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Featured Application: This review provides a critical review of deep/machine learning algo-
rithms used in the identification of ischemic stroke and demyelinating brain diseases. It evalu-
ates their strengths and weaknesses when applied to real world clinical data.

Abstract: Medical brain image analysis is a necessary step in computer-assisted/computer-aided
diagnosis (CAD) systems. Advancements in both hardware and software in the past few years have
led to improved segmentation and classification of various diseases. In the present work, we review
the published literature on systems and algorithms that allow for classification, identification, and
detection of white matter hyperintensities (WMHs) of brain magnetic resonance (MR) images, spe-
cifically in cases of ischemic stroke and demyelinating diseases. For the selection criteria, we used
bibliometric networks. Of a total of 140 documents, we selected 38 articles that deal with the main
objectives of this study. Based on the analysis and discussion of the revised documents, there is
constant growth in the research and development of new deep learning models to achieve the high-
est accuracy and reliability of the segmentation of ischemic and demyelinating lesions. Models with
good performance metrics (e.g., Dice similarity coefficient, DSC: 0.99) were found; however, there
is little practical application due to the use of small datasets and a lack of reproducibility. Therefore,
the main conclusion is that there should be multidisciplinary research groups to overcome the gap
between CAD developments and their deployment in the clinical environment.

Keywords: deep learning; machine learning; ischemic stroke; demyelinating disease; image pro-
cessing; computer-aided diagnostics; brain MRI; CNN; white matter hyperintensities; VOSviewer

1. Introduction

There are estimated to be as many as a billion people worldwide [1] affected by pe-
ripheral and central neurological disorders [1,2]. Some of these disorders include brain
tumors, Parkinson’s disease (PD), Alzheimer’s disease (AD), multiple sclerosis (MS), epi-
lepsy, dementia, neuroinfectious, stroke, and traumatic brain injuries [1]. According to
the World Health Organization (WHO), ischemic stroke and “Alzheimer disease with
other dementias” are the second and fifth major causes of death, respectively [2].

Biomedical images give fundamental information necessary for the diagnosis, prog-
nosis, and treatment of different pathologies. Hence, neuroimaging plays a fundamental
role in understanding how the brain and the nervous system function [3] and discover
how structural or functional anatomical alteration is correlated with different neurologi-
cal disorders [4] and brain lesions. Currently, research on artificial intelligence (Al) and
diverse techniques of imaging constitutes a crucial tool for studying the brain [5-11] and
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aids the physician to optimize the time-consuming tasks of detection and segmentation of
brain anomalies [12] and also to better interpret brain images [13] and analyze complex
brain imaging data [14].

In terms of neuroimaging of both normal tissues and pathologies, there are different
modalities, namely (1) computed tomography (CT) and magnetic resonance imaging
(MRI), which are commonly used for the structural visualization of the brain; (2) positron
emission tomography (PET), used principally for physiological analysis; and (3) single-
photon emission tomography (SPECT) and functional MRI, which are used for functional
analysis of the brain [15].

MRI and CT are preferred by radiologists to understand brain pathologies [12]. Due
to continual advancements in MRI technology, it considered to be a promising tool that
can elucidate the brain structure and function [3], e.g., brain MR image resolution has
grown by leaps and bounds since the first MR image acquisition [16]. Because of this rea-
son, this modality is frequently used (more than CT) to examine anatomical brain struc-
tures, perform visual inspection of cranial nerves, and examine abnormalities of the pos-
terior fossa and spinal cord [17]. Another advantage of MRI compared to CT is that MRI
is less susceptible to artifacts in the image [18].

In addition, MR image analysis is useful different tasks, e.g., lesion detection, lesion
segmentation, tissue segmentation, and brain parcellation on neonatal, infant, and adult
subjects [4,5]. In this work, we discuss MR image processing to detect, segment, and clas-
sify white matter hyperintensities (WMHSs) using techniques of artificial intelligence.
Ghafoorian et al. [19] state that WMHs are seen in MRI studies of neurological disorders
like multiple sclerosis, dementia, stroke, cerebral small-vessel disease (SVD), and Parkin-
son’s disease [19,20].

According to Leite et al. [20], due to a lack of pathological studies, the etiology of
WMHs is frequently proposed to be of an ischemic or a demyelinating nature. A WMH is
termed ischemia if caused by an obstruction of a blood vessel, and a WMH is considered
to be demyelinating when there is an inflammation that causes destruction and loss of the
myelin layer and compromises neural transmission [20-22], and this type of WMH is often
related to multiple sclerosis (MS) [8,22] (Figure 1).

demyelinating
disease

Figure 1. Diseases considered in this review: (a) ischemic stroke, which occurs when a vessel in the
brain is blocked; (b) demyelinating disease, which is the loss of the myelin layer in the axons of
neurons; and (c) white matter hyperintensities (WMHs) of ischemic stroke and demyelination, as
shown by the magnetic resonance imaging—fluid attenuated inversion recovery (MRI-FLAIR) mo-
dality, which shows that without an expert, it is difficult to distinguish one disease from another
because of their similarities in WMHs.

A stroke occurs when the blood flow to an area of the brain is interrupted [21,23].
There are three types of ischemic stroke according to the Bamford clinical classification
system [24]: (1) partial anterior circulation syndrome (PACS), where the middle/anterior
cerebral regions are affected; (2) lacunar anterior circulation syndrome (LACS), where the
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occlusion is present in vessels that provide blood to the deep-brain regions; and (3) total
anterior circulation stroke (TACS), when middle/anterior cerebral regions are affected due
to a massive brain stroke [24,25]. Ischemic stroke is a common cerebrovascular disease
[1,26,27] and one of the principal causes of death and disability in low- and middle-income
countries [1,4,6,7,27-29]. In developed countries, brain ischemia is responsible for 75-80%
of strokes, and 10-15% are attributed to a hemorrhagic brain stroke [4,25].

A demyelination disease is described as the loss of myelin with relative preservation
of axons [8,22,29]. Love [22] notes that there are demyelinating diseases in which axonal
degeneration occurs first and the degradation of myelin is secondary [7,22]. Accurate di-
agnosis classifies the demyelinating diseases of the central nervous system (CNS) accord-
ing to the pathogenesis into “demyelination due to inflammatory processes, demye-
lination caused by developed metabolic disorders, viral demyelination, hypoxic-ischemic
forms of demyelination and demyelination produced by focal compression” [22].

The inflammatory demyelination of the CNS is the principal cause of the common
neurological disorder multiple sclerosis (MS) [8,19,20,22,30], which affects the central
nervous system [31] and is characterized by lesions produced in the white matter (WM)
[32] of the brain and affects nearly 2.5 million people worldwide, especially young adults
(ages 18-35 years) [4,30,31].

The detection, identification, classification, and diagnosis of stroke is often based on
clinical decisions made using computed tomography (CT) and MRI [33]. Using MR, it is
possible to detect the presence of little infarcts and assess the presence of a stroke lesion
in the superficial and deep regions of the brain with more accuracy. This is because the
area of the stroke region is small and is clearly visible in MR images compared to CT
[4,21,25,26,28,34]. The delimitation of the area plays a fundamental role in the diagnosis
since it is possible to misdiagnose stroke as other disorders [35,36], e.g., glioma lesions
and demyelinating diseases [19,20].

For identifying neurological disorders like stroke and demyelinating disease, the
manual segmentation and delineation of anomalous brain tissue is the gold standard for
lesion identification. However, this method is very time consuming and specialist experi-
ence dependent [25,37], and because of these limitations, automatic detection of neurolog-
ical disorders is necessary, even though it is a complex task because of data variability,
e.g., in the case of ischemic stroke lesions, data variability could include the lesion shape
and location, and factors like symptom onset, occlusion site, and patient differences [38].

In the past few years, there has been considerable research in the field of machine
learning (ML) and deep learning (DL) to create automatic or semiautomatic systems, al-
gorithms, and methods that allow detection of lesions in the brain, such as tumors, MS,
stroke, glioma, AD, etc. [4,6,8-10,26,28,30,36,39-48]. Different studies demonstrate that
deep learning algorithms can be successfully used for medical image retrieval, segmenta-
tion, computer-aided diagnosis, disease detection, and classification [49-51]. However,
there is much work to be done to develop accurate methods to get results comparable to
those of specialists [43].

This critical review summarizes the literature on deep learning and machine learning
techniques in the processing, segmentation, and detection of features of WMHs found in
ischemic and demyelinating diseases in brain MR images.

The principal research questions asked here are:

e  Why is research on the algorithms to identify ischemia and demyelination through
the processing of medical images important?

¢  What are the techniques and methods used in developing automatic algorithms for
detection of ischemia and demyelinating diseases in the brain?

e  What are the performance metrics and common problems of deep learning systems
proposed to date?

This paper is organized as follows. Section 2 gives an outline of the literature review
selection criteria. Section 3 describes the principal machine learning and deep learning
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methods used in this application, Section 4 summarizes the principal constraints and com-
mon problems encountered in these CAD systems, and we conclude Section 5 with a brief
discussion.

2. The Literature Review: Selection Criteria

The literature review was conducted using the recommendations given by Khan et
al. [52], the methodology proposed by Torres-Carrién [53,54], and the protocol proposed
by Moher et al. [55]. The preferred reporting items for systematic reviews and meta-anal-
yses (PRISMA) flow diagram [55] is shown in Figure 2.
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Figure 2. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flow dia-
gram [55].

We generated and analyzed bibliometric maps and identified clusters and their ref-
erence networks [56,57]. We also used the methods given in [58,59] to identify the strength
of the research, as well as authors and principal research centers that work with MR im-
ages and machine/deep learning for the identification of brain diseases.

The bibliometric analysis was performed by searching for the relevant literature us-
ing the following bibliographic databases: Scopus [60], PubMed [61], Web of Science
(WOS) [62], Science Direct [63], IEEE Xplore [64], and Google Scholar [65].

To conduct an appropriate search, it is important to focus our attention on the real
context of the research, a method proposed by Torres-Carrion [54], the so-called concep-
tual mindfact (mentefacto conceptual), which can be used to organize the scientific thesau-
rus of the research theme [53]. Figure 3 describes the conceptual mindfact used in this
work to focus and constrain the topic to MRI Brain Algorithm Difference Ischemic and
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Demyelinating Diseases and obtain an adequate semantic search structure of the literature
in the relevant scientific databases.

Statics
Geometry [Image processing]
Optimization

m MATHEMATICS [COMPUTER VISION]

Brain MRI \
Brain lessions
Ischemic stroke Multiple Sclerosis
Demyelinating MRI BRAIN ALGORITHM cT
Deep learning DIFERENCE ISCHEMIA AND DEMYELINATING PET
Machine learning DISEASES X-ray
Radiomics RX
Algorithm /
CNN
v MRA R
DWT Difusion MRI
PCA
ANN
Kmeans

Figure 3. Conceptual mindfact (mentefacto conceptual) according to [53,54]. This allows the key
word identification for a systemic search of the literature in scientific databases.

Table 1 presents the semantic search structure [54] such as the input of the search-
specific literature (documents) in the scientific databases. The first layer is an abstraction
of the conceptual mindfact; the second corresponds to the specific technicality, namely
brain processing; the third level is relevant to the application, namely ischemic and demy-
elinating diseases. The fourth level is the global semantic structure search.

Table 1. Key words used in the global semantic structure search.

Magnetic resonance
imaging

(((magnetic*) AND (resonanc*) AND (imag* OR picture OR visualiz*)) OR mri OR mra)

Brain processing

(algorithm* OR svm OR dwt OR kmeans OR pca OR cnn OR ann)) AND (“deep learning”) OR (“neural net-

works”) OR (“machine learning”) OR (“convolutional neural network”) OR (“radiomics”)

Disease

((brain* OR cerebrum) AND ((ischemic AND strok*) OR (demyelinating AND (disease OR “brain lesions”))))

Key words for se-
mantic structure

TITLE-ABS-KEY ((((magnetic*) AND (resonanc*) AND (imag* OR picture OR visualiz*)) OR mri OR mra)
AND ((brain* OR cerebrum) AND ((ischemic AND strok*) OR (demyelinating AND (disease OR “brain le-

search in the Scopus sions”)))) AND (algorithm* OR svm OR dwt OR kmeans OR pca OR cnn OR ann)) AND (“deep learning”)

database

OR (“neural networks”) OR (“machine learning”) OR (“convolutional neural network”) OR (“radiomics”)

The symbol (¥) represents a wildcard to help in the search when a word has multiple spelling variations.

The global semantic structure search (Figure 2) resulted in 140 documents related to
the central theme of this work. Figure 4 shows the evolution of the number of publications
and the type (article, conference paper, and review) of the 140 documents from 2001 to
December 2020. The first article related to the area of the study was published in 2001, and
there has been a significant increase in the number of publications in the past three years,
2018 (21), 2019 (30), and 2020 (until 1 December; 33).

Figure 4 also shows that journal articles predominate (99), followed by conference
papers (27) and, finally, review articles (9). The first reviews were published in 2012 (2),
followed by 2013 (1), 2014 (1), 2015 (1), and 2020 (4). Other five documents published cor-
respond to conference reviews (3), an editorial (1), and a book chapter (1).
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M Article m Conference Paper M Review M Book Chapter M Editorial ®m Conference Review

Figure 4. Evolution of the number of publications and the type (article, conference paper, and re-
view) of the 140 documents from 2001 to 1 December 2020. The first article related to the theme of
this work was published in 2001, there were no published documents in 2002-2005, and the maxi-
mum number of publications is in 2020, with 33 documents. In relation to the type of documents,
the maximum number of publications were journal articles (99), followed by conference proceed-
ings (27) and, finally, review articles (9). Other five documents published correspond to conference
reviews (3), an editorial (1), and a book chapter (1). The reviews were published in 2012 (2), 2013
(1), 2014 (1), 2015 (1), and 2020 (4).

Figure 5 presents a list of the top 10 authors. Dr. Ona Wu [11,66,67] from Harvard
Medical School, Boston, United States, has published more documents (7) related to the
research area of this review, and this correlates with his publication record as documented
in the Scopus database related to ischemic stroke.

Wa, O. |
Forkert, .. - |

sabut, . - |
subudhi, A. |

Fiehler,).
Menaka, R. -

Maier, O. - |
MeKinley, 7. - I

Reyes, M.

e |

0 0.5 1 15 2 25 3 35 4 4.5 5 5.5 6 6.5 7 75

Documents

Figure 5. Classification of the top 10 authors according to the first criterion of search. In the figure,
it can be seen that Dr. Ona Wu [11,66,67] from Harvard Medical School, Boston, United States, has
published more documents (7) related to the research area of this review.
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To analyze and answer the three central research questions of this work, the global
search of the 140 documents was further refined. This filter complied with the categories
given by Fourcade and Khonsari [68], which were applied only to “article” documents.
These criteria were:

e Aim of the study: ischemia and demyelinating disease processing by MRI brain im-
ages, identification, detection, classification, or differentiation

e  Methods: machine learning and deep learning algorithms, neural network architec-
tures, dataset, training, validation, testing

e Results: performance metrics, accuracy, sensibility, specificity, dice coefficient

e  Conclusions: challenges, open problems, recommendations, future

According to the second selection criterion, we found 38 documents to include in the
analysis of this work that also were related to and in agreement with the items described
above.

For analysis, we used VOSviewer software version 1.6.15 [69] in order to construct
and display bibliometric maps. The data used for this objective were obtained from Sco-
pus due to its coverage of a wider range of journals [56,70].

In terms of citations and the countries of origin of these publications (Figure 6), we
observed that the United States has a large number of citations, followed by Germany,
India, and the United Kingdom. This relationship was determined by the analysis of the
number of citations in the documents generated by country, in agreement with the affili-
ation of the authors (primary authors), and for each country the total strength of the cita-
tion link [58]. The minimum number of documents of any individual country was five,
and the minimum number of citations a country received was one.

ﬁ; VOSviewer

Figure 6. Network of the publications in relation to the citations and the countries of documents.
The countries were determined by the first author’s affiliation. In the map, the density of yellow
color in each country indicates the number of citations: The United States has a large number of

citations in its documents, followed up Germany, India, and the United Kingdom.

Figure 7 shows the network of documents and citations, and this map relates the dif-
ferent connections between the documents through the citations. The scale of the colors
(purple to yellow) indicates the number of citations received per document, together with
the year of publication, and the diameter of the points shows the normalization of the
citations according to Van Eck and Waltman [59,71]. The purple points are the documents
that have less than 10 citations, and yellow represents documents with more than 60 cita-
tions.
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Figure 7. Citation map between documents generated in VOSviewer [57]. The scale of the colors
(purple to yellow) indicates the number of citations per document, and the diameter of the points
shows the normalization of the citations according to Van Eck and Waltman [71]. The purple
points are the documents that had less than 10 citations, and the yellow points represent docu-
ments with more than 60 citations.

In Table 2, we list the 10 most cited articles according to the normalization of the
citations [71]. Waltman et al. [58] state that “the normalization corrects for the fact that
older documents have had more time to receive citations than more recent documents”
[58,69]. In addition, Table 2 shows the dataset, methodology, techniques, and metrics used
to develop and validate the algorithm or CAD systems proposed by these authors.

In bibliometric networks or science mapping, there are large differences between
nodes in the number of edges they have to other nodes [57]. To reduce these differences,
VOSviewer uses association strength normalization [71], that is, a probabilistic measure
of co-occurrence data.

Association strength normalization was discussed by Van Eck and Waltman [71], and
here we construct a normalized network [57] in which the weight of an edge between
nodes i and j is given by:

__ 2maj

Sij = Kk, ! (1)

where §;; is also known as the similarity of nodes i and j, k;, (k;) denotes the total weight
of all edges of node 7 (node j), and m denotes the total weight of all edges in the network
[57].

ki =Xja; and m = %Ziki/ 2)

For more information related to normalization, mapping, and clustering techniques
used by VOSviewer, the reader is referred to the relevant literature [57,69,71].

From Table 2, it can be seen that articles that are cited often deal with ischemic stroke
rather than demyelinating disease. The methods and techniques used were support vector
machine (SVM) [72], random forest (RF) [38], classical algorithms of segmentation like the
watershed (WS) algorithm [73], and techniques of deep learning such as convolutional
neural networks (CNNs) [42,74], as well as their combinations: SVM-RF [28] and CNN-RF
[26,75].

Table 2. List of the 10 most cited articles according to the normalization of the citations [58]. This table also shows the
central theme of research, the type of image, and the methodology used in the processing.
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Type of .
. ) Au- Total Norm. . Metrics/
Article Title thor/Year Journal Citations Citations Disease Images/  Methodology Observation
Dataset
BRATS 2015
Efficient Multi- DSC: 84.9
Precision: 85.3
scale 3D CNN Brain injuries Sensitivity: 87.7
with Fully ~ Kamnitsas, Medical Im- bt ¢ u’mors’ MRL o . SLE‘é zyo =
Connected CRF  K.etal. age Analy- 1062  7.54 - TS BRATS 2015 yeraeep
. ischemic 3D CNN DSC: 66
for Accurate (2017) sis ISLES 2015 ..
. . stroke Precision: 77
Brain Lesion Seg- e
mentation [76] Sensitivity: 63
ASSD: 5.00
Haussdorf: 55.93
ISLES 2015—A
Public Evaluation
Benchmark
foilizc}:;i:ic Maier O. et Medical Im- Ischemic Itis a comparison of
Stroke Lesion al. (20 1'7) age Analy- 171 1.21 stroke MR-DWI-PWI  RF-CNN tools developed in
. ' sis Challenge ISLES 2015.
Segmentation
from Multispec-
tral MRI [26]
Classifiers for Is- Generalized DSC [0, 1]: 0.80
chemic Stroke Maier O. et Ischemic MRI—private linear models HD (mm): 15.79
Lesion Segmenta- _ PLoS ONE 78 2.87 37 cases (pa- ASSD (mm): 2.03
. . al. (2015) stroke . RDF
tion: A Compari- tients) CNN Prec. [0, 1]: 0.73
son Study [38] Rec. [0, 1]: 0.911
Neu-
I :
Fully Automatic o Tn?ge
acute Ischemic Clinical
Lesion Segmenta- Smart Inno- _ MR-DWI— CNN DSC: 0.67
L. Chenl. etal. vation, Ischemic . DeconvNets: . .
tion in DWI Us- 77 0.55 741 private Lesion detection rate:
ine Convolutional (2017)  Systems and stroke subiects EDD Net 0.94
& v Technolo- o) MUSCLE Net '
Neural Networks .
[42] gies, Vol
105.
Springer
Segmentation of
Ischgm{c Stroke o . Social group Precision: 98.11%
Lesion in Brain Rajinikanth, Arabian A
MRI Based on So- V., Satapa- Journal for Ischemic ISLES 2015 optimization DC: 88.54%
. . P . 56 2.60 MRI-FLAIR-  monitored Sensitivity: 99.65%
cial Group Opti- thy, S.C. Science and stroke .
. . . DWI Fuzzy-Tsallis ~ Accuracy: 91.17%
mization and (2018)  Engineering entro Specificity: 78.05%
Fuzzy-Tsallis En- Py P ty: 78.05%
tropy [77]
MR-DWI—
242 pri
Automatic Seg- su}zzlc‘;?e
tation of ‘ DSC: 79.139
mentation O. IEEE Trans- training (90), . SC, ? 3/? .
Acute Ischemic Zhane R. et actions Ischemic  testing (90) Lesionwise precision:
Stroke from DWI “ 6 ™ ) 47 2.18 180 3D.CNN 92.67%
. al. (2018) on Medical stroke validation . .
Using 3-D Fully Imagin 62) Lesionwise F1 score:
Convolutional s1ns .. 89.25%
Additional

DenseNets [74]

dataset: ISLES
2015-SSIS
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ISLES 2016 and
2017 —Bench-
marking Iscbermc . o . MR-DWI-PWI Itisa comparlson. of
Stroke Lesion =~ Winzeck S. Frontiers in 45 209 Ischemic ISLES 2016 RF-CNN tools developed in
Outcome Predic- et al. (2018) Neurology ' stroke Challenge ISLES 2016~
. 2017
tion Based on 2017.
Multispectral
MRI [75]
Prediction of Tis-
sue Outcome and
Assessment of MRI—222 pri-
'Treatment Effec't Nielsen, A. Stroke o 1.95 Ischemic vate CNN deep AUC = 0.88 £ 0.12
in Acute Ischemic et al. (2018) stroke cases (pa-
Stroke Using tients)
Deep Learning
[78]
Enhancing Inter- MRI—multl-
retability of Au modality
pretabiity BRATS2013:  Restricted
tomatically Ex- training (30), Boltzmann Ma
tracted Machine o & 8 _ BRATS 2013
. . Brain lesions: leaderboard chine for .
Learning Fea- . Medical Im- . . Dice score: 0.81
. . Pereira, S. et Brain tumor  (25), chal- unsupervised
tures: Application age Analy- 30 1.39 . . SPES
al. (2018) . ischemic lenge (10)  feature learn- .
to a RBM-Ran- sis . Dice score: 0.75 + 0.14
d F ‘S stroke SPES from ing, and a ran- ASSD: 2.43 + 1.93
te?nmonogiz'n }I:Se MICCAI— dom forest e
) ' ISLES:30  classifier
sion Segmenta- ..
: training, 20
tion [79]
challenge
Predicting Final
Extent of Is-
chemic Infarction
Using Artificial Bagher-Eba- . Map of prediction
Isch RI-DWI:
Neural Network dian, H. et PL0oS ONE 30 1.18 ssctrgkmelc i\g subiects ANN correlation (r = 0.80,
Analysis of Multi- al. (2011) ) p <0.0001)
Parametric MRI

in Patients with
Stroke [80]
MRI: magnetic resonance imaging; DWI: diffusion-weighted imaging; PWI: perfusion-weighted imaging; FLAIR: fluid
attenuated inversion recovery; BRATS: brain tumor image segmentation; ISLES: ischemic stroke lesion segmentation;
MICCALI: medical image computing and computer-assisted intervention; SPES: stroke perfusion estimation; ANN: artifi-
cial neural network; CNN: convolutional neural network; RF: random forest; RDF: random decision forest; EDD Net:
ensemble of two DeconvNets; MUSCLE Net: multi-scale convolutional label evaluation; DSC: Dice score coefficient; ASSD:
average symmetric surface distance; HD: Haussdorf distance.

3. Machine Learning/Deep Learning Methods in the Diagnosis of Ischemic Stroke and
Demyelinating Disease

In the following subsections, we discuss how artificial intelligence (AI) through ML
and DL methods is used in the development of algorithms for brain disease diagnosis and
their relation to the central theme of this review.

3.1. Machine Learning and Deep Learning

The definitions of machine learning and deep learning are sub-fields of artificial in-
telligence (Al). Al is defined as the ability for a computer to imitate the cognitive abilities
of a human being [68]. There are two different general concepts of Al: (1) cognitivism re-
lated to the development of rule-based programs referred to as expert systems and (2)
connectionism associated with the development of simple programs educated or trained
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by data [68,81]. Figure 8 presents a very general timeline of the evolution of Al and the
principal relevant facts related to the field of medicine. In addition, all applications of Al
to medicine and health are not covered, e.g., ophthalmology, where Al has had tremen-
dous success (see [82-87]).

First attempts at CAD in radiology 2017 Arterys: First cloud-
CAD in chest and dermatology, based DL application in
radiographs supervised learning healthcare approved by FDA

zooo-mo-—>—( zo1o-zozu-—?>—>
|

| Pattern Recognition — Features Analysis

| |

Cognitivism
I— Artificial Artificial Neural Convolutional
/ | - Neurons Networks Neural Networks
Computer -:Immmm = e ’| comcepts [~ = = | (annj108s, [~ T T T~ ¢ (@i e
concept (perceptron) Prof. Fukushima i
Science for {or. LAl T cognitive
3 computing,
2 5 transfer
g Deep Learning, hybrid,
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T~ == = srmem s e e S " é::n:::fs _____ *| unsupervised learning

Figure 8. A general timeline of the evolution of artificial intelligence (AI) (lowest level) and the principal relevant applica-
tions in the field of medicine (upper level) since 1950 to the present day. It shows also the relation of the initial concepts
and their evolution in machine and deep learning. It can be seen that pattern recognition is an important factor in the
evolution since the birth of the artificial neural network concept in 1980 to the present day, which includes the analysis of
features. In the case of the applications, the Arterys model based in deep learning (DL) and approved by the United States
Food and Drug Administration (FDA) in 2017 is an example of the increasing research in the field of healthcare. This figure
was created and adapted using references [68,88,89].

3.1.1. Machine learning Methods

Machine learning (ML) can be considered as a subfield of artificial intelligence (AI).
Lundervold and Lundervold [16] and Noguerol et al. [90] state that the main aim of ML
is to develop mathematical models and computational algorithms with the ability to solve
problems by learning from experiences without or with the minimum possible human
intervention; in other words, the model created will be able to be trained to produce useful
outputs when fed input data [90]. Lakhani et al. [91] state that recent studies demonstrate
that machine learning algorithms give accurate results for the determination of study pro-
tocols for both brain and body MRI.

Machine learning can be classified into (1) supervised learning methods (e.g., support
vector machine, decision tree, logistic regression, linear regression, naive Bayes, and ran-
dom forest) and (2) unsupervised learning methods (K-means, mean shift, affinity propa-
gation, hierarchical clustering, and Gaussian mixture modeling) [92] (Figure 9).

Support vector machine (SVM): This is an algorithm used to classify and perform re-
gression and clustering. An SVM is driven by a linear function similar to logistic regres-
sion [93] but with the difference that the SVM only outputs class identities and does not
provide probabilities.

WTx +b 3)

An SVM classifies between two classes by constructing a hyperplane in high-dimen-
sional feature space [94]. The class identities are positive or negative when Equation (3) is
positive or negative, respectively. For the optimal separation of the hyperplane between
classes, the SVM uses different kernels (dot products) [95,96]. More information and de-
tails of SVMs are given in the literature [93-96].

k-Nearest neighbor (k-NN): The k-NN is a non-parametric algorithm (it means no as-
sumption about the underlying data distribution) and can be used for classification or
regression [93,97]. The k-NN is based on the measure of the Euclidean distance (distance
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function) and a voting function in k nearest neighbors [98], given N training vectors. The
value of k (the number of nearest neighbors) decides the classification of the points be-
tween classes. The k-NN has the following basic steps: (1) calculate the distance, (2) find
the closest neighbors, and (3) vote for labels [97]. More details of the k-NN algorithm can
be found in references [93,98,99]. Programming libraries such as Scikit-Learn have algo-
rithms for the k-NN [97]. The k-NN has higher accuracy and stability for MRI data but is
relatively slow in terms of computational time [99]. As an aside, it is interesting to note
that the nearest-neighbor formulation might have been first described by the Islamic pol-
ymath Ibn al Haytham in his famous book Kitab al Manazir (The Book of Optics, [100])
over a 1000 years ago.

Random forest (RF): This technique is a collection of classification and regression trees
[101]. Here, a forest of classification trees is generated, where each tree is grown on a boot-
strap sample of the data [102]. In that way, the RF classifier consists of a collection of bi-
nary classifiers where each decision tree casts a unit vote for the most popular class label
(see Figure 9d) [103]. More information is given elsewhere [104].

k-Means clustering (k-means): The k-means clustering algorithm is used for segmenta-
tion in medical imaging due to its relatively low computational complexity [105,106] and
minimum computation time [107]. It is an unsupervised algorithm based on the concept
of clustering. Clustering is a technique of grouping pixels of an image according to their
intensity values [108,109]. It divides the training set into k different clusters of examples
that are near each other [93]. The properties of the clustering are measures such as the
average Euclidean distance from a cluster centroid to the members of the cluster [93]. The
input data for use with this algorithm should be numeric values, with continuous values
being better than discrete values, and the algorithm performs well when used with unla-
beled datasets.

3.1.2 Deep Learning Methods

Deep learning (DL) is a subfield of ML [110] that uses artificial neural networks
(ANNSs) to develop decision-making algorithms [90]. Artificial neural networks are neural
networks that employ learning algorithms [111] and infer rules for learning. To do so, a
set of training data examples is needed. The idea is derived from the concept of the bio-
logical neuron (Figure 9e). An artificial neuron receives inputs from other neurons, inte-
grates the inputs with weights, and activates (or fires in the language of biology) when a
pre-defined condition is satisfied [92]. There are many books describing ANNSs; see, for
example, [93].
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Figure 9. Graphical representation of some machine learning (ML) algorithms and the representations of an artificial neu-
ral network (ANN) and a DL neural network: (a) corresponds to the k-nearest neighbor (k-NN) algorithm and a represen-
tation of k =5 (the number of nearest neighbors); (b) represents the k-means clustering algorithm, also represented by k =
2 clusters, with the blue circle representing the cluster centroid; (c) is the representation of the support vector machine
(SVM) algorithm with the optimal separation by a hyperplane between classes; (d) corresponds to a random forest (RF)
algorithm and represents a forest of classification trees; and finally (e) represents the similarity between concepts used
between an artificial neuron and a true neuron with inputs and outputs. It also shows the architecture of an ANN and a
DL neural network, where IL is the input layers, HL the hidden layers, and OL the output layer. This figure was created
and adapted using references [112-114].

The fundamental unit of a neural network is the neuron, which has a bias woand a
weight vector w = (wj, ..., wx) as parameters 0 = (wo, ..., wx) to model a decision using a non-

linear activation function h(x) [115].

f() = h(w'x + wo)

(4)

The activation functions commonly used are: sign(x), sigmoid o(x), and tanh(x):
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tanh(x) = ———— 7
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An interconnected group of nodes comprise the ANN, with each node representing
aneuron arranged in layers [16] and the arrow representing a connection from the output
of one neuron to the input of another [103]. ANNSs have an input layer, which receives
observed values, and an output layer, which represents the target (a value or class), and
the layers between input and output layers are called hidden layers [92].

There are different types of ANNs [116], and the most common types are convolu-
tional neural networks (CNNs) [117], recurrent neural networks (RNNs) [118], long short-
term memory (LSTM) [119], and generative adversarial networks (GANs) [120]. In prac-
tice, these types of networks can be combined [116] between themselves and with classical
machine learning algorithms. CNNs are most commonly used for the processing of med-
ical images because of their success in processing and recognition of patterns in vision
systems [49].

CNNis are inspired by the biological visual cortex and also called multi-layer percep-
trons (MLPs) [49,121,122]. An MLP consists of a stack of layers: convolutional, max pool-
ing, and fully connected layers. The intermediate layer is fed by the output of the previous
layer, e.g., the convolutional layer creates feature maps of different sizes, and the pooling
layers reduce the sizes of the feature maps to be fed to the following layers. The final fully
connected layers produce the specified class prediction at the output [49]. The general
CNN architecture is presented in Figure 10. There is a compromise between the number
of neurons in each layer, the connection between them, and the number of layers with the
number of parameters that defines the network [49]. Table 3 presents a summary of the
principal structures of a CNN and the commonly used DL libraries.

Input

4

¥ Increasingly higher-level features

Convolutions Convolutions Convolutions
layers layers layers .
- ———=. Pooling - ing| Poolin X
[= . layers layers Fully connected layers tschemic
R EC rwe
Feature Maps  pearure Feature maps _ Feature - ) Demyelinating
agregation agregation arsease
Hidden Layers Output

Figure 10. Basic architecture of a convolutional neural network (CNN), showing the convolutional layers that allow getting
feature maps, the pooling layers for feature aggregation, and the fully connected layers for classifications through the
global features learned in the previous layers. The level of analysis of features increases with the number of hidden layers.
This figure was created and adapted using references [7,76,123-126].
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Table 3. Summary of CNN architectures and principal libraries used to build models of DL. The data for this were collected
from [16,127,128].

Architectures of a CNN
Name Reference Details
Backpropagation Applied
LeNet to Handwritten Zip Code Yann LeCun 1990. Read zip codes, digits.

Recognition [129]

ImageNet Classification
AlexNet with Deep Convolutional
[130] Neural Networks
Visualizing and Under- Matthew Zeiler and Rob Fergus, ILSVRC, 2013. Expanding the size of the mid-
ZF Net  standing Convolutional dle convolutional layers and making the stride and filter size on the first layer
Networks [131] smaller.
Going Deeper with Convo-
lutions [132]
Very Deep Convolutional
VGGNet Networks for Large-Scale
Image Recognition [133]

Alex Krizhevsky, Ilya Sutskever and Geoff Hinton, in 2012 ILSVRC challenge.
Similar to LeNet but deeper, bigger, and featured convolutional networks.

GoogLeNet Szegedy et al., from Google, ILSVRC 2014. Going Deeper with Convolutions

Karen Simonyan and Andrew Zisserman in ILSVRC 2014. The depth of the
network is a critical component for good performance.

Kaiming He et al., in ILSVRC 2015. It features special skip connections and a
heavy use of batch normalization.
The architecture is characterized by the use of gating units that learn to regu-

ResNet Residual Network [134]

Highway Highway Networks [135]

nets late the flow of information through a network.
DenseNet Densely Connected Convo- The dense convolutional network (DenseNet) connects each layer to every
lutional Networks [136] other layer in a feed-forward fashion.
SENets Squeeze-and-Excitation Model interdependencies between channels of the relationship of features
Networks [137] used in a traditional CNN
NASNet Neural Architecture Search Authors propose to search an architectural building block on a small dataset
Network [138] and then transfer the block to a larger dataset.
YOLO  You Only Look Once [139] A unified model for object detection
GANs Generative Adversarial Framework for estimating generative models via adversarial nets

Networks [120]

A Siamese neural network is a class of neural network architectures that con-
Siamese Networks [140]  tain two or more identical subnetworks. The word identical here means that
they have the same configuration with the same parameters and weights.

Siamese
nets

U-Net: Convolutional Net-
U-Net  works for Biomedical Im-
age Segmentation [141]
V-Net: Fully Convolutional
Neural Networks for Volu- Architecture for 3D image segmentation based on a volumetric, fully convolu-
metric Medical Image Seg- tional neural network
mentation [142]

The architecture consists of a contracting path to capture context and a sym-
metric expanding path that enables precise localization.

V-net

Libraries Used to Build DL Models

http://www.gimias.org/
GIMIAS (accessed on 10 December
2020)
https://www.fil.ion.ucl.ac.u The analysis of brain imaging data sequences using statistical parametric map-
SPM  k/spm/ (accessed on 10 De- ping as an assessment of spatially extended statistical processes used to test
cember 2020) hypotheses about functional imaging data

A workflow-oriented environment for solving advanced, biomedical image
computing and individualized simulation problems
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https://fsl.fmrib.ox.ac.uk
FSL (accessed on 10 December
2020)
http://pybrain.org/ (ac-
PyBrain  cessed on 10 December Reinforcement learning, artificial intelligence, and neural network library
2020)
http://caffe berkeley-
Caffe  vision.org/ (accessed on 10 A deep ML framework
December 2020)
http://www.pymvpa.org/
PyMVPA (accessed on 10 December Statistical learning analysis platform
2020)
https://www.cs.wai-
kato.ac.nz/ml/weka/ (ac-

A collection of analysis tools for functional magnetic resonance images (fMRI),
MRYI, and diffusion tensor imaging (DTI) brain imaging data

Weka cessed on 10 December Data mining platform
2020)
http://www.shogun-
Shogun  toolbox.org/ (accessed on Machine learning framework
10 December 2020)
. http://scikit-learn.org (ac-
SciKit C e S .
Learn cessed on 10 December Scientific computation libraries
2020)
http://www.mlnl.cs.ucl.ac.u
PRoNTo k/pronto/ (accessed on 10 Machine learning framework
December 2020)
http://playground.tensor-  Created by Google. It provides excellent performance and multiple Central
Tensorflow flow.org (accessed on 10 processing units (CPU) and graphics processing unit
December 2020) (GPU) support.
. hitps://pypi.org/pro- Easy to build a network but challenging to create a full solution. Uses sym-
Theano  ject/Theanof (accessed on bolic logic and written in Python
10 December 2020) ]
Keras h:isiglgéj:;?bgcggzxd Created in Python, it is possible to use with Theano or Tensorflow backend.
http://torch.ch/docs/tutori-
Torch  als-demos.html (accessed Created in C. Performance is very good.
on 10 December 2020)

https://pytorch.org (ac- It is a Python front end to the Torch computational engine. It is an integration
Pytorch  cessed on 10 December of Python with the Torch engine. Performance is higher than Torch with GPU
2020) integration facility.

More specific technical details of ML and DL are discussed widely in the literature
[9,16,16,27,47,93,111,121,143-149]. For deep learning applications in medical images and
the different architectures of neural networks and technical details, the reader is referred
to various books such as Hesamian et al. [150], Goodfellow et al. [93], Zhou et al. [151], Le
at al. [152], and Shen et al. [121].

3.2. Computer-Aided Diagnosis in Medical Imaging (CADx System)

Computer-aided diagnosis has its origins in the 1980s at the Kurt Rossmann Labora-
tories for Radiologic Image Research in the Department of Radiology at the University of
Chicago [153]. The initial work was on the detection of breast cancer [35,153,154], and the
reader is referred to a recent review [155].
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There has been much research and development of CADx systems using different
modalities of medical images. CAD is not a substitute for the specialist but can assist or
be an adjunct to the specialist in the interpretation of the images [40]. In other words,
CADx systems can provide a second objective opinion [89,99] and make the final disease
decision from image-based information and the discrimination of lesions, complementing
a radiologist’s assessment [123].

CAD development takes into consideration the principles of radiomics [45,156-160].
The term radiomics is defined as the extraction and analysis of quantitative features of
medical images—in other words, the conversion of medical images into mineable data
with high fidelity and high throughput for decision support [45,156,157]. The medical im-
ages used in radiomics are obtained principally with CT, PET, or MRI [45].

The steps that are utilized by a CAD system consist of [45] (a) image data and pre-
processing, (b) image segmentation, (c) feature extraction and qualification, and (d) clas-
sification. In general, the stage of feature extraction could be changed depending on the
techniques used to extract the feature (ML or DL algorithms) [161].

3.2.1. Image Data

The dataset is the principal component to develop an algorithm because it is the nu-
cleus of the processing. Razzak et al. [145] state that the accuracy of diagnosis of a disease
depends upon image acquisition and image interpretation. However, Shen et al. [121] add
a caveat that the image features obtained from one method need not be guaranteed for
other images acquired using different equipment [121,162,163]. For example, it has been
shown that the methods of image segmentation and registration designed for 1.5-Tesla
T1-weighted brain MR images are not applicable to 7.0-Tesla T1-weighted MR images
[43,57,58].

There are different datasets of images for brain medical image processing. In the case
of stroke, the most famous datasets used are the Ischemic Stroke Lesion Segmentation
(ISLES) [26,75] and Anatomical Tracings of Lesions After Stroke (ATLAS) datasets [164].
For demyelinating disease, there is not a specific dataset, but datasets for multiple sclero-
sis are often used, e.g., MS segmentation (MSSEG) [165]. Table 4 lists the datasets that have
been used in the publications under consideration in this review.

3.2.2. Image Preprocessing

There are several preprocessing steps necessary to reduce noise and artifacts in the
medical images, which should be performed before the segmentation [40,166,167].

The preprocessing steps commonly used are (1) grayscale conversion and image
resizing [167] to get better contrast and enhancement; (2) bias field correction to correct
the intensity inhomogeneity [30,166]; (3) image registration, a process for spatial align-
ment [166]; and (4) removal of nonbrain tissue such as fat, skull, or neck, which has inten-
sities overlapping with intensities of brain tissues [27,166,168].

Table 4. Summary of datasets dedicated to ischemia (stroke) and demyelinating diseases (multiple sclerosis (MS)). Brain
medical image datasets are also listed.

Type:
?\:j;:t Details Private Website R;flerex(‘)l::/
Public PP
MS lesion segmentation challenge: data for Public and private.  https://www.nitrc.org/pro-
e . . . Akkus et al. (2017)
MICCAI  competition in order to compare algorithms Some data require jects/msseg/ (accessed on 10 De- 9]
to segment the MS lesions since 2008 subscription. cember 2020)

Brain tumor segmentation:
MRI dataset for challenge BRATS since 2012.
BRATS MRI modalities: T1, T1C, T2, FLAIR. Public
BRATS 2015 contains 220 brains with high-

https://ipp.cbica.upenn.edu/ (ac- Menze et al.
cessed on 10 December 2020) (2015) [169]

grade and 54 brains with low-grade gliomas
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for training and 53 brains with mixed high-

and low-grade gliomas for testing.

Dataset used for ischemic stroke lesion seg-

mentation challenge since 2015 in order to
evaluate stroke lesion/clinical outcome pre-
diction from acute MRI scans.

ISLES has two categories with individual da-

tasets:
SISS: sub-acute ischemic stroke lesion seg-

Public, require reg- https://www.smir.ch/ISLES/Start2 Maier etzzl. (2017)
ISLES mentation, which contains 36 subjects with  istration and ap- 016 (accessed on 10 December Winz[eck] otal
modalities FLAIR, DWI, T2 TSE (turbo spin proval 2020) (2018) [75] ’
echo), and T1 TFE (turbo field echo).
SPES: acute stroke outcome/penumbra esti-
mation, which contain 20 subjects with 7 mo-
dalities, namely cerebral blood flow (CBF),
cerebral blood volume (CBV), DWI, T1c, T2,
Tmax, and time to peak (TTP).
Mild traumatic brain injury outcome: MRI . hitps:/fwww.smir.ch/MTOP/Start Akkus et al. (2017)
MTOP . Public 2016 (accessed on 10 December
data for challenge: 27 subjects [9]
2020)
MS data for evaluate basic and advanced seg-
mentation methods; 53 datasets (15 training https://portal.fli- Commouwick et al
MSSEG data and 38 testing data). Public iam.irisa.fr/msseg-challenge/data (2018) [165] '
Modalities: 3D FLAIR, 3D T1-w (accessed on 10 December 2020)
3D, T1-w Gadolinium, and 2D DP/T2
Set includes T1 and T2 MRI of five infants.
Ne- Challenge is to compare algorithms for seg- https://ne-
. mentation of neonatal brain tissues and Private
oBrainS12

measurement of corresponding volumes us-
ing T1 and T2 MRI scans of the brain.

Isgum et al. (2015)
[170]

obrains12.isi.uu.nl/?page_id=52
(accessed on 10 December 2020)

MRBrainS Challenge for segmenting brain structures in

MRI scans

Private and public, https://mrbrains13.isi.uu.nl/downl
require registration oads/ (accessed on 10 December

Mendrik, A.M. et

and approval al. (2015) [171]

2020)

An open repository of MRI, MEG, EEG, in-
tracranial electroencephalography (iEEG),
and electrocorticography (ECoG) datasets

OpenNeuro

Laura and John
Arnold Founda-
tion (ljaf)
National Science

International platform of health data re-
UK Biobank sources. Contain MR images from 15,000 par-

ticipants, aiming to reach 100,000.

Anatomical Tracings of Lesions After Stroke

Public https://openneuro.org/ (accessed Foundation (NSF)
on 10 December 2020) National Insti-
tute of Health
(NIH)
Stanford
SquishyMedia
Private—
Public, require reg- https://www.ukbiobank.ac.uk/ .
istration and ap-  (accessed on 10 December 2020) UK Biobank
proval

Public, require reg- https://www.icpsr.umich.edu/we
istration and ap-

b/pages/ (accessed on 10 Decem-

Liew et al. [164]
ber 2020)

proval

(ATLAS) is an open-source dataset of 304 T1-
ATLAS . .
weighted MRI with manually segmented le-
sions and metadata.
Alzheimer’s Disease Neuroimaging Initiative
ADNI contains data from different types (clinical,

genetic, MR images, PET images, bioespeci-
men)

Public, require reg- http://adni.loni.usc.edu/data-sam-
istration and ap-

Alzheimers Dis-

ples/data-types/ (accessed on 10
December 2020)

ease Neuroimag-
ing Initiative
(ADNI)

proval
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Neuroimaging data from the Autism Brain
Imaging Data Exchange (ABIDE): 112 da-  Public, require reg- http://preprocessed-connectomes-
o . . . . . Craddock, C. et al.
tasets from 539 individuals suffering from  istration and ap- project.org/abide/ (accessed on 10
(2013) [172]
December 2020)

ABIDE
Autism spectrum disorders (ASD) and 573 proval
typical controls.
Neuroscience information framework pro- .
_ . . . Neuroscience In-
ject: is a semantically-enhanced search engine . https://neuinfo.org/ (accessed on .
NIF . . . . Public formation Frame-
of neuroscience information. Data and bio- 10 December 2020)
. work (NIF)
medical resources.
NEU- Ailllk::: rsePO:;z:l}; Ei;lgt:;zszzizj ;;iﬁztl_ Public https://neurovault.org (accessed Gorgolewski et al.
ROVAULT ps b . on 10 December 2020) (2016) [173]
FAIR Data Infor-
https://sci h. i h/R
ps://scicrunch.org/scicrunch/Re matics Lab

1x_144509-
sources/record/nlx_144509 University of Cali-

Integrated A virtual database currently indexing a vari- Public, require reg-
istration 1/SCR_010503/resolver (accessed . .
fornia, San Diego,

Datasets ety of datasets
on 10 December 2020) USA
Department of Bi-
dical Infor-
The Cancer Imaging Archive is a repository . . https://www.cancerimagingar- omedica’ or
o1 1 . . . Public, require reg- _ . . matics at the Uni-
TCIA  with different collections of imaging datasets . . chive.net/collections/ (accessed on .
. istration versity of Arkan-
and diseases. 10 December 2020) .
sas for Medical
Sciences, USA
An open source convolutional neural net- . . .
NiftyNEt  work platfor'm for me.dical image analysis Public https.//nlgziie;;;()efa;gzeg)s ed on 10 C(;zlgig;l [i;z'
and image-guided therapy
MONAI is a PyTorch-based framework for Project started by
deep learning in healthcare imaging. It pro- NVIDIA and
MONAI vides domain-optimized foundational capa- Public https://monai.io/ (accessed on 10  King’s College
bilities for developing healthcare imaging December 2020) London for the Al
training workflows in a native PyTorch para- research commu-
digm. nity
Medical Segmentation Decathlon: A chal-
lenge of machine learning algorithms for seg-
MSD mentation task. Give a data for 10 tasks: Public http://medicaldecathlon.com (ac-  Simpson et al.
brain tumor, cardiac, liver, hippocampus, cessed on 10 December 2020) (2019) [175]
prostate, lung, pancreas, hepatic vessel,
spleen, colon. Modality: MRI and CT
Contributors:
Bram van
Ginneken,
A platf f d-to-end devel t of joerd Kerkst
Grand Chal- * Panormiorenc-omend qeveiopment ot - p, ;e require reg- https://grand-challenge.org/ (ac- Sjoerd Kerks e
machine learning solutions in biomedical im- . . and James Meakin
lenge . istration cessed on 10 December 2020) .
aging Radboud Univer-
sity Medical Cen-
ter in Nijmegen,
the Netherlands
StudierFen-  Open science platform for medical image . http://studierfenster.icg.tugraz.at TU.and th,e Me-
. Public dUni Graz in Aus-
ster processing (accessed on 10 December 2020) tria

3.2.3. Image Segmentation
In simple terms, image segmentation is the procedure of separating a digital image

into a different set of pixels [37] and is considered the most fundamental process as it
extracts the region of interest (ROI) through a semiautomatic or automatic process [176].
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It divides the image into areas according to a specific description to obtain the anatomical

structures and patterns of diseases.

Despotovic et al. [166] and Merjulah and Chandra [37] indicate that the principal goal
of medical image segmentation is to make things simpler and transform it “into a set of
semantically meaningful, homogeneous, and nonoverlapping regions of similar attributes
such as intensity, depth, color, or texture” [166] because the segmentation assists doctors
to diagnose and make decisions [37].

According to Despotovic et al. [166], the segmentation methods for brain MRI are
classified into (i) manual segmentation, (ii) intensity-based methods (including threshold-
ing, region growing, classification, and clustering), (iii) atlas-based methods, (iv) surface-
based methods (including active contours and surfaces, and multiphase active contours),
and (v) hybrid segmentation methods [166].

To evaluate, validate, and measure the performance of every automated lesion seg-
mentation methodology compared to expert segmentation [177], one needs to consider
the accuracy (evaluation measurements) and reproducibility of the model [178]. The eval-
uation measurements compare the output of segmentation algorithms with the ground
truth on either a pixel-wise or a volume-wise basis [5].

The accuracy is related to the grade of closeness of the estimated measure to the true
measure [178], and for that, four situations are possible: true positives (TPs) and true neg-
atives (TNs), where the segmentation is correct, and false positives (FPs) and false nega-
tives (FNs), where there is disagreement between the two segmentations.

The most commonly used metrics to evaluate the automatic segmentation accuracy,
quality, and strength of the model are [179]:

e Dice similarity coefficient (DSC): Gives a measure of overlap between two segmenta-
tions (computed and corresponding reference) and is sensitive to the lesion size. A
DSC of 0 indicates no overlap, and a DSC of 1 indicates a perfect overlap; 0.7 normally
is considered good segmentation [38,43,178-181].

DSC = 2P (8)

~ FP+FN +2TP
e Precision: Is the measure of over-segmentation between 0 and 1, and it means the
proportion of the computed segmentation that overlaps with the reference segmen-
tation [179,180]. This also is called the positive predictive value (PPV), with a high
PPV indicating that a patient identified with a lesion does actually have the lesion

[182].
TP

Precision = ———— 9
recision = TP 9)
e Recall, also known as sensitivity: Gives a metric between 0 and 1. It is a sign of over-
segmentation, and it is a measure of the amount of the reference segmentation that

overlaps with the computed segmentation [179,180].

TN
Recall = Sensitivity = TN TFN (10)

The metrics of overlap measures that are less often used the sensitivity, specificity
(measures the portion of negative voxels in the ground-truth segmentation [183]), and
accuracy, which, according to Garcia-Lorenzo et al. [178] and Taha and Hanbury [183],
should be considered carefully because these measures penalize errors in small segments
more than in large segments. These are defined as:

TN
P 11
Specificity FPLTN (11)
TP+TN
Accuracy = (12)

TP+FP+FN+TN
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o Average symmetric surface distance (ASSD, mm): Represents the average surface dis-
tance between two segmentations (computed and reference and vice versa) and is an
indicator of how well the boundaries of the two segmentations align. The ASSD is
measured in millimeters, and a smaller value indicates higher accuracy [75,177,180].
The average surface distance (ASD) is given as:

ASDE,Y) = ) minyeyd(x,y)/IX] 13)
XEX
where d(x,y) isa 3D matrix consisting of the Euclidean distances between the two image
volumes X and Y, and the ASSD is defined as [177]:

ASSD(X,Y) = {ASD(X,Y) + ASD(Y, X)}/2 (14)

e Hausdorff’s distance (HD, mm): It is more sensitive to segmentation errors appearing
away from segmentation frontiers than the ASSD [180]. The Hausdorff measure is an
indicator of the maximal distance between the surfaces of two image volumes (the
computed and reference segmentations) [26,180]. The HD is measured in millimeters,
and like the ASSD, a smaller value indicates higher accuracy [177].

dy(X,Y) = max{max, xMiny,eyd(X,y), maxyeymin,exd(y, x)} (15)

where x and y are points of lesion segmentations X and Y, respectively, and d(x,y) is

a 3D matrix consisting of all Euclidean distances between these points [177].

e Intra-class correlation (ICC): Is a measure of correlation between volumes segmented
and ground-truth lesion volume [180].

. Correlation with Fazekas score: A Fazekas score is a clinical measure of the WMH, com-
prising two integers in the range [0, 3] reflecting the degree of a periventricular WMH
and a deep WMH, respectively [180].

e Relative volume difference (VD, %): It measures the agreement between the lesion vol-
ume and the ground-truth lesion volume. A low VD means more agreement [182].

(175 - Ug)

Vg

VD = (16)
where v, and v, are segmented and ground-truth lesion volumes, respectively.

Lastly, we define [178] reproducibility, which is a measure of the degree of agreement
between several identical experiments. Reproducibility guarantees that differences in seg-
mentations as a function of time result from changes in the pathology and not from the
variability of the automatic method [178].

Tables 2 and 5 tabulate databases, modalities, and the evaluation measures reported
in the literature.

Table 5. Summary of documents related to ischemic stroke and demyelinating disease.
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Philips Gy-
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CBF: cerebral blood flow; ADC: apparent diffusion coefficient; SVD: small-vessel disease; TACS: total anterior circulation
stroke syndrome; PACS: partial anterior circulation stroke syndrome; LACS: lacunar stroke syndrome; SISS: sub-acute
ischemic stroke segmentation; SPES: stroke penumbra estimation; FROC: free-response receiving operating characteristic;
COMBAT Stroke: computer-based decision support system for Thrombolysis in stroke.

3.2.4. Feature Extraction

An ML or DL algorithm is often a classifier [148] of objects (e.g., lesions in medical
images). Feature selection is a fundamental step in the processing of medical images, and
especially, it allows us to research which features are relevant for the specific classification
problem of interest, and also it helps to get higher accuracy rates [47].

The task of feature extraction is complex due to the task of determining an algorithm
that can extract a distinctive and complete feature representation, and for that principal
reason, it is very difficult to generalize and implies that one has to design a featurization
method for every new application [115]. In DL, this process is also called hand-crafting
features [115].

The classification is related to the extracted features that are entered as input to an
ML model [148], while a DL algorithm model uses pixel values in images directly as input
information instead of features calculated from segmented objects [148].

In the case of processing stroke with CNNSs, the featurization of the images is a key
application [75,124] and depends on the signal-to-noise ratio in the image, which can be
improved by target identification via segmentation to select regions of interest [124]. Ac-
cording to Praveen et al., [193], a CNN learns to discriminate local features and returns
better performance than hand-crafted features.

Texture analysis is a common technique in medical pattern recognition tasks to de-
termine the features, and for that, one uses second-order statistics or co-occurrence matrix
features [45]. Mitra et al. [182] indicate that they derive local features, spatial features, and
context-rich features from the input MRI channels.

It is clear that currently, DL algorithms, especially those that use a combination of
CNNs and machine learning classifiers, produce a marked transformation [197] in the fea-
turization and segmentation in medical image processing [16,124]. CNNs have high utility
in tasks like identification of compositional hierarchy features and low-level features (e.g.,
edges), specific pattern forms, and development of intrinsic structures (e.g., shapes, tex-
tures) [5], as well as spatial feature generation from an n-dimensional array of basically
any arbitrary size [43,144], e.g., the U-Net model proposed by Ronneberger et al. [141],
which employs parameter sharing between encoder—decoder paths for incorporating spa-
tial and semantic data that allow better segmentation performance [179]. Based on the U-
Net model, currently there are novel variants of U-Net designs. For example, Bamba et
al., [198] used a U-net architecture with 3D convolutions that allow the use of an attention
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gate for the decoder to suppress unimported parts of the input, while emphasizing the
relevant features. There is considerable room for improvement and innovation (e.g.,[199]).

The process of converting a raw signal into a predictor (automatization of the featur-
ization) constitutes an advantage of the DL methods over others, which is useful when
there are large volumes of data of uncertain relationship to an outcome [124], e.g., the
featurization of acute stroke and demyelinating diseases.

3.3. ML and DL Classifiers Applied to Diagnosis of Ischemia and Demyelinating Diseases

In this subsection, we discuss the different classifiers that have been utilized in the
literature. Additional details such as datasets and the measure metrics of the algorithms
and the tasks are presented in Tables 2 and 5.

Even though there are a large number of publications related to ischemic stroke (27
documents) and most deal with the classification of stroke patients versus normal con-
trols, or the prediction of post-stroke functional impairment or treatment outcome
[21,25,26,28,33,38,42,66,67,72,74,75,77,78,80,167,168,179,184-190,193-195], there is a pau-
city of results related to demyelinating diseases alone. However, there are some publica-
tions dealing with multiple sclerosis (MS), which is the most common demyelinating dis-
ease (2) [191,192]. In addition, there are articles related to WMHs (5) [19,20,125,182,196] as
well as articles that combine ischemic stroke with MS and other brain injuries like gliomas
(4) [36,76,79,180].

Different studies [21,72,92,189] related to stroke (see Table 5 and Figure 1) and its
different types use, principally, classifiers of ML to determine the properties of the lesion.
The classifiers most commonly used are the SVM and random forest (RF) [189].

According to Lee et al. [189], the RF has some advantages over the SVM because the
RF can be trained quickly and provides insight into the features that can predict the target
outcome [189]; in addition, the RF can automatically perform the task of feature selection
and provide a reliable feature importance estimate. Additionally, the SVM is effective only
in cases where the number of samples is small compared to the number of features
[92,189]. Along similar lines, Subudhi et al. [28] reported that the RF algorithm works bet-
ter when one has a large dataset, and it is more robust when there are a higher number of
trees in the decision-making process; they reported an accuracy of 93.4% and a DSC index
of 0.94 in their study.

Huang et al. [72] presented results that predict ischemic tissue fate pixel by pixel
based on multi-modal MRI data of acute stroke using a flexible support vector machine
algorithm [72]. Nazari-Farsani et al. [33] proposed an identification of ischemic stroke
through the SVM with a linear kernel and cross-validation folder with an accuracy of 73%
using a private dataset of 192 patient scans, while Qiu et al. [184] with a private dataset of
1000 patients for the same task used only the random forest (RF) classifier and obtained
an accuracy of 95%.

The combination of the traditional classifier like the SVM and RF with a CNN show
better results. For example, [38,72,193] report values of the DSC between 0.80 and 0.86.
Melingi and Vivekanand [167] reported that through a combination of kernelized fuzzy
C-means clustering and an SVM, they achieved an accuracy of 98.8% and sensitivity of
99%.

A method for detecting stroke presence using the SVM and feed-forward backprop-
agation neural network classifiers is presented in [21]. For extraction of the features of the
segmentation of the stroke region, k-means clustering was used along with an adaptive
neuro fuzzy inference system (ANFIS) classifier, since the other two methods failed to
detect the stroke region in low-edge brain images, resulting in an accuracy and precision
of 99.8% and 97.3%, respectively.

The different developments in architectures of DL models contribute to better evalu-
ation and segmentation results. For example, Kumar et al. [179] proposed a combination
of U-Net and fractal networks. Fractal networks are based on the repetitive generation of
self-similar objects and ruling out of residual connections [134,179]. They reported on sub-
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acute stroke lesion segmentation (SISS) and acute stroke penumbra estimation (SPES) us-
ing a public database (ISLES 2015, ISLES 2017), with an accuracy of 0.9908 and a DSC of
0.8993 for SPES and corresponding values of accuracy of 0.9914 and a DSC of 0.883 for
SISS. Clerigues et al. [190] with the same public database and tasks proposed the uses of
a U-Net-based 3D CNN architecture and 32 filters and obtained values of DSC as 0.59 for
SISS and 0.84 for SPEC.

Multiple sclerosis (MS) is characterized by the presence of white matter (WM) lesions
and constitutes the most common inflammatory demyelinating disease of the central
nervous system [8,200,201] and for that reason is often confused with other pathologies,
since the key for that is the determination and characterization of the WMHs. Guerrero et
al. [125], using CNNs with a u-shaped residual network architecture (uResNet) with the
principal task of differentiating the WMHs, found DSC values of 69.5 for WMHSs and 40.0
for ischemic stroke.

Mitra et al. [182] in their work of lesion segmentation also presented differentiation
of ischemic stroke and MS through the analysis of WMHs and reported a DSC of 0.60
while using only the classical RF classifier. Similar work by Ghaforian et al. [19] but with
the central aim of determining WMHs that correspond to cerebral small-vessel disease
(SVD) reported a sensitivity of 0.73 with 28 false positives using a combination of Ada-
Boost and RF algorithms.

4. Common Problems in Medical Image Processing for Ischemia and Demyelinating
Brain Diseases

This section presents a brief summary of some common problems found in the pro-
cessing of ischemia and demyelinating disease images.

4.1. The Dataset

The availability of large datasets is a major problem in medical imaging studies, and
there are few datasets related to specific diseases [27]. The lack of datasets is a challenge
since deep learning methods require a large amount of data for training, testing, and val-
idation [33].

Another major problem is that even though algorithms for ischemic stroke segmen-
tation in MRI scans have been (and are) intensively researched, the reported results in
general do not allow us to establish a comparative analysis due to the use of different
databases (private and public) with different validation schemes [35,40].

The Ischemic Stroke Lesion Segmentation (ISLES) challenge was designed to facili-
tate the development of tools for the segmentation of stroke lesions [26,75,124]. The Is-
chemic Stroke Lesion Segmentation (ISLES) group [26,75] has a set of stroke images, but
there is a need to enrich the dataset with clinical information (annotations) in order to get
better performance with CNNs.

Another problem with the datasets is the need for accurately labeled data [43]. This
lack of annotated data constitutes a major challenge for ML-supervised algorithms [202]
because the methods have to learn and train with limited annotated data, which in most
cases contain weak annotations (sparse annotations, noisy annotations, or only image-
level annotations) [197]. Therefore, collecting image data in a structured and systematic
way is imperative [92] due to the large database required by Al techniques to function
efficiently.

An example of a good practice of health data (images and health information) is ex-
emplified by the UK Biobank [203], which has health data from half a million UK partici-
pants. The UK Biobank aims to create a large-scale biomedical database that can be ac-
cessed globally for public health research. However, the access depends on administrator
approval and payment of a fee.

Other difficulties that accompany the labeling of the images in a dataset include a
lack of collaboration between clinical specialists and academics, patient privacy issues,
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and, most importantly, the costly, time-consuming task of manual labeling of data by cli-
nicians [40].

With CNNs, overfitting is a common problem due to the small size of the training
data [150], and therefore, it is important the increase of the size of training data. One so-
lution for this problem is the use of the technique of data augmentation, which according
to [204] helps improve generalization capabilities of deep neural networks and can be per-
ceived as implicit regularization. For example, Tajbakhsh et al. [197,205] reported in their
results that the sensitivity of a model improves by 10% (from 62% to 72%) if the dataset is
increased from a quarter to full size of the training dataset. Various methods of data aug-
mentation of medical images are reviewed in [206].

However, in [192], it is suggested that cascaded CNN architectures are a practical
solution for the problem of limited annotated data, and the proposed architecture tends
to learn well from small sets of data [192].

An additional but no less important problem is the availability of equipment for col-
lecting image data. Even though MRI is better than CT for stroke diagnosis [18], there is
also the fact that in some developing countries, the availability of CT and MRI facilities is
very limited and relatively expensive. This is coupled with a lack of suitably trained tech-
nical personnel and information [40]. Even in developed countries, there are disparities in
the availability of equipment between urban and rural areas. These issues are discussed,
for example, in a report published by the Organisation for Economic Co-operation and
Development (OECD) [207].

4.2. Detection of Lesions

It is known that that brain lesions have a high degree of variability [8,64], e.g., stroke
lesions and tumors, and hence it is a hard and complex challenge to develop a system with
great fidelity and precision. As an example, the lesion size and contrast affect the perfor-
mance of the segmentation [18].

In the case of WMHSs and their association with a disease like ischemic stroke, demy-
elinating disease, or any other disorder, the set of features to describe their appearances
and locations [19] plays a fundamental role in training and requires minimum errors in
any model.

4.3. Computational Cost

In medical image processing, the computational cost is a fundamental factor, since
ML algorithms often require a large amount of data to learn to provide useful answers
[116], and hence increased computational costs. Different studies [146,148,208] report that
training neural networks that are efficient and make accurate predictions have a high com-
putational cost (e.g., time, memory, and energy) [146]. This problem is often a limitation
with CNNs due to the high dimensionality of input data and the large number of training
images required [148]. However, graphical processing units (GPUs) have proven to be
flexible and efficient hardware for ML purposes [116]. GPUs are highly specialized pro-
cessors for image processing. The area of general-purpose GPU (GPGPU) computing is a
growing area and is an essential part of many scientific computing applications. The basic
architecture of a graphic processing unit (GPU) differs a lot from a central processing unit
(CPU). A GPU is optimized for high computational power and high throughput. CPUs
are designed for more general computing workloads. GPUs, in contrast, are less flexible;
however, GPUs are designed to compute in parallel the same instructions. As noted ear-
lier, neural networks are structured in a very uniform manner such that at each layer of
the network identical artificial neurons perform the same computation. Therefore, the
structure of a network is highly appropriate for the kinds of computation that a GPU can
efficiently perform. GPUs have other additional advantages over CPUs, such as more
computational units and a higher bandwidth to retrieve from memory. Furthermore, in
applications requiring image processing, GPU graphic-specific capabilities can be ex-
ploited to further speed up calculations. As noted by Greengard, “Graphical processing
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units have emerged as a major powerhouse in the computing world, unleashing huge
advancements in deep learning and Al” [209,210].

Suzuki et al. [148,211] propose the utilization of a massive-training artificial neural
network (MTANN) [212] instead of CNNs because a CNN requires a huge number of
training images (e.g., 1,000,000), while the MTANN requires a small number of training
images (e.g., 20) because of its simpler architecture. They note that with GPU implemen-
tation, a MTANN completes training in a few hours, whereas a deep CNN takes several
days [148], and the time taken depends on the task as well as the processor speed.

It has been proposed that one can use small convolutional kernels in 3D CNNs [144].
This architecture seems to be more discriminative without increasing the computational
cost and the number of trainable parameters in relation to the task of identification [76].

5. Discussion and Conclusions

The techniques of deep learning are going to play a major role in medical diagnosis
in the future, and even with the high training cost, CNNs appear to have great potential
and can serve as a preliminary step in the design and implementation of a CAD system
[40].

However, brain lesions, especially WMHSs, have significant variations with respect to
size, shape, intensity, and location, which makes their automatic and accurate segmenta-
tion challenging [197]. For example, even though stroke is considered to be easy to recog-
nize and differentiate from other WMHs for experienced neuroradiologists, it could be a
challenge and a difficult task for general physicians, especially in rural areas or in devel-
oping countries where there are shortages of radiologists and neurologists, and for that
reason, it is important to employ computer-assisted methods as well as telemedicine
[213,214]. Montemurro and Perrini [215] state that the current COVID-19 pandemic situa-
tion further underscores the importance of telemedicine in neurology and other health
aspects (e.g., ophthalmology [216]), is no longer a futuristic concept, and has become new
normal (see, for example, [217]). An example of the utility of telemedicine is the success
experience reported by Hong et al. [218], who detail how telemedicine during the COVID-
19 pandemic is provideing rapid access to specialists who are unavailable in West China,
a region that does not have many economic resources or healthcare infrastructure when
compared to the eastern part of the country [218]. It should be noted that telemedicine
“was more a concept than a fully developed reality” [215], due principally to limitations
such as a lack of financial resources, technological infrastructure, regulatory protocols,
safety data, trained people, ethical questions, etc. [215,218,219]; these aspects are espe-
cially challenging in developing countries [220,221].

To identify stroke, according to Huang et al. [72], the SVM method provides better
prediction and quantitative metrics compared to the ANN. In addition, they note that the
SVM provides accurate prediction with a small sample size [72,222]. Feng et al. [124] in-
dicate that the biggest barriers in applying deep learning techniques to medical data are
the insufficiency of the large datasets that are needed to train deep neural networks
(DNNs) [124].

In the ISLES 2015 [26] and ISLES 2016 [75] competitions, the best results were ob-
tained for stroke lesion segmentation and outcome prediction using the classic machine
learning models, specifically the random forest (RF), whereas in ISLES 2017 [75], the par-
ticipants offered algorithms that use CNNs, but the overall performance was not much
different from ISLES 2016. However, the ISLES team states that despite this, deep learning
has the potential to influence clinical decision making for stroke lesion patients [75]. How-
ever, this is only in the research setting and has not been applied to a real clinical environ-
ment, in spite of the development of many CAD systems [116].

Although various models trained with small datasets report good results (DSC val-
ues > 0.90) in their classifications or segmentations (Table 4 [21,77,190]), Davatzikos [223]
recommends avoidance of methods trained with small datasets because of replicability
and reproducibility issues [90,223]. Therefore, it is important to have multidisciplinary
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groups [90,111,224] involving representatives from the clinical, academic, and industrial
communities in order to create efficient processes that can validate the algorithms and
hence approve or refute recommendations made by software [90]. Related to this is that
algorithmic development has to take into consideration that real-life performance by cli-
nicians is different from models.

However, other areas of medicine, for example, ophthalmology, have shown that cer-
tain classifiers approach clinician-level performance. Of further importance is the devel-
opment of explainable Al methods that have been applied to ophthalmology where cor-
relations are made between areas of the image that the clinician uses to make decisions
and the ones used by the algorithms to arrive at the result (i.e., the portions of the image
that most heavily weigh the neural connections) [83,225-227].

Thus, it is important to actively involve multidisciplinary communities to pass the
valley of death [116], namely the lack of resources and expertise often encountered in
translational research. This will take into account the fact that currently, deep learning is
a black box [49], where the inputs and outputs are known but the inner representations
are not well understood. This is being alleviated by the development of explainable Al
[84].

Even though there have been remarkable advances, there are only a few methods
that are able to handle the vast range of radiological presentations of subtle disease states.
There is a tremendous need for large annotated clinical datasets, a problem that can be
(partially) solved by data augmentation and by methods of transfer learning [228,229]
used in the models principally with different CNN architectures.

Although it is very important to note that processing diseases or tasks in medical
images is not the same as processing general pictures of, say, dogs or cats, it is possible
uses a set of generic features already trained in CNNs for a specific task to transfer as
features for input to classifiers focused on other medical imaging tasks. For example, in
medical imaging, see [230-233]. Therefore, it is important to keep in mind the fact men-
tioned by Bini [234] that like humans, the software is only as good as the data on which it
is trained.

In summary, through the analysis of the literature review, we can conclude:

e Although there are some developed models with good metrics, it is clear that not all
have enough confidence to be applied in a real clinical environment due to reproduc-
ibility and replicability issues.

e Ourresearch has noted diverse approaches in the detection differentiation of WHMs,
especially with ischemic stroke and demyelinating diseases like MS. These include
methods like support vector machines (SVMs), neural networks, decision trees, and
linear discrimination analysis.

e  Theneed for a large annotated dataset to train and get better results is noted. For that
reason, it will be ideal if the scientific and medical community can achieve a global
repository of medical images to get models that could be universally applicable and
overcome the fact of developed models being only applicable to a specific population.

Finally, we can say that further research on deep learning techniques like CNNS,
transfer learning, and data augmentation can help improve the efficiency of CAD systems.
In addition, in medical image analysis and diagnosis, it is important to include clinical as
well as basic scientific and computational knowledge in order to develop models that
could be useful to humanity and allow us to deal with health crises like the current
COVID-19 pandemic, where, for example, the analysis and processing of chest X-ray im-
ages [233,235,236] constitute an important tool to help in the diagnosis of the disease.
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