. Specifically, each circle represents a root concept of a sub-hierarchy and

comes with additional information such as recall and precision. These root concepts are

either members of the result subset or they have at least one descendant in it. Only non-

leaf concepts are shown. Each circle is ordered in levels, which correspond to the depth of

the sub-hierarchy that it represents. These levels can be dynamically explored by zooming

into and out the circles. Additionally, and in order to locate outlier concepts, it is possible

to calculate the descendant concepts that are out of the result subset and the result

concepts that are out of the sub-hierarchy represented by the circle. The first level displays

the focus concept of the EC. Table 7 shows the features provided by the circle packing

visualization.

Feature Description

Sub-hierarchy

A sub-hierarchy is represented by a circle.

Sub-circles

The set of child sub-hierarchies are represented by

sub-circles.

FSN

The Fully Specified Name of the top concept of the

sub-hierarchy is shown around the circle.

Border style

The border of the circle is drawn in solid line if the

top concept of the sub-hierarchy is included in the

result subset.

The border of the circle is drawn in dashed line if the

top concept of the sub-hierarchy is not included in

the result subset.

3.5 Subset visualization

103

“+” symbol

Circles marked with a “+” symbol can be zoomed in

to show their child sub-hierarchies.

Size

Size of circles is proportional to its polyhierarchical

degree measured as the total number of ancestors

of the concepts contained. Polyhierarchical degree is

intended to determine the heterogeneity of the

concepts contained in a sub-hierarchy. The higher

the degree, the more heterogeneous is the sub-

hierarchy.

Recall

For each circle it is shown its recall, i.e., the

percentage of the subset that is matched by the

descendants.

Precision

For each circle it is shown its precision, i.e., the

percentage of descendants that are included in the

subset.

Color

Green color is used to show the relevance in terms

of F1 score. The more intense the green, the higher

is F1 score and therefore the more relevant is the

sub-hierarchy represented by the circle.

Orange color is used to show the four most relevant

sub-hierarchies in terms of F1 score. The more

intense the orange, the more relevant is the sub-

hierarchy. They are displayed on demand without

needing to zoom into the circles.

Table 7. Features showed by the circle packing visualization

As an example, Figure 54 shows the sequence followed to find and display the most

relevant sub-hierarchy of EC example 2. Figure 54a shows the first level of the circle packing

of EC example 2. The focus concept of the EC (i.e., “362965005 |Disorder of body system

(disorder)|”) is at the root and therefore it encompasses all circles. It is also displayed the

“53619000 |Disorder of digestive system (disorder)|” sub-hierarchy. It covers most of the

image, which is indicative that it is a heterogeneous sub-hierarchy. It appears with a very

light shade of green (i.e., low relevance) since it has a low F1 score (recall=6.54%,

precision=3.14%). The rest of the image is covered by smaller circles (i.e., more specific

Chapter 3. Methods for the definition, validation, execution and visualization of SNOMED CT
subsets using ECL

104

sub-hierarchies). One of them is colored with the more intense green (i.e., “49601007

|Disorder of cardiovascular system (disorder)|”), meaning that it is the most relevant sub-

hierarchy at this level. It also contains the most relevant sub-hierarchy of EC example 2 (in

orange), as shown in Figure 54b (i.e., “27550009 |Disorder of blood vessel (disorder)|”).

Figure 54c shows the result of zooming into the “49601007 |Disorder of cardiovascular

system (disorder)|” sub-hierarchy. At this level, several sub-hierarchies with different

relevance are shown, including “27550009 |Disorder of blood vessel (disorder)|” (in

orange), which is, as aforementioned, the most relevant sub-hierarchy of EC example 2

(recall=100%, precision=100%). Note that since “27550009 |Disorder of blood vessel

(disorder)|” has both recall and precision equal to 100%, the post-execution simplification

of EC example 2 is “<<27550009 |Disorder of blood vessel (disorder)|”.

3.5 Subset visualization

105

Figure 54. Circle packing visualization of EC example 2 (using the SNOMED CT July 2020
International Edition). First level of visualization is displayed in (a); (b) shows the most relevant sub-

hierarchy (in orange, pointed out by an arrow); (c) shows the result of zooming

Chapter 3. Methods for the definition, validation, execution and visualization of SNOMED CT
subsets using ECL

106

In the following chapter we explain how the methods presented in this chapter are applied

and put into practice in a tool that has the ability to validate, simplify and execute ECs. The

subset visualization method presented here has also been incorporated into the tool.

Additionally, an evaluation of the tool in terms of execution times has been performed and

presented. At the end of Chapter 4 we present a discussion about the contents of both

Chapter 3 and Chapter 4, since they are closely linked.

4.1 Overview of SNQuery

107

CHAPTER 4. SNQUERY: ECL EXECUTION ENGINE BASED ON GRAPH

DATABASES

4.1 OVERVIEW OF SNQUERY

SNQuery is an EC execution platform that makes use of the methods defined, implemented

and presented in Chapter 3. The process to create, parse, simplify, semantically validate

and execute an EC, and visualize the result subset is as follows. After an EC is entered,

SNQuery parses it and, if the syntax is correct, it applies the simplification methods (note

that applying the simplification methods is optional and it depends on the user to apply

them or not). The simplification methods are applied by SNQuery iteratively, i.e., the

methods are executed sequentially in a loop until the EC cannot be further simplified. This

process yields both the semantic validation and the simplification of the EC. To execute the

EC, SNQuery performs the translation process between the EC and the Cypher Query

Language described in section 3.4, which yields a single or multiple target Cypher queries

that are executed over the Neo4j graph database to produce the intended result subset.

SNQuery presents the result subset in sortable tabular form by default, as shown in Figure

55. In addition to the numerical identifier and the FSN, each concept is linked to the

SNOMED International SNOMED CT Browser [40] to explore its details. SNQuery allows the

exportation of subsets as txt, xls and csv file formats.

Chapter 4. SNQuery: ECL execution engine based on graph databases

108

Figure 55. SNQuery showing some disorders of lung whose associated morphology is any type of
edema

In addition to the circle packing visualization method described in section 3.5, SNQuery

also incorporates a hierarchy-based and a tree-based visual representations that can be

used to visualize the subsets. As examples, we show Figure 56, Figure 57, and Figure 58.

Figure 56. Diabetes mellitus hierarchy

4.1 Overview of SNQuery

109

Figure 57. Diabetes mellitus hierarchy after applying the ForceAtlas2 Graph Layout Algorithm [41]

Figure 58. Tree-based visualization showing three levels in depth of those disorders of lung
associated with edema (only intermediate concepts are shown)

In order to define ECs in SNQuery, users must be familiar with the basics of the ECL syntax

[5] (see section 2.7) and, in turn, with the logical model of SNOMED CT [4]. As with any

computer-interpretable language, it requires a learning phase. The time spent in this

process will depend on the background and specific skills of the user. SNQuery includes

several mechanisms to assist users in creating ECs, such as:

Chapter 4. SNQuery: ECL execution engine based on graph databases

110

- Syntactic validation of the EC

- Historic of the last executions

- Validation of the EC according to the concept model

- ECs examples section aimed at being the basis for building ECs instead of defining

them from scratch

Additionally, for training purposes, SNQuery incorporates a visual authoring tool that is

particularly useful for users without a deep knowledge of ECL. The tool provides a series of

predefined templates that can be combined to create simple and complex ECs (see Figure

59). It also integrates different ways to search for concepts in SNOMED CT. Moreover, the

concept search is restricted to those concepts that are valid at a given point of the EC

according to the concept model (e.g., given a domain, it presents a list with the allowed

attributes; given an attribute, it allows to search for concepts only in the permitted domain

and range).

Figure 59. Visual ECs authoring tool

4.2 Other functionalities

111

SNQuery allows the selection of a SNOMED CT database to be the substrate over which

ECs are executed. Each database corresponds to an edition/release that have been

previously generated using our loading module, which makes use of the SNOMED CT

Snapshot RF2 files. The loading module is also able to generate any local extension and to

incorporate it as a substrate in SNQuery, such as the SNOMED CT UK Clinical and Drug

Extensions. Additionally, since the content of SNOMED CT evolves from one release to

another, SNQuery incorporates a way to check the differences on the results obtained

when executing an EC over different substrates. The purpose of this comparator module is

to detect new, missing, and inactive concepts over time, to make semantic interoperability

easier.

SNQuery also allows checking whether a concept is included in the subset defined by a

given EC, by using a self-created inclusion operator (“IN”). As an example, the execution of

EC example 14 yields the concept “31874001 |True (qualifier value)|” since “707480001

|Chronic hemolytic anemia (disorder)|” is included in the subset of diseases that interpret

a red blood cell count procedure.

EC example 14

707480001 |Chronic hemolytic anemia (disorder)| IN < 64572001 |Disease

(disorder)|: 363714003 |Interprets (attribute)| = 14089001 |Red blood cell count

(procedure)|

4.2 OTHER FUNCTIONALITIES

4.2.1 MSSSI refsets list

The MSSSI, which stands for Ministerio de Sanidad, Servicios Sociales e Igualdad español,

launches a new version of its clinical concept extension twice a year, which includes

approximately 80 refsets. MSSSI refsets are also updated into SNQuery, including allergies,

alerts, blood pressure automonitorization, chronic obstructive pulmonary disease (COPD)

phenotypes, problem status indicators, surgical records, severity indicators, diabetes

complications, types of documents for personal identification, specialties, sexes,

individualized vaccines and anesthesia types, among others. Note that it is not only possible

to retrieve the members of a refset using the “^” ECL operator but to refine them by using

Chapter 4. SNQuery: ECL execution engine based on graph databases

112

the ‘:’ operator , as in the following EC, which define the members of the MSSSI allergies

refset that are caused by a subtype of vegetable:

^ 900000051000122100 |Patient allergies refset (foundation metadata concept)|:

246075003 |Causative agent (attribute)| = < 22836000 |Vegetable (substance)|

4.2.2 Multilingual interface

The platform supports three languages at this moment: English, Spanish and Valencian. It

should be noted that the language selector only affects the interface of the platform, not

the resulting subsets retrieved after executing an EC, which depend on the selected

SNOMED CT edition.

4.2.3 Mapping to ICD-10

Each of the concepts of a subset retrieved after executing its defining EC in the platform,

can be mapped to its corresponding ICD-10 code (or codes). For this purpose, SNQuery

makes use of the official mapping files delivered by SNOMED International twice a year and

included in the international and Spanish editions.

4.2.4 Conversion from brief to long syntax and vice versa

As explained earlier in this thesis, ECL offers two logically equivalent syntaxes. On the one

hand, brief syntax is the normative syntax and it is aimed to be as compact as possible. On

the other hand, long syntax uses English as alternative to the symbols that are defined in

the brief syntax. The platform provides a converter from brief to long syntax and vice versa.

It should be noted that the concepts and attributes of the ECs are completed with its FSN

when using this conversion process.

4.3 Evaluation

113

4.3 EVALUATION

An analysis of SNQuery in terms of execution times has been performed. Table 8 shows a

collection of 10 ECs before and after applying the simplification methods. Label “S” stands

for “Simplification”. We also show a description for each EC.

 Expression Constraint Description

EC1 < 473011001 |Allergic condition (disorder)| Allergic conditions

S Not applicable -

EC2

< 473011001 |Allergic condition (disorder)|:

246075003 |Causative agent (attribute)| =

< 255620007 |Food (substance)|

Food allergies

S No simplification -

EC3

< 473011001 |Allergic condition (disorder)|:

246075003 |Causative agent (attribute)| !=

< 255620007 |Food (substance)|

Allergies caused by

something different

to food

S No simplification -

EC4

< 255620007 |Food (substance)|:

R 246075003 |Causative agent (attribute)| =

< 473011001 |Allergic condition (disorder)|

Foods that cause

allergies

S No simplification -

EC5

< 75478009 |Poisoning (disorder)|:

246075003 |Causative agent (attribute)| =

(< 105899005 |Animal agent (substance)| AND

< 35331000 |Toxic substance (substance)|)

Poisonings caused by

animal agents that

are toxic substances

S << 44400004 |Toxic effect of venom (disorder)|
Toxic effects of

venoms

EC6

< 404684003 |Clinical finding (finding)|:

116676008 |Associated morphology (attribute)| =

<< 79654002 |Edema (morphologic abnormality)|

Clinical findings

associated with any

type of edema

S << 267038008 |Edema (finding)| Edemas

EC7

< 781474001 |Allergic disorder (disorder)|:

370135005 |Pathological process (attribute)| =

<< 472964009 |Allergic process (qualifier value)|,

363698007 |Finding site (attribute)| =

<< 442083009 |Anatomical or acquired body structure|,

116676008 |Associated morphology (attribute)| =

<< 49755003 |Morphologically abnormal structure|

Allergic disorders

with any type of

allergic process as a

pathological process,

located in any

anatomical or

acquired body

Chapter 4. SNQuery: ECL execution engine based on graph databases

114

structure and

associated with any

morphologically

abnormal structure

S < 781474001 |Allergic disorder (disorder)| Allergic disorders

EC8

< 414029004 |Disorder of immune function (disorder)|:

370135005 |Pathological process (attribute)| =

263680009 |Autoimmune process (qualifier value)|

Disorders of immune

function with an

autoimmune process

as pathological

process

S << 85828009 |Autoimmune disease (disorder)|
Autoimmune

diseases

EC9

< 106063007 |Cardiovascular finding (finding)|:

363698007 |Finding site (attribute)| =

<< 113257007 |Cardiovascular system (body structure)|

Cardiovascular

findings that are

located in the

cardiovascular

system

S < 106063007 |Cardiovascular finding (finding)|
Cardiovascular

findings

EC10

< 404684003 |Clinical finding (finding)|:

363698007 |Finding site (attribute)| =

<< 82094008 |Lower respiratory tract structure|,

116676008 |Associated morphology (attribute)| =

<< 367651003 |Malignant neoplasm|

Clinical findings

located in the lower

respiratory tract and

associated to a

malignant neoplasm

S
< 301226008 |Lower respiratory tract finding (finding)|:
116676008 |Associated morphology (attribute)| =
<< 367651003 |Malignant neoplasm|

Lower respiratory

tract findings

associated to a

malignant neoplasm

Table 8. Examples of ECs before and after applying the SNQuery simplification process

Table 9 shows the execution times and standard deviations (in milliseconds) of the ECs

presented in Table 8. Label “R_SIZE” is the cardinality of the result subset (i.e., number of

concepts retrieved after executing the EC). “D_SIZE”, “D_SIZE_S”, “T (SD)”, and “TS (SD)”

are the domain size and execution time (average and standard deviation) obtained before

and after applying the simplification methods, respectively. Each execution time has been

calculated as the average execution time of 100 runs over the SNOMED CT July 2020

4.3 Evaluation

115

International Edition on a Windows 10 Pro x64, Intel Core i7-6700HQ CPU 2.60 GHz 16GB

RAM. It should be noted that SNQuery uses an eager evaluation approach (i.e., it is

retrieved the full result subset).

 EC1 EC2 EC3 EC4 EC5 EC6 EC7 EC8 EC9 EC10

R_SIZE 1710 89 1439 73 67 584 273 455 8101 195

D_SIZE 1710 1710 1710 1710 3620 115537 273 1713 8101 115537

D_SIZE_S - - - - 67 584 273 455 8101 1753

T
(SD)

328
(15)

561
(21)

2509
(45)

554
(32)

673
(18)

985
(26)

1571
(50)

793
(21)

1581
(39)

1592
(49)

TS
(SD)

- - - -
211
(13)

318
(10)

244
(15)

321
(21)

531
(15)

1011
(30)

Table 9. Result subset size, domain size, execution time (in milliseconds), and standard deviation
obtained before and after applying the simplification process of each EC

The data presented in Table 9 suggest that execution time does not depend on the size of

the result subset neither on the size of the domain of the EC. It is also observed that the

more drastic the simplification, the greater the reduction of execution time, being EC7 the

EC with the highest percentage decrease (84.47%), EC10 with the lowest (36.49%), and

being 63.88% the percentage decrease average.

One of the potential advantages when leading with graph-oriented databases is the great

flexibility to add new nodes and relationships to the graph without affecting existing

queries [30]. In this regard, we have evaluated if an increase in the substrate will increase

the EC execution time and degrade the performance.

The experiment consists of increasing the number of concepts in the domain of a given

refined EC (i.e., the number of nodes to be traversed to calculate the subset is increased)

but keeping the result subset constant (see Figure 60).

Chapter 4. SNQuery: ECL execution engine based on graph databases

116

Figure 60. Domains D1 to Dn over which the subset is calculated (note that Dn is represented by all
the SNOMED CT substrate)

For this purpose, we leverage our post-execution simplification method, since it allows

narrowing down the focus concept of a refined EC (see section 3.3.4). For example, EC

example 15 can be simplified to EC example 16 and therefore all the concepts in a hierarchy

path from “249230006 |Male genitalia finding (finding)|” to “138875005 |SNOMED CT

Concept|” can be used as focus concept without altering the result.

EC example 15

 < 138875005 |SNOMED CT Concept|: 363698007 |Finding site (attribute)| =

 < 127903009 |Male genital organ structure (body structure)|

EC example 16

< 249230006 |Male genitalia finding (finding)|: 363698007 |Finding site (attribute)| =

< 127903009 |Male genital organ structure (body structure)|

Table 10 shows a set of equivalent ECs (EC11 to EC19) in terms of returned concepts, where

EC11 is the EC obtained after applying our post-execution simplification method in the

original EC (EC19); EC12 to EC18 are equivalent intermediate ECs that have as focus concept

a concept in a hierarchy path from “249230006 |Male genitalia finding (finding)|” to

“138875005 |SNOMED CT Concept|”. “R_SIZE” is the size of the result subset, “D_SIZE” is

the size of the domain, and “T (SD)” is the average execution time of 100 runs and the

standard deviation (in milliseconds).

4.3 Evaluation

117

 Expression Constraint R_SIZE D_SIZE T (SD)

EC11 < 249230006 |Male genitalia finding (finding)|: REF 1072 1215 717 (25)

EC12 < 300479008 |Genital finding (finding)|: REF 1072 4296 739 (28)

EC13 < 118238000 |Urogenital finding (finding)|: REF 1072 6767 761 (27)

EC14
< 822987005 |Finding of abdominopelvic

segment of trunk (finding)|: REF
1072 15335 810 (30)

EC15 < 302292003 |Finding of trunk structure (finding)|: REF 1072 23969 837 (32)

EC16 < 301857004 |Finding of body region (finding)|: REF 1072 63109 917 (41)

EC17 < 118234003 |Finding by site (finding)|: REF 1072 74251 937 (32)

EC18 < 404684003 |Clinical finding (finding)|: REF 1072 115537 1008 (47)

EC19 < 138875005 |SNOMED CT Concept|: REF 1072 354383 1228 (45)

Table 10. Result subset size, domain size, execution time and standard deviation (in milliseconds) of
EC11 to EC19 set of equivalent ECs. “REF” is equivalent to “363698007 |Finding site (attribute)| = <

127903009 |Male genital organ structure (body structure)|”

We see that the substrate grows by 29067.32% (from 1215 to 354383 nodes), while

execution time only grows by 71.27% (from 717 to 1228 milliseconds). Additionally, the

same experiment was performed by adding a cardinality constraint to the EC (i.e., “[2..*]

363698007 |Finding site (attribute)|”), which defines those findings located in two or more

male genital organ structures. We obtained similar results, since execution time increased

by 92.12% (from 647 to 1243 milliseconds). Results of Table 10 are presented in Figure 61.

Chapter 4. SNQuery: ECL execution engine based on graph databases

118

Figure 61. Scatter plot showing the relation between domain size and execution time, and standard
deviation error bars (in milliseconds) of ECs in Table 10

In view of these results, we conclude that execution time of ECs does not increase at the

same rate as the substrate size does (i.e., execution time increase is not directly

proportional to database size increase), but it has a negligible growth compared to that of

the substrate. This experiment shows the suitability of representing an ontological model,

such as SNOMED CT, in a graph database, since the database size, the result subset size or

the domain size does not affect performance, as suggested by Table 9 and Table 10.

4.4 DISCUSSION

In health institutions generally coexist many different information systems, so information

is stored in separate islands. Moreover, there is a high degree of fragmentation between

institutions regarding EHR data. When patient information is needed, querying only a part

of the information is a potential risk for the patient. There are, thus, great benefits in the

design and construction of semantically interoperable information systems able to share,

aggregate, analyse and use external information automatically and in a meaningful way

[27].

0

200

400

600

800

1000

1200

1400

0 50000 100000 150000 200000 250000 300000 350000

T

D_SIZE

4.4 Discussion

119

The need to achieve high levels of semantic interoperability in the health domain is

regarded as a crucial issue. However, it is not an easy task. For this purpose, it is an essential

requirement to bind information models to terminological models (i.e., clinical

terminologies such as SNOMED CT, LOINC or ICD, among others). This bind is known as

terminology binding, and it is important since the link between information model and

terminology is significant in achieving specific business or clinical objectives: data capture,

retrieval and querying, information model library management and, as aforementioned,

semantic interoperability.

There exist two types of terminology binding. First, semantic binding (also known as model

meaning binding), gives unequivocal meaning to the information structures contained in

the information model by means of a link between an element of the model and a pre- or

post-coordinated term of the terminology. Semantic binding between archetypes and pre-

coordinated terms can be carried out manually by health terminology experts, which is a

hard task due to the large size of terminologies; and semi-automatically, by means of string

comparison-based and semantic techniques that obtain a subset of candidate terms [42–

45]. Second, content binding (also known as value set binding) constrains the set of

possible coded values or clinical meanings of a data element within an information model.

Content binding requires a mechanism to specify sets of terms intensionally (i.e., by means

of an expression whose execution returns the set of terms). It is also possible to define the

sets extensionally (i.e., by enumeration) but it has some disadvantages, such as the

difficulty in the maintenance or the uphill task of managing large sets of terms [46]. One

way to define such intensional sets is using a declarative language to interrogate the

substrate of the terminology. The syntax of the language must allow the specification of

the terms to be selected and included in the set and the way these terms must be related.

Moreover, the operators of the language must be aligned with the logical model of the

terminology. In this sense, ECL is a development of SNOMED International that enables the

intensional definition of sets of clinical meanings through ECs.

Furthermore, data instances need to be validated against the information model. In this

sense, if the information model contains constraint bindings to SNOMED CT subsets

defined through ECs, it is also possible to validate the contents of data instances with the

given subsets.

Chapter 4. SNQuery: ECL execution engine based on graph databases

120

Regarding the representation and storage of SNOMED CT in a database using its RF2 files,

we have explored several options. First, we focused on a relational database and SQL as a

query language. However, this option was dismissed because of the complexity in the ECL

to SQL translation process and the lack of efficiency when querying the data [33]. The

natural way to store the concepts and relationships of SNOMED CT was established to be

a graph, given its acyclic directed graph structure. Again, there was a range of possibilities,

such as creating an XML database and using the XQL language (XML Query Language) for

queries, or creating a database of RDF (Resource Description Framework) graph and using

the SPARQL (Protocol and RDF Query Language) as a query language. We found some

drawbacks in the literature in the use of Semantic Web technologies when dealing with

large ontologies such as SNOMED CT. The main one is related to inference performance

over the EL+ subset used in SNOMED CT. Previous studies [47,48] showed big differences

on query execution times between reasoners even for simple queries, such as computing

the descendants of a concept. Moreover, in some cases, execution times were significantly

high. In addition, one of the studies [48] showed a correlation between the execution times

of the queries and the number of returned subclasses. Additionally, when translating the

SNOMED CT Query Language into SPARQL 1.1 under the RDF entailment regime [47], the

authors found that the significantly larger number of pre-computed files required to

generate the inferred model was a drawback. Considering the previous shortcomings and

the performance of graph databases, it was determined that Neo4j and Cypher could be

used for the execution of ECs [49]. The expressiveness of Cypher makes it possible to

translate an EC into a set of Cypher queries whose execution on a property graph produces

the subset defined by the source expression. It should be noted that there exist multiple

graph databases, such as Amazon Neptune, ArangoDB, Dgraph, or JanusGraph. The choice

of Neo4j was based on the availability of an open source edition and on the expressive

power of the Cypher query language. Regarding the Neo4j database, it was possible to

model SNOMED CT in different ways. Potentially, the model affects the execution time of

the queries. We tested two different approaches that differ in the way SNOMED CT

attribute relationships are stored. In the first one, attribute relationships were modelled

using one type of Neo4j relationship (i.e., “[:REL]”) with a property that stored the identifier

of the attribute relationship (e.g., “[:REL {relId: ’363698007’}]”). In the second one, each

attribute relationship was modelled using a different type of Neo4j relationship (e.g.,

4.4 Discussion

121

“[:REL363698007]”). All ECs executed in this paper use the latter approach. After a

comparative analysis of EC execution for both approaches, we concluded that there were

no significant differences, except in one particular type of refined EC. Concretely,

refinements that include attribute cardinalities and “not equal” comparison operator. In

this case, the second approach was four times faster on average than the first one. As

mentioned, the modelling of SNOMED CT properties and relationships in the database, as

well as the simplification methods described in this paper, potentially have an impact on

the execution times of the ECs.

Both simplification methods and visual representation of subsets presented in this chapter

are useful for validating the consistency of extensional refsets and the terminology itself.

Extensional refsets can have several potential problems, such as the existence of

homograph words that cause the choosing of wrong FSN and, hence, wrong concept

identifiers. The validation process is also used to search for outlier concepts (i.e., concepts

included in the refset/terminology without any relation with the global meaning of the

refset/sub-hierarchy). For instance, the visualization of the “900000101000122100 |Scales

and reference clinical assessment systems for primary care reference set (foundation

metadata concept)|” refset of the Spanish SNS, shows that 60 out of 61 concepts are

subtypes of the “254291000 |Staging and scales (staging scale)|” hierarchy. The remaining

concept “225392000 |Pressure ulcer risk assessment (procedure)|” is included in the

“71388002 |Procedure (procedure)|” hierarchy. Therefore, it is a potential error of

classification. A useful application of our EC post-execution simplification method is to

generate simple ECs equivalent to extensional refsets. For example, the application of the

simplification process to the “900000191000122105 |Severity indicator reference set

(foundation metadata concept)|” SNS refset yields as a result the EC “< 272141005

|Severities (qualifier value)|”.

Moreover, the “900000021000122107 |Diabetes diagnoses reference set (foundation

metadata concept)|” SNS refset contains almost the 80% of the concepts in “< 73211009

|Diabetes mellitus (disorder)|” SNS sub-hierarchy. Hence, the remaining 20% might be

proposed to be added to the refset. Additionally, 14% of the concepts in the refset are not

included in the sub-hierarchy, so that they could be inspected to detect potential errors.

Chapter 4. SNQuery: ECL execution engine based on graph databases

122

Regarding the validation of the terminology itself, taking EC example 2 as an example, it

would be expected that all the member concepts are descendant of “27550009 |Disorder

of blood vessel (disorder)|”. The simplification of EC example 2 yields as result EC example

1. Therefore, we can asseverate that all disorders of body system located in a blood vessel

structure are descendants of “27550009 |Disorder of blood vessel (disorder)|”.

Furthermore, all the members of the “<< 27550009 |Disorder of blood vessel (disorder)|”

sub-hierarchy contain at least a location that is a blood vessel structure.

It should be noted that the expressive power of ECL allows defining in an intensional way

complex subsets and extensional value sets used in clinical practice. For instance, the NLM

Value Set Authority Center [50] provides an extensive set of refsets, such as the ‘Head and

Neck Anatomic Locations’ value set, which could be expressed by the EC:

<< 69536005 |Head structure (body structure)| OR

<< 45048000 |Neck structure (body structure)|

or the ‘Rheumatoid Arthritis’ value set, which could be expressed as:

<< 69896004 |Rheumatoid arthritis (disorder)|

Currently, there exist several efforts focused on the management of large collections of

value sets to support effective and interoperable health information exchange[50–55]. In

this regard, it should be noted that the proposed methods for the validation and

visualization of SNOMED CT refsets could be applied to the representation and validation

of value sets if their content is mapped to SNOMED CT concepts.

It is important to mention that there exist more implementations of the ECL [40,56–58]. At

this point, these engines are useful to execute ECs. However, they do not provide other

capabilities, such as to validate ECs from a semantic point of view, to include strategies and

methods to simplify the ECs or to visually represent the subsets in order to understand the

data and to validate them. Our effort has focused not only on the execution of ECs but on

all the mentioned abilities.

4.4 Discussion

123

SNQuery is not directly extensible to other terminologies and ontologies, since ECL is

intended to express SNOMED CT concept model constraints. However, it is possible to

indirectly query other terminologies by using mappings from/to SNOMED CT, such as the

official map from SNOMED CT to ICD-10 delivered by SNOMED International, which is

incorporated in SNQuery.

In the following chapter we present the requirements for an expression language able to

specify consistency rules in archetypes. We also do a literature review in order to look for

the language for expressing clinical logic that best suits our particular scenario.

Chapter 4. SNQuery: ECL execution engine based on graph databases

124

5.1 Introduction

125

CHAPTER 5. CONSISTENCY RULES IN ARCHETYPES

5.1 INTRODUCTION

The healthcare sector is increasingly producing and consuming larger amounts of data and

information. Exchanging information in a meaningful way is a critical issue, although this

objective is still far from being sufficiently addressed. The predictable change towards

personalized/precision medicine will lead to a drastic increase of the size and complexity

of EHR systems, which will, in turn, affect the integration of clinical data. Therefore,

reaching a high level of semantic interoperability is one of the most important challenges

in achieving meaningful use of EHR.

In this sense, it is necessary to ensure semantic consistency of EHR data as a basic and

primary requirement to improve healthcare, as well as for secondary uses of EHR data,

such as clinical research and academic. Since consistency is mainly dependent on the usage

scenario, it is an essential requirement to explicitly and formally define the constraints that

the data must satisfy to be considered consistent, including the agreement or compatibility

among the data elements [1]. The measure of consistency is generally based on elements

contained by the EHR, but some researchers also include information from other sources,

such as billing information, paper records, patient-reported data, and physician-reported

data [1]. From a clinical point of view, one of the approaches for assessing consistency is

to study the concordance between the elements of EHR; for example, diagnostics and

associated information, such as treatments or procedures (e.g. a stroke can be associated

with a set of radiology procedures, including any type of computed tomography of head, a

magnetic resonance imaging of head and a doppler ultrasonography of carotid arteries).

Therefore, it is mandatory to have a detailed formal specification of knowledge of the

clinical domain, such as consistency rules.

It is important to emphasize that there exist three fundamental pillars on which semantic

interoperability sits: a reference model plus detailed clinical information models (i.e., two

level information model) and clinical terminology [59]. Moreover, it is essential to bind

clinical information models with terminology by means of semantic and value set

terminological binding as an interface between them. Furthermore, SNOMED CT ECL can

Chapter 5. Consistency rules in archetypes

126

be used to define SNOMED CT subsets of clinical concepts which are useful in value set

binding. Hence, one primary requirement of information model consistency rules is the

ability of handling with terminological subsets in order to define both value set binding and

conditional value set binding.

The specification of consistency rules, including simple, conditional and dependency

intensional value set bindings to enrich the definition of clinical information models have

not been deeply explored. New proposals are required in order to formally specify domain

knowledge. These rules will provide some advantages in data entry, validation, processing

and interpretation of EHR data. Some EHR information modelling approaches can

accommodate such rules. For instance, the rules section of ADL2 archetypes –previously

known as invariant section in ADL 1.4.

In order to define consistency rules, including value set bindings, it is required a formal

language. In this chapter, we analyse the requirements for its definition based on a

literature review of existing medical logic languages, including PROforma, Asbru, GLIF3,

SAGE, EON, Arden Syntax, GELLO, GDL and openEHR EL. After the review, we study the

possibility of using GDL and EL as a first approximation for expressing consistency rules,

including simple, conditional and dependency intensional value set binding rules. The

rationale was that both languages are rule-based with inbuilt mechanisms for accessing

archetypes instances and they can accommodate terminology bindings. The limitations

encountered are considered as a point of departure for creating a new sub-language able

to be embedded in both, GDL and EL, to meet all the requirements. This language is

proposed for the definition of consistency rules, including simple, conditional and

dependency intensional value set bindings. Furthermore, as a part of this work, it is

necessary to study the potential locations for these rules and the ways they can be

represented: in the information model, as a new artefact of the terminological model, as

independent rules or as a combination of some of them.

5.2 Requirements for the consistency language in archetypes

127

5.2 REQUIREMENTS FOR THE CONSISTENCY LANGUAGE IN ARCHETYPES

The specification of semantic consistency rules to enrich the definition of information

models such as archetypes has not been deeply explored to date. The incorporation of

these consistency rules will provide some advantages to validate, process and interpret

EHRs. Likewise, these semantic consistency rules will ease the validation and measurement

of the consistency of data contained on EHRs by means of consistency metrics.

In this chapter, our objective is to propose a language to specify semantic consistency rules

to improve the consistency of EHRs. This language will also allow the definition of

aggregation functions and conditional value set bindings between information models and

clinical terminologies, such as SNOMED CT.

To define this language, some languages with similar purposes have been studied.

Specifically, some of the data types and operators of GELLO and openEHR Expression

Language have been identified to be useful for this language. However, we have adopted

and adapted our own variation of these operators and data types in some cases.

5.2.1 Introduction

The language has two types of statements:

- Constraints: relational and logical expressions that must be satisfied by the data

instance of the information model.

- Rules: constraints that must be satisfied by the data instance based on a condition,

which is also a constraint.

Note that a constraint can be understood as a particular case of a rule where its condition

is fixed to True. Both constraints and rules are evaluated to True or False.

Chapter 5. Consistency rules in archetypes

128

Examples:

 Information model: Apgar test

 Type of statement: constraint

 Description: ‘Apgar score (sum)’ value

must be the sum of all the

measurements obtained after

performing the test to a patient. To

specify this constraint, it is required to

equate the resulting sum of all the

measurements to ‘Apgar score (sum)’

value. If the constraint is satisfied then it

is evaluated to True. In other case, it is

evaluated to False.

 Information model: Tobacco use

 Type of statement: rule

 Description: if ‘Status’ value is ‘Yes’ (this

comparison is defined by a constraint)

then ‘Data’ value must contain some of

the available options (this is also defined

by a constraint). If both constraints are

evaluated to True, then the rule is

evaluated to True.

(To see all other True/False combinations,

please read the RULES section).

In addition to the use of numerical and string values, the language can read values from

data instances. These values are referenced by means of paths. So that, paths are used to

compound the expressions of the language.

Furthermore, variable declaration and assignment are supported to provide clarity to

expressions. On the contrary, since expressions contain paths, they can become long and

unclear to the naked eye.

5.2 Requirements for the consistency language in archetypes

129

There are two types of variables. First, primitive data types variables (e.g. integer, float,

char, boolean, etc.) and second, data types defined on a reference model (e.g. basic types,

codes and texts, magnitudes, time values, etc.).

5.2.2 Constraints

There are two types of constraints:

- Relational: expressions that use relational operators (i.e., =, !=, <, >, <=, >=).

- Logical: expressions that combines relational expressions using logical operators

(i.e., AND, OR, XOR, NOT).

There are also arithmetic expressions. These type of expressions make use of arithmetic

operators (i.e., +, -, *, /, ^) and they return a numerical value rather than being evaluated

to True or False. So that, they can’t be considered constraints but they are part of relational

expressions and these in turn are part of logical expressions.

Examples:

Expression type Definition Evaluation

Arithmetic 3+5-8*9 -64

Relational 3+5-8*9 < 1000 True

Logical (3+5-8*9 < 1000) AND (10 <= 5) False

Note: a precedence order is established to operators (it will be defined later). This order

can be altered using parentheses.

5.2.3 Rules

In general, a rule is a structure of the form IF-THEN [-ELSE]. Some of the constraints we

need to specify must be evaluated based on a condition (e.g. conditional value set binding).

Both, the antecedent of the rule (IF) and the consequents (THEN and optionally ELSE) are

constraints.

Chapter 5. Consistency rules in archetypes

130

Example:

 Information model: Tobacco use

 Type of statement: rule

 Description: if ‘Status’ value is ‘Yes’ (this

comparison is defined by a constraint)

then ‘Data’ value must contain some of

the available options (this is also defined

by a constraint).

 Antecedent constraint of the rule (IF):

‘Status’ value is equal to ‘Yes’.

 Consequent constraint of the rule (THEN):

‘Data’ value is equal to ‘Occasional’ or

‘Frequent’.

 Consequent constraint of the rule (ELSE):

‘Data’ is empty.

In our case, the structure of a rule is of the form: IF constraint1 THEN constraint2 [ELSE

constraint3], where constraint1, constraint2 and constraint3 are evaluated to True or False

based on the values read from the data instance of the information model. Depending on

the combination of these evaluations, the rule is evaluated to True or False as it is shown

in the following truth table for the Tobacco use example:

Evaluation of the

antecedent (IF)

Evaluation of the

consequent (THEN)

Evaluation of the

consequent (ELSE)

Evaluation of the

rule

V (‘Status’ is ‘Yes’) V (‘Data’ is

‘Occasional or

Frequent’)

- V

V (‘Status’ is ‘Yes’) F (‘Data’ is empty) - F

F (‘Status’ is ‘No’) - V (‘Data’ is empty) V

F (‘Status’ is ‘No’) - F (‘Data’ is

‘Occasional or

Frequent’)

F

5.2 Requirements for the consistency language in archetypes

131

5.2.4 Exists operator

The ‘EXISTS’ operator (logic existential quantifier) has two distinct usages.

- Usage 1: to check the existence of a path on the data instance of the information

model.

- Usage 2: it is applied on lists to check that at least one element satisfies a specific

condition/constraint.

Usage 2 example:

 Information model: Premature births

 Type of statement: rule

 Description: if at least one element from

the ‘Durations’ list is less than 37 weeks

(represented using a constraint with

‘EXISTS’), then ‘Status’ must contain a

‘Yes’ value. In other case, ‘Status’ must

be ‘No’.

 Antecedent constraint of the rule (IF):

there exist at least one element in

‘Durations’ whose value is less than 37.

 Consequent constraint of the rule

(THEN): ‘Status’ is equal to ‘Yes’.

 Consequent constraint of the rule (ELSE):

‘Status’ is equal to ‘No’.

5.2.5 For_all operator

The ‘FOR_ALL’ operator (logic universal quantifier) is used on lists to check that all the

elements satisfy a specific condition/constraint.

Chapter 5. Consistency rules in archetypes

132

For example:

 Information model: Premature births

 Type of statement: rule

 Description: if all the elements from the

‘Durations’ list are greater or equal than

37 weeks (represented using a constraint

with ‘FOR_ALL’), then ‘Status’ must

contain a ‘No’ value. In other case,

‘Status’ must be ‘Yes’.

 Antecedent constraint of the rule (IF): all

the elements from the ‘Durations’ list are

greater or equal than 37.

 Consequent constraint of the rule (THEN):

‘Status’ is equal to ‘No’.

 Consequent constraint of the rule (ELSE):

‘Status’ is equal to ‘Yes’.

5.2.6 Inclusion operator

The ‘IN’ operator is used to check whether a concept of certain clinical terminology (e.g.

SNOMED CT) is included into a set of concepts of that terminology. This set is defined

intensionally by means of an EC in the case of SNOMED CT. The ‘IN’ operator is especially

useful for creating constraints and rules for (conditional) value set binding validation.

5.2 Requirements for the consistency language in archetypes

133

Example:

 Information model: Findings by age and

department

 Type of statement: rule

 Description: if ‘Age’ value is greater than

75 and ‘Dept.’ is ‘Rheumatology’

(represented using a constraint), then

‘Finding’ must contain a concept

included in the rheumatic diseases in

geriatrics set (represented using a

constraint with ‘IN’).

 Antecedent constraint of the rule (IF):

‘Age’ value is greater than 75 and

‘Dept.’ is ‘Rheumatology’.

 Consequent constraint of the rule

(THEN): ‘Finding’ is a concept which is

included in the rheumatic diseases in

geriatrics set.

The structure of this rule is of the form: IF constraint1 THEN constraint2, where constraint2

uses the ‘IN’ operator as follows: ‘Finding’ IN ‘Rheumatic diseases in geriatrics set’.

5.2.7 Considerations about the use of ‘EXISTS’, ‘FOR_ALL’ and ‘IN’

Internally, these three operators make use of logical operators.

- ‘EXISTS’ is a succession of ‘OR’ (element1 satisfies condition OR element2 satisfies

condition OR… elementN satisfies condition).

- ‘FOR_ALL’ is a succession of ‘AND’ (element1 satisfies condition AND element2

satisfies condition AND… elementN satisfies condition).

In the case of ‘IN’ it is performed an intersection between the concept and the set. For this

purpose, it is used the ‘AND’ operator. In the case of SNOMED CT the evaluation is executed

externally using SNQuery Execution Engine which implements some optimizations for the

AND operator.

Chapter 5. Consistency rules in archetypes

134

Therefore, apart from ‘IN’ (which is executed externally), the functionality of ‘EXISTS’ and

‘FOR_ALL’ can be achieved using constraints (logical expressions) of the language itself. So

that, it is possible to dispense with them. However, it can become much more comfortable

to use them since it can be used lists with a lot of elements. One proposal about their use

in the language is to treat them as functions. For example:

- IN (concept, set)

- EXISTS (path)

- EXISTS (list, condition)

- FOR_ALL (list, condition)

5.2.8 Considerations about paths

Regarding the use of paths, it is mandatory to allow setting contexts in order to define

groups of expressions that are related. A context should be defined by means of a path.

Additionally, the definition of contexts should be carried out based on conditions over

them, such as selecting several child elements or setting conditions of element values.

Finally, it is important to allow raw paths to be used directly as variables to generate

expressions directly using paths rather than introducing variables.

5.2.9 Considerations about nesting rules

A rule is a mechanism that forces the accomplishment of a certain constraint according to

a condition (remember that the condition is also a constraint). In general, there may be

several conditions. The constraint forced to be satisfied depends on which condition is

evaluated to True. This mechanism can be achieved by concatenating rules (i.e., IF-THEN,

IF THEN, IF-THEN…). However, it is more efficient to nest them (i.e., IF-THEN-ELSE (IF-THEN-

ELSE (IF-THEN-ELSE)…)). In this way, the evaluation process is carried out until one of the

conditions is evaluated to True (in the case of concatenated rules, it is evaluated the

condition of each and every rule, although it is known a priori that, at most, only one of the

conditions will be evaluated to True).

Nested rules are useful for conditional value set binding as it is shown in the example

below.

5.2 Requirements for the consistency language in archetypes

135

Example:

 Information model: Findings by age and

department

 Type of statement: rule

 Description: if ‘Age’ value is greater than

75 and ‘Dept.’ is ‘Rheumatology’

(represented using a constraint), then

‘Finding’ must contain a concept

included in the rheumatic diseases in

geriatrics set (represented using a

constraint with ‘IN’). But there are other

possible combinations. For example:

‘Age’ is greater than 75 and ‘Dept.’ is

equal to ‘Dermatology’. In this case,

‘Finding’ must contain a concept

included in the dermatological diseases

in geriatrics set. In general, according to

the values of 'Age' and 'Dept.', 'Finding'

should be included in one set of

diseases or another.

The structure of this rule is as follows:

 IF constraint1 THEN constraintA ELSE
 (IF constraint2 THEN constraintB ELSE

 (IF constraint3 THEN constraintC ELSE
 (and so on…)

)
)

5.2.10 Data types, operators and functions

Regarding data types, the language must allow using the common primitive data types in

most of programming languages, such as Integer, Real, Boolean, String or lists of any

primitive type. Additionally, it should add two new data types: Terminology_code, to be

bound to terminological codes; and Snomed_ec, to be bound to SNOMED CT ECs.

Chapter 5. Consistency rules in archetypes

136

The language also should have the ability to call usual basic functions, such as math

functions, text functions, date and time functions and aggregate functions. Additionally, it

should include functions to check whether a path exists or is empty.

Regarding operators, there should be supported arithmetic, relational and boolean

operators, as well as logical quantifiers. Additionally, an inclusion operator should be

supported in order to evaluate whether a terminological code is included or not in a subset

of codes defined by means of a SNOMED CT EC.

5.3 REVIEW OF EXISTING LANGUAGES

There is a myriad of languages intended to formally represent clinical knowledge, such as

that present in clinical guidelines (CGs) [60,61] and in clinical trial eligibility criteria [62].

We identify several task-oriented knowledge formalisms that have been developed over

the years, including but not limited to PROforma[63,64], Asbru [65,66], GLIF3 [67–69],

SAGE [70,71] and EON [72,73]. The purpose of these languages is to capture the content

and structure of CGs and eligibility criteria by means of Task-Network Models (TNMs) in a

computer-processable way, leading to the definition of Computer Interpretable Guidelines

(CIGs) and computable knowledge representations for eligibility criteria. TNMs

hierarchically decompose CGs algorithms into networks of component tasks (i.e., plans,

actions, decisions and enquiries, among others, depending on the particularities of the

language) that unfold over time [74] (see Figure 62). They represent CGs formally allowing

a CIG execution engine to execute the represented knowledge over patient-specific data.

Task-oriented models control the flow over the task-network for modelling the guidelines

(who does what, when, how and where).

Figure 62. The PROforma task model

5.3 Review of existing languages

137

On the other hand, such clinical knowledge is capable of being formally modelled by means

of rule-based technologies [75] instead of using TNM formalisms. A rule formalism is a

logic-based language where each rule can be interpreted as an “if-then” statement. Rules

can be interpreted by an inference engine and are easy to share and implement in different

clinical environments. In [75] it was established two main groups of rule formalisms that

can potentially model CGs knowledge: first, Rule Based Systems (RBSs), which comprise

both medical oriented rules and general-purpose production rules; and second, Semantic

Web languages with rule extensions.

A well-known medical oriented rule formalism is the Arden Syntax [76–81], which is used

to define rules as Medical Logic Modules (MLMs) that are executed in CDSS. Arden Syntax

is a widely recognized HL7 standard for representing clinical and scientific knowledge, and

can deal with terminologies such as SNOMED CT [82]. An early version of GLIF, which was

called Guideline Expression Language (GEL), used it as its expression language [68]. When

developing an MLM using the Arden Syntax, the patient data model is local to the

institution, so it is difficult to share MLMs and knowledge bases between organizations

(i.e., the “curly braces problem”). HL7 standard information models, such as the Virtual

Medical Record (vMR) and FHIR, have been proposed to serve as standard data models for

the Arden Syntax.

Our survey includes other languages, such as the GELLO Expression Language [83]. GELLO

is an object-oriented constraint language based on the Object Constraint Language (OCL)

[84]. It is intended to be a standard expression language for Clinical Decision Support (CDS)

and it can be used with any object-oriented data model. Decision rules, eligibility criteria

and patient state specifications can be represented with GELLO expressions. GLIF3, which

is an object-oriented model, uses GELLO as the expression language for specifying the logic

of the task-network flow.

Additionally, we analysed the openEHR Guideline Definition Language (GDL), which is a

rule-based language that expresses CDS logic as production rules. It is agnostic to languages

and reference terminologies. Its rules can be combined together as building blocks to

support single decision making and more complex, chained decision-making processes.

Chapter 5. Consistency rules in archetypes

138

GDL rules can be used to drive at-point-of-care CDSS as well as retrospective populational

analytics [85]. openEHR has recently launched the Guideline Definition Language v2

(GDL2), which introduces some changes respect to the original release of GDL, such as data

binding agnostic to EHR data models.

Besides, a recent proposal by openEHR that is still under development, the Expression

Language (EL), can be used to define rules in archetypes and expressions within decision

logic models (DLMs) designed for use with openEHR Task Planning (TP), among others. It is

based on a limited first-order predicate logic language with extensions for numeric sub-

expressions and it is suitable to be included in other expression- and rule-based formalisms,

such as GDL [86].

Due to our need to represent clinical knowledge as expressions and rules as the core part

of the present chapter, we have selected, as first filtering, the presented rule-based

languages as the most suitable for our purposes, instead of TNM formalisms, which suit

better for modelling plans, decisions and actions of CGs.

Table 11 shows a comparative and additional information about Arden Syntax, GELLO, GDL

and EL in terms of type of model, patient data standards and use of terminologies, including

the ability to deal with semantic binding and simple, conditional and dependency

extensional and intensional value set binding.

5.3 Review of existing languages

139

 Arden Syntax GELLO GDL EL

Model Rule-based
Expression-based

Definition of rules is also

supported.

Rule-based

Expression-based

Support to “implies” logical

operator, equivalent to “if-

then”.

Patient data standards

No

Not designed to lead with a

particular standard patient

data model. Patient data

access is local to the

institution (i.e., the curly

braces problem).

Yes

Can fully provide expression

support for any properly

defined view of the HL7 RIM

(such as vMR), regardless of

any particular specification of

an object-oriented data

model.

Yes

Agnostic to EHR data

models, such as openEHR

and ISO13606 archetypes,

and HL7 FHIR resources.

Yes

openEHR and ISO13606

archetypes.

Semantic binging

Yes

Although it does not use any

standard clinical terminology,

it is possible to encode query

data elements in a standard

way, using a terminology,

such as SNOMED CT.

Yes

Can query SNOMED CT and

other reference

terminologies.

Yes

Support to standard

terminologies (section

“Ontology”, subsection

“term_bindings”).

Yes

By means of the

“Terminology_code” primitive

data type for terminology

code references.

Simple value set binding

(extensional subsets)

Yes

By means of storing a list of

terminology codes.

Yes

By means of storing a list of

terminology codes.

Yes

It is possible to bind a locally

defined term to multiple

concepts/refsets defined by

external reference

terminologies.

Yes

By means of a container type

of terminology codes (e.g.,

List, Set…).

Chapter 5. Consistency rules in archetypes

140

Conditional value set

binding (extensional

subsets)

Yes

By means of using if-then

rules with a list of

terminology codes.

Yes

By means of using if-then

rules with a list of

terminology codes.

Yes

By means of using when-

then rules.

Yes

By means of using the

“implies” logical operator.

Dependency value set

binding (extensional

subsets)

No No No No

Simple value set binding

(intensional subsets)
No No No No

Conditional value set

binding (intensional

subsets)

No No No No

Dependency value set

binding (intensional

subsets)

No No No No

Table 11. Comparison between general features of Arden Syntax, GELLO, GDL and EL

5.3 Review of existing languages

141

After the comparison analysis of the general features of the expression languages

presented in Table 11 (i.e., the Arden Syntax, GELLO, GDL and EL), it is the time to evaluate

its suitability to be the basis for the archetype constraints and rules language.

First, we divide them into two groups regarding the ability to natively reference archetype

elements through paths. The first group is arranged by the Arden Syntax and the GELLO

expression language. None of them are conceived to work with paths; concretely, the

Arden Syntax is not designed to lead with a particular standard patient data model but

patient data access is local to the institution (i.e., the curly braces problem). On the other

hand, GELLO can fully provide expression support for any properly defined view of the HL7

RIM (such as vMR), regardless of any particular specification of an object-oriented data

model. The second group is composed by GDL and EL. Both languages are conceived to

work with archetypes and hence to reference its elements via paths. Considering that the

Arden Syntax and GELLO would add unnecessary complexity to the expression language,

and that none of them is conceived to reference archetype elements trough paths, it makes

sense to focus on the second group, i.e., GDL and EL. The Arden Syntax and GELLO do not

offer advantages when working with medical terminologies in general and with intensional

subsets and value set bindings in particular. Moreover, GELLO incorporates most of Object

Constraint Language (OCL) [84] functionality with the exception of some unneeded

capabilities which have been removed, such as invariants -also for constraints. These

features are not required because GELLO is designed for writing queries, and not for

constraining models [83].

We have carried out a more detailed comparison between GDL and EL to find out which of

them best suits the purpose we want to specify consistency rules in archetypes.

5.3.1 Comparison between GDL and EL

Since GDL and EL are the most suitable languages for the definition of consistency rules in

archetypes, we have performed a comparison between them in terms of the necessary

features for defining consistency rules. The result is summarized in Table 12. We also show

some features that are not required at this point of the thesis but it might be studied and

proposed for the language in the future, such as the ability to deal with several archetypes

and to assign a priority to the constraints and rules. It should be noted that neither GDL

Chapter 5. Consistency rules in archetypes

142

nor EL can define intensional subsets of terminology concepts and hence the ability to

evaluate the membership of a given concept in such subsets.

 GDL19 EL20

Variables and data types

Use of variables

(type + name)

Required

No

It uses ‘gtXXXX’ as name, and

type is implicit. It is possible to

associate it to a text in the

term_definitions section.

Yes

Variables are declared with a

formal type.

Generic List type

(including

Terminology_code type)

Required

No Yes

Data access

Access to data using

paths

Required

Yes

By means of the

archetype_bindings section.

Yes

Bound variables include an

assignment to a path within an

assumed data context.

Access several

archetypes

Not required

Yes

By means of the

archetype_bindings section.

No

Expressions are defined in the

rules section inside an

archetype.

Rules

IF-THEN[-ELSE] rules

Required

Yes*

It uses WHEN-THEN, which is

equivalent to IF-THEN.

*WHEN-THEN-ELSE is not

supported.

Yes*

It uses IMPLIES, which is

equivalent to IF-THEN.

*IMPLIES-ELSE is not supported.

Name for rules

Required

No

It uses ‘gtXXXX’ as name. It is

possible to associate it to a

text in the term_definitions

section.

Yes

Criticality of rules

(error/warning)

Required

No No

19 GDL current specification document (May 2019)

https://specifications.openehr.org/releases/CDS/latest/GDL.html
20 EL current specification document (August 2021)

https://specifications.openehr.org/releases/BASE/Release-1.0.4/expression.html

5.3 Review of existing languages

143

Priority for rules

Not required

Yes

To ensure execution order of

the rules.

No

Logical quantifiers

Universal quantifier

(FOR_ALL)

Required

Yes Yes

Existential quantifier

(THERE_EXISTS)

Required

No Yes

Natural language descriptions

Description of elements

Required

Yes

In the term_definitions

section.

Yes

By using comments.

Terminologies

Use of terminologies

Required

Yes

In the term_binding

subsection.

Yes

By using the Terminology_code

data type.

ECL embedded

Required
No No

Inclusion operator

(for value set binding)

Required

No No

Table 12. Comparison of features between GDL and EL

One of the key points when analysing the suitability of GDL and EL to choose one of them

to be the basis of the consistency rules language in archetypes, is the ability to deal with

medical standard terminologies in general, and with intensional subsets and value set

bindings in particular. In both cases, it is possible to reference concepts from standard

terminologies, such as SNOMED CT or ICD10. In the case of GDL, it provides the

term_binding subsection (inside of the ontology section) that allows binding an element

from the guide to a standard concept. For example:

Chapter 5. Consistency rules in archetypes

144

term_definitions = <

 ["SNOMEDCT"] = (TERM_BINDING) <

 bindings = <

 ["gt0105"] = (BINDING) <

 codes = <[SNOMEDCT::389086002|Hypoxia|],...>

 uri = <"">

 >

 >

 >

>

On the other hand, EL allows creating variables of Terminology_code type. For example:

$hypoxia_concept: Terminology_code := [snomed_ct::389086002|Hypoxia|]

Moreover, in GDL it is possible to bind a locally defined term to multiple concepts/refsets

defined by external reference terminologies. This ability allows defining extensional lists of

concepts and hence simple extensional value set bindings. For example:

term_definitions = <

 ["SNOMEDCT"] = (TERM_BINDING) <

 bindings = <

 ["gt0106"] = (BINDING) <

 codes = <[SNOMEDCT::51440002|Right and left|],

 [SNOMEDCT::24028007|Right|],

 [SNOMEDCT::7771000|Left|],...>

 uri = <"">

 >

 >

 >

>

EL also allows creating extensional lists of terminology concepts and therefore simple

extensional value set bindings. In this case, EL makes us of container variables, such as lists

of terminology codes. For example:

5.3 Review of existing languages

145

$laterality: List<Terminology_code>

 := [snomed_ct::51440002|Right and left|,

 snomed_ct::24028007|Right|,

 snomed_ct::7771000|Left|]

On the other hand, neither GDL nor EL allow specifying intensional subsets. This means

that it is not possible to natively create any type of intensional value set binding, such as

simple value set binding, conditional value set binding or dependency value set binding.

Furthermore, neither GDL nor EL allow checking the membership of a given code into an

extensionally or intensionally defined subset (an inclusion operator is not specified).

Hence, in terms of support to terminologies, from our perspective and the requirements

for the semantic consistency constraints and rules language in archetypes, at this point

both GDL and EL offer the same possibilities. We need to further analyse the rest of the

components that we presented in Table 12.

Regarding the declaration of variables of a set of data types, GDL is not a typed language.

This means that it uses ‘gtXXXX’ (i.e., guideline term XXXX) as name, and type is implicit. It

is possible to associate it to a text in the term_definitions section. For instance:

term_definitions = <
 ["en"] = (TERM_DEFINITION) <
 terms = <
 ["gt0003"] = (TERM) <
 text = <"Diagnosis">
 >
 ["gt0014"] = (TERM) <
 text = <"Hypertension">
 >
 ["gt0102"] = (TERM) <
 text = <"Diabetes">
 >
 ["gt0105"] = (TERM) <
 text = <"Atrial fibrillation">
 >
 >
 >
>

On the other hand, EL is strong typed, which means that it allows the declaration (and

initialization) of typed variables (Integer, Real, String, Boolean, Terminology_code, etc.),

Chapter 5. Consistency rules in archetypes

146

including lists (List<Integer>, List<Real>, List<Boolean>, List<Terminology_code>, etc.). For

example:

$systolic: Integer := 118

$diastolic: Integer := 72

$normal_pressure: Boolean := $systolic < 120 AND $diastolic < 80

$normal_pressure_code: Terminology_code :=

[snomed_ct::2004005|Normal blood pressure (finding)|]

$normal_pressure_text: String := ‘Normal blood pressure’

In this case, EL suits better our purpose on creating consistency rules on archetypes since

the declaration and use of typed variables is important when specifying constrains and

rules over EHR data.

About referencing elements in the archetype by using paths (i.e., EHR data access), GDL

allows it by means of the archetype_bindings section. For example:

definition = (GUIDE_DEFINITION) <

 archetype_bindings = <

 [1] = (ARCHETYPE_BINDING) <

 archetype_id = <"openEHR-EHR-EVALUATION.problem-

diagnosis.v1">

 domain = <"EHR">

 elements = <

 ["gt0107"] = (ELEMENT_BINDING) <

 path = <"/data[at0001]/items[at0002.1]">

 >

 >

 >

 >

>

Note that it is necessary to set the name of the archetype (i.e., archetype_id = <"openEHR-

EHR-EVALUATION.problem-diagnosis.v1") whose elements are being referenced since GDL

allows referencing elements from multiple archetypes in order to create rules by

combining data from several pieces of EHR (note that at this point of our thesis, referencing

5.3 Review of existing languages

147

elements from multiple archetype is not required). In contrast to GDL, EL only allows

referencing elements from the host archetype of the constraints and rules (‘Rules’ section).

For example (we assume that the host archetype is openEHR-EHR-EVALUATION.problem-

diagnosis.v1):

$problem_diagnosis: String :=/data[at0001]/items[at0002.1]

Therefore, both GDL and EL allows accessing EHR data by means of paths to the archetype

elements.

Regarding the specification of IF-THEN rules, both GDL and EL languages support them. In

the case of GDL, it uses the syntax WHEN-THEN (inside of the rules section), which is

equivalent to IF-THEN. Nesting of WHEN-THEN (i.e., WHEN-THEN-ELSE WHEN-THEN) is not

supported. GDL does not allow the specification of a name for a rule directly. It uses

‘gtXXXX’ as name. It is possible to associate this name to a text in the term_definitions

section. GDL allows setting a priority of each rule to ensure execution order of the rules

(note that this point is not required for the consistency rules language in archetypes). For

example:

rules = <

 ["gt0018"] = (RULE) <

 when = <"$gt0108!=null",...>

 then = <"$gt0014=1|local::at0031|Present|",...>

 priority = (11)

 >

 ["gt0019"] = (RULE) <

 when = <"$gt0109!=null",...>

 then = <"$gt0010=1|local::at0034|Present|",...>

 priority = (9)

 >

 ["gt0026"] = (RULE) <

 then = <"$gt0016.magnitude=(((((

(gt0009.value+$gt0010.value)+$gt0011.value)+$gt0015.value)+$gt0012.va

lue)+$gt0013.value)+$gt0014.value)",...>

 priority = (1)

 >

Chapter 5. Consistency rules in archetypes

148

On the other hand, EL uses the syntax IMPLIES, which is equivalent to IF-THEN. Nesting of

IMPLIES rules by means of IMPLIES-ELSE IMPLIES is not supported. In contrast to GDL, EL

allows the specification of a name for a rule directly. For example:

Smoker_details_recorded: $is_smoker implies exists $smoking_details

Neither GDL nor EL supports the definition of a criticality of rules (i.e., error and warning).

This means that it is not possible to separate rules into two groups: those that will throw

an error if they are not satisfied by the EHR data, and those that will result in a warning if

they are not satisfied by the EHR data. This functionality should be supported by the

semantic constraint and rules language in archetypes since we need to analyse and

improve the consistency of EHR. Some of the EHR data will be considered as critical data

and rules involving them should be satisfied, while other type of data will be considered as

secondary data and rules involving them will not result in an inconsistent EHR if they are

not satisfied.

Regarding logical quantifiers, GDL supports the universal quantifier FOR_ALL, while EL

allows using both FOR_ALL universal quantifier and THERE_EXISTS existential quantifier.

For example:

there_exists v : container_var | <Boolean expression mentioning v>

for_all v : container_var | <Boolean expression mentioning v>

Finally, both GDL and EL allow describing the elements of the specified constraints and

rules by means of using natural language. GDL allows it in the term_definitions section

(inside of the ontology section) using the description field. For example:

ontology = (GUIDE_ONTOLOGY) <

 term_definitions = <

 ["en"] = (TERM_DEFINITION) <

 terms = <["gt0003"] = (TERM) <

 text = <"Generic name">

5.4 Justification of choosing EL as basis

149

 description = <"The generic name of the drug which

is an alternative name to the name of medication">

 >

 ["gt0004"] = (TERM) <

 text = <"Date (time) of first administration">

 description = <"The date and time (if required) the

medication is/was first administered">

 >

 ["gt0005"] = (TERM) <

 text = <"Date (time) of last administration">

 description = <"The date and time (if required) the

medication is to be administered for the last time">

 >

On the other hand, EL allows describing elements of constraints and rules by using

comments. For example:

$systolic: Integer := 118 -- systolic blood pressure measured

$diastolic: Integer := 72 -- diastolic blood pressure measured

5.4 JUSTIFICATION OF CHOOSING EL AS BASIS

Both GDL and EL approximate the purpose of the consistency rules language in archetypes,

each of them with its own particularities. None of them fit 100% our purposes, so it

becomes mandatory, after taking one of them as a basis to develop the language, to extend

it with new requirements. Considering the features presented in Table 12 and analysed

above, we have decided to choose EL as a basis for the development of the language for

representing semantic constraint and rules in archetypes. Basically, our decision is

motivated as follows:

- The purpose of the GDL language is to formally represent clinical guidelines, while

one of the purposes of EL is to specify invariants as constraints in the rules section

of archetypes. In this sense, although both languages model clinical knowledge

formally, EL fits much better our purpose.

Chapter 5. Consistency rules in archetypes

150

- EL allows the declaration of variables of a series of data types, such as Integer, Real,

Boolean, String, Data, Duration, Terminology_code, etc. El also allows the

definition of container types, such as list, e.g., List<Integer>, List<String>,

List<Terminology_code>, etc.

- EL allows naming the rules natively.

- EL supports both FOR_ALL logical universal quantifier and THERE_EXISTS logical

existential quantifier.

- EL does not need to explicitly specify the name of the archetype whose elements

are being referenced via paths to define the constraints and rules since they are

defined in the rules section of such archetype.

Figure 63 shows the way that the presented languages for the representation of clinical

knowledge have been selected to choose one of them to be the basis for the semantic

constraint and rules language in archetypes. The scheme starts with two groups. First, Task

Network Models (TNMs) and second, Expression Languages. This is followed by a screening

based on the particularities of each language and finally EL is chosen as the language that

best fits to serve as a basis.

Figure 63. Selection tree of the analysed medical logic languages

5.5 Extensions to EL

151

5.5 EXTENSIONS TO EL

As explained before, we need to extend EL with extra constructs in order to cover the full

fledge of consistency rules and simple, conditional and dependency intensional value set

bindings. The next extensions need to be included into the EL language:

- Although EL supports IMPLIES rules (i.e., IF-THEN rules), the language should allow

nesting rules via the ELSE clause. Hence, we need to extend EL to support IF-THEN-

ELSE nested rules.

- EL does not support the specification of a criticality of rules. Therefore, we need

to extend EL to support it.

- Definition of contexts to group related expressions is allowed by using paths and

conditions on them.

- The key point of the semantic constraint and rules language in archetypes is the

ability to deal with simple, conditional and dependency intensional value set

binding. For this purpose, we need to meet four requirements:

o Ability to reference terminological concepts.

o Ability to represent the clinical knowledge by means of IF-THEN-ELSE rules,

which is a required extension to EL as mentioned above.

o Ability to specify subsets of clinical concepts intensionally. For this

purpose, one option is to embed the SNOMED CT ECL into EL so that it is

possible to define intensional subsets of SNOMED CT concepts inside of

EL. Therefore, we need to extend EL by embedding the ECL language and

by creating the Snomed_ec data type (i.e., SNOMED CT Expression

Constraint data type) to allow the definition of variables able to store ECs.

o Finally, ability to check the membership of a given clinical concept in an

intensional subset defined by means of an EC. For this purpose, we need

to extend EL with an inclusion operator.

In the next chapter we specify a concrete syntax for the expression language that covers

the requirements that we have presented in this chapter along with a translation into

Schematron. Additionally, three real uses cases are presented in order to validate the

language.

Chapter 5. Consistency rules in archetypes

152

6.1 Overview

153

CHAPTER 6. THE EHRULES LANGUAGE

6.1 OVERVIEW

The EHRules language, which is specified here, takes the openEHR Expression Language

(EL) [86] as its core part, and add some extensions that are needed in our specific scenario

(section 5.5). EHRules is provided as a way of authoring expressions and rules in textual

form. This approach is the same as with any programming language, where the usual form

for learning and programming is the abstract language form, while the computational form

is an abstract syntax tree (AST) or similar. The core part of EHRules include the following

key features taken from EL:

- variable declarations, assignments and expressions

- strong typing

- standard logical operators including universal and existential quantifier, as well as

user-defined operators

- standard arithmetic and relational comparison operators, enabling the use of

numeric

- parentheses for overriding operator precedence

- functions, including built-ins like current_date, standard functions such as max()

defined on primitive types

As aforementioned, since EHRules takes as basis the EL language, part of this EHRules

specification is directly taken from or based in the EL specification.

EHRules is based on a limited first-order predicate logic language with the addition of

arithmetic and relational operators to enable the use of numeric elements. Expressions

may contain variable references, value references and functions. Some elements of

Chapter 6. The EHRules Language

154

EHRules are similar to the Object Constraint Language (OCL). Due to the need to

accommodate the use of EHRules in XML instances, especially by using paths, it is also

inspired in the XML Path Language (XPath). However, the syntax is designed to be

comprehensible to developers familiar with modern object-oriented and functional

languages such as Java, C# or Python.

6.2 EXECUTION MODEL

The execution model of EHRules consists on evaluating the expressions, which are in form

of text, against a data context. The data context is what determines whether an expression

is evaluated to true or false. The data context typically consists on XML data instances

conforming to EHR standards. Specifically, such data context corresponds to openEHR and

ISO13606 archetype XML data instances. The text may contain symbols representing

internal variables and bound variables. Bound variables map to entities in the data context

by using paths.

6.3 LANGUAGE SPECIFICATION

6.3.1 General structure

In the current version of EHRules, expressions may be declarations and assignments,

assertions (arithmetic, relational and boolean), and rules. In our context, an assertion can

be understood as a rule whose antecedent is set to true. Expressions contain symbols that

represent typed variables, texts, numbers, operators and functions. Variables are either

bound or local, and are defined putting $ before names, e.g., $heart_rate. A bound variable

is mapped to an element in the data context by using its path. This is achieved by

statements that assign a path in the data context to a symbolic variable. In this sense,

assignment means associating a path that references a field in the data context with a

named and typed variable.

6.3 Language specification

155

6.3.2 Syntax style

In the syntax style 'snake_case', each space is replaced by an underscore character (i.e.,

‘_’) and the first letter of each word is written in lowercase. There exists also the

'CamelCase' style. A study found that readers can recognize ‘snake_case’ values more

quickly than camel case [87]. Either may be used in real applications. The syntax style used

in the EL specification is the ‘snake_case’, in common with other openEHR specifications.

On the other hand, the syntax style used in this specification and examples written in

EHRules is also the ‘snake_case’ one.

6.3.3 Typing

As EL, EHRules is fully typed. The type set of EHRules is a subset of that used in other

openEHR components, and therefore supports some of the basic types described in the

openEHR Foundation Types Specification plus an extension type for SNOMED CT ECs:

- Primitive types: Boolean, Integer, Real, String, Date, Time, Date_time, Duration,

and Terminology_code

- Subset type: Snomed_ec, i.e., SNOMED CT Expression Constraint

- Container type: List<T>, i.e., a list of any primitive type T, or the type Snomed_ec

In Table 13, Table 14, and Table 15 we present the data types, operators and functions that

are supported by the EHRules language, as well as an associated description and some

examples.

6.3.3.1 Primitive data types

Data type Description

Integer Integer value

Examples 2, 3, -5, 48, -100

Real Real value

Examples -5.34, 0.489, 23.343, -500.98

String String value

Examples ‘Hello world!’, ‘This is a String’

Chapter 6. The EHRules Language

156

Boolean Boolean value

Examples true, false

Date Date value

Examples [2006-11-22], [1980-10-30]

Time Time value

Examples [08:30:00], [22:55:59]

Date_time Date and time value

Examples [2006-11-22 08:30:00], [1980-10-30 18:57:01]

Duration Duration value

Examples [23Y], [10M 10m], [10Y 10M 10D 10h 10m 10s]

Terminology_code Terminology code

Examples [snomed_ct::703118005|Feminine gender (finding)|]

Table 13. EHRules primitive data types

6.3.3.2 Subset data type

Data type Description

Snomed_ec SNOMED CT Expression Constraint

Examples

[snomed_ct_ec::<<95660002 |Thunderclap headache|]

[snomed_ct_ec::<<417746004 |Traumatic injury| OR

<<105612003 |Injury of internal organ|]

[snomed_ct_ec::< 404684003 |Clinical finding (finding)|:

363698007 |Finding site (attribute)| = << 39057004

|Pulmonary valve|]

Table 14. EHRules subset data type

6.3 Language specification

157

6.3.3.3 Container type

Data type Description

List<T> List of any primitive type T, or the type Snomed_ec

Examples

List<Integer> {5, -23, 44, 2}, {-500, 1024}

List<Real> {3.25}, {99.89, 722.0, -125.115}

List<String> {‘Hello’, ‘World’}, {‘This’, ‘is’, ‘a’,

‘string’}

List<Terminology_code> {[snomed_ct::66264000|Todd's paresis|],

[snomed_ct::76571007|Septic shock|],

[snomed_ct:: 439127006|Thrombosis|]}

Table 15. EHRules container data type

6.3.4 Variable declaration and assignation

In the current version of EHRules it is not allowed only variable declaration neither only

variable assignation, but both declaration and assignation should be defined in the same

sentence. Variables are declared with a formal type. Bound variables include an assignment

to a path within an assumed data context (i.e., an archetype instance). Local variable

declarations include an assignment to a value-returning expression.

An assignment to a variable is expressed using the “:=” operator. An assignment is made in

a declaration in the same way as in many programming languages. The right hand side of

an assignment is any value-returning expression. It is important to note that variables are

referenced within assignments and expressions using the same syntax, i.e., $var_name.

Some examples of variable declaration and assignation of Terminology_code and

Snomed_ec data types are illustrated in Table 16 and Table 17.

Chapter 6. The EHRules Language

158

Terminology_code

Assigns a path

$diagnosis: Terminology_code := /data[at0001]/items[at0002.1]/value;

Assigns a literal

$gender: Terminology_code := [snomed_ct::703118005|Feminine gender (finding)|];

Assigns a list of literals, expressions and paths

$list_term_code: List<Terminology_code> := {[snomed_ct::703118005|Feminine

gender (finding)|], /data[at0001]/items[at0002.1]/value, $diagnosis};

Table 16. Examples of declaration of Terminology_code variables and assignation of values

Snomed_ec

Assigns a literal

$hemorrhage: Snomed_ec := [snomed_ct_ec::<<50960005|Hemorrhage|];

Assigns an expression

$diagnosis: Snomed_ec := $hemorrhage;

Assigns a list of literals, expressions and paths

$list_snomed_ec: List<Snomed_ec> := {[snomed_ct_ec::<<50960005|Hemorrhage|],

$diagnosis, $hemorrhage, value/value}

Table 17. Examples of declaration of Snomed_ec variables and assignation of values

Variables that are bound to entities in the archetype data instance works differently from

local variables, since their availability depends on the existence of the entities referenced

by its path. There is no guarantee that the referenced value is available. In the case that

bound variables do not exist in the data context, they cannot be evaluated and therefore

constraints and rules making use of such variables will throw an error in execution time.

The approach used for EHRules, as in EL, is to allow bound variables to be used freely, as

6.3 Language specification

159

for local variables, but in order to impose more control, EHRules provides two path

functions that can be used within an expression to ensure that one or more variables can

be populated before proceeding with logic that depends on them. The two functions (i.e.,

existsPath() and emptyPath()) are presented later in this specification.

6.3.5 Expressions

As in EL, Expressions constitute the main part of the EHRules language. They consist of a

familiar typed, operator-based syntax common to many programming languages and

logics. Formally, an expression is one of the following:

- Terminal entities

o Literal

o Variable

o Function

o Path

- Non-terminal entities

o Operator

The use of literals, variables, constants and function calls is the same as in common

languages. All expressions end with a semicolon (“;”) and it is possible to assign a

descriptive name to each of them. Inline comments are allowed by preceding the text with

double slash (i.e., //text) and also multi-line comments by enclosing the text between slash

and asterisk (i.e., /* text */) As an example:

// expression containing a variable and function call

[‘Expression 1’]

currentDate() - $date_of_birth;

/*

 expression containing:

- Two variables

- One function call

*/

Chapter 6. The EHRules Language

160

[‘Expression 2’]

$date_time_of_initial_onset < (currentDateTime() - $threshold_time);

Note that the EHRules syntax is presented formally in ABNF (Augmented Backus–Naur

form) in Annex 2, along with a description of each token and production rule.

6.3.6 Paths, contexts and conditions

Regarding the use of paths, in EHRules it is mandatory to set contexts in order to define

groups of expressions that are related. A context is defined by means of a path. For

example:

/* note that height, weight and temperature are not a variables but child elements of the

path */

context: ENTRY/items[at0014]/exploration;

height > 120;

weight < 100;

temperature < 37;

/* or equivalently */

context: /;

ENTRY/items[at0014]/exploration/height > 120;

ENTRY/items[at0014]/exploration/weight < 100;

ENTRY/items[at0014]/exploration/temperature < 37;

/* or equivalently */

context: /ENTRY;

items[at0014]/exploration/height > 120;

items[at0014]/exploration/weight < 100;

items[at0014]/exploration/temperature < 37;

6.3 Language specification

161

The definition of contexts can be carried out based on conditions on them. The allowed

syntax and expressions for such conditions is defined in the ABNF EHRules specification. As

an example:

context: ENTRY/items[at0011]/exploration;

condition: count(children()) > 3; // Condition on number of child elements

context: ENTRY/items[at0011]/exploration;

count(temperature/children()) >= 2; // Condition on number of child elements

context: ENTRY/items[at0011]/exploration;

condition: height > 185; // Condition on a child element value

context: ENTRY/items[at0011]/exploration/weight;

condition: . < 100; // Condition on the element referenced by the path

/* which is equivalent to */

context: ENTRY/items[at0011]/exploration;

condition: weight < 100; // Condition on a child element value

Finally, it is important to note that, as in the openEHR EL language, in EHRules, raw paths

may be used directly as variables. This is primarily to allow UI expression building tools that

work based on the path map of a data context (e.g., an openEHR archetype) to generate

expressions directly using paths rather than introducing variables.

6.3.7 Functions

Functions are considered terminal entities in the EHRules language, and they are of a built-

in type. For example:

$date_of_birth: Date := /items[at0002]/items[at0003]/value;

$current_date: Date := currentDate();

$is_correct_age: Boolean := $current_date > $date_of_birth;

Chapter 6. The EHRules Language

162

Or equivalently in two lines:

$date_of_birth: Date := /items[at0002]/items[at0003]/value;

$is_correct_age: Boolean := currentDate() > $date_of_birth;

Or just in one line:

$is_correct_age: Boolean := currentDate() > /items[at0002]/items[at0003]/value;

The EHRules built-in functions are presented in Table 18 along with examples.

Function Description

Path functions

existsPath Returns True if a path exists, otherwise it returns False

Example existsPath(/items[at0002]/items[at0003]/value);

Result true (we assume that the path exists)

emptyPath Returns True if a path is empty, otherwise it returns False

Example emptyPath(/items[at0002]/items[at0003]/value);

Result false (we assume that the path is not empty)

Real function

round Rounds a real number to a specified number of positions

Examples round(233.4567, 3); round(1999.88, 1);

Results 233.457 1999.9

String functions

length Returns the number of characters in a string

Examples length(‘Hello’); length(value/value); length($var_str);

Results 5 5 (we assume ‘Hello’) 5 (we assume ‘Hello’)

trim Returns a string with leading and trailing whitespace removed

6.3 Language specification

163

Examples trim(‘ Hello ’); trim(value/value); trim($var_str);

Results ‘Hello’ ‘Hello’ (we assume it) ’Hello’ (we assume it)

concat (+) Returns the concatenation of the specified strings

Example ‘Hello ’ + ‘world’ + ‘!’ + $var_str + value/value;

Result ‘Hello world! Hello Hello’ (we assume the last two ‘Hello’)

toUpperCase Converts a string to upper case

Examples toUpperCase(‘Hello’); toUpperCase($var_str);

Results HELLO HELLO (we assume ‘Hello’)

toLowerCase Converts a string to lower case

Examples toLowerCase(‘Hello’); toLowerCase(value/value);

Results hello hello (we assume ‘Hello’)

Date and time functions

currentDate Returns the current date

How to use it currentDate();

Result [2021-09-10] (we assume it)

currentTime Returns the current time

How to use it currentTime();

Result [21:36:00] (we assume it)

currentDateTime Returns the current date and time

How to use it currentDateTime();

Result [2021-09-10 21:36:00] (we assume it)

Aggregate functions*

*We assume that both $var_list and list/values references the list {-5, -1, 5, 20, 80, 100, 2348}

count

Returns the number of values in a specified variable containing a

list or path that references a list. It is expected to support literal

lists in future versions of EHRules.

Chapter 6. The EHRules Language

164

Examples count($var_list); count(list/values);

Results 7 7

avg

Returns the sum of the values in a specified variable containing a

list or path that references a list divided by the number of values.

It is expected to support literal lists in future versions of EHRules.

Examples avg($var_list); avg(list/values);

Results 363.85 363.85

min

Returns the lowest value in a specified variable containing a list or

path that references a list. It is expected to support literal lists in

future versions of EHRules.

Examples min($var_list); min(list/values);

Results -5 -5

max

Returns the highest value in a specified variable containing a list

or path that references a list. It is expected to support literal lists

in future versions of EHRules.

Examples max($var_list); max(list/values);

Results 2348 2348

sum

Returns the sum of the values of a specified variable containing a

list or path that references a list. It is expected to support literal

lists in future versions of EHRules.

Examples sum($var_list); sum(list/values);

Results 2547 2547

Table 18. Built-in functions supported by EHRules

6.3 Language specification

165

6.3.8 Operators

Expressions can include assignation, arithmetic, relational and logical operators, plus the

existential and universal quantifiers. The full operator set is shown below in Table 19, along

with their symbolic representation, a textual description, and some examples.

Operator Description

Assignation operator

:= Assigns a value to a specified variable name in a declaration

Examples $var: Integer := -1024; $var: List<Real> := {1.4, -2.0, 98.15};

Arithmetic operators
Numeric result – descending precedence order

The use of parentheses to change precedence is allowed

^ Expontentiation

* Multiplication

/ Division

% Modulo division

+ Addition

- Subtraction

Example 5 / (-10.5 + $var) + ((value/value % length(‘Hello’)) ^ avg($list))

Relational operators
Boolean result – Equal precedence

= Equality relation between numerical

!= or <> Inequality relation between numerical

< Less than relation between numerical

<= Less than or equal relation between numerical

> Greater than relation between numerical

>= Greater than or equal relation between numerical

Examples 3 + 2 < 55; $num_var < value/value; 23 - 5 >= $num_var;

Chapter 6. The EHRules Language

166

Logical operators

Boolean result – descending precedence order

The use of parentheses to change precedence is allowed

NOT Logical negation

AND Logical conjunction

OR Logical disjunction

Example NOT (2 < 5 AND $num_var < value/value) OR 235 >= $num_var;

Logical quantifiers

Boolean result

FOR_ALL Universal quantifier

Example FOR_ALL $i IN ENTRY/items/value/value : $i>=37 AND $i<=41;

THERE_EXISTS Existential quantifier

Example THERE_EXISTS $i IN ENTRY/items/value/value : $i<37 OR $i>41;

Inclusion operator

Boolean result

IN Inclusion of a terminological code in a subset of codes

Example $diagnosis IN [snomed_ct_ec::<<56265001 |Heart disease|];

Table 19. Operators supported by EHRules

6.3.9 Rules

An IF-THEN-ELSE rule is an expression that evaluates a condition and depending on the

resulting truth value (i.e., true or false), the result is one of two possible expressions. Only

the expression associated with the THEN clause is mandatory. EHRules supports both IF-

THEN and IF-THEN-ELSE rules, and also nested IF-THEN-ELSE rules (see Figure 64).

6.3 Language specification

167

Figure 64. IF-THEN (left), IF-THEN-ELSE (center), and nested IF-THEN-ELSE (right) rules diagrams

In Table 20 we show the EHRules syntax of the presented rules and some examples.

IF-THEN

Syntax

- IF boolean_expression1 THEN boolean_expression2;

- IF boolean_expression1 THEN {boolean_expression2;

boolean_expression3; boolean_expressionN;}

Examples

IF $temperature > 37

THEN $fever = true;

IF temperature/value > 37

THEN $fever = true;

IF temperature/value

IN $temperatures

THEN $fever = true;

IF $temperature > 37

THEN {$fever = true;

$medication = true;

$discharge = false;}

IF-THEN-ELSE

Syntax

- IF boolean_expression1 THEN boolean_expression2; ELSE

boolean_expression3;

- IF boolean_expression1 THEN {boolean_expression2;

boolean_expression3; boolean_expression4;} ELSE

{boolean_expression5; boolean_expression6;

boolean_expressionN;}

Examples IF $temperature > 37 IF temperature/value > 37

Chapter 6. The EHRules Language

168

THEN $fever = true;

ELSE $fever = false;

THEN $fever = true;

ELSE $fever = false;

IF temperature/value

IN $temperatures

THEN $fever = true;

ELSE $fever = false;

IF $temperature > 37

THEN {$fever = true;

$medication = true;

$discharge = false;}

ELSE {$fever = false;

$medication = false;

$discharge = true;}

IF-THEN-ELSE IF-THEN-ELSE

Syntax

- IF boolean_expression1 THEN boolean_expression2; ELSE IF

boolean_expression3; THEN boolean_expression4; ELSE

boolean_expression5;

- IF boolean_expression1 THEN {boolean_expression2;

boolean_expression3; boolean_expression4;} ELSE IF

boolean_expression5; THEN {boolean_expression6;

boolean_expression7; boolean_expression8;} ELSE

{boolean_expression9; boolean_expression10;

boolean_expressionN;}

Examples

IF $temperature > 39

THEN $high_fever = true;

ELSE IF $temperature > 37

THEN $fever = true;

ELSE $fever = false;

IF temperature/value > 39

THEN $high_fever = true;

ELSE IF temperature/value > 37

THEN $fever = true;

ELSE $fever = false;

IF temperature/value

IN $high_temperatures

THEN $high_fever = true;

ELSE IF temperature/value

IN $temperatures

THEN $fever = true;

ELSE $fever = false;

IF $temperature > 39

THEN {$high_fever = true;

$fever = true;

$double_medication = true;

$medication = true;

$discharge = false;}

ELSE IF $temperature > 37

THEN {$high_fever = false;

$fever = true;

$double_medication = false;

$medication = true;

$discharge = false;}

6.3 Language specification

169

ELSE {$high_fever = false;

$fever = false;

$double_medication = false;

$medication = false;

$discharge = true;}

Table 20. IF-THEN, IF-THEN-ELSE and nested IF-THEN-ELSE rules syntax and examples

6.3.10 Value set bindings

A key point of the EHRules language is the possibility to specify value set bindings between

archetypes and SNOMED CT subsets. As stated in section 2.5, while semantic binding (also

known as model meaning binding) is used to define the meaning of an information model

artefact using a concept or expression from the terminology, the purpose of value set

binding is to record the set of possible values which can populate a given coded data

element or attribute in the information model. There exist four types of value set binding:

- Simple: the data element is associated with a single extensional or intensional

value set.

- Conditional: the data element is associated with a single extensional or intensional

value set depending on a condition.

- Dependency: the data element is associated with a single extensional or

intensional value set depending on the value of another data element.

- Compositional: the data element is associated with a single extensional or

intensional value set composed by another data elements.

The current version of EHRules is intended to allow the definition of simple, conditional

and dependency value set bindings. Additionally, EHRules supports a fourth type of value

set binding, which is a combination between conditional and dependency value set

binding. As explained in section 5.5, to meet these requirements EHRules supports the

following abilities:

- Reference to terminological concepts by means of the Terminology_code data

type, which is already a requirement of the EL language.

Chapter 6. The EHRules Language

170

- Representation of the clinical knowledge by means of IF-THEN-ELSE rules, which is

a required extension to EL.

- Specification of subsets of clinical concepts intensionally. For this purpose, EHRules

allows embedding the SNOMED CT ECL so that it is possible to define intensional

subsets of SNOMED CT concepts by means of the Snomed_ec data type (i.e.,

SNOMED CT Expression Constraint data type).

- Membership of a given clinical concept in an intensional subset defined by means

of an EC. For this purpose, EHRules supports an inclusion operator (i.e., IN).

Table 21 shows some examples of simple, conditional, dependency and conditional plus

dependency intensional value set bindings.

Simple intensional value set binding

Syntax

- concept IN subset;

where concept can be a literal, a variable containing a

concept, or a path referencing a concept; and subset can be a

literal, a variable containing a subset, or a path referencing a

subset

Examples

[snomed_ct::417532002 |Allergy to fish (finding)|] IN

[snomed_ct_ec::<< 420134006 |Propensity to adverse reaction

(finding)|];

[snomed_ct::417532002 |Allergy to fish (finding)|] IN

$allergies_subset;

$allergy_to_fish IN $allergies_subset;

ENTRY/items[at0007]/value/concept IN $allergies_subset;

Conditional intensional value set binding

Syntax

- IF boolean_expression1 THEN concept IN subset1;

ELSE IF boolean_expression2 THEN concept IN subset2;

ELSE concept IN subset3;

where only the first IF-THEN is mandatory

6.3 Language specification

171

Examples

IF $gender = [snomed_ct::248153007 |Male (finding)|]

THEN $procedure IN $male_procedures;

IF $gender = [snomed_ct::248153007 |Male (finding)|]

THEN $procedure IN $male_procedures;

ELSE IF $gender = [snomed_ct::248152002 |Female (finding)|]

THEN $procedure IN $female_procedures;

ELSE $procedure IN $all_procedures;

IF ENTRY/items[at0003]/value/age > 75 AND

ENTRY/items[at0004]/value/department =

[snomed_ct:: 309941000 |Rheumatology department|]

THEN ENTRY/items[at0004]/value/diagnosis IN

$rheumatic_diseases_in_geriatrics;

IF $procedure_priority = [snomed_ct::25876001|Emergency (qualifier

value)|] AND

$procedure_method IN snomed_ct_ec::<< 129284003 |Surgical

action (qualifier value)|]

THEN $procedure IN [snomed_ct_ec::<< 73994005 |Emergency

operation (procedure)|];

IF $gender = [snomed_ct::248152002 |Female (finding)|] AND

$procedure_method = [snomed_ct::312250003|Magnetic resonance

imaging - action (qualifier value)|] AND

$procedure_site_direct IN [snomed_ct_ec::<<43174007|Gonadal

structure (body structure)|]

THEN $procedure IN [snomed_ct_ec::<<241628003|Magnetic

resonance imaging of ovary (procedure)|];

Dependency intensional value set binding

Syntax

- concept IN subset;

where concept can be represented by a literal, a variable

containing a concept, or a path referencing a concept; and

Chapter 6. The EHRules Language

172

subset can be represented by either a literal that references

an element of the archetype (i.e., a concept or a post-

coordinated expression) via its path or a variable containing its

path, or a variable containing such literal

Examples

$surgical_procedure: Terminology_code :=

ENTRY/items[at0009]/value/concept;

[snomed_ct::80146002|Excision of appendix (procedure)|] IN

[snomed_ct_ec::<[[$surgical_procedure]]];

[snomed_ct::80146002|Excision of appendix (procedure)|] IN

[snomed_ct_ec::<[[ENTRY/items[at0009]/value/concept]]];

$surgical_procedure_in_cardiovascular_system: Terminology_code :=

ENTRY/items[at0010]/value/concept;

[snomed_ct::425785006|Repair of tetralogy of Fallot with absent

pulmonary valve (procedure)|] IN

[snomed_ct_ec::<[[$surgical_procedure_in_cardiovascular_system]]];

[snomed_ct::425785006|Repair of tetralogy of Fallot with absent

pulmonary valve (procedure)|] IN

[snomed_ct_ec::<[[ENTRY/items[at0010]/value/concept]]];

Conditional plus dependency intensional value set binding

Syntax

- IF boolean_expression1 THEN concept IN subset1;

o ELSE IF boolean_expression2 THEN concept IN

subset2;

o ELSE concept IN subset3;

- where only the first IF-THEN is mandatory and concept IN

subset expressions use the same syntax as that presented in

dependency intensional value set binding

Examples
$surgical_procedure: Terminology_code :=

ENTRY/items[at0009]/value/concept;

6.3 Language specification

173

IF NOT emptyPath(ENTRY/items[at0009]/value/concept)

THEN [snomed_ct::80146002|Excision of appendix (procedure)|] IN

[snomed_ct_ec::<[[$surgical_procedure]]];

IF NOT emptyPath(ENTRY/items[at0009]/value/concept)

THEN [snomed_ct::80146002|Excision of appendix (procedure)|] IN

[snomed_ct_ec::<[[ENTRY/items[at0009]/value/concept]]];

$surgical_procedure_in_cardiovascular_system: Terminology_code :=

ENTRY/items[at0010]/value/concept;

IF NOT emptyPath(ENTRY/items[at0010]/value/concept)

THEN [snomed_ct::425785006|Repair of tetralogy of Fallot with

absent pulmonary valve (procedure)|] IN

[snomed_ct_ec::<[[$surgical_procedure_in_cardiovascular_system]]];

IF NOT emptyPath(ENTRY/items[at0010]/value/concept)

THEN [snomed_ct::425785006|Repair of tetralogy of Fallot with

absent pulmonary valve (procedure)|] IN

[snomed_ct_ec::<[[ENTRY/items[at0010]/value/concept]]];

Table 21. Syntax and examples of simple, conditional, dependency and conditional plus dependency
intensional value set bindings

ECL allows not only the specification of intensional subsets but also simulated extensional

subsets by means of concatenating disjunctions of concepts (i.e., concept1 OR concept2

OR… conceptN). Therefore, EHRules allows both specification of intensional and

extensional value set bindings. Below is an example of conditional extensional value set

binding:

$laterality: Terminology_code := ENTRY/items[at0023]/value/laterality;

IF NOT emptyPath($laterality) THEN

$laterality IN [snomed_ct_ec::24028007|Right (qualifier value)| OR 7771000|Left

(qualifier value)| OR 51440002|Right and left (qualifier value)|];

Chapter 6. The EHRules Language

174

Additionally, ECL allows referencing the elements of extensional refsets, such as the

Spanish SNS Refset for SARS-CoV-2, or the SNOMED CT General Dentistry Diagnostic Refset.

Therefore, EHRules also allows the specification of extensional value set bindings by

referencing external refsets. For example (note that the ‘^’ ECL operator references the

members of a refset):

$procedure IN [snomed_ct_ec::^900050181000122100|SNS SARS-CoV-2 Refset|];

6.4 USES CASES

EHRules has been tested in three real use cases: a formal definition of practice guidelines

for acute stroke care [88], the FSIII Danish standard for the specification of guidelines for

documenting healthcare observations and interventions in home care [89,90], and a

requisition for radiology procedures from the North Denmark Region clinical information

system. The objective of this test is to evaluate to what extent EHRules is able to represent

formally by means of expressions, including rules and value set bindings, the medical

knowledge contained in those uses cases.

6.4.1 Guidelines for acute stroke care

In [88], Nadim Anani, Rong Chen et. al. extracted rules from the European clinical practice

guidelines as well as from treatment contraindications for acute stroke care and

represented them using GDL. They successfully represented clinical rules about 14 out of

19 contraindications for thrombolysis and other aspects of acute stroke care with 80 GDL

rules. The rules were based on 14 reused international openEHR archetypes (one of which

was modified) and 2 newly created archetypes. The archetypes were based on the

openEHR reference information model (openEHR RM) and were of the CARE_ENTRY type,

i.e., OBSERVATIONs, EVALUATIONs, INSTRUCTIONs and ACTIONs. They concluded that

shareable guideline knowledge for use in automated retrospective checking of guideline

compliance may be achievable using GDL.

6.4 Uses cases

175

Our purpose is to represent the contraindications for thrombolysis by using the EHRules

language. Table 22 shows the 19 contraindications extracted from [88] expressed in natural

language. It also shows whether they have been represented in either GDL and EHRules.

ID Thrombolysis contraindications GDL EHRules

1 Stroke onset more than 4.5 hours ago Yes Yes

2

Symptom presentation suggesting another aetiology

than that of stroke and/or the patient recovered

within 30 minutes

No No

3 Unclear stroke symptoms No No

4
National Institutes of Health Stroke Scale (NIHSS)

score higher than 25
Yes Yes

5 CT scan shows haemorrhage Yes Yes

6
CT scan shows major stroke that covers more than

30% of the middle cerebral artery
No No

7
Blood glucose is lower than 3 mmol/litre or higher

than 22 mmol/litre
Yes Yes

8

Blood pressure is higher than 185/110 mmHg despite

two attempts of intravenous

beta-blocking bolus treatment (approximately 20 mg

of Labetalol per bolus)

No No

9
History of cerebral haemorrhage or intracranial

bleeding
Yes Yes

10
Patient describes an explosive headache (that

resembles a subarachnoid haemorrhage)
Yes Yes

11
Ongoing or recent severe haemorrhage (extracranial

or intracranial)
No No

Chapter 6. The EHRules Language

176

12 Likely postictal paresis Yes Yes

13 Suspected septic shock Yes Yes

14 Bleeding disorder or anticoagulation treatment Yes Yes

15

One of the following: infectious endocarditis,

pericarditis, ventricular thrombosis, atrial

septal aneurysm, severe heart failure, pancreatitis,

severe liver damage

Yes Yes

16
One of the following in the last week: lumbar

puncture, central venous catheter
Yes Yes

17

One of the following in the last month:

operation/biopsy from parenchymatous organs,

trauma with internal injuries, duodenal ulcer,

bleeding from the urinary tract

Yes Yes

18

One of the following in the last three months: stroke,

head trauma, operation in the central nervous

system, definite gastrointestinal bleeding

Yes Yes

19
Pregnancy, childbirth in the last month, breastfeeding

(relative contraindications)
Yes Yes

Table 22. 19 thrombolysis contraindications

In view of the results presented in Table 22, there is a complete matching between what

contraindications can be represented using either GDL and EHRules. As stated in [88], the

five rules that have not been represented neither in GDL nor in EHRules (i.e., 2, 3, 6, 8, and

11) constitute a challenge due to some unspecific expressions such as ‘unclear’ and ‘major’,

as well as missing temporal aspects such as the time interval between the ‘two attempts

of intravenous beta-blocking bolus treatment’ or in ‘recent severe haemorrhage’. A higher

level of detail in those rules should allow their representation in both GDL and EHRules.

6.4 Uses cases

177

It is important to note that the GDL language allows referencing more than one archetype

in each rule. In contrast to EHRules, whose expressions and rules are intended to be

incorporated into the ‘Rules’ section of one archetype to improve the consistency of such

archetype, the GDL rules are defined into a separated file and therefore rules can access

several archetypes. However, although three of the contraindications presented in Table

22 need to access two different archetypes (14, 17 and 18), we have been able to separate

each of them into two expressions (IDa and IDb) since our purpose at this point is to

evaluate the expressiveness of EHRules using real use cases containing clinical knowledge.

The archetypes used for the representations and the contraindications involved are

showed in Table 23.

ID openEHR archetype

1, 9, 10, 12, 13, 14a,

15, 17b, 18b, 19
openEHR-EHR-EVALUATION.problem-diagnosis.v1

16, 17a, 18a openEHR-EHR-ACTION.procedure.v1

4 openEHR-EHR-OBSERVATION.nihss.v1

5 openEHR-EHR-ITEM_TREE.imaging.v1

7 openEHR-EHR-OBSERVATION.lab_test-blood_glucose.v1

14b openEHR-EHR-INSTRUCTION.medication.v1

Table 23. Archetypes involved and contraindications by ID

Below it is shown in tabular form the 14 out of 19 contraindications that we have been able

to represent using EHRules, associated with the archetypes accessed by using paths in

order to read patient data. It is assumed that the context has been defined as the root path

in the archetype in all cases (i.e., context: /;)

Chapter 6. The EHRules Language

178

1

openEHR-EHR-EVALUATION.problem-diagnosis.v1

/*Stroke onset more than 4.5 hours ago*/

$date_time_of_initial_onset: Date_time := /data[at0001]/items[at0003]/value;

$current_date_time: Date_time := currentDateTime();

$threshold_time: Duration := [4h 30m];

['Expression 1']

$date_time_of_initial_onset < ($current_date_time - $threshold_time);

4

openEHR-EHR-OBSERVATION.nihss.v1

/*National Institutes of Health Stroke Scale (NIHSS) score higher than 25*/

$NIHSS_score: Real :=

/data[at0001]/events[at0002]/data[at0003]/items[at0085];

['Expression 4']

$NIHSS_score > 25;

5

openEHR-EHR-ITEM_TREE.imaging.v1

/*CT scan shows haemorrhage*/

$finding: Terminology_code := /items[at0002]/items[at0003]/value;

$hemorrhage: Snomed_ec := [snomed_ct_ec::<<50960005|Hemorrhage|];

['Expression 5']

$finding IN $hemorrhage;

6.4 Uses cases

179

7

openEHR-EHR-OBSERVATION.lab_test-blood_glucose.v1

/*Blood glucose is lower than 3 mmol/litre or higher than 22 mmol/litre*/

$blood_glucose: Real :=

data[at0001]/events[at0002]/data[at0003]/items[at0078.2]/value;

['Expression 7']

$blood_glucose < 3.0 OR $blood_glucose > 22.0;

9

openEHR-EHR-EVALUATION.problem-diagnosis.v1

/*History of cerebral haemorrhage or intracranial bleeding*/

$diagnosis: Terminology_code := /data[at0001]/items[at0002.1]/value;

$cerebral_intracranial_haemorrhage: Snomed_ec :=

[snomed_ct_ec::<<274100004|Cerebral hemorrhage|

OR <<1386000|Intracranial hemorrhage|];

['Expression 9']

$diagnosis IN $cerebral_intracranial_haemorrhage;

10

openEHR-EHR-EVALUATION.problem-diagnosis.v1

/*Patient describes an explosive headache (that resembles a subarachnoid

haemorrhage)*/

$diagnosis: Terminology_code := /data[at0001]/items[at0002.1]/value;

$thunderclap_headache: Snomed_ec := [snomed_ct_ec::<<95660002

|Thunderclap headache|];

['Expression 10']

$diagnosis IN $thunderclap_headache;

Chapter 6. The EHRules Language

180

12

openEHR-EHR-EVALUATION.problem-diagnosis.v1

/*Likely postictal paresis*/

$diagnosis: Terminology_code := /data[at0001]/items[at0002.1]/value;

$confidence: String := /data[at0001]/items[at0.55]/value;

$postictal_paresis: Snomed_ec := [snomed_ct_ec::<<66264000|Todd's

paresis|];

['Expression 12']

$diagnosis IN $postictal_paresis AND $confidence = 'Suspicion';

13

openEHR-EHR-EVALUATION.problem-diagnosis.v1

/*Suspected septic shock*/

$diagnosis: Terminology_code := /data[at0001]/items[at0002.1]/value;

$confidence: String := /data[at0001]/items[at0.55]/value;

$septic_shock: Snomed_ec := [snomed_ct_ec::<<76571007|Septic shock|];

['Expression 13']

$diagnosis IN $septic_shock AND $confidence = 'Suspicion';

6.4 Uses cases

181

14

openEHR-EHR-EVALUATION.problem-diagnosis.v1

/*Bleeding disorder or anticoagulation treatment*/

$diagnosis: Terminology_code := /data[at0001]/items[at0002.1]/value;

$bleeding_tendency: Snomed_ec := [snomed_ct_ec::<<64779008|Blood

coagulation disorder|];

['Expression 14a']

$diagnosis IN $bleeding_tendency;

openEHR-EHR-INSTRUCTION.medication.v1

$medication: Terminology_code := activities[at0001]/description[openEHR-

EHR-ITEM_TREE.medication.v1]/items[at0001]/value;

$anticoagulants: Snomed_ec := [snomed_ct_ec::<<48603004 |Product

containing warfarin| OR <<714788005 |Product containing dabigatran| OR

<<442539005|Product containing rivaroxaban|];

['Expression 14b']

$medication IN $anticoagulants;

Chapter 6. The EHRules Language

182

15

openEHR-EHR-EVALUATION.problem-diagnosis.v1

/*One of the following: infectious endocarditis, pericarditis, ventricular

thrombosis, atrial septal aneurysm, severe heart failure, pancreatitis, severe

liver damage*/

$diagnosis: Terminology_code := /data[at0001]/items[at0002.1]/value;

$contraindicative_diagnoses: Snomed_ec :=

[snomed_ct_ec::<<56675007|Acute heart failure| OR

<<95440004|Atrial septal aneurysm| OR <<233850007|Infective endocarditis|

OR <<439127006|Thrombosis|

OR <<75694006|Pancreatitis| OR <<3238004 |Pericarditis| OR <<59927004

|Hepatic failure|];

['Expression 15']

$diagnosis IN $contraindicative_diagnoses;

16

openEHR-EHR-ACTION.procedure.v1

/*One of the following in the last week: lumbar puncture, central venous

catheter*/

$procedure: Terminology_code := /description[at0001]/items[at0002]/value;

$date_time: Date_time := /time/value;

$lumbar_puncture_or_central_venous_catheter: Snomed_ec :=

[snomed_ct_ec::<<277762005|Lumbar puncture| OR

<<233527006|Central venous cannula insertion|];

$current_date_time: Date_time := currentDateTime();

$threshold_time: Duration := [168h];

['Expression 16']

$procedure IN $lumbar_puncture_or_central_venous_catheter AND

$date_time >= ($current_date_time - $threshold_time);

6.4 Uses cases

183

17

openEHR-EHR-ACTION.procedure.v1

/*One of the following in the last month: operation/biopsy from

parenchymatous organs, trauma with internal injuries, duodenal ulcer,

bleeding from the urinary tract*/

$procedure: Terminology_code := /description[at0001]/items[at0002]/value;

$date_time: Date_time := /time/value;

$operation_biopsy_parenchymatous_organs: Snomed_ec :=

[snomed_ct_ec::(<<86273004 |Biopsy| OR

<<387713003 |Surgical procedure|): * = <<116005007 |Entire

parenchymatous viscus|];

$current_date_time: Date_time := currentDateTime();

$threshold_time: Duration := [720h];

['Expression 17a']

$procedure IN $operation_biopsy_parenchymatous_organs AND $date_time

>= ($current_date_time - $threshold_time);

openEHR-EHR-EVALUATION.problem-diagnosis.v1

$diagnosis: Terminology_code := /data[at0001]/items[at0002.1]/value;

$date_time: Date_time := /time/value;

$diagnosis_subset: Snomed_ec := [snomed_ct_ec::<<417746004 |Traumatic

injury| OR

<<105612003 |Injury of internal organ| OR <<51868009 |Ulcer of duodenum|

OR <<249273002 |Finding of urinary tract proper|];

$current_date_time: Date_time := currentDateTime();

$threshold_time: Duration := [720h];

['Expression 17b']

$diagnosis IN $diagnosis_subset AND $date_time >= ($current_date_time -

$threshold_time);

Chapter 6. The EHRules Language

184

18

openEHR-EHR-ACTION.procedure.v1

/*One of the following in the last three months: stroke, head trauma,

operation in the central nervous system, definite gastrointestinal bleeding*/

$procedure: Terminology_code := /description[at0001]/items[at0002]/value;

$date_time: Date_time := /time/value;

$operation_cns: Snomed_ec := [snomed_ct_ec::<<387713003 |Surgical

procedure|: * = <<21483005 |Structure of central nervous system|];

$current_date_time: Date_time := currentDateTime();

$threshold_time: Duration := [2160h];

['Expression 18a']

$procedure IN $operation_cns AND $date_time >= ($current_date_time -

$threshold_time);

openEHR-EHR-EVALUATION.problem-diagnosis.v1

$diagnosis: Terminology_code := /data[at0001]/items[at0002.1]/value;

$date_time: Date_time := /time/value;

$diagnosis_subset: Snomed_ec := [snomed_ct_ec::<<249273002 |Finding of

urinary tract proper| OR <<127295002 |Traumatic brain injury| OR

<<230690007 |Cerebrovascular accident|];

$current_date_time: Date_time := currentDateTime();

$threshold_time: Duration := [2160h];

['Expression 18b]

$diagnosis IN $diagnosis_subset AND $date_time >= ($current_date_time -

$threshold_time);

6.4 Uses cases

185

19

openEHR-EHR-EVALUATION.problem-diagnosis.v1

/*Pregnancy, childbirth in the last month, breastfeeding (relative

contraindications)*/

$diagnosis: Terminology_code := /data[at0001]/items[at0002.1]/value;

$last_occurrence: Date := /data[at0001]/items[at0018]/items[at0020]/value;

$breastfeeding_pregnancy: Snomed_ec := [snomed_ct_ec::<<169741004

|Breast fed| OR <<77386006 |Pregnant|];

$child_birth: Snomed_ec := [snomed_ct_ec::<<169836001|Birth of child|];

$current_date_time: Date_time := currentDateTime();

$threshold_time: Duration := [720h];

['Expression 19']

($diagnosis IN $breastfeeding_pregnancy) OR

($diagnosis IN $child_birth AND $last_occurrence >= ($current_date_time -

$threshold_time));

6.4.2 FSIII Danish standard

The FSIII (Fælles Sprog III) Danish standard for the specification of guidelines for

documenting healthcare observations and interventions in home care21 is a common

municipal method and standard for the documentation of the municipal task solution in

the area of health and elderly. FSIII must contribute to better coherence and more data

reuse in the municipalities IT-based care records. This is done through the implementation

of uniform concepts, classifications and adapted workflows.

FSIII focuses on the interdisciplinary citizens journal, where documented information is

collected or reused and shared between the various professional groups and municipal

functions. The method includes both authority and supplier, and all involved professional

groups and functions are responsible for updating, reusing and maintaining information

that relates to the citizens course22.

21 http://www.fs3.nu/
22 https://www.kl.dk/kommunale-opgaver/sundhed/digitalisering-paa-sundhedsomraadet/faelles-
sprog-iii/

Chapter 6. The EHRules Language

186

One of the main aspects of FSIII is to associate conditions, such as ‘Chronic pain’, ‘Problems

with personal care’, ‘Sleeping problems’ or ‘Hearing problems’ with a set of interventions

for each condition (i.e., C-I associations). Both conditions and interventions are explicitly

associated with SNOMED CT concepts by using RF2 refsets. Since the FSIII standard

associates a series of conditions with a series of subsets, it fits perfectly as a use case for

defining conditional value set bindings. Table 24 shows some examples of the FSIII

conditions together with its associated sets of interventions (translated from the original

Danish file). The whole set of C-I associations can be found in Annex 2.

ID Condition Interventions

1 Problems with personal care

- Collaboration with networks

- Rehabilitation

- Guidance

- Relocation and mobilization

- Training

- Support for ADL23 activity

2 Chronic pain

- Nonpharmacological pain relief

- Pain assessment

- Training

- Collaboration with networks

- Medicine administration

- Guidance

- Intravenous medical treatment

- Drug dispensing

3 Sleeping problems

- Medicine administration

- Collaboration with networks

- Guidance

- Drug dispensing

- Assessment of sleep pattern

Table 24. FSIII conditions together with its associated sets of interventions

23 Activities of Daily Living

6.4 Uses cases

187

Following with our purpose to analyse the expressivity of EHRules, we have selected three

C-I associations (note that it is not our aim to exhaustively represent all C-I associations but

to take a representative example) and have represented them into one conditional value

set binding nested rule. Also note that we are not using archetypes in this case, so access

to patient data is simulated by means of dummy paths. Names of C-I presented in Table 24

does not necessarily fit with its associated concepts descriptions in SNOMED CT.

Specifically, the conditions that we have chosen as representative examples are: ‘Finding

related to ability to perform personal care activity’, ‘Chronic pain’, and ‘Cognitive function

finding’. Below we show the EHRules expressions that represent such C-I associations.

/*Examples of FSIII condition-interventions (C-I) associations rules*/

context: /;

/*Patient condition and intervention*/

$condition: Terminology_code := path/to/condition; //dummy

$intervention: Terminology_code := path/to/intervention; //dummy

/*Subsets of conditions*/

$care_activity_conditions: Snomed_ec := [snomed_ct_ec::<<365178001 |Finding

related to ability to perform personal care activity|];

$chronic_pain_conditions: Snomed_ec := [snomed_ct_ec::<<82423001 |Chronic

pain|];

$cognitive_function_conditions: Snomed_ec := [snomed_ct_ec::<<373930000

|Cognitive function finding|];

/*Subsets of interventions*/

$care_activity_interventions: Snomed_ec := [snomed_ct_ec::<<304560004

|Assisting with activity of daily living| OR <<52052004 |Rehabilitation therapy| OR

<<225430005 |Procedures relating to mobility| OR <<385990006 |Support system

interventions| OR <<409073007 |Education|];

$chronic_pain_interventions: Snomed_ec := [snomed_ct_ec::<<182970005 |Pain

relief| OR <<225399009 |Pain assessment| OR <<409073007 |Education| OR

<<385990006 |Support system interventions| OR <<18629005 |Administration of

Chapter 6. The EHRules Language

188

drug or medicament| OR <<431215000 |Administration of substance via

intravenous route| OR <<385796006 |Medication prefill preparation|];

$cognitive_function_interventions: Snomed_ec := [snomed_ct_ec::<<385796006

|Medication prefill preparation| OR <<304560004 |Assisting with activity of daily

living| OR <<133921002 |Emotional support| OR <<52052004 |Rehabilitation

therapy| OR <<409073007 |Education| OR <<225220004 |Communication

interventions| OR <<18629005 |Administration of drug or medicament|];

/*Conditional value set binding nested rule*/

['FSIII C-I rules']

IF $condition IN $care_activity_conditions THEN $intervention IN

$care_activity_interventions;

ELSE IF $condition IN $chronic_pain_conditions THEN $intervention IN

$chronic_pain_interventions;

ELSE IF $condition IN $cognitive_function_conditions THEN $intervention IN

$cognitive_function_interventions;

Basically, the conditional value set binding nested rule states that if the patient has a

registered condition related with care activity, then the registered associated intervention

should be included in the subset of interventions in care activity. Otherwise, if the patient

has a registered condition related with chronic pain, then the registered associated

intervention should be included in the subset of interventions for chronic pain. Finally, if

the patient has a registered condition related with cognitive functions, then the registered

associated intervention should be included in the subset of interventions for cognitive

functions. Both subsets of conditions and interventions are specified by means of SNOMED

CT ECs and stored in Snomed_ec data type variables. The evaluation of the membership of

the concepts into the subsets is performed by using the inclusion (‘IN’) EHRules operator.

6.4 Uses cases

189

6.4.3 Requisition for radiology procedures

We also have represented some of the medical knowledge contained in a requisition for

radiology procedures from the North Denmark Region clinical information system (see

Figure 65) by using EHRules. As in the use case of the FSIII Danish standard, we are not using

archetypes to represent patient data, so we are simulating access to patient data by using

dummy paths.

Figure 65. Original Danish radiology procedures requisition re-designed and translated into English

Chapter 6. The EHRules Language

190

In this requisition, there exist a number of dependencies. For example:

- If the ordering department is an ‘ear, nose and throat oncology department’, then

the procedure that you are looking for is probably something related with finding

tumours in ear nose throat, e.g., ‘CT scan of head’, and the diagnosis is probably

some ‘cancer’.

- If the ordering department is a ‘lung department’, then probably it is required

some ‘scan of the lungs’, and the diagnosis might be ‘COPD’.

Considering this kind of dependencies, we have formally represented some examples of

rules by using EHRules. As in the FSIII standard use case, it is not the objective to be

exhaustive with the medical knowledge and dependencies that potentially can be

contained by the requisition, but only to specify some representative examples.

Specifically, we want to check whether the selected ordering department is included in the

subset of SNOMED CT departments; we also want to check whether the established

diagnoses are directly related or corresponds with the selected ordering department; and

finally we want to assure that the chosen procedures are related with the diagnoses. Below

we show the EHRules expressions that represent some examples of dependencies.

/* Examples of dependencies */

context: /;

/*Checks that the department exists in SNOMED CT*/

$department_name: Terminology_code := path/to/department_name; //dummy

$departments: Snomed_ec := [snomed_ct_ec::<<309912009 |Medical

department|];

/* Simple value set binding */

['Rule 1']

$department_name IN $departments;

6.4 Uses cases

191

/*Checks that the diagnosis corresponds to the department*/

$department_name: Terminology_code := path/to/department_name; //dummy

$diagnosis: Terminology_code := path/to/diagnosis;

/*Conditional value set binding nested rule*/

['Rule 2']

IF $department_name = [snomed_ct::309915006 |Cardiology department|]

THEN $diagnosis IN [snomed_ct_ec::<<56265001 |Heart disease|];

ELSE IF $department_name = [snomed_ct::309937004 |Neurology department|]

THEN $diagnosis IN [snomed_ct_ec::<<118940003 |Neurological disorder|];

/*Checks that the procedure corresponds to the diagnosis*/

$diagnosis: Terminology_code := path/to/diagnosis; //dummy

$procedure: Terminology_code := path/to/procedure; //dummy

/*Conditional value set binding nested rule*/

['Rule 3']

IF $diagnosis IN [snomed_ct_ec::<<56265001 |Heart disease|]

THEN $procedure IN [snomed_ct_ec::<<363679005 |Imaging|: * = <<80891009

|Heart structure|];

ELSE IF $diagnosis IN [snomed_ct_ec::<<118940003 |Neurological disorder|]

THEN $procedure IN [snomed_ct_ec::<<363679005 |Imaging|: * = <<69536005

|Head structure|];

Chapter 6. The EHRules Language

192

6.5 VALIDATION OF EHR DATA

The EHRules language provides a syntax that may be used to specify archetype rules. As

mentioned above, our objective is to provide a mechanism to define scenario-dependant

constraints in clinical information models, specifically archetypes, including value set

bindings. For this purpose, EHRules provides some extensions to support value set

bindings, which include the ability to support SNOMED CT ECL.

Our language proposal is intended to be used in clinical information models in two main

scenarios. The first one is to define constraints, including value set bindings, in order to

validate the consistency of data instances of a given clinical information model (see Figure

66). The second one is to support structured data entry in such a way that the consistency

of new data instances is assured (see Figure 67).

Figure 66. The definition of consistency rules in archetypes is used to validate the EHR data

6.5 Validation of EHR data

193

Figure 67. The definition of consistency rules in archetypes is used to support structured data entry

For the first use of such constraints, we have developed an automatic translation process

that converts EHRules expressions into a schema language for XML data. For this purpose,

we use Schematron as target schema language. Schematron is a language for the validation

of XML documents. It allows the definition of assertion about the presence or absence of

patterns in XML trees. If the assertion fails, a diagnostic message supplied by the author of

the schema can be displayed. Schematron differs from most other XML schema languages

(such as XML Schema or Relax NG) in that it is based on rules that use path expressions.

One advantages of a rule-based approach is that the translation of archetype rules is easier

in comparison with structure-based XML schema languages. The resulting Schematron

programs are executed against data instances in order to determine whether instances are

consistently valid or not. For the second use of such expressions, it is expected to develop

an execution engine that executes EHRules expressions in order to provide users with the

set of valid SNOMED CT concepts at any point of the data instances creation. Both

approaches make use of SNQuery execution engine [32] to evaluate SNOMED CT ECs.

The translation process is as follows. First, the user introduces expressions, including value

set bindings, in our Java translator application. The application, after validating the

correctness of the syntax, translates the EHRules expressions into a set of Schematron

Chapter 6. The EHRules Language

194

rules. Finally, such Schematron rules are stored into a .sch file (i.e., a Schematron file). Such

Schematron file is then capable of being opened in any tool that includes a Schematron

rules execution engine to validate XML files and check whether these rules are satisfied or

not by the XML data. In our case, we use Oxygen XML editor [91] as testing tool.

Since the purpose of this section is to show how the translation process works, we below

show a set of translation patterns. Finally, we leverage the use cases presented in section

6.4 and show how the translation process works in some representative examples of

expressions and rules (a comprehensive list of examples can be found in Annex 4).

Tables 25-34 show a set of translation patterns from EHRules expressions to Schematron

rules.

Variable declaration and assignation

EHRules Schematron

$varName: varType := varValue;
<let name="varName"

value= "xs:varType(varValue)"/>

Table 25. EHRrules variable declaration and assignation translated to Schematron

Data types

EHRules Schematron

Integer xs:integer

Real xs:decimal

String xs:string

Boolean xs:boolean

Date xs:date

Time xs:time

Date_time xs:dateTime

Duration xs:duration

Terminology_code xs:string

Snomed_ec xs:string

Table 26. EHRrules data types translated to Schematron

6.5 Validation of EHR data

195

Functions

EHRules Schematron

Path functions

existsPath exists

emptyPath empty

Round function

round round

String functions

length string-length

trim normalize-space

concat (+) concat

toUpperCase upper-case

toLowerCase lower-case

Date and time functions

currentDate current-date

currentTime current-time

currentDateTime current-dateTime

Aggregate functions

count count

avg avg

min min

max max

sum sum

Operators

Arithmetic

+ +

- -

* *

/ div

% mod

^ math:pow

Relational

= =

!= or <> !=

< <

<= <=

> >

>= >=

Logical

NOT not

AND and

OR or

FOR_ALL every

THERE_EXISTS some

Other

IN in

: satisfies

IF if

THEN then

ELSE else

Table 27. EHRrules functions and operators translated to Schematron

Chapter 6. The EHRules Language

196

Quantifier expressions

EHRules Schematron

for_all $it IN list : boolean_expression;
every $it in list satisfies

boolean_expression

there_exists $it IN list :

boolean_expression;

some $it in list satisfies

boolean_expression

Table 28. EHRrules quantifier expressions translated to Schematron

Rules

EHRules Schematron

IF boolean_expression1

THEN {boolean_expression2;

boolean_expression3;

boolean_expressionN;}

ELSE {boolean_expression4;

boolean_expression5;

boolean_expressionM;}

if (boolean_expression1)

then (boolean_expression2) and

(boolean_expression3) and

(boolean_expressionN)

else (boolean_expression4) and

(boolean_expression5) and

(boolean_expressionM)

Table 29. EHRrules IF-THEN-ELSE rules translated to Schematron

Boolean expressions

EHRules Schematron

boolean_expression;

(launches an error if fails)

<assert test="boolean_expression" flag="error”

fpi="expr">

Failed name expression</assert>

boolean_expression;

(launches a warning if

fails)

<assert test="boolean_expression" flag="warning”

fpi="expr">

Failed name expression</assert>

Table 30. EHRrules boolean expressions translated to Schematron

6.5 Validation of EHR data

197

Simple value set binding

EHRules Schematron

snomed_concept IN

snomed_ec;

<assert test="document(iri-to-uri(concat(

'snquery_ws?code=', 'snomed_concept',

'&url=http://snomed.info/ecl/', 'snomed_ec')))

//fhir:valueBoolean/@value='true'" flag="error"

fpi="expr"> Failed name expression </assert>

Table 31. EHRrules simple value set binding translated to Schematron

Conditional value set binding

EHRules Schematron

IF boolean_expression

THEN snomed_concept IN

snomed_ec;

<assert test="(if (boolean_expression) then

document(iri-to-uri(concat(

'snquery_ws?code=', 'snomed_concept',

'&url=http://snomed.info/ecl/', 'snomed_ec')))

//fhir:valueBoolean/@value='true' else true())"

flag="error" fpi="expr"> Failed name expression

</assert>

Table 32. EHRrules conditional value set binding translated to Schematron

Dependency value set binding

EHRules Schematron

snomed_concept IN

ECL_operator $var_concept;

<assert test="document(iri-to-uri(concat(

'snquery_ws?code=', 'snomed_concept',

'&url=http://snomed.info/ecl/', 'ECL_operator' ,

$var_concept)))//fhir:valueBoolean/@value='true'"

flag="error" fpi="expr"> Failed name

expression</assert>

Table 33. EHRrules dependency value set binding translated to Schematron

Chapter 6. The EHRules Language

198

Conditional plus dependency value set binding

EHRules Schematron

IF boolean_expression THEN

snomed_concept IN

ECL_operator $var_concept;

<assert test="(if (boolean_expression) then

document(iri-to-uri(concat(

'snquery_ws?code=', 'snomed_concept',

'&url=http://snomed.info/ecl/', 'ECL_operator' ,

$var_concept)))//fhir:valueBoolean/@value='true'"

flag="error" fpi="expr"> Failed name

expression</assert>

Table 34. EHRrules conditional plus dependency value set binding translated to Schematron

In Table 35, Table 36, and Table 37 we present the results after translating rules 4, 5 and 7 of

the guidelines for acute stroke care use case [88].

6.5 Validation of EHR data

199

ID Thrombolysis contraindication

4

Description
National Institutes of Health Stroke Scale (NIHSS) score higher

than 25

Archetype openEHR-EHR-OBSERVATION.nihss.v1

EHRules

$NIHSS_score: Real :=

/data[at0001]/events[at0002]/data[at0003]/items[at0085];

['Expression 4']

$NIHSS_score > 25;

<schema xmlns="http://purl.oclc.org/dsdl/schematron" queryBinding='xslt2'>

 <ns prefix="xsi" uri="http://www.w3.org/2001/XMLSchema-instance"/>

 <ns prefix="math" uri="http://www.w3.org/2005/xpath-functions/math"/>

 <ns prefix="fhir" uri="http://hl7.org/fhir"/>

 <title>EL lang</title>

 <phase id="definition">

 </phase>

 <pattern id="rules">

 <rule context="/">

 <let name="NIHSS_score"

value="data[@archetype_node_id='at0001']/events/data[@archetype_node_id='at00

03']/items[@archetype_node_id='at0085']"/>

 <assert test="($NIHSS_score castable as xs:decimal) and

(xs:decimal($NIHSS_score) > 25)" fpi="expr" role="error"> Failed 'Rule 2'</assert>

 </rule>

 </pattern>

</schema>

Table 35. Translation of the 4th contraindication into Schematron rules

Chapter 6. The EHRules Language

200

ID Thrombolysis contraindication

5

Description CT scan shows haemorrhage

Archetype openEHR-EHR-ITEM_TREE.imaging.v1

EHRules

$finding: Terminology_code :=

/items[at0002]/items[at0003]/value;

$hemorrhage: Snomed_ec :=

[snomed_ct_ec::<<50960005|Hemorrhage|];

['Expression 5']

$finding IN $hemorrhage;

<schema xmlns="http://purl.oclc.org/dsdl/schematron" queryBinding='xslt2'>
 <ns prefix="xsi" uri="http://www.w3.org/2001/XMLSchema-instance"/>
 <ns prefix="math" uri="http://www.w3.org/2005/xpath-functions/math"/>
 <ns prefix="fhir" uri="http://hl7.org/fhir"/>
 <title>EL lang</title>
 <phase id="definition">
 </phase>
 <pattern id="rules">
 <rule context="/">
 <let name="finding"
value="items[@archetype_node_id='at0002']/items[@archetype_node_id='at0003']/
value"/>
 <let name="hemorrhage"
value="'<<50960005|Hemorrhage|'"/>
 <assert test="($finding castable as xs:string and
$hemorrhage castable as xs:string) and document(iri-to-
uri(concat('https://snquery.veratech.es/VTTermService/ws/ValueSet/$validate-
code?code=', xs:string($finding), '&url=http://snomed.info/ecl/',
xs:string($hemorrhage))))//fhir:valueBoolean/@value='true'" fpi="expr"
role="error"> Failed 'Expression 5'</assert>
 </rule>
 </pattern>
</schema>

Table 36. Translation of the 5th contraindication into Schematron rules

6.5 Validation of EHR data

201

ID Thrombolysis contraindication

7

Description
Blood glucose is lower than 3 mmol/litre or higher than 22

mmol/litre

Archetype openEHR-EHR-OBSERVATION.lab_test-blood_glucose.v1

EHRules

$blood_glucose: Real :=

data[at0001]/events[at0002]/data[at0003]/

items[at0078.2]/value;

['Expression 7']

$blood_glucose < 3.0 OR $blood_glucose > 22.0;

<schema xmlns="http://purl.oclc.org/dsdl/schematron" queryBinding='xslt2'>
 <ns prefix="xsi" uri="http://www.w3.org/2001/XMLSchema-instance"/>
 <ns prefix="math" uri="http://www.w3.org/2005/xpath-functions/math"/>
 <ns prefix="fhir" uri="http://hl7.org/fhir"/>
 <title>EL lang</title>
 <phase id="definition">
 </phase>
 <pattern id="rules">
 <rule context="/">
 <let name="blood_glucose"
value="data[@archetype_node_id='at0001']/events/data[@archetype_node_id='at00
03']/items[@archetype_node_id='at0078.2']/value"/>
 <assert test="($blood_glucose castable as xs:decimal) and
((xs:decimal($blood_glucose) < 3.0) or (xs:decimal($blood_glucose) > 22.0))"
fpi="expr" role="error"> Failed 'Expression 7'</assert>
 </rule>
 </pattern>
</schema>

Table 37. Translation of the 7th contraindication into Schematron rules

Chapter 6. The EHRules Language

202

6.6 DISCUSSION

The openEHR EL, which is still under development, provides a syntax that may be used to

specify archetype rules. As mentioned above, our objective is to provide a mechanism to

define scenario-dependant constraints in clinical information models, including value set

bindings. For this purpose, we have developed EHRules, an EL-based language with some

extensions to support value set bindings, which include the ability to support SNOMED CT

ECL.

We have divided the constrains into two types: critical (i.e., role ‘error’) and secondary (i.e.,

role ‘warning’). A critical constraint needs to be satisfied by a data instance to be

considered valid from a consistency point of view. A secondary constraint results in a

warning if it is not satisfied, and the data instance is still considered valid even if the

constraint is not met. Therefore, an instance is considered valid or not valid according with

the accomplishment of both type of constraints. This implementation is intended to be

incorporated into LinkEHR Interoperability Platform [92] in order to increase its ability to

define advanced semantic constraints in archetypes.

One of the key points when approaching the definition of semantic rules in clinical

information models to improve the consistency of EHR data is whether such rules should

be specified inside of an archetype (i.e., inside of the ADL ‘Rules’ section) or outside, i.e., in

a separate artefact. In this sense, both approaches should be studied. In this thesis, our

objective is to improve the consistency and therefore the quality of patient data instances

that are associated with a specific archetype. Taking this premise into account, we decided

to leverage EL since its development was started thinking about the underused ADL ‘Rules’

section. In this context, both EL and EHRules allow the definition of expressions without

referencing the containing archetype. This reference is done implicitly since all expressions

are included in one particular archetype. The second approach, i.e., to specify consistency

rules in a separate artefact, allows defining expressions by referencing multiple archetypes,

such as in the GDL language, where the possibility of accessing different patient data

instances is primordial in order to define formal representations of clinical practice

guidelines. Therefore, the objective of EL/EHRules is not exactly the same as GDL’s. The

EHRules language must be sufficiently expressive to meet the requirements of the use

6.6 Discussion

203

cases for which it has been designed. Nevertheless, functionality without a corresponding

use case, such as allowing access to multiple archetypes, has not been included, as this

increases the complexity of implementation unnecessarily.

A second relevant matter of discussion is about simple value set binding. It is legitimate to

define those bindings into the ‘Terminology’ section of the ADL, where bindings to

terminologies are defined, instead of into the ‘Rules’ section. In the ‘Terminology’ section,

bindings can be defined either as an 'internal' value set consisting of at-codes, or as a value

set defined in an external terminology and referenced by a binding. The main advantage

while defining simple value set bindings in the ‘Terminology’ section is that it is possible to

set bindings to any terminology rather than only to SNOMED CT. In the current version of

EHRules, rules are defined in the ‘Rules’ section, and it is only possible to specify value set

bindings to SNOMED CT. The EHRules approach allows the definition of both intensional

and extensional value set bindings by leveraging the SNOMED CT ECL, which is a clear

advantage. In contrast, value sets defined in the ‘Terminology’ section are extensional. In

general, from our point of view it makes sense to define simple value set bindings inside of

the ‘Rules’ section since they are somehow a type of IF-THEN rules where the rule

antecedent is set to true. For example, the following simple value set binding, which states

that the patient diagnosis should be included in the subset of calculus findings of SNOMED

CT:

$diagnosis IN [snomed_ct_ec::<< 313413008 |Calculus finding (finding)|];

is equivalent to the following conditional value set binding rule:

 IF true THEN

 $diagnosis IN [snomed_ct_ec::<< 313413008 |Calculus finding (finding)|];

Chapter 6. The EHRules Language

204

7.1 Conclusions

205

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.1 CONCLUSIONS

The development of the methods presented in Chapter 3 and its inclusion in the SNQuery

platform facilitates the intensional definition of subsets. It also provides mechanisms for

simplification and semantic validation of ECs, and visualization of resulting subsets. These

mechanisms are intended to help understand the subsets and validate them. The

availability of these subsets is useful to bind content between clinical information models,

such as archetypes, and SNOMED CT, which is a necessary step to achieve a high level of

EHR semantic interoperability [59].

However, the usefulness of ECs does not end here. We have shown in this thesis a way to

enrich archetypes with domain knowledge in the form of advanced data consistency rules

by means of EHRules expressions. These rules may be useful, for example, to check

whether the value of an archetype node is in accordance with the value of another node,

or to specify the value of a node as the result of applying an operation on a set of nodes.

Furthermore, we have shown that it is also possible to specify rules involving the result

subset of an EC in order to define several types of value set bindings, i.e., simple,

conditional, dependency, and conditional plus dependency extensional and intensional.

In this sense, this thesis combines a series of objectives that respond to each of the

particular needs that support the final purpose of enhancing the consistency of EHR.

O1. To define a method for the execution of ECs over a graph-oriented database.

We have leveraged the benefits of graph databases in general, and Neo4j in particular,

which includes a powerful query language called Cypher, to persist the content of SNOMED

CT. We have defined a translation process between ECL and Cypher for the evaluation of

ECs over the SNOMED CT graph, which yields the intended subset of medical concepts.

O2. To define methods for pre- and post-execution simplification of ECs, and semantic

validation.

We have defined three different methods to simplify ECs before they are executed (pre-

execution): subsumption-based, MRCM-based, and logic definition-based; and one

Chapter 7. Conclusions and future work

206

method based on the mining of the result subset (post-execution). The methods based on

the MRCM and the logic definition check whether the EC satisfies the rules defined in the

SNOMED CT Concept Model and the logical definition of the involved concepts,

respectively.

O3. To provide a method for the visual exploration of SNOMED CT subsets.

A graphical visualization based on the circle packing is proposed for understanding and

validating subsets. This method provides information about how the concepts that make

up the subset are related in terms of hierarchies and which of these hierarchies are more

relevant in terms of recall and precision. The visual representation of this information may

facilitate the validation of the subset at a glance, for instance by detecting irrelevant

concepts or hierarchies.

O4. To develop an EC execution platform that makes use of the methods presented in O1,

O2 and O3.

We have developed SNQuery, a web platform able to create, parse, simplify, semantically

validate and execute ECs, and visualize the result subsets. In addition to the circle packing

visualization method, SNQuery also incorporates a hierarchy-based and a tree-based visual

representations that can be used to visualize the subsets. Additionally, it also incorporates

extra functionalities, such as historic of the last executions, ECs examples section aimed at

being the basis for building ECs instead of defining them from scratch, a list of MSSSI

refsets, multilingual interface, mapping to ICD-10, and conversion from ECL brief to long

syntax and vice versa.

O5. To define an expression language for the specification of consistency rules in archetypes.

We have extended the openEHR EL language with some requirements to support value set

bindings between archetypes and SNOMED CT. This extensions include: ability to define IF-

THEN-ELSE nested rules, specification of criticality in rules, definition of contexts to group

related expressions by using paths and conditions over them, ability to specify subsets of

clinical concepts intensionally in ECL, a new variable type for ECs called Snomed_ec, and

ability to check the membership of a given concept in an intensional subset by supporting

an inclusion operator. We have called this new language EHRules.

7.2 Future work

207

O6. To enrich the rules section of the archetypes with the language of O5.

The purpose of the EHRules language is to define expressions to be included in the ‘Rules’

section of archetypes to enhance the consistency of EHR, and therefore its quality. In this

context, terminology is a key point, since it is a required step to bind information models

with domain models to achieve high levels of semantic interoperability. Accordingly,

EHRules allows the definition of simple, conditional, dependency, and conditional plus

dependency extensional and intensional value set bindings between archetypes and

SNOMED CT, for which definition of subsets by means of ECs is supported.

O7. To validate the consistency of EHR by executing the expressions inside of the rules

section of archetypes, including the execution of ECs by using the engine of O4.

We have developed an automatic translation process that converts EHRules expressions

into a schema language for XML data. Specifically, we use Schematron as target schema

language. The resulting Schematron programs are executed against data instances in order

to determine whether instances are consistently valid or not.

7.2 FUTURE WORK

In this thesis we have presented a mechanism to improve the consistency of EHR data

through the definition of expressions inside of archetypes that represent clinical

knowledge. For the validation of EHR data instances we translate EHRules constraints into

a Schematron script whose execution yields as a result the set of constraints that are not

satisfied. One natural continuation of this approach is the ability to rank EHR data instances

from a consistency point of view, i.e., given a set of instances of the same archetype, we

are able to order them from highest to lowest consistency or vice versa. To perform this, it

is required to extend the EHRules language with rule weights and to define a series of

consistency metrics.

Furthermore, it is important to remark some points that should be considered in the

context of specifying semantic constraints with EL/EHRules. One relevant issue is related

with the specialisation of archetypes. Concretely, whether EHRules expressions should be

inherited and whether the expression can be extended with extra conditions, i.e.,

substituted by a more specific expression.

Chapter 7. Conclusions and future work

208

Another relevant issue is about supporting structured data entry in such a way that the

consistency of new data instances is assured. From this perspective, it is required an

execution engine that executes EHRules constraints in order to provide users with the set

of valid SNOMED CT concepts at any point of the data instances creation.

Although addressing the mentioned issues is considered outside the scope of this thesis, it

is expected to tackle them as part of the future journey of our work. Additionally, we aim

to integrate SNQuery into LinkEHR. We would like to extend LinkEHR with the advanced

terminology binding presented in this thesis by supporting the EHRules language, allowing

both semantic and value set binding between archetypes and SNOMED CT to improve the

consistency of EHR and therefore its quality

209

BIBLIOGRAPHY

[1] N.G. Weiskopf, C. Weng, Methods and dimensions of electronic health record data

quality assessment: Enabling reuse for clinical research, Journal of the American

Medical Informatics Association. 20 (2013). https://doi.org/10.1136/amiajnl-2011-

000681.

[2] R.Y. Wang, Beyond accuracy: What data quality means to data consumers, Journal

of Management Information Systems. 12 (1996).

https://doi.org/10.1080/07421222.1996.11518099.

[3] K. Lee, N. Weiskopf, J. Pathak, A Framework for Data Quality Assessment in Clinical

Research Datasets, AMIA Annual Symposium Proceedings. AMIA Symposium. 2017

(2017).

[4] SNOMED CT Starter Guide, SNOMED International, 2017. http://snomed.org/sg.

[5] SNOMED CT Expression Constraint Language Specification and Guide, SNOMED

International, 2020. http://snomed.org/ecl.

[6] H. Aerts, D. Kalra, C. Sáez, J.M. Ramírez-Anguita, M.A. Mayer, J.M. Garcia-Gomez,

M. Durà-Hernández, G. Thienpont, P. Coorevits, Quality of hospital electronic

health record (EHR) data based on the international consortium for health

outcomes measurement (ICHOM) in heart failure: Pilot data quality assessment

study, JMIR Medical Informatics. 9 (2021). https://doi.org/10.2196/27842.

[7] D. Kalra, Electronic health record standards. Yearbook of Medical Informatics.

(2006). https://doi.org/10.1055/s-0038-1638463.

[8] C.G. Chute, Clinical classification and terminology: Some history and current

observations, Journal of the American Medical Informatics Association. 7 (2000).

https://doi.org/10.1136/jamia.2000.0070298.

[9] K.R. Gøeg, M. Hummeluhr, An empirical approach to enhancing terminology

binding - An HL7 FHIR SNOMED CT example, in: Studies in Health Technology and

Informatics, 2018. https://doi.org/10.3233/978-1-61499-852-5-206.

[10] T. Beale, Archetypes: Constraint-based Domain Models for Future- proof

Information Systems, OOPSLA 2002 Workshop on Behavioural Semantics. (2001).

[11] D.K. Sharma, H.R. Solbrig, C. Tao, C. Weng, C.G. Chute, G. Jiang, Building a

semantic web-based metadata repository for facilitating detailed clinical modeling

Bibliography

210

in cancer genome studies, Journal of Biomedical Semantics. 8 (2017).

https://doi.org/10.1186/s13326-017-0130-4.

[12] M.D.C. Legaz-García, C. Martínez-Costa, M. Menárguez-Tortosa, J.T. Fernández-

Breis, A semantic web based framework for the interoperability and exploitation

of clinical models and EHR data, Knowledge-Based Systems. 105 (2016).

https://doi.org/10.1016/j.knosys.2016.05.016.

[13] D.K. Sharma, H.R. Solbrig, E. Prud’hommeaux, J. Pathak, G. Jiang, Standardized

Representation of Clinical Study Data Dictionaries with CIMI Archetypes, AMIA

Annual Symposium Proceedings. AMIA Symposium. 2016 (2016).

[14] M.B. Späth, J. Grimson, Applying the archetype approach to the database of a

biobank information management system, International Journal of Medical

Informatics. 80 (2011). https://doi.org/10.1016/j.ijmedinf.2010.11.002.

[15] A.L.L.R.A.K.D. Rossander, A State-of-the Art Review of SNOMED CT Terminology

Binding and Recommendations for Practice and Research, Methods of Information

in Medicine. (2021).

[16] C.H. Ivory, Mapping perinatal nursing process measurement concepts to standard

terminologies, CIN - Computers Informatics Nursing. 34 (2016).

https://doi.org/10.1097/CIN.0000000000000243.

[17] K. Bernstein, M. Bruun-Rasmussen, S. Vingtoft, A method for specification of

structured clinical content in electronic health records, in: Studies in Health

Technology and Informatics, 2006.

[18] D.B. Hier, S.U. Brint, A Neuro-ontology for the neurological examination, BMC

Medical Informatics and Decision Making. 20 (2020).

https://doi.org/10.1186/s12911-020-1066-7.

[19] G. Wade, S.T. Rosenbloom, Experiences mapping a legacy interface terminology to

SNOMED CT, in: BMC Medical Informatics and Decision Making, 2008.

https://doi.org/10.1186/1472-6947-8-S1-S3.

[20] a Randorff Højen, K. Rosenbeck Gøeg, Snomed CT implementation. Mapping

guidelines facilitating reuse of data. Methods of Information in Medicine. 51

(2012).

[21] F. Bakhshi-Raiez, L. Ahmadian, R. Cornet, E. de Jonge, N.F. de Keizer, Construction

of an interface terminology on SNOMED CT: Generic approach and its application

in intensive care, Methods of Information in Medicine. 49 (2010).

https://doi.org/10.3414/ME09-01-0057.

[22] S. Maulden, P. Greim, O. Bouhaddou, P. Warnekar, L. Megas, F. Parrish, M.J.

Lincoln, Using SNOMED CT as a mediation terminology: Mapping issues, lessons

211

learned, and next steps toward achieving semantic interoperability, in: CEUR

Workshop Proceedings, 2008.

[23] D.S.S.K.D. et al. Kalra, ASSESS CT Recommendations— Assessing SNOMED CT for

Large Scale eHealth Deployments in the EU, 2016.

[24] SNOMED CT Compositional Grammar Specification and Guide, SNOMED

International, 2020. http://snomed.org/scg.

[25] SNOMED CT Technical Implementation Guide, SNOMED International, 2015.

http://snomed.org/tig.

[26] SNOMED CT Machine Readable Concept Model Specification, SNOMED

International, 2017. http://snomed.org/mrcm.

[27] Semantic interoperability for better health and safer healthcare: deployment and

research roadmap for Europe, 2009. https://doi.org/10.2759/38514.

[28] A. Lysenko, I.A. Roznovaţ, M. Saqi, A. Mazein, C.J. Rawlings, C. Auffray,

Representing and querying disease networks using graph databases, BioData

Mining. 9 (2016). https://doi.org/10.1186/s13040-016-0102-8.

[29] W.S. Campbell, J. Pedersen, J.C. McClay, P. Rao, D. Bastola, J.R. Campbell, An

alternative database approach for management of SNOMED CT and improved

patient data queries, Journal of Biomedical Informatics. 57 (2015).

https://doi.org/10.1016/j.jbi.2015.08.016.

[30] I. Robinson, J. Webber, E. Eifrem, Graph Databases. New opportunities for

connected data, 2015. https://doi.org/10.1016/b978-0-12-407192-6.00003-0.

[31] The Neo4j Getting Started, Neo4j, 2020. https://neo4j.com/docs/getting-

started/current/.

[32] V.M. Giménez-Solano, J.A. Maldonado, D. Boscá, S. Salas-García, M. Robles,

Definition and validation of SNOMED CT subsets using the expression constraint

language, Journal of Biomedical Informatics. 117 (2021).

https://doi.org/10.1016/j.jbi.2021.103747.

[33] C. Vicknair, X. Nan, M. Macias, Y. Chen, Z. Zhao, D. Wilkins, A comparison of a

graph database and a relational database: A data provenance perspective, in:

Proceedings of the Annual Southeast Conference, 2010.

https://doi.org/10.1145/1900008.1900067.

[34] R. Angles, The Property Graph Model, Proceedings of the 12th Alberto Mendelzon

International Workshop on Foundations of Data Management (CEUR Workshop

Proceedings). (2018).

Bibliography

212

[35] M.A. Rodriguez, P. Neubauer, Constructions from dots and lines, Bulletin of the

American Society for Information Science and Technology. 36 (2010).

https://doi.org/10.1002/bult.2010.1720360610.

[36] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S.

Plantikow, M. Rydberg, P. Selmer, A. Taylor, Cypher: An evolving query language

for property graphs, in: Proceedings of the ACM SIGMOD International

Conference on Management of Data, Association for Computing Machinery, 2018:

pp. 1433–1445. https://doi.org/10.1145/3183713.3190657.

[37] The Neo4j Cypher Manual, Neo4j, 2020. https://neo4j.com/docs/cypher-

manual/current/.

[38] C.R. Collins, K. Stephenson, A circle packing algorithm, Computational Geometry:

Theory and Applications. 25 (2003). https://doi.org/10.1016/S0925-

7721(02)00099-8.

[39] GitHub - dagrejs/dagre-d3: A D3-based renderer for Dagre.

https://github.com/dagrejs/dagre-d3.

[40] SNOMED International, SNOMED CT Browser. https://browser.ihtsdotools.org/.

[41] M. Jacomy, T. Venturini, S. Heymann, M. Bastian, ForceAtlas2, a continuous graph

layout algorithm for handy network visualization designed for the Gephi software,

PLoS ONE. 9 (2014). https://doi.org/10.1371/journal.pone.0098679.

[42] I. Berges, J. Bermudez, A. Illarramendi, Binding SNOMED CT Terms to Archetype

Elements, Methods of Information in Medicine. 54 (2015).

https://doi.org/10.3414/me13-02-0022.

[43] P. Sciences, R. Qamar, A. Rector, Semantic Mapping of Clinical Model Data To

Biomedical Terminologies To Facilitate, Healthcare Computing 2007 Conference.

(2007).

[44] M. Meizoso García, J.L. Iglesias Allones, D. Martínez Hernández, M.J. Taboada

Iglesias, Semantic similarity-based alignment between clinical archetypes and

SNOMED CT: An application to observations, International Journal of Medical

Informatics. 81 (2012). https://doi.org/10.1016/j.ijmedinf.2012.02.007.

[45] S. Yu, D. Berry, J. Bisbal, An investigation of semantic links to Archetypes in an

external clinical terminology through the construction of terminological

“Shadows,” in: Proceedings of the IADIS International Conference E-Health 2010,

EH, Part of the IADIS Multi Conference on Computer Science and Information

Systems 2010, MCCSIS 2010, 2010.

[46] L. Chu, V. Kannan, M.A. Basit, D.J. Schaeflein, A.R. Ortuzar, J.F. Glorioso, J.R.

Buchanan, D.L. Willett, SNOMED CT Concept Hierarchies for Computable Clinical

213

Phenotypes From Electronic Health Record Data: Comparison of Intensional

Versus Extensional Value Sets, JMIR Medical Informatics. 7 (2019) e11487.

https://doi.org/10.2196/11487.

[47] M.A. Casteleiro, D. Tsarkov, B. Parsia, U. Sattler, Using semantic web technologies

to underpin the SNOMED CT query language, in: Lecture Notes in Computer

Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 2017. https://doi.org/10.1007/978-3-319-71078-5_20.

[48] K. Dentler, R. Cornet, A. ten Teije, N. de Keizer, Comparison of reasoners for large

ontologies in the OWL 2 EL profile, Semantic Web. 2 (2011).

https://doi.org/10.3233/SW-2011-0034.

[49] F. Holzschuher, R. Peinl, Querying a graph database - Language selection and

performance considerations, Journal of Computer and System Sciences. 82 (2016).

https://doi.org/10.1016/j.jcss.2015.06.006.

[50] O. Bodenreider, D. Nguyen, P. Chiang, P. Chuang, M. Madden, R. Winnenburg, R.

Mcclure, S. Emrick, I. D’Souza, The NLM value set authority center, in: Studies in

Health Technology and Informatics, 2013. https://doi.org/10.3233/978-1-61499-

289-9-1224.

[51] K.J. Peterson, G. Jiang, S.M. Brue, F. Shen, H. Liu, Mining Hierarchies and Similarity

Clusters from Value Set Repositories, AMIA Annual Symposium Proceedings. AMIA

Symposium. 2017 (2017).

[52] D.L. Willett, V. Kannan, L. Chu, J.R. Buchanan, F.T. Velasco, J.D. Clark, J.S. Fish, A.R.

Ortuzar, J.E. Youngblood, D.G. Bhat, M.A. Basit, SNOMED CT Concept Hierarchies

for Sharing Definitions of Clinical Conditions Using Electronic Health Record Data,

Applied Clinical Informatics. 9 (2018) 667–682. https://doi.org/10.1055/s-0038-

1668090.

[53] K.W. Fung, J. Xu, S. Gold, The Use of Inter-terminology Maps for the Creation and

Maintenance of Value Sets, AMIA Annual Symposium Proceedings. AMIA

Symposium. 2019 (2019).

[54] D.A. Springate, E. Kontopantelis, D.M. Ashcroft, I. Olier, R. Parisi, E. Chamapiwa, D.

Reeves, ClinicalCodes: An online clinical codes repository to improve the validity

and reproducibility of research using electronic medical records, PLoS ONE. 9

(2014). https://doi.org/10.1371/journal.pone.0099825.

[55] R. Williams, B. Brown, E. Kontopantelis, T. van Staa, N. Peek, Term sets: A

transparent and reproducible representation of clinical code sets, PLoS ONE. 14

(2019). https://doi.org/10.1371/journal.pone.0212291.

[56] Ontoserver Query. https://ontoserver.csiro.au/shrimp/ecl.html.

Bibliography

214

[57] Slang. http://slang.snomedic.com:8080/yats/.

[58] GitHub - slaverman/SnoLyze: SNOMED CT Expression Constraint Language

Execution Engine in R. https://github.com/slaverman/SnoLyze.

[59] A. Muñoz Carrero, A. Romero Gutiérrez, G. Marco Cuenca, A. Abad Acebedo, J.

Cáceres Tello, R. Sánchez de Madariaga, P. Serrano Balazote, D. Moner Cano, J.

Maldonado Segura, Manual práctico de interoperabilidad semántica para

entornos sanitarios basada en arquetipos, Unidad de Investigación en

Telemedicina y e-Salud. Instituto de Salud Carlos III. Ministerio de Economía y

Competitividad. Madrid, 2013.

[60] S.W. Tu, M.A. Musen, A flexible approach to guideline modeling. Proceedings /

AMIA Annual Symposium. AMIA Symposium. (1999).

[61] M. Peleg, Computer-interpretable clinical guidelines: A methodological review,

Journal of Biomedical Informatics. 46 (2013).

https://doi.org/10.1016/j.jbi.2013.06.009.

[62] C. Weng, S.W. Tu, I. Sim, R. Richesson, Formal representation of eligibility criteria:

A literature review, Journal of Biomedical Informatics. 43 (2010).

https://doi.org/10.1016/j.jbi.2009.12.004.

[63] J. Fox, N. Johns, A. Rahmanzadeh, Disseminating medical knowledge: The

PROforma approach, Artificial Intelligence in Medicine. 14 (1998).

https://doi.org/10.1016/S0933-3657(98)00021-9.

[64] J. Fox, N. Johns, A. Rahmanzadeh, R. Thomson, PROforma: A method and language

for specifying clinical guidelines and protocols, in: Studies in Health Technology

and Informatics, 1996. https://doi.org/10.3233/978-1-60750-878-6-516.

[65] A. Seyfang, S. Miksch, M. Marcos, Combining diagnosis and treatment using

ASBRU, in: International Journal of Medical Informatics, 2002.

https://doi.org/10.1016/S1386-5056(02)00064-3.

[66] S. Miksch, Y. Shahar, P. Johnson, Asbru: a task-specific, intention-based, and time-

oriented language for representing skeletal plans, 7th Workshop on Knowledge

Engineering: Methods & Languages. (1997).

[67] M. Peleg, A.A. Boxwala, O. Ogunyemi, Q. Zeng, S. Tu, R. Lacson, E. Bernstam, N.

Ash, P. Mork, L. Ohno-Machado, E.H. Shortliffe, R.A. Greenes, GLIF3: the evolution

of a guideline representation format. Proceedings / AMIA Annual Symposium.

AMIA Symposium. (2000).

[68] M. Peleg, A.A. Boxwala, E. Bernstam, S. Tu, R.A. Greenes, E.H. Shortliffe, Sharable

representation of clinical guidelines in GLIF: Relationship to the Arden Syntax,

215

Journal of Biomedical Informatics. 34 (2001).

https://doi.org/10.1006/jbin.2001.1016.

[69] A.A. Boxwala, M. Peleg, S. Tu, O. Ogunyemi, Q.T. Zeng, D. Wang, V.L. Patel, R.A.

Greenes, E.H. Shortliffe, GLIF3: A representation format for sharable computer-

interpretable clinical practice guidelines, Journal of Biomedical Informatics. 37

(2004). https://doi.org/10.1016/j.jbi.2004.04.002.

[70] S.W. Tu, J. Campbell, M.A. Musen, The SAGE guideline modeling: Motivation and

methodology, in: Studies in Health Technology and Informatics, 2004.

https://doi.org/10.3233/978-1-60750-944-8-167.

[71] S.W. Tu, J.R. Campbell, J. Glasgow, M.A. Nyman, R. McClure, J. McClay, C. Parker,

K.M. Hrabak, D. Berg, T. Weida, J.G. Mansfield, M.A. Musen, R.M. Abarbanel, The

SAGE Guideline Model: Achievements and Overview, Journal of the American

Medical Informatics Association. 14 (2007). https://doi.org/10.1197/jamia.M2399.

[72] S.W. Tu, M.A. Musen, Modeling data and knowledge in the EON guideline

architecture, in: Studies in Health Technology and Informatics, 2001.

https://doi.org/10.3233/978-1-60750-928-8-280.

[73] M.A. Musen, S.W. Tu, A.K. Das, Y. Shahar, EON: A Component-Based Approach to

Automation of Protocol-Directed Therapy, Emerging Infectious Diseases. 3 (1996).

https://doi.org/10.1136/jamia.1996.97084511.

[74] D.R. Sutton, P. Taylor, K. Earle, Evaluation of PROforma as a language for

implementing medical guidelines in a practical context, BMC Medical Informatics

and Decision Making. 6 (2006). https://doi.org/10.1186/1472-6947-6-20.

[75] N. Iglesias, J.M. Juarez, M. Campos, Comprehensive analysis of rule formalisms to

represent clinical guidelines: Selection criteria and case study on antibiotic clinical

guidelines, Artificial Intelligence in Medicine. 103 (2020).

https://doi.org/10.1016/j.artmed.2019.101741.

[76] G. Hripcsak, P. Ludemann, T.A. Pryor, O.B. Wigertz, P.D. Clayton, Rationale for the

Arden syntax, Computers and Biomedical Research. 27 (1994).

https://doi.org/10.1006/cbmr.1994.1023.

[77] G. Hripcsak, O.B. Wigertz, P.D. Clayton, Origins of the Arden Syntax, Artificial

Intelligence in Medicine. 92 (2018).

https://doi.org/10.1016/j.artmed.2015.05.006.

[78] Arden Syntax v2.10 (Health Level Seven Arden Syntax for Medical Logic Systems,

Version 2.10).

https://www.hl7.org/implement/standards/product_brief.cfm?product_id=372.

Bibliography

216

[79] S. Kraus, M. Rosenbauer, L. Schröder, T. Bürkle, K.P. Adlassnig, D. Toddenroth, A

detailed analysis of the Arden Syntax expression grammar, Journal of Biomedical

Informatics. 83 (2018). https://doi.org/10.1016/j.jbi.2018.05.008.

[80] M. Samwald, K. Fehre, J. de Bruin, K.P. Adlassnig, The Arden Syntax standard for

clinical decision support: Experiences and directions, Journal of Biomedical

Informatics. 45 (2012). https://doi.org/10.1016/j.jbi.2012.02.001.

[81] R.A. Jenders, K.P. Adlassnig, K. Fehre, P. Haug, Evolution of the Arden Syntax: Key

Technical Issues from the Standards Development Organization Perspective,

Artificial Intelligence in Medicine. 92 (2018).

https://doi.org/10.1016/j.artmed.2016.08.001.

[82] R.A. Jenders, Evaluation of SNOMED CT as a reference terminology for

standardized data queries in the Arden syntax, in: Studies in Health Technology

and Informatics, 2017. https://doi.org/10.3233/978-1-61499-830-3-1326.

[83] HL7 Version 3 Standard: GELLO, A Common Expression Language, Release 2.

https://www.hl7.org/implement/standards/product_brief.cfm?product_id=5.

[84] OMG, Object Constraint Language Specification v2.2, Management. 03 (2010).

[85] openEHR Guideline Definition Language (GDL).

https://specifications.openehr.org/releases/CDS/latest/GDL2.html.

[86] openEHR Expression Language (EL).

https://specifications.openehr.org/releases/LANG/latest/expression_language.ht

ml.

[87] B. Sharif, J.I. Maletic, An eye tracking study on camelcase and under-score

identifier styles, in: IEEE International Conference on Program Comprehension,

2010. https://doi.org/10.1109/ICPC.2010.41.

[88] N. Anani, R. Chen, T. Prazeres Moreira, S. Koch, Retrospective checking of

compliance with practice guidelines for acute stroke care: A novel experiment

using openEHR’s Guideline Definition Language, BMC Medical Informatics and

Decision Making. 14 (2014). https://doi.org/10.1186/1472-6947-14-39.

[89] A.R. Højen, K.R. Gøeg, P.B. Elberg, Re-use of SNOMED CT subset in development of

the Danish national standard for home care nursing problems, in: Studies in

Health Technology and Informatics, 2015. https://doi.org/10.3233/978-1-61499-

512-8-140.

[90] K.R. Gøeg, P.B. Elberg, A.R. Højen, U.L. Eskildsen, SNOMED CT as Reference

Terminology in the Danish National Home Care Documentation Standard, Studies

in Health Technology and Informatics. 235 (2017). https://doi.org/10.3233/978-1-

61499-753-5-461.

217

[91] Y.X. Li, K.T. Chau, Z.H. Wei, Q. bin Kang, A comparative study on two XML editors

(oxygon and ultraedit), in: ACM International Conference Proceeding Series, 2019.

https://doi.org/10.1145/3309074.3309126.

[92] J.A. Maldonado, D. Moner, D. Boscá, J.T. Fernández-Breis, C. Angulo, M. Robles,

LinkEHR-Ed: A multi-reference model archetype editor based on formal semantics,

International Journal of Medical Informatics. 78 (2009).

https://doi.org/10.1016/j.ijmedinf.2009.03.006.

Bibliography

218

219

ANNEX 1 - LIST OF ECS EXAMPLES

EC example 1

<< 27550009 |Disorder of blood vessel (disorder)|

EC example 2

< 362965005 |Disorder of body system (disorder)|:

363698007 |Finding site (attribute)| = << 59820001 |Blood vessel structure (body

structure)|

EC example 3

< 404684003 |Clinical finding (finding)|:

{363698007 |Finding site (attribute)| = << 39057004 |Pulmonary valve|,

116676008 |Associated morphology (attribute)| = << 415582006 |Stenosis|},

{363698007 |Finding site (attribute)| = << 58095006 |Interatrial septum structure|,

116676008 |Associated morphology| = << 396351009 |Congenital septal defect|}

EC example 4

< 473011001 |Allergic condition (disorder)|:

[2..*] 246075003 |Causative agent (attribute)| = < 105590001 |Substance

(substance)|

EC example 5

< 255620007 |Food (substance)|:

R 246075003 |Causative agent (attribute)| = < 473011001 |Allergic condition

(disorder)|

EC example 6

871742003 |Tetanus vaccine (medicinal product)| OR 871729003 |Diphtheria vaccine

(medicinal product)| OR 871758000 |Pertussis vaccine (medicinal product)|

Annex 1 - List of ECs examples

220

EC example 7

(< 362965005 |Disorder of body system (disorder)| OR

< 414027002 |Disorder of hematopoietic structure (disorder)|):

363698007 |Finding site (attribute)| =

<< 59820001 |Blood vessel structure (body structure)|,

363698007 |Finding site (attribute)| = << 87784001 |Soft tissues (body structure)|

EC example 8

<< 404684003 |Clinical finding (finding)|:

39133001 |With severity (attribute)| = << 272141005 |Severities (qualifier value)|

EC example 9

<< 404684003 |Clinical finding (finding)|:

39133001 |With severity (attribute)| = << 272141005 |Severities (qualifier value)| OR

246075003 |Causative agent (attribute)| = << 410942007 |Drug or medicament

(substance)|

EC example 10

< 106063007 |Cardiovascular finding (finding)|:

363698007 |Finding site (attribute)| = < 91723000 |Anatomical structure (body

structure)|

EC example 11

< 404684003 |Clinical finding (finding)|:

363698007 |Finding site (attribute)| = << 82094008 |Lower respiratory tract structure

(body structure)|,

116676008 |Associated morphology (attribute)| = << 367651003 |Malignant

neoplasm (morphologic abnormality)|

EC example 12

< 301226008 |Lower respiratory tract finding (finding)|:

363698007 |Finding site (attribute)| = << 82094008 |Lower respiratory tract structure

(body structure)|,

116676008 |Associated morphology (attribute)| = << 367651003 |Malignant

neoplasm (morphologic abnormality)|

221

EC example 13

< 301226008 |Lower respiratory tract finding (finding)|:

116676008 |Associated morphology (attribute)| = << 367651003 |Malignant

neoplasm (morphologic abnormality)|

EC example 14

707480001 |Chronic hemolytic anemia (disorder)| IN < 64572001 |Disease

(disorder)|: 363714003 |Interprets (attribute)| = 14089001 |Red blood cell count

(procedure)|

EC example 15

< 138875005 |SNOMED CT Concept|: 363698007 |Finding site (attribute)| =

< 127903009 |Male genital organ structure (body structure)|

EC example 16

< 249230006 |Male genitalia finding (finding)|: 363698007 |Finding site (attribute)| =

< 127903009 |Male genital organ structure (body structure)|

Annex 1 - List of ECs examples

222

223

ANNEX 2 - EHRULES ABNF SYNTAX SPECIFICATION

expression = context colon (path / divide) end [condition colon

contextBooleanExpression end] 1*(([exprname] [role] booleanExpression end) / (

variableDeclarationAssignation end) / (listVariableDeclarationAssignation end) / ([

exprname] [role] ruleExpression))

ruleExpression = if ruleAntecedent then ruleConsequent [else (ruleConsequent /

ruleExpression)]

ruleAntecedent = booleanExpression

ruleConsequent = (booleanExpression end) / (ocur 1*(booleanExpression end) ccur)

quantificationExpression = (existentialQuantifier / universalQuantifier) variable

inclusion (variable / path) colon booleanExpression

variableDeclarationAssignation = variable colon ((duration assig (durationExpression

/ null)) / (dateTime assig (dateTimeTypeExpression / null)) / (date assig (

dateTypeExpression / null)) / (time assig (timeTypeExpression / null)) / (integer

assig (arithmeticExpression / null)) / (real assig (arithmeticExpression / null)) / (

boolean assig (booleanExpression / null)) / (string assig (stringExpression / null)) /

(terminologyCode assig (snomedConceptExpresion / null)) / (snomedEc assig (

snomedEcExpression / null)))

listVariableDeclarationAssignation = variable colon list less (((integer / real) greater

assig (null / variable / (ocur (arithmeticExpression / null) *(comma (

arithmeticExpression / null)) ccur))) / (boolean greater assig (null / variable / (ocur

(booleanExpression / null) *(comma (booleanExpression / null)) ccur))) / (string

greater assig (null / variable / (ocur (stringExpression / null) *(comma (

stringExpression / null)) ccur))) / (terminologyCode greater assig (null / variable / (

ocur (snomedConceptExpresion / null) *(comma (snomedConceptExpresion / null))

ccur))) / (snomedEc greater assig (null / variable / (ocur (snomedEcExpression /

null) *(comma (snomedEcExpression / null)) ccur))) / (date greater assig (null /

Annex 2 - EHRules ABNF syntax specification

224

variable / (ocur (dateTypeExpression / null) *(comma (dateTypeExpression / null))

ccur))) / (time greater assig (null / variable / (ocur (timeTypeExpression / null) *(

comma (timeTypeExpression / null)) ccur))) / (dateTime greater assig (null /

variable / (ocur (dateTimeTypeExpression / null) *(comma (

dateTimeTypeExpression / null)) ccur))) / (duration greater assig (null / variable / (

ocur (durationExpression / null) *(comma (durationExpression / null)) ccur))))

booleanExpression = unaryBoolean *subBooleanExpression

subBooleanExpression = (conjunction / disjunction) unaryBoolean

unaryBoolean = (not elementBoolean) / elementBoolean

elementBoolean = existsPathFunction / emptyPathFunction / relationalExpression /

INExpression / (opar booleanExpression cpar) / quantificationExpression / bool / path

/ variable

relationalExpression = (arithmeticExpression (equal / notequal / less / lessequal /

greater / greaterequal) arithmeticExpression) / (stringExpression (equal / notequal)

stringExpression) / (snomedConceptExpresion (equal / notequal)

snomedConceptExpresion) / relationalExpressionBoolean / (dateTypeExpression (

equal / notequal / less / lessequal / greater / greaterequal) dateTypeExpression) / (

timeTypeExpression (equal / notequal / less / lessequal / greater / greaterequal)

timeTypeExpression) / (dateTimeTypeExpression (equal / notequal / less / lessequal /

greater / greaterequal) dateTimeTypeExpression) / (durationExpression (equal /

notequal) durationExpression) / (opar relationalExpression cpar)

relationalExpressionBoolean = (([not] INExpression) / variable / path / bool /

existsPathFunction / emptyPathFunction) / (opar (([not] INExpression) / variable /

path / bool / existsPathFunction / emptyPathFunction) cpar (equal / notequal) (([

not] INExpression) / variable / path / bool / existsPathFunction / emptyPathFunction)

) / (opar (([not] INExpression) / variable / path / bool / existsPathFunction /

emptyPathFunction) cpar)

arithmeticExpression = term *subArithmeticExpression

subArithmeticExpression = (plus / minus) term

term = expTerm *subTerm

subTerm = (multiply / divide / modulus) expTerm

225

expTerm = unary *expSubTerm

expSubTerm = exponent unary

unary = (((minus / plus) (element / roundFunction / variable / path / lengthFunction

/ countFunction / avgFunction / minFunction / maxFunction / sumFunction)) / (

element / roundFunction / variable / path / lengthFunction / countFunction /

avgFunction / minFunction / maxFunction / sumFunction))

element = constant / (opar arithmeticExpression cpar)

roundFunction = round opar arithmeticExpression comma constant cpar

countFunction = count opar (variable / path) cpar

avgFunction = avg opar (variable / path) cpar

minFunction = min opar (variable / path) cpar

maxFunction = max opar (variable / path) cpar

sumFunction = sum opar (variable / path) cpar

lengthFunction = length opar (text / variable / path) cpar

currentDateFunction = currentdate opar cpar

currentTimeFunction = currenttime opar cpar

currentDateTimeFunction = currentdatetime opar cpar

existsPathFunction = existspath opar path cpar

emptyPathFunction = emptypath opar path cpar

INExpression = snomedConceptExpresion inclusion snomedEcExpression

dateTypeExpression = variable / path / currentDateFunction / (obra constant minus

constant minus constant cbra) / (opar dateTypeExpression cpar)

timeTypeExpression = variable / path / currentTimeFunction / (obra constant colon

constant colon constant cbra) / (opar timeTypeExpression cpar)

dateTimeTypeExpression = variable / path / currentDateTimeFunction / (obra

constant minus constant minus constant constant colon constant colon constant cbra

) / (opar dateTimeTypeExpression cpar)

durationExpression = variable / path / (obra [minus] years months days hours

minutes seconds cbra) / (opar durationExpression cpar)

stringExpression = concatExpression / text / variable / path / toUpperCaseFunction /

toLowerCaseFunction / trimFunction / (opar stringExpression cpar)

Annex 2 - EHRules ABNF syntax specification

226

concatExpression = (text / variable / path) 1*subConcatExpression

subConcatExpression = plus (text / variable / path)

toUpperCaseFunction = touppercase opar (text / variable / path) cpar

toLowerCaseFunction = tolowercase opar (text / variable / path) cpar

trimFunction = trim opar (text / variable / path) cpar

snomedConceptExpresion = (obra snomedheader constant [desc] cbra) / variable /

path

snomedEcExpression = (obra echeader 1*(constant / nonDigit) cbra) / variable /

path

contextBooleanExpression = contextUnaryBoolean *contextSubBooleanExpression

contextSubBooleanExpression = (conjunction / disjunction) contextUnaryBoolean

contextUnaryBoolean = (not contextElementBoolean) / contextElementBoolean

contextElementBoolean = contextRelationalExpression / (opar

contextBooleanExpression cpar)

contextRelationalExpression = (countFunction / avgFunction / minFunction /

maxFunction / sumFunction / path / decimal) (equal / notequal / less / lessequal /

greater / greaterequal) (text / constant)

comment = ("//" *(digit / nonDigit)) / ("/*" *(digit / nonDigit) "*/")

years = constant "Y"

months = constant "M"

days = constant "D"

hours = constant "h"

minutes = constant "m"

seconds = constant "s"

boolean = "Boolean"

integer = "Integer"

real = "Real"

date = "Date"

time = "Time"

dateTime = "Date_time"

duration = "Duration"

227

string = "String"

terminologyCode = "Terminology_code"

snomedEc = "Snomed_ec"

not = ("not" / "NOT")

conjunction = ("and" / "AND")

disjunction = ("or" / "OR")

equal = "="

notequal = "!=" / "<>"

less = "<"

lessequal = "<="

greater = ">"

greaterequal = ">="

plus = "+"

minus = "-"

multiply = "*"

divide = "/"

exponent = "^"

modulus = "%"

inclusion = ("in" / "IN")

existentialQuantifier = ("there_exists" / "THERE_EXISTS")

universalQuantifier = ("for_all" / "FOR_ALL")

error = quot "error" quot

warning = quot "warning" quot

role = obra (error / warning) cbra

exprname = obra text cbra

constant = 1*digit [decimal 1*digit]

desc = pipe text pipe

nonDigit = %x41-5A / %x61-7A / "_"

digit = %x30-39

end = ";"

opar = "("

Annex 2 - EHRules ABNF syntax specification

228

cpar = ")"

dollar = "$"

obra = "["

cbra = "]"

ocur = "{"

ccur = "}"

quot = "'"

colon = ":"

assig = ":="

decimal = "."

comma = ","

pipe = "|"

list = "List"

existspath = "existsPath"

emptypath = "emptyPath"

bool = "true" / "false"

if = ("if" / "IF")

then = ("then" / "THEN")

else = ("else" / "ELSE")

null = ("null" / "NULL")

text = quot *(constant / nonDigit) quot

snomedheader = "snomed_ct::"

echeader = "snomed_ct_ec::"

round = "round"

trim = "trim"

count = "count"

avg = "avg"

min = "min"

max = "max"

sum = "sum"

length = "length"

229

currentdate = "currentDate"

currenttime = "currentTime"

currentdatetime = "currentDateTime"

touppercase = "toUpperCase"

tolowercase = "toLowerCase"

variable = dollar 1*nonDigit *(constant / nonDigit)

context = "context"

condition = "condition"

children = "children" opar cpar

path = 1*([divide] ((1*(constant / nonDigit)) / (decimal decimal) / children) [

obra 1*(constant / nonDigit / minus / decimal) cbra]) [divide]

Informative comments on the EHRules ABNF syntax

expression = context colon (path / divide) end [condition colon

contextBooleanExpression end] 1*(([exprname] [role] booleanExpression end) / (

variableDeclarationAssignation end) / (listVariableDeclarationAssignation end) / ([

exprname] [role] ruleExpression))

Every expression or set of expressions is preceded by a context definition, i.e., a path

referencing a section in the archetype, and optionally by a condition for that path. An

expression is either a boolean expression, a variable declaration and assignation, a list

variable declaration and assignation, or a rule expression. Both boolean expression and

rule expression are optionally preceded by a name and role, i.e., error or warning. If no

role is defined, error is assumed. Each expression is ended by a semicolon (;).

ruleExpression = if ruleAntecedent then ruleConsequent [else (ruleConsequent /

ruleExpression)]

A rule expression evaluates a condition (i.e., a rule antecedent) and depending on the

resulting truth value (i.e., true or false), the result is one of two possible expressions

Annex 2 - EHRules ABNF syntax specification

230

(i.e., rule consequents). Any rule is composed by at least one IF-THEN statement. The

ELSE clause is optional and can evaluate a rule consequent or nest a rule expression,

leading to nesting IF-THEN-ELSE statements.

ruleAntecedent = booleanExpression

A rule antecedent is a boolean expression that is evaluated to true or false.

ruleConsequent = (booleanExpression end) / (ocur 1*(booleanExpression end) ccur)

A rule consequent is either a boolean expression or a set of boolean expressions

enclosed in curly braces and separated by semicolons (;). A rule consequent is

evaluated to true if the boolean expression or set of boolean expressions are evaluated

to true.

quantificationExpression = (existentialQuantifier / universalQuantifier) variable

inclusion (variable / path) colon booleanExpression

A quantification expression is composed by either the standard operator from

predicate logic THERE_EXISTS (i.e., the existential quantifier) or by the FOR_ALL

standard logic operator (i.e., the universal quantifier). The first one evaluates whether

there exists at least one element in a list (stored in a variable or referenced in the

archetype by its path – (variable / path)) and represented by an iterator variable

(variable inclusion) that satisfies the condition specified by a boolean expression that

includes such iterator variable and that is preceded by a colon (:), which is usually read

as “such that”. The second one (i.e., the FOR_ALL universal quantifier) evaluates

whether for all the elements in the list, the boolean expression is evaluated to true,

i.e., the condition represented is satisifed for all the elements in the list. A

quantification expression is evaluated to true or false.

variableDeclarationAssignation = variable colon ((duration assig (durationExpression

/ null)) / (dateTime assig (dateTimeTypeExpression / null)) / (date assig (

dateTypeExpression / null)) / (time assig (timeTypeExpression / null)) / (integer

231

assig (arithmeticExpression / null)) / (real assig (arithmeticExpression / null)) / (

boolean assig (booleanExpression / null)) / (string assig (stringExpression / null)) /

(terminologyCode assig (snomedConceptExpresion / null)) / (snomedEc assig (

snomedEcExpression / null)))

A variable declaration and assignation is a statement that associates a data type with a

variable name (i.e., declaration) and that assigns an expression compatible with such

data type (i.e., assignation). The valid associations between data types and expressions

are the following:

Data type Expression

integer arithmeticExpression

real arithmeticExpression

boolean booleanExpression

string stringExpression

date dateTypeExpression

time timeTypeExpression

dateTime dateTimeTypeExpression

duration durationExpression

terminologyCode snomedConceptExpresion

snomedEc snomedEcExpression

listVariableDeclarationAssignation = variable colon list less (((integer / real) greater

assig (null / variable / (ocur (arithmeticExpression / null) *(comma (

arithmeticExpression / null)) ccur))) / (boolean greater assig (null / variable / (ocur

(booleanExpression / null) *(comma (booleanExpression / null)) ccur))) / (string

greater assig (null / variable / (ocur (stringExpression / null) *(comma (

stringExpression / null)) ccur))) / (terminologyCode greater assig (null / variable / (

ocur (snomedConceptExpresion / null) *(comma (snomedConceptExpresion / null))

Annex 2 - EHRules ABNF syntax specification

232

ccur))) / (snomedEc greater assig (null / variable / (ocur (snomedEcExpression /

null) *(comma (snomedEcExpression / null)) ccur))) / (date greater assig (null /

variable / (ocur (dateTypeExpression / null) *(comma (dateTypeExpression / null))

ccur))) / (time greater assig (null / variable / (ocur (timeTypeExpression / null) *(

comma (timeTypeExpression / null)) ccur))) / (dateTime greater assig (null /

variable / (ocur (dateTimeTypeExpression / null) *(comma (

dateTimeTypeExpression / null)) ccur))) / (duration greater assig (null / variable / (

ocur (durationExpression / null) *(comma (durationExpression / null)) ccur))))

A list variable declaration and assignation is a statement that associates a data type

with a list variable name (i.e., list declaration) and that assigns a set of expressions

compatible with such data type (i.e., list assignation). The valid associations between

data types and expressions are the same as in the variableDeclarationAssignation rule

presented above. When more than one expression is assigned to a list variable, the

expressions are enclosed in curly braces and separated by commas. The data type of

the list is enclosed between the ‘less than’ and the ‘greater than’ symbols.

booleanExpression = unaryBoolean *subBooleanExpression

A boolean expression is composed by a unary boolean expression and optionally by

one or more sub boolean expressions. A boolean expression is evaluated to true or

false.

subBooleanExpression = (conjunction / disjunction) unaryBoolean

A sub boolean expression combines a conjunction (i.e., AND) or disjunction (i.e., OR)

operator with a unary boolean expression.

unaryBoolean = (not elementBoolean) / elementBoolean

A unary boolean is either a boolean element or a boolean element preceded by a not

operator (i.e., NOT). A unary boolean is evaluated to true or false.

233

elementBoolean = existsPathFunction / emptyPathFunction / relationalExpression /

INExpression / (opar booleanExpression cpar) / quantificationExpression / bool / path

/ variable

A boolean element is either an exists path function, an empty path function, a

relational expression, an inclusion expression, a boolean expression enclosed in

parentheses, a quantification expression, a boolean value (i.e., true or false), a path, or

a variable. A boolean element is evaluated to true or false.

relationalExpression = (arithmeticExpression (equal / notequal / less / lessequal /

greater / greaterequal) arithmeticExpression) / (stringExpression (equal / notequal)

stringExpression) / (snomedConceptExpresion (equal / notequal)

snomedConceptExpresion) / relationalExpressionBoolean / (dateTypeExpression (

equal / notequal / less / lessequal / greater / greaterequal) dateTypeExpression) / (

timeTypeExpression (equal / notequal / less / lessequal / greater / greaterequal)

timeTypeExpression) / (dateTimeTypeExpression (equal / notequal / less / lessequal /

greater / greaterequal) dateTimeTypeExpression) / (durationExpression (equal /

notequal) durationExpression) / (opar relationalExpression cpar)

A relational expression is either a comparison of two expressions of the same type by

using a set of relational operators, a relational boolean expression, or a relational

expression enclosed in parentheses. A relational expression is evaluated to true or

false. The following comparisons are allowed by the syntax.

Left expression Operators Right expression

arithmeticExpression =, !=, <, <=, >, >= arithmeticExpression

stringExpression =, != stringExpression

snomedConceptExpresion =, != snomedConceptExpresion

dateTypeExpression =, !=, <, <=, >, >= dateTypeExpression

timeTypeExpression =, !=, <, <=, >, >= timeTypeExpression

Annex 2 - EHRules ABNF syntax specification

234

dateTimeTypeExpression =, !=, <, <=, >, >= dateTimeTypeExpression

durationExpression =, != durationExpression

relationalExpressionBoolean = (([not] INExpression) / variable / path / bool /

existsPathFunction / emptyPathFunction) / (opar (([not] INExpression) / variable /

path / bool / existsPathFunction / emptyPathFunction) cpar (equal / notequal) (([

not] INExpression) / variable / path / bool / existsPathFunction / emptyPathFunction)

) / (opar (([not] INExpression) / variable / path / bool / existsPathFunction /

emptyPathFunction) cpar)

A relational boolean expression is a comparison between two boolean valued

expressions by using equal and not equal relational operators (i.e., =, !=). Both left and

right sides of the expression can be preceded by a not operator and are either an

inclusion expression, a variable, a path, a boolean value (i.e., true or false), an exists

path function, or an empty path function. A relational boolean expression is evaluated

to true or false.

arithmeticExpression = term *subArithmeticExpression

An arithmetic expression contains a term optionally followed by one or more sub

arithmetic expressions. An arithmetic expression is evaluated to a number.

subArithmeticExpression = (plus / minus) term

A sub arithmetic expression consists of either a plus or minus operator followed by a

term.

term = expTerm *subTerm

A term is either an exponential term or an exponential term followed by one or more

sub terms.

expTerm = unary *expSubTerm

235

An exponential term is either a unary or a unary followed by one or more exponential

sub terms.

subTerm = (multiply / divide / modulus) expTerm

A sub term combines a multiply, a divide, or a modulus operator with an exponential

term.

expSubTerm = exponent unary

An exponential sub term represents an exponent operator with a unary.

unary = (((minus / plus) (element / roundFunction / variable / path / lengthFunction

/ countFunction / avgFunction / minFunction / maxFunction / sumFunction)) / (

element / roundFunction / variable / path / lengthFunction / countFunction /

avgFunction / minFunction / maxFunction / sumFunction))

A unary is either an element, a variable, a path, or any of the following functions:

roundFunction, lengthFunction, countFunction, avgFunction, minFunction,

maxFunction, or sumFunction, optionally preceded by either a minus or plus operator.

element = constant / (opar arithmeticExpression cpar)

An element is either a constant (i.e., either an integer or a real number) or an

arithmetic expression enclosed in parentheses.

roundFunction = round opar arithmeticExpression comma constant cpar

The round function consists of the literal “round” followed by two parameters

separated by a comma and enclosed in parentheses, i.e., an arithmetic expression and

a constant. The round function rounds a real number to a specified number of

positions.

countFunction = count opar (variable / path) cpar

Annex 2 - EHRules ABNF syntax specification

236

The count function consists of the literal “count” followed by a parameter represented

by a variable or path that reference a list and enclosed in parentheses. The count

function returns the number of values in a specified list.

avgFunction = avg opar (variable / path) cpar

The average function consists of the literal “avg” followed by a parameter represented

by a variable or path that reference a list and enclosed in parentheses. The avg function

returns the average of the values in a specified list, that is, the sum of the values divided

by the number of values.

minFunction = min opar (variable / path) cpar

The minimum function consists of the literal “min” followed by a parameter

represented by a variable or path that reference a list and enclosed in parentheses.

The minimum function returns the lowest value in a specified list.

maxFunction = max opar (variable / path) cpar

The maximum function consists of the literal “max” followed by a parameter

represented by a variable or path that reference a list and enclosed in parentheses.

The maximum function returns the highest value in a specified list.

sumFunction = sum opar (variable / path) cpar

The sum function consists of the literal “sum” followed by a parameter represented by

a variable or path that reference a list and enclosed in parentheses. The sum function

returns the sum of the values of a specified list.

lengthFunction = length opar (text / variable / path) cpar

237

The length function consists of the literal “length” followed by a parameter

represented by a text, variable or path that reference a string and enclosed in

parentheses. The length function returns the number of characters in a string.

currentDateFunction = currentdate opar cpar

The current date function consists of the literal “currentDate” followed by open and

closed parentheses. The current date function returns the current date.

currentTimeFunction = currenttime opar cpar

The current time function consists of the literal “currentTime” followed by open and

closed parentheses. The current time function returns the current time.

currentDateTimeFunction = currentdatetime opar cpar

The current date and time function consists of the literal “currentDateTime” followed

by open and closed parentheses. The current date and time function returns the

current date and time.

existsPathFunction = existspath opar path cpar

The exists path function consists of the literal “existsPath” followed by a parameter

represented by a path and enclosed in parentheses. The exists path function returns

true if the specified path exists, otherwise it returns false.

emptyPathFunction = emptypath opar path cpar

The empty path function consists of the literal “emptyPath” followed by a parameter

represented by a path and enclosed in parentheses. The empty path function returns

true if the specified path is empty, otherwise it returns false.

INExpression = snomedConceptExpresion inclusion snomedEcExpression

Annex 2 - EHRules ABNF syntax specification

238

An inclusion expression consists of a snomed concept expression followed by the

inclusion operator (i.e., IN) and a snomed expression constraint expression. An

inclusion expression returns true if the concept represented by the snomed concept

expression is included in the subset represented by the snomed expression constraint

expression, otherwise it returns false. It is used in all types of value set binding.

dateTypeExpression = variable / path / currentDateFunction / (obra constant minus

constant minus constant cbra) / (opar dateTypeExpression cpar)

A date type expression is either a literal date, a variable, a path, the current date

function or a date type expression enclosed in parentheses. A date type expression

represents a date.

timeTypeExpression = variable / path / currentTimeFunction / (obra constant colon

constant colon constant cbra) / (opar timeTypeExpression cpar)

A time type expression is either a literal time, a variable, a path, the current time

function or a time type expression enclosed in parentheses. A time type expression

represents a time.

dateTimeTypeExpression = variable / path / currentDateTimeFunction / (obra

constant minus constant minus constant constant colon constant colon constant cbra

) / (opar dateTimeTypeExpression cpar)

A date time type expression is either a literal date and time, a variable, a path, the

current date and time function or a date time type expression enclosed in parentheses.

A date time type expression represents a date and time.

durationExpression = variable / path / (obra [minus] years months days hours

minutes seconds cbra) / (opar durationExpression cpar)

239

A duration expression is either a literal positive or negative duration, a variable, a path,

or a duration expression enclosed in parentheses. A duration expression represents a

positive or negative duration.

stringExpression = concatExpression / text / variable / path / toUpperCaseFunction /

toLowerCaseFunction / trimFunction / (opar stringExpression cpar)

A string expression is either a concat expression, a text, a variable, a path, the upper

case or lower case functions, the trim function, or a string expression enclosed in

parentheses. A string expression represents a text.

concatExpression = (text / variable / path) 1*subConcatExpression

A concat expression represents either a text or a variable or path representing a text,

followed by one or more sub concat expressions.

subConcatExpression = plus (text / variable / path)

A sub concat expression contains the plus operator (i.e., +) followed by either a text or

a variable or path representing a text.

toUpperCaseFunction = touppercase opar (text / variable / path) cpar

The to upper case function consists of the literal “toUpperCase” followed by a

parameter represented by a text, variable or path that reference a string and enclosed

in parentheses. The to upper case function converts a string to upper case.

toLowerCaseFunction = tolowercase opar (text / variable / path) cpar

The to lower case function consists of the literal “toLowerCase” followed by a

parameter represented by a text, variable or path that reference a string and enclosed

in parentheses. The to lower case function converts a string to lower case.

trimFunction = trim opar (text / variable / path) cpar

Annex 2 - EHRules ABNF syntax specification

240

The trim function consists of the literal “trim” followed by a parameter represented by

a text, variable or path that reference a string and enclosed in parentheses. The trim

function returns a specified string with leading and trailing whitespace removed.

snomedConceptExpresion = (obra snomedheader constant [desc] cbra) / variable /

path

A snomed concept expression is either a literal, i.e., the snomed header followed by a

number with an optional description and enclosed in brackets, a variable or a path

representing a snomed concept expression. Note that the snomed concept

represented by the snomed concept expression is later parsed using the ECL syntax

supported in SNQuery.

snomedEcExpression = (obra echeader 1*(constant / nonDigit) cbra) / variable /

path

A snomed expression constraint expression is either a literal, i.e., the expression

constraint header followed by any text and enclosed in brackets, a variable or a path

representing a snomed expression constraint expression. Note that the expression

constraint represented by the snomed expression constraint expression is later parsed

using the ECL syntax supported in SNQuery.

contextBooleanExpression = contextUnaryBoolean *contextSubBooleanExpression

A context boolean expression is a context unary boolean optionally followed by one or

more context sub boolean expressions. A context boolean expression is used to define

the condition that a given context of a expression or set of expressions should meet,

and it is optional.

contextSubBooleanExpression = (conjunction / disjunction) contextUnaryBoolean

A context sub boolean expression is either a conjunction or disjunction, followed by a

context unary boolean.

241

contextUnaryBoolean = (not contextElementBoolean) / contextElementBoolean

A context unary boolean is a context element boolean optionally preceded by a not

operator.

contextElementBoolean = contextRelationalExpression / (opar

contextBooleanExpression cpar)

A context element boolean is either a context relational expression or a context

element boolean enclosed in parentheses.

contextRelationalExpression = (countFunction / avgFunction / minFunction /

maxFunction / sumFunction / path / decimal) (equal / notequal / less / lessequal /

greater / greaterequal) (text / constant)

A context relational expression is a comparison between either a count, average,

minimum, maximum or sum functions, a path or a decimal, and a text or constant, by

using the usual set of relational operators (i.e., =, !=, <, <=, > and >=).

comment = ("//" *(digit / nonDigit)) / ("/*" *(digit / nonDigit) "*/")

A comment provides additional human-readable details about the expression.

Comments begin with a forward slash directly followed by a star (i.e., /*) and end with

a star directly followed by a forward slash (i.e., */). Inline comments are preceded with

a double slash (i.e., //).

years = constant "Y"

A number followed by the literal “Y”.

months = constant "M"

A number followed by the literal “M”.

Annex 2 - EHRules ABNF syntax specification

242

days = constant "D"

A number followed by the literal “D”.

hours = constant "h"

A number followed by the literal “h”.

minutes = constant "m"

A number followed by the literal “m”.

seconds = constant "s"

A number followed by the literal “s”.

boolean = "Boolean"

The boolean data type, which is represented by the literal “Boolean”.

integer = "Integer"

The integer data type, which is represented by the literal “Integer”.

real = "Real"

The real data type, which is represented by the literal “Real”.

date = "Date"

The date data type, which is represented by the literal “Date”.

time = "Time"

The time data type, which is represented by the literal “Time”.

243

dateTime = "Date_time"

The date and time data type, which is represented by the literal “Date_time”.

duration = "Duration"

The duration data type, which is represented by the literal “Duration”.

string = "String"

The string data type, which is represented by the literal “String”.

terminologyCode = "Terminology_code"

The terminology code data type, which is represented by the literal

“Terminology_code”. In the current version of EHRules, only SNOMED CT concepts are

supported.

snomedEc = "Snomed_ec"

The snomed expression constraint data type, which is represented by the literal

“Snomed_ec”. The snomed expression constraint data type is used in all variants of

value set binding.

not = ("not" / "NOT")

The logical negation operator (case-insensitive).

conjunction = ("and" / "AND")

The logical conjunction operator (case-insensitive).

disjunction = ("or" / "OR")

The logical disjunction operator (case-insensitive).

Annex 2 - EHRules ABNF syntax specification

244

equal = "="

The relational equality operator.

notequal = "!=" / "<>"

The relational inequality operator.

less = "<"

The relational ‘less than’ operator.

lessequal = "<="

The relational ‘less than or equal’ operator.

greater = ">"

The relational ‘greater than’ operator.

greaterequal = ">="

The relational ‘greater than or equal’ operator.

plus = "+"

The addition arithmetic operator and also the concatenation string operator.

minus = "-"

The subtraction arithmetic operator.

multiply = "*"

The multiplication arithmetic operator.

245

divide = "/"

The division arithmetic operator.

exponent = "^"

The exponentiation arithmetic operator.

modulus = "%"

The modulus arithmetic operator.

inclusion = ("in" / "IN")

The inclusion operator to test whether a terminology concept is included in a specified

subset of concepts. It is also the inclusion operator used in quantification expressions

to associate an iterator variable with the list to be iterated. It is case-insensitive in both

uses.

existentialQuantifier = ("there_exists" / "THERE_EXISTS")

The existential quantifier operator (case-insensitive).

universalQuantifier = ("for_all" / "FOR_ALL")

The universal quantifier operator (case-insensitive).

error = quot "error" quot

The literal string ‘error’ to be used as a role for an expression or set of expressions

inside a context.

warning = quot "warning" quot

Annex 2 - EHRules ABNF syntax specification

246

The literal string ‘warning’ to be used as a role for an expression or set of expressions

inside a context.

role = obra (error / warning) cbra

The role to be assigned to an expression or set of expressions inside a context. If no

role is specified, role ‘error’ is assumed. The role is specified by using either the literal

‘error’ or ‘warning’ enclosed in brackets.

exprname = obra text cbra

The name for either one expression or one rule. Its specification is optional and it

consists of a text enclosed in brackets.

constant = 1*digit [decimal 1*digit]

A constant consists of one or more digits optionally followed by a decimal symbol and

one or more digits.

desc = pipe text pipe

A description to be used as term of a snomed concept. It consists of a text enclosed by

a pair of pipe characters.

nonDigit = %x41-5A / %x61-7A / "_"

Characters from ‘A’ to ‘Z’ either in upper and lower case, and the underscore symbol.

digit = %x30-39

Any digit 0 through 9.

end = ";"

247

Any expression in EHRules, including declaration and assignation of variables should en

with a semicolon.

opar = "("

The open parenthesis.

cpar = ")"

The close parenthesis.

dollar = "$"

The dollar symbol. Every variable name in EHRules begins with it.

obra = "["

The open bracket.

cbra = "]"

The close bracket.

ocur = "{"

The open curly brace.

ccur = "}"

The close curly brace.

quot = "'"

The quote symbol. Every string in EHRules is enclosed by a pair of quotes.

Annex 2 - EHRules ABNF syntax specification

248

colon = ":"

The colon symbol. Every variable name is followed by a colon and a data type. It is also

used to specify the boolean expression in a quantifier expression, where it is usually

read as ‘such as’.

assig = ":="

The assignation operator. It used to assign a value to a variable of any data type.

decimal = "."

The decimal point.

comma = ","

The comma symbol. It used to separate either the elements in a list or the parameters

in a function.

pipe = "|"

The pipe symbol, which is used to enclose the description of a snomed concept

expression.

list = "List"

The word ‘List’, which is used to define list variables.

existspath = "existsPath"

The literal ‘existsPath’ used as name for the exists path function.

emptypath = "emptyPath"

The literal ‘emptyPath’ used as name for the empty path function.

249

bool = "true" / "false"

A boolean value (i.e., true or false). Only allowed in lower case.

if = ("if" / "IF")

The ‘if’ clause that precedes the rule antecedent (case-insensitive).

then = ("then" / "THEN")

The ‘then’ clause that precedes the rule consequent when the antecedent is evaluated

to true (case-insensitive).

else = ("else" / "ELSE")

The ‘else’ clause that precedes either the rule consequent or a nested rule expression

when the antecedent is evaluated to false (case-insensitive).

null = ("null" / "NULL")

The ‘null’ value to be assigned as a value of any type of variable, including list variables.

text = quot *(constant / nonDigit) quot

A text to be used as a string. The text is enclosed by a pair of quotes.

snomedheader = "snomed_ct::"

The snomed header used in snomed concept expressions.

echeader = "snomed_ct_ec::"

The expression constraint header used in snomed expression constraint expressions.

round = "round"

Annex 2 - EHRules ABNF syntax specification

250

The word ‘round’ used in the round function.

trim = "trim"

The word ‘trim’ used in the trim function.

count = "count"

The word ‘count’ used in the count function.

avg = "avg"

The word ‘avg’ used in the average function.

min = "min"

The word ‘min’ used in the minimum function.

max = "max"

The word ‘max’ used in the maximum function.

sum = "sum"

The word ‘sum’ used in the sum function.

length = "length"

The word ‘length’ used in the length function.

currentdate = "currentDate"

The literal ‘currentDate’ used in the current date function.

currenttime = "currentTime"

251

The literal ‘currentTime’ used in the current time function.

currentdatetime = "currentDateTime"

The literal ‘currentDateTime’ used in the current date and time function.

touppercase = "toUpperCase"

The literal ‘toUpperCase‘ used in the to upper case function.

tolowercase = "toLowerCase"

The literal ‘toLowerCase’ used in the to lower case function.

variable = dollar 1*nonDigit *(constant / nonDigit)

A variable name, which consists of a dollar symbol followed by one or more letters, and

one or more digits or letters.

context = "context"

The word ‘context’, which is used to specify the context of either a expression or a set

of expressions. Specifying a context is mandatory.

condition = "condition"

The word ‘condition’, which is used to set a condition to a context. Specifying a

condition to a context is optional.

children = "children" opar cpar

The children function, which consists of the word ‘children’ followed by an open and

closed parentheses. The use of this function is specific to context conditions and it

returns the number of child elements of a given path.

Annex 2 - EHRules ABNF syntax specification

252

path = 1*([divide] ((1*(constant / nonDigit)) / (decimal decimal) / children) [
obra 1*(constant / nonDigit / minus / decimal) cbra]) [divide]

A path is a sequence of slashes symbols (i.e., /) followed by either numbers, letters or

archetype terms enclosed in brackets (e.g., /items[at0016]). Two points in a row

references the parent element (e.g., ../weight). To set the root of an archetype, the

slash symbol is used as a whole path (i.e., /). Note that, although the path includes the

children() function, it only makes sense to use it in context conditions.

253

ANNEX 3 - FSIII CONDITION-INTERVENTIONS

ID Condition Interventions

1 Problems with personal care

- Collaboration with networks

- Rehabilitation

- Guidance

- Relocation and mobilization

- Training

- Support for ADL24 activity

2 Chronic pain

- Nonpharmacological pain relief

- Pain assessment

- Training

- Collaboration with networks

- Medicine administration

- Guidance

- Intravenous medical treatment

- Drug dispensing

3 Sleeping problems

- Medicine administration

- Collaboration with networks

- Guidance

- Drug dispensing

- Assessment of sleep pattern

4 Problems with venous ulcer

- Wound treatment

- Training

- Guidance

- Medicine administration

- Compression treatment

5 Hearing problems

- Collaboration with networks

- Training

- Guidance

- Care when using personal aids

- Special form of communication

24 Activities of Daily Living

Annex 3 - FSIII Condition-Interventions

254

6 Mental problems

- Drug dispensing

- Training

- Medicine administration

- Mental support

- Guidance

- Psychiatric care

7 Acute pain

- Pain assessment

- Intravenous medical treatment

- Nonpharmacological pain relief

- Drug dispensing

- Medicine administration

8 Circadian rhythm problems

- Collaboration with networks

- Medicine administration

- Assessment of sleep pattern

- Guidance

9
Problems with insight into

treatment purposes

- Training

- Guidance

10 Problems with diabetic ulcers

- Medicine administration

- Guidance

- Training

- Wound treatment

- Compression treatment

11 Problems with trauma wounds

- Guidance

- Training

- Wound treatment

- Medicine administration

12 Problems with abuse

- Guidance

- Collaboration with networks

- Medicine administration

- Mental support

- Drug dispensing

13 Problems with food intake

- Parenteral nutrition

- Training

- Surveys and measurement of values

- Collaboration with networks

- Tube feeding

255

- Nutrition screening

- Guidance

- Medicine administration

- Nutrition efforts

14 Problems with underweight

- Fluid per os

- Guidance

- Parenteral nutrition

- Collaboration with networks

- Tube feeding

- Nutrition screening

- Nutrition efforts

- Training

15 Problems with urination

- Guidance

- Catheter placement and care

- Drug dispensing

- Surveys and measurement of values

- Medicine administration

16 Problems with surgical wounds

- Drainage care

- Wound treatment

- Guidance

- Medicine administration

- Training

17
Problems with the sense of

touch

- Guidance

- Relocation and mobilization

- Drug dispensing

- Training

18
Problems with stool

incontinence

- Training

- Incontinence treatment

- Rehabilitation

- Drug dispensing

- Guidance

- Medicine administration

- Surveys and measurement of values

19 Inappropriate weight change

- Nutrition efforts

- Guidance

- Nutrition screening

- Parenteral nutrition

Annex 3 - FSIII Condition-Interventions

256

- Tube feeding

- Training

20 Problems with arterial ulcer

- Wound treatment

- Guidance

- Training

- Medicine administration

21 Problems with communication

- Guidance

- Special form of communication

- Collaboration with networks

22
Problems with mobility and

movement

- Support for ADL activity

- Training

- Guidance

- Collaboration with networks

- Relocation and mobilization

- Drug dispensing

- Medicine administration

- Treatment with orthopedic aids

- Rehabilitation

23 Periodic pain

- Nonpharmacological pain relief

- Intravenous medical treatment

- Medicine administration

- Drug dispensing

- Pain assessment

24 Problems with socializing

- Collaboration with networks

- Psychiatric care

- Guidance

- Mental support

25 Circulatory problems

- Medicine administration

- Surveys and measurement of values

- Training

- Circulation treatment

- Guidance

- Compression treatment

26
Problems with urinary

incontinence

- Incontinence treatment

- Catheter placement and care

- Medicine administration

257

- Guidance

- Rehabilitation

- Drug dispensing

27 Problems with disease insight

- Guidance

- Collaboration with networks

- Training

28
Problems with cancerous

lesions

- Guidance

- Wound treatment

- Medicine administration

- Collaboration with networks

- Training

- Drainage care

29 Memory problems

- Medicine administration

- Support for ADL activity

- Psychiatric care

- Mental support

- Collaboration with networks

- Drug dispensing

- Rehabilitation

- Guidance

30
Problems with the sense of

smell

- Guidance

- Support for ADL activity

- Rehabilitation

31 Problems with fluid intake

- Intravenous fluid therapy

- Nutrition screening

- Training

- Guidance

- Nutrition efforts

- Collaboration with networks

- Tube feeding

32
Stomach and intestinal

problems

- Treatment and care of

gastrointestinal problem

- Drug dispensing

- Medicine administration

- Guidance

- Surveys and measurement of values

- Ostomy care

Annex 3 - FSIII Condition-Interventions

258

33 Problems with mixed wounds

- Compression treatment

- Wound treatment

- Medicine administration

- Training

- Guidance

34 Cognitive problems

- Drug dispensing

- Support for ADL activity

- Mental support

- Rehabilitation

- Training

- Guidance

- Special form of communication

- Medicine administration

35
Problems with fluid from

drains
- Drainage care

36 Problems with pressure ulcers

- Medicine administration

- Guidance

- Treatment and care of skin problem

- Relocation and mobilization

- Training

- Wound treatment

- Collaboration with networks

37 Problems with sexuality

- Collaboration with networks

- Guidance

- Mental support

- Medicine administration

- Training

38
Problems with the sense of

sight

- Training

- Collaboration with networks

- Guidance

- Drug dispensing

- Medicine administration

- Rehabilitation

- Support for ADL activity

- Care when using personal aids

39
Problems with the sense of

taste
- Guidance

259

40 Respiratory problems

- Secret suction

- Respirator treatment

- Surveys and measurement of values

- Medicine administration

- Collaboration with networks

- Respiratory therapy

- Mental support

- Guidance

- Tracheostomy care

- Oxygen treatment

- Training

41 Problems with obesity

- Nutrition efforts

- Collaboration with networks

- Training

- Nutrition screening

- Guidance

42 Emotional problems

- Guidance

- Psychiatric care

- Collaboration with networks

- Mental support

- Medicine administration

43
Other skin and mucous

membrane problems

- Medicine administration

- Collaboration with networks

- Treatment and care of skin problem

- Guidance

- Training

44 Problems with daily activities

- Relocation and mobilization

- Guidance

- Training

- Support for ADL activity

- Collaboration with networks

- Rehabilitation

Annex 3 - FSIII Condition-Interventions

260

261

ANNEX 4 - FROM EHRULES TO SCHEMATRON EXAMPLES

Definition of the context for the expressions

EHRules context: /;

SCH <rule context="/">

Declaration and assignation of Integer and Real variables

EHRules

$varA: Integer := 6;

$varD: Integer := $varB+1-1-1;

$total: Integer := path/to/value + $varB - $varB;

$varF: Integer := length('Hello world');

$varH: Real := round(5.1234, 3) + 1 - 1;

SCH

<let name="varA" value="6"/>

<let name="varD" value="(((xs:integer($varB) + 1) - 1) - 1)"/>

<let name="total" value="((path/to/value + xs:integer($varB)) -

xs:integer($varB))"/>

<let name="varF" value="string-length('Hello world')"/>

<let name="varH" value="((round(5.1234, 3) + 1) - 1)"/>

Relational expressions involving Integer and Real

EHRules

$varA = 6.0;

$total = $varA+$varB-$varB;

$varA = (11 % 3)+4;

$varA >= path/to/value;

SCH

<assert test="($varA castable as xs:integer) and (xs:integer($varA) = 6.0)"

fpi="expr" role="error"> Failed '($varA = 6.0)'</assert>

<assert test="($total castable as xs:integer and $varA castable as xs:integer

and $varB castable as xs:integer) and (xs:integer($total) = ((xs:integer($varA)

Annex 4 - From EHRules to Schematron examples

262

+ xs:integer($varB)) - xs:integer($varB)))" fpi="expr" role="error"> Failed

'($total = (($varA + $varB) - $varB))'</assert>

<assert test="($varA castable as xs:integer) and (xs:integer($varA) = ((11 mod

3) + 4))" fpi="expr" role="error"> Failed '($varA = ((11 % 3) + 4))'</assert>

<assert test="($varA castable as xs:integer) and (xs:integer($varA) >=

path/to/value)" fpi="expr" role="error"> Failed '($varA >=

path/to/value)'</assert>

Declaration and assignation of Date variables

EHRules

$varDA: Date := [2006-11-22];

$varDB: Date := path/to/date;

$varDC: Date := currentDate();

SCH

<let name="varDA" value="xs:date('2006-11-22')"/>

<let name="varDB" value="path/to/date"/>

<let name="varDC" value="current-date()"/>

Relational expressions involving Dates

EHRules

$varDB = [2006-11-23];

path/to/date = [2006-11-23];

$varDC > $varDA;

currentDate() > $varDA;

currentDate() > $varDA and not path/to/date > currentDate();

SCH

<assert test="($varDB castable as xs:date) and (xs:date($varDB) =

xs:date('2006-11-23'))" fpi="expr" role="error"> Failed '($varDB = [2006-11-

23])'</assert>

<assert test="(path/to/date = xs:date('2006-11-23'))" fpi="expr"

role="error"> Failed '(path/to/date = [2006-11-23])'</assert>

<assert test="($varDC castable as xs:date and $varDA castable as xs:date) and

(xs:date($varDC) > xs:date($varDA))" fpi="expr" role="error"> Failed '($varDC

263

> $varDA)'</assert>

<assert test="($varDA castable as xs:date) and (current-date() >

xs:date($varDA))" fpi="expr" role="error"> Failed '(currentDate() >

$varDA)'</assert>

<assert test="($varDA castable as xs:date) and ((current-date() >

xs:date($varDA)) and not ((path/to/date > current-date())))" fpi="expr"

role="error"> Failed '((currentDate() > $varDA) AND NOT (path/to/date >

currentDate()))'</assert>

Declaration and assignation of Time variables

EHRules

$varTA: Time := [08:30:00];

$varTB: Time := path/to/time;

$varTC: Time := currentTime();

SCH

<let name="varTA" value="xs:time('08:30:00')"/>

<let name="varTB" value="path/to/time"/>

<let name="varTC" value="current-time()"/>

Relational expressions involving Times

EHRules

$varTB=[08:30:00];

path/to/time = [08:30:00];

$varTC != $varTA;

currentTime() != $varTA;

currentTime() != $varTA and not path/to/time = currentTime();

SCH

<assert test="($varTB castable as xs:time) and (xs:time($varTB) =

xs:time('08:30:00'))" fpi="expr" role="error"> Failed '($varTB =

[08:30:00])'</assert>

<assert test="(path/to/time = xs:time('08:30:00'))" fpi="expr" role="error">

Failed '(path/to/time = [08:30:00])'</assert>

<assert test="($varTC castable as xs:time and $varTA castable as xs:time) and

(xs:time($varTC) != xs:time($varTA))" fpi="expr" role="error"> Failed '($varTC

Annex 4 - From EHRules to Schematron examples

264

!= $varTA)'</assert>

<assert test="($varTA castable as xs:time) and (current-time() !=

xs:time($varTA))" fpi="expr" role="error"> Failed '(currentTime() !=

$varTA)'</assert>

<assert test="($varTA castable as xs:time) and ((current-time() !=

xs:time($varTA)) and not ((path/to/time = current-time())))" fpi="expr"

role="error"> Failed '((currentTime() != $varTA) AND NOT (path/to/time =

currentTime()))'</assert>

Declaration and assignation of DateTime variables

EHRules

$varDTA: Date_time := ([2006-11-22 08:30:00]);

$varDTB: Date_time := path/to/date_time;

$varDTC: Date_time := currentDateTime();

SCH

<let name="varDTA" value="xs:dateTime('2006-11-22T08:30:00')"/>

<let name="varDTB" value="path/to/date_time"/>

<let name="varDTC" value="current-dateTime()"/>

Relational expressions involving DateTimes

EHRules

$varDTB=[2006-11-22 18:57:01];

path/to/date_time > [2006-11-22 08:30:00];

$varDTC != $varDTA;

currentDateTime() > $varDTA;

currentDateTime() > $varDTA and not path/to/date_time >

currentDateTime();

SCH

<assert test="($varDTB castable as xs:dateTime) and (xs:dateTime($varDTB) =

xs:dateTime('2006-11-22T18:57:01'))" fpi="expr" role="error"> Failed

'($varDTB = [2006-11-22 18:57:01])'</assert>

<assert test="(path/to/date_time > xs:dateTime('2006-11-22T08:30:00'))"

fpi="expr" role="error"> Failed '(path/to/date_time > [2006-11-22

265

08:30:00])'</assert>

<assert test="($varDTC castable as xs:dateTime and $varDTA castable as

xs:dateTime) and (xs:dateTime($varDTC) != xs:dateTime($varDTA))"

fpi="expr" role="error"> Failed '($varDTC != $varDTA)'</assert>

<assert test="($varDTA castable as xs:dateTime) and (current-dateTime() >

xs:dateTime($varDTA))" fpi="expr" role="error"> Failed '(currentDateTime()

> $varDTA)'</assert>

<assert test="($varDTA castable as xs:dateTime) and ((current-dateTime() >

xs:dateTime($varDTA)) and not ((path/to/date_time > current-dateTime())))"

fpi="expr" role="error"> Failed '((currentDateTime() > $varDTA) AND

NOT (path/to/date_time > currentDateTime()))'</assert>

Declaration and assignation of Duration variables

EHRules

$varDuF: Duration := [10Y 10M 10D 10h 10m 10s];

$varDuG: Duration := [600s];

$varDuH: Duration := [1Y];

$varDuI: Duration := [12M];

SCH

<let name="varDuF" value="xs:duration('P10Y10M10DT10H10M10S')"/>

<let name="varDuG" value="xs:duration('PT600S')"/>

<let name="varDuH" value="xs:duration('P1Y')"/>

<let name="varDuI" value="xs:duration('P12M')"/>

Relational expressions involving Durations

EHRules

$varDuH = $varDuI;

[1Y 0s] = [12M];

[-0h 10m 0s] = [-600s];

SCH

<assert test="($varDuH castable as xs:duration and $varDuI castable as

xs:duration) and (xs:duration($varDuH) = xs:duration($varDuI))" fpi="expr"

role="error"> Failed '($varDuH = $varDuI)'</assert>

Annex 4 - From EHRules to Schematron examples

266

<assert test="(xs:duration('P1YT0S') = xs:duration('P12M'))" fpi="expr"

role="error"> Failed '([1Y 0s] = [12M])'</assert>

<assert test="(xs:duration('-PT0H10M0S') = xs:duration('-PT600S'))"

fpi="expr" role="error"> Failed '([-0h 10m 0s] = [-600s])'</assert>

Declaration and assignation of String variables

EHRules

$varA: String := ' Hello ';

$varB: String := trim($varA);

$varD: String := $varA + $varB;

$total: String := path/to/string;

$varF: String := toUpperCase($varD);

SCH

<let name="varA" value="' Hello, '"/>

<let name="varB" value="normalize-space(xs:string($varA))"/>

<let name="varD" value="concat(xs:string($varA), xs:string($varB))"/>

<let name="total" value="path/to/string"/>

<let name="varF" value="upper-case(xs:string($varD))"/>

Relational expressions involving Strings

EHRules

$varA = ' Hello, ';

$varB = 'Hello,';

$varD = ' Hello, Hello,';

$total = 'Total';

$varF = ' HELLO, HELLO,';

SCH

<assert test="($varA castable as xs:string) and (xs:string($varA) = ' Hello, ')"

fpi="expr" role="error"> Failed '($varA = ' Hello, ')'</assert>

<assert test="($varB castable as xs:string) and (xs:string($varB) = 'Hello,')"

fpi="expr" role="error"> Failed '($varB = 'Hello,')'</assert>

<assert test="($varD castable as xs:string) and (xs:string($varD) = ' Hello,

Hello,')" fpi="expr" role="error"> Failed '($varD = ' Hello, Hello,')'</assert>

267

<assert test="($total castable as xs:string) and (xs:string($total) = 'Total')"

fpi="expr" role="error"> Failed '($total = 'Total')'</assert>

<assert test="($varF castable as xs:string) and (xs:string($varF) = ' HELLO,

HELLO,')" fpi="expr" role="error"> Failed '($varF = ' HELLO,

HELLO,')'</assert>

Declaration and assignation of Boolean variables

EHRules

$varA: Boolean := true;

$varC: Boolean := path/to/boolean;

$varE: Boolean := $varA and $varB;

$varK: Boolean := there_exists $i IN path/to/booleans : $i>5;

$varN: Boolean := for_all $i IN path/to/booleans : $i>=-1 and $i<=6;

SCH

<let name="varA" value="true()"/>

<let name="varC" value="path/to/boolean"/>

<let name="varE" value="(xs:boolean($varA) and xs:boolean($varB))"/>

<let name="varK" value="(some $i in path/to/booleans satisfies (($i) > 5))"/>

<let name="varN" value="(every $i in path/to/booleans satisfies ((($i) >= (0 -

1)) and (($i) <= 6)))"/>

Relational expressions involving Booleans

EHRules

$varA = true;

$varC = false;

$varE = false;

$varK = true;

$varN = true;

SCH

<assert test="($varA castable as xs:boolean) and (xs:boolean($varA) = true())"

fpi="expr" role="error"> Failed '($varA = true)'</assert>

<assert test="($varC castable as xs:boolean) and (xs:boolean($varC) =

false())" fpi="expr" role="error"> Failed '($varC = false)'</assert>

Annex 4 - From EHRules to Schematron examples

268

<assert test="($varE castable as xs:boolean) and (xs:boolean($varE) = false())"

fpi="expr" role="error"> Failed '($varE = false)'</assert>

<assert test="($varK castable as xs:boolean) and (xs:boolean($varK) = true())"

fpi="expr" role="error"> Failed '($varK = true)'</assert>

<assert test="($varN castable as xs:boolean) and (xs:boolean($varN) =

true())" fpi="expr" role="error"> Failed '($varN = true)'</assert>

Declaration and assignation of List variables

EHRules

$varQ: List<Integer>:={10,20,$varO,$varP+10,50};

$varR: List<String>:={'red', 'green', 'blue'};

$varS: List<Boolean>:={true, true, false};

SCH

<let name="varQ" value="((((10 , 20) , xs:integer($varO)) , (xs:integer($varP)

+ 10)) , 50)"/>

<let name="varR" value="(('red' , 'green') , 'blue')"/>

<let name="varS" value="((true() , true()) , false())"/>

Simple value set binding

EHRules
$varIN_01: Boolean := [snomed_ct::168539009] IN [snomed_ct_ec::<

138875005 |snomed root|];

SCH

<let name="varIN_01" value="document(iri-to-

uri(concat('https://snquery.veratech.es/VTTermService/ws/ValueSet/$valida

te-code?code=', '168539009', '&url=http://snomed.info/ecl/', '<

138875005 |snomed root|')))//fhir:valueBoolean/@value='true'"/>

Conditional value set binding

EHRules

$varEc: Snomed_ec := [snomed_ct_ec::< 138875005 |snomed root|];

$varABU: Integer := 3;

IF $varABU=3 THEN path/to/concept IN $varEc;

SCH
<let name="varEc" value="'< 138875005 |snomed root|'"/>

<let name="varABU" value="3"/>

269

<assert test="($varABU castable as xs:integer and $varEc castable as xs:string)

and (if ((xs:integer($varABU) = 3)) then document(iri-to-

uri(concat('https://snquery.veratech.es/VTTermService/ws/ValueSet/$valida

te-code?code=', path/to/concept, '&url=http://snomed.info/ecl/',

xs:string($varEc))))//fhir:valueBoolean/@value='true' else true())" fpi="expr"

role="error"> Failed 'IF ($varABU = 3) THEN path/to/concept IN

$varEc;'</assert>

Dependency value set binding

EHRules

$varConcept: Terminology_code := path/to/concept;

[snomed_ct::80146002] IN [snomed_ct_ec::< [[$varConcept]]];

[snomed_ct::80146002] IN [snomed_ct_ec::<[[path/to/concept]]];

SCH

<let name="varConcept" value="path/to/concept"/>

<assert test="document(iri-to-

uri(concat('https://snquery.veratech.es/VTTermService/ws/ValueSet/$valida

te-code?code=', '80146002', '&url=http://snomed.info/ecl/', '< ' ,

$varConcept)))//fhir:valueBoolean/@value='true'" fpi="expr" role="error">

Failed '[snomed_ct::80146002] IN [snomed_ct_ec::<

[[$varConcept]]]'</assert>

<assert test="document(iri-to-

uri(concat('https://snquery.veratech.es/VTTermService/ws/ValueSet/$valida

te-code?code=', '80146002', '&url=http://snomed.info/ecl/', '< ' ,

path/to/concept)))//fhir:valueBoolean/@value='true'" fpi="expr"

role="error"> Failed '[snomed_ct::80146002] IN [snomed_ct_ec::<

[[path/to/concept]]]'</assert>

Conditional + dependency value set binding

EHRules

$varPostcoordination: Terminology_code := path/to/postcoordinated;

$varConcept: Terminology_code := path/to/concept;

$varABU: Integer := 3;

Annex 4 - From EHRules to Schematron examples

270

IF $varABU=2 THEN [snomed_ct::80146002] IN

[snomed_ct_ec::<[[$varPostcoordination]]];

ELSE [snomed_ct::80146002] IN [snomed_ct_ec::< [[$varConcept]]];

SCH

<let name="varConcept" value="path/to/concept"/>

<let name="varPostcoordination" value="path/to/postcoordinated"/>

<let name="varABU" value="3"/>

<assert test="($varABU castable as xs:integer) and (if ((xs:integer($varABU) =

2)) then document(iri-to-

uri(concat('https://snquery.veratech.es/VTTermService/ws/ValueSet/$valida

te-code?code=', '80146002', '&url=http://snomed.info/ecl/', '< ' ,

$varPostcoordination)))//fhir:valueBoolean/@value='true' else document(iri-

to-

uri(concat('https://snquery.veratech.es/VTTermService/ws/ValueSet/$valida

te-code?code=', '80146002', '&url=http://snomed.info/ecl/', '< ' ,

$varConcept)))//fhir:valueBoolean/@value='true')" fpi="expr" role="error">

Failed 'IF ($varABU = 2) THEN [snomed_ct::80146002] IN

[snomed_ct_ec::< [[$varPostcoordination]]]; ELSE [snomed_ct::80146002]

IN [snomed_ct_ec::< [[$varConcept]]]'</assert>

Definition of contexts with conditions

EHRules

context: this/is/a/dummy/path;

condition: count(children()) > 3;

context: this/is/a/dummy/path;

condition: height > 185;

context: this/is/a/dummy/path;

condition: . = 80;

SCH
<rule context="this/is/a/dummy/path[(count(child::*) > 3)]">

<rule context="this/is/a/dummy/path[(height > 185)]">

<rule context="this/is/a/dummy/path[(. = 80)]">

