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Abstract 

Modelling of time-dependent properties of unidirectional fiber reinforced plastics on the 

basis of structural mechanics of composite materials and mechanics of hereditary media 

has been proposed in this research. The constitutive equations of unidirectional fiber 

reinforced plastics have been obtained using the Volterra correspondence principle and 

the algebraic properties of resolvent operators. Modelling of viscoelastic properties of a 

unidirectional composite material on the basis of EDT-10 epoxy resin has been shown. 

Keywords: Creep, relaxation, constitutive equation, hereditary operator, resolvent 

operator, elastic viscoelastic correspondence principle 

 

1. Introduction 

The unidirectional layer is a base for thin-walled structures of layered polymer 

composites. Therefore, it is of great importance to model its mechanical properties by 

the properties of its components. Since the mechanical properties of unidirectional 
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polymer composites are time dependent, the general laws of structural mechanics are 

inadequate to describe the composite behaviour under time varying loading. In 

structural mechanics, elastic properties of unidirectional composite material are 

commonly modelled by a body with alternating layers of matrix and fiber and on the 

base of micromechanics of the lamina stress-strain relations are established [1]. The 

development of structural models to predict time-dependent properties of unidirectional 

polymer matrix composites has been undertaken [2-4]. In [2], a homogenization cell 

filled with a transversally elastic fiber and a viscoelastic isotropic matrix was 

considered. The constitutive equation for the matrix was chosen in the form of a 

nonlinear dependence of the strain rate on the power functions of time and stress. In [3], 

a three-dimensional micromechanical model is proposed based on different 

representations of the homogenization cell, which have different values of the volume 

content of fibers and determine the relations of the hereditary type of anisotropic body. 

The theoretical foundations of linear viscoelasticity, including consideration of 

continuous and discrete creep and relaxation spectra are described in [4-8]. A 

comprehensive method for constructing constitutive relations based on test results 

during short-term and long-term tests have been proposed in [9]. As it was shown in 

[10, 11] time-dependent properties of unidirectional composites to a great extent are 

determined by viscoelastic behaviour of polymer matrix and its bonding with the fibres. 

Using the correspondence principle [4, 5] and the relations of structural mechanics, the 

relations for modelling of viscoelastic properties of unidirectional composite can be 

obtained. Along with the Laplace transform, an interrelation between elastic and 

viscoelastic characteristics can be established using operator correspondence principle 

based on relations of mechanics of hereditary solids [4]. Using the operator approach, 

the viscoelastic properties can be described with the aid of hereditary operators having 
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algebraic properties allowing to reduce the relations to the explicit form [4]. The algebra 

of resolvent hereditary operators was elaborated in [4]. For a kernel of the resolvent 

operator, the following functions can be used: power function (Abel's kernel), 

exponential function, Rabotnov fraction-exponential function, linear combination of 

exponential or fraction-exponential functions [4, 6]. A new special exponential-type 

kernel for modelling the viscoelastic properties is given in [7]. 

2. Model description 

2.1. Structural mechanics relationships 

The relations for the technical elastic constants expressed through the elastic 

properties of the components and their volume fraction are given in [1]. The expressions 

for the effective characteristics are as follows: 

               𝐸1 = 𝐸𝑓𝜓 + 𝐸𝑚(1 − 𝜓)                                                       (1) 

               
1

𝐸2
=

𝜓

𝐸𝑓
+

1−𝜓

𝐸𝑚
                                                        (2) 

where 𝐸1, 𝐸2 are elastic characteristics of the unidirectional fiber reinforced composite, 

𝐸𝑓 , 𝐸𝑚   are fiber and matrix moduli, 𝜓 is fiber volume fraction. 

2.2. Theory of resolvent operators 

The operator form of the linear constitutive hereditary equation under uniaxial loading 

can be written as follows 

𝐸𝜀 = 𝜎 + 𝐾∗𝜎 = (1 + 𝐾∗)𝜎,    (3) 

where action of hereditary operator on stress 𝜎 takes the following form: 𝐾∗𝜎 =

∫ 𝐾(𝑡 − 𝜏)𝜎(𝜏)𝑑𝜏
𝑡

0
, 𝐾(𝑡) is kernel of the operator. 

The constitutive equation (3) can formally be inversed and written in the following form 
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𝜎 = 𝐸(𝜀 − 𝑅∗𝜀) = 𝐸(1 − 𝑅∗)𝜀    (4) 

Operator 𝑅∗ is resolvent in relation to operator 𝐾∗. Substituting the expression for 

𝜎 from (4) into (3) yields the equation for interrelation between the initial operator and 

its resolvent 

(1 + 𝐾∗)−1 = 1 − 𝑅∗     (5) 

For Abel’s kernel: 𝐾(𝑡) = 𝐼𝛼(𝑡) =
𝑡𝛼

Γ(1+𝛼)
, −1 < 𝛼 < 0, the expression for Abel’s 

operator is given by 𝐼𝛼
∗ ⋅ 1 = 𝐼𝛼

∗ =
𝛽𝑡1+𝛼

Γ(2+𝛼)
, 1 is a unity Heaviside function, Γ is gamma-

function. The resolvent of Abel’s operator is Rabotnov fraction-exponential function 

can be written as 

𝑅∗ = 𝑍𝛼
∗ (−𝛽) ⋅ 1 = 𝑡1+𝛼 ∑

(−𝛽𝑡1+𝛼)
𝑛

Γ[1+(1+𝛼)(1+𝑛)]
∞
𝑛=0    (6) 

Series (6) converges at 𝛽 > 0. 

The resolvent of sum of fraction-exponential or exponential functions are reduced to 

consequent solving of some equations and system of linear equations [4]. It is possible 

to inverse the sum of fraction-exponential functions only in the case of the same value 

of the parameter of singularity 𝛼. The general expression (5) for the series of resolvent 

operators is given by 

(1 + ∑ 𝑘𝑖𝑍𝛼
∗ (−𝛽𝑖)

𝑛
𝑖=1 )−1 = 1 − ∑ 𝑚𝑠𝑍𝛼

∗ (−𝛾𝑠)𝑛
𝑠=1    (7) 

Multiplying (1 + ∑ 𝑘𝑖𝑍𝛼
∗ (−𝛽𝑖)

𝑛
𝑖=1 )(1 − ∑ 𝑚𝑠𝑍𝛼

∗ (−𝛾𝑠)𝑛
𝑠=1 ) and using formula for 

resolvent operators multiplication 𝑍𝛼
∗ (𝑥)𝑍𝛼

∗ (𝑦) =
1

𝑥−𝑦
[𝑍𝛼

∗ (𝑥) − 𝑍𝛼
∗ (𝑦)] the equations 

for determining parameters 𝑚𝑠 and 𝛾𝑠 give the following relations 

1 + ∑
𝑘𝑖

𝛽𝑖−𝛾𝑠
= 0,𝑖  1 + ∑

𝑚𝑠

𝛽𝑖−𝛾𝑠
= 0,𝑠  
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Since the exponential operator is a special case of Rabotnov fraction-exponential 

operator formula (7), it is also applicable for deriving a resolvent of the sum of 

exponential operators. 

2.3. Creep compliance and relaxation modulus 

Time-dependent properties of unidirectional composite material are modelled similarly 

to the elastic-viscoelastic correspondence principle [4]. The expressions of structural 

mechanics used in this paper are correct under the following assumptions: full bonding 

of the components; components are in uniaxial stress state, i.e. stresses arising from 

difference in a Poisson's ratio are negligible. For simplicity, it is assumed that fibres are 

elastic. Estimation of the effective viscoelastic properties can be obtained by 

substituting the following characteristics with the hereditary operator and relaxation 

modulus and creep compliance of polymer matrix can be written as: 

𝐸𝑚
∗ = 𝐸𝑚(1 − 𝑅𝑚

∗ )    (8) 

1

𝐸𝑚
∗ =

1

𝐸𝑚
(1 + 𝐾𝑚

∗ ),    (9) 

where 𝐸𝑚 is an instantaneous value of the matrix modulus, which can be estimated 

through long term data processing or under short term tests in which it can be reduced 

to an acceptable level of the amount of time-dependent strain. Operator 𝑅𝑚
∗ is resolvent 

in relation to 𝐾𝑚
∗ . Let us take a consideration that time-dependent properties of 

unidirectional composite are defined by viscoelastic properties of polymer matrix. 

Substituting (8), (9) into relations (1), (2) the explicit operator form of the effective 

relaxation moduli and creep compliances of unidirectional composites can be 

established. 
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Substituting expression (8) in (1) the operator expression for hereditary modulus in 

longitudinal direction yields 

 𝐸1
∗ = 𝐸𝑓𝜓 + 𝐸𝑚

∗ (1 − 𝜓) = 𝐸1(1 − 𝜆1𝑅𝑚
∗ ),                  (10) 

where 𝜆1 =
𝐸𝑚(1−𝜓)

𝐸1
. 

Just as the relaxation modulus using the operator representation for creep compliance of 

matrix: 
1

𝐸𝑚
∗ =

1

𝐸𝑚
(1 + 𝐾𝑚

∗ ), the hereditary operator relation for creep compliance of the 

layer can be written as: 

1

𝐸2
∗ =

𝜓

𝐸𝑓
+

1−𝜓

𝐸𝑚
∗ =

1

𝐸2
(1 + 𝜆2𝐾𝑚

∗ ),   (11) 

where 𝜆2 =
𝐸2(1−𝜓)

𝐸𝑚
. 

Note that in absence of time-dependent properties the expressions derived degenerate 

into the relations of structural mechanics of composites. 

 

3. Viscoelasticity of polymer matrix 

 Let us consider EDT-10 epoxy resin as a matrix of unidirectional composite. The 

readings of long-term creep in 50000 hours (5.7 years) were given in [10]. Test results 

show significant creep of the epoxy resin, creep exceeds instantaneous values by several 

times. It should be noted that exponential operator is a particular case of fraction-

exponential operator, i.e. 𝑍0
∗(−𝛽𝑖).  The expression of creep kernel was taken as 

follows: 

𝐾𝑚(𝑡 − 𝜏) = ∑ 𝐴𝑖𝛼𝑖𝑒𝑥𝑝[−𝛼𝑖(𝑡 − 𝜏)]𝑘
𝑖=1     (12) 

Creep under 𝜎 = const is described by: 
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𝜀(𝑡) =
𝜎̅

𝐸𝑚
[1 + ∑ 𝐴𝑖(1 − 𝑒𝑥𝑝(−𝛼𝑖𝑡))𝑘

𝑖=1 ],    (13) 

where 𝐸𝑚 is instantaneous Young’s modulus equal to 3.3 GPa, values of coefficients 𝐴𝑖 

and 𝛼𝑖 are taken from [9] and are given in Table. 

𝛼𝑖 , ℎ𝑜𝑢𝑟−1 100 10−1 10−2 10−3 10−4 10−5 

𝐴𝑖 0.092 0.099 0.1163 0.393 1.815 2.838 

 

Alternative to the kernel as a sum of exponential functions power function (Abel’s 

kernel) can be also taken. In this case creep curve can be described by 

𝜀(𝑡) =
𝜎

𝐸𝑚
(1 +

𝑘

Γ(2+𝛼)
𝑡1+𝛼),    (14) 

where parameters 𝛼 = −0.6, 𝑘 = 0.0441 ℎ𝑜𝑢𝑟−(1+𝛼) have been obtained by 

processing of experimental data. A comparison of experimental data and analytical 

creep curves is presented in Fig. 1. 
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Fig.1. Creep curves for EDT-10 resin, 𝜎 = 6.8; 13.6; 20.4 𝑀𝑃𝑎. a – Prony series, b – 

Abel’s kernel. 

4. Creep and relaxation of unidirectional composite 

Let us consider creep of unidirectional composite under longitudinal uniaxial loading. 

Creep of unidirectional composite at 𝜎1̅̅̅=const can be written as 
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𝜀1(𝑡) =
𝜎1̅̅̅̅

𝐸1(1−𝜆1𝑅𝑚
∗ )

=
𝜎1̅̅̅̅

𝐸1
(1 + 𝜆1𝐾𝑚

∗ ) .   (15) 

For comparison, it is convenient to present creep curves in the following dimensionless 

form  

𝜀̃ =
𝐸𝜀

𝜎̅
= 1 + 𝜆𝐾𝑚

∗ .    (16) 

The relative creep strain in (16) defined by hereditary operator 𝜆𝐾𝑚
∗  can be compared 

with relative instantaneous or elastic strain. 

Creep of the carbon fiber reinforced plastic, depending on the type of the kernel can be 

written as follows: 

𝜀1(𝑡) =  
𝜎1̅̅̅̅

𝐸1
(1 + 𝜆1 ∑ 𝐴𝑖[1 − 𝑒𝑥𝑝(−𝛼𝑖𝑡)]𝑛

𝑖=1 )   (17) 

𝜀1(𝑡) =  
𝜎1̅̅̅̅

𝐸1
(1 + 𝜆1

𝑘

Γ(2+𝛼)
𝑡1+𝛼)   (18) 

Young’s modulus of fiber in transverse direction was taken equal to 6.2 GPa. Creep 

strain in longitudinal direction is negligibly little and on the time scale of 5000 hours is 

approximately equal to 0.06 of elastic strain and in some cases the model of elastic 

behaviour can be acceptable [9]. 

Using relation (11) creep at 𝜎2̅̅ ̅ =const can be represented as 

𝜀2(𝑡) =
𝜎2̅̅̅̅

𝐸2
(1 + 𝜆2𝐾𝑚

∗ ) .   (19) 

Creep strain in transverse direction is significant, on the base of 50,000 hours it is about 

three times more then corresponding elastic strain. 

The constitutive equations corresponding to the sum of exponential functions 

and Abel’s kernel can be written as follows 

𝜎1 = 𝐸1(1 − ∑ 𝐵𝑖𝑍0
∗(−𝛽𝑖)

𝑛
𝑖=1 )𝜀1    (20) 
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𝜎1 = 𝐸1(1 − 𝜆𝑍𝛼
∗ (−𝜆))𝜀    (21) 

The stress relaxation is a special case of equations (20), (21) at 𝜀 = 𝑐𝑜𝑛𝑠𝑡. 

The approach also can be used for evaluation of stress redistribution between the 

components in a unidirectional composite. 

Thus using (15), stress in fibres can be estimated as: 

𝜎𝑓(𝑡) =
𝜎𝑓̅̅ ̅̅ 𝐸𝑓

𝐸1
(1 + 𝜆1𝐾𝑚

∗ ).   (22) 

The stress relaxation in the epoxy resin after some operator transformations can be 

written as follows: 

𝜎𝑚(𝑡) =
𝜎1̅̅̅̅ 𝐸𝑚

𝐸1
[1 − (1 − 𝜆1)𝐾𝑚

∗ ]   (23) 

Under constant stress applied to a unidirectional composite the fibres get uploaded due 

to relaxation in the polymer matrix. However, in the longitudinal direction the level of 

the uploading is negligibly small. It should be noted that to a large extent, unidirectional 

polymer composites manifest the time-dependent properties and physical nonlinearity 

under shear [4]. 

5. Conclusion 

 A structural-phenomenological model for constructing the constitutive equations 

of a unidirectional composite material based on the algebra of resolvent operators of 

hereditary mechanics of solids is proposed. It was assumed that the reinforcing fibers 

follow the law of elasticity, and the polymer matrix is viscoelastic. 
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