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Chapter 1

Introduction

1.1 Introduction

Nowadays, the main objective of many companies and organizations is to inprov
profitability and competitiveness. These improvements can be obtained with a
good optimization of resources allocation. The job-shop scheduling pnaldieP)

is a possible representation of a typical problem of scheduling. Manylifea
problems can be modelled as a job-shop scheduling problem and can dpplied
some variety of areas, such as process scheduling in an industrytutteppand
arrival times of trains at stations, the delivery times of orders in a comday,

To solve this problem many techniques have been developed such ah brah
bound, constraint satisfaction techniques, neural networks, gemhgoigtms or

tabu search.

In general a scheduling problem is a combinatorial optimization problem. The
aim of scheduling is the resource allocation of tasks when one or moreivegec
must be optimized. The resources can be workshop machines, workwtodting
staffs, etc. Tasks can represent operations of a production graecutions of
a computational program, steps of a process, arrivals or departuaesain, etc.

The objective might be to minimize the time execution, to minimize the number of
tasks after a given date, etc.

The job-shop scheduling problem with operators is an extension of th&-clas
cal job-shop scheduling problem where each operation has to be ddsistae
operator from a limited set of them. The job-shop scheduling problem wittaepe
tors has been recently proposed by Agnetis et al. [1]. This problemmistele as
JSO(n,p) wheren is the number of jobs anddenotes the number of operators.

It is motivated by manufacturing processes in which part of the work i€ dign
human operators sharing the same set of tools. The problem is formalized as
classical job-shop scheduling problem in which the processing of a tealgven
machine requires the assistance of ong a¥ailable operators. The state of the art
of JSO(n,p) is analyzed in Chapter 3. This problem have modelled and solved
by [1] with a branch and bound technique were some heuristics algorittenadsar
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used. Another technique to solve the problem with operators have beeloged
by [29] using genetic algorithm. In [28] the problem is solved combining dloba
pruning rules with depth-first search.

In Chapter 2 the state of the art of constraint satisfaction problem (CSP) is
presented. A CSP is represented as a finite set of variables, a domaitue$ v
for each variable and a set of constraints that bound the combinatiofuekvat
variables can simultaneously take. The goal of CSP is to select a valuadior e
variable so as to satisfy all constraints of the problem.

JSO(n,p) has been modelled as a CSP in Chapter 4 and a branch and bound
(B&B) algorithm with techniques of backtracking has been implemented to solve
it. The cost to solve a CSP is dependent of the domain and the number dllearia
so when any of these factors is high the problem is considered NP compliéxity
the aim is to get the optimal solution or solutions optimized (CSOP) [4], a lot of
solutions have to be found in an iterative process and this search is readly h
For this reason have been applied some techniques to try to simply the domain and
has been modified the original algorithm B&B to be more specific to the problem.
But also with these improvements the problems remains intractable. The algo-
rithm need too much time to found an optimal solution minimizing the makespan.
Makespan is the maximum end time of the operations so if makespan is minimized
the end time is reduced also. The reason to found the optimal solution is becaus
through this solution or modifying it can be created a solution that also optimize
the makespan and the robustness [41].

A solution is robust if is it able to maintain its functionality under a set of in-
cidences. The robustness in JSP can be obtained trough allocation tbufe
in order to absorb incidences. Another technique with three steps hasdbee
veloped, it is showed in Chapter 5, the JSP is solved without taking into atcou
operators and thus simplifying the problem is named first step. In the sstemd
with a post-procedure the solution is adapted to the operators constrdaindu
a correct solution to/SO(n, p), this adaptation is taking account a trade off be-
tween optimization and robustness. In the third step, if it is possible, the number
of buffers is increased without losing optimality redistributing the existerfebsf

1.2 Motivation

The job-shop scheduling problem is a well-known general problemtrafdiding.
This is not a real problem but in many cases can be related to some rbEmso
JSP represents a problem where there are some specific resourckedaxe to
be used to carry out some tasks. The extension with operalé@ (., p)) can
represent more real life problems, because it provides the probleneta new
resource (operators) and those resources are not tied to a speific ta

In scheduling, usually, the most important thing is to finish the task in the
shortest possible time. However, in some cases robustness can be atamhpor
point to keep in mind. For this reason, it appears the idea to solve this dicigedu

2



problem with the aim to get a solution that minimizes the ending time; and at the
same time this solution should be able to absorb incidences in the schedule without
modifying any task. This idea opens the motivation to found techniques that ca
be used to get robust solutions that try to absorb incidences that caarapye to
machine failures, late deliveries, human errors, etc.






Chapter 2

Constraint Satisfaction Problems

2.1 Introduction

Constraint Programming is a software technology used to represemlandasge
and complex problems from many real life areas. Many of these problemiseca
modeled as constraint satisfaction problems and solved using constiEinamr-
ming techniques. Examples include scheduling, planning, temporal regsdein
sign engineering, packing problems, cryptography, diagnosis, e&ccdinplexity
of this type of problem is NP [27].

A CSP is composed with a set of variables where each one can take vhlues o
a specific domain. There is a set of constraints that limit the number of valates th
each variable can take. The objective is to select a value to each vaasbfgisg
the set of constraints.

The resolution of a CSP has two phases: The first one is to model theproble
using the correct syntax and the second part is to solve the problemarsingf
the different techniques.

2.2 Modelling a CSP
A constraint satisfaction problem (CSP) is a triplé, D, C') where:
o X ={x1,x9,...,2,} is aset ofn variables.

e D ={dy,ds,...,d,} is a set of domains, such that each variahle X has
a finite set of possible valuek.

e C={ci,ca,...,cn, } is afinite set of constraints which restrict the values that
the variables can simultaneously take.

A constraint can be defined in intensional or extensional form althowotfin b
can be equivalent.



¢ Intensional constraints: Constraints are represented as mathematic at logic
function.

Example. x; < 4 is a unary intensional constraint.

e Extensional constraint: Constraints are represented as a set of vialid oot
tuples.

Example. The set of tupleg(0), (1), (2), (3), (4)} is the extensional rep-
resentation of the constraint < 4 by means of valid tuples, considering
the domaind; : {0..10} for z;.

2.3 Example of a CSP: Map Colouring Problem

The Map Colouring problem tries to colour the areas in map using a number of
colours but with the condition that the neighbouring areas have diffedatrs.

The map colouring problem can be represented as a graph colouribigmprto
color the vertices of a given graph using predefined number of colowgsch a

way that connected vertices get different colours. It is very easy tdehthis
problem as a CSP. There are as many variables as vertices, and the ftoreash
variable contains the colours to be used. If there is an edge betweenrtices/e
represented by variablesandy, then there is an inequality constraint referring to
these two variables, namely:+# y.

-1

W

Figure 2.1: An example colouring problem

Graph colouring is known to be NP-complete, so one does not expelstreopdal-
time algorithm to be found for solving this problem. It is easy to generate a large
number of test graphs with certain parameters, which are more or lessiltiific
be coloured, so the family of graph colouring problems is appropriate taltgst
rithms thoroughly. Furthermore, many practical problems, like ones froffiettae
of scheduling and planning, can be expressed as an appropriate gpiapiring
problem [37].



Figure 2.1 shows an example of map colouring problem and its graph repre-
sentation. The map is composed on four regions/variables x, y, z, w tddiged.
Each region can be coloured in three different colours: red (rgrofg) or blue (b).
So the domain of each variable is r,g,b. Each edge represents the binatsagut
which restricts that two adjacent regions must be coloured with diffedotics.
There are five constraints because there are five edges. A posdiltiersis the
assignation (r), (y=9), (z=g) and (w=b).

2.4 Solving a CSP

A CSP can be solved by assigning values to each variable, the solutiancspeloe
seen as a search tree. In each level, a variable is instantiated and thessusof a
node are the variable values of this level. Most algorithms for solving C&dtsls
systematically through the possible assignments of values to variables. I§ach a
rithms are guaranteed to find a solution or to prove that the problem is insoluble
Prune is only used if the partial search tree contains not solution. Thiévdisage

of these algorithms is that they may take a very long time to find a solution.

2.4.1 Consistency Techniques

Consistency techniques were introduced for improving the efficiencyeafch
techniques. The number of possible combinations can be huge, while agly ve
few are consistent. By eliminating redundant values from the problemititafin
the size of the solution space decreases. Reduction of the problem clamde
once, as a pre-processing step for another algorithm, or step by demwanen
with the exploration of the solution space by a search algorithm. Local irstens
cies are single values or combination of values for variables that caartaipate
in any solution because they do not satisfy some consistency propefty [27

For instance, if a value of variablex; is not compatible with all the values in
a variablez; that is constrained with;, thena is inconsistent and this value can
be removed from the domain of the variahlg In the following paragraphs we
introduce the most well-known and widely used algorithms for binary CSPs.

e A CSP is node-consistent if all the unary constraints hold for all the el-
ements of the domains. The straightforward node-consistency algorithm
(NC), which removes the redundant elements by checking the domains one
after the other, ha®(dn) time complexity, where d is the maximum size of
the domains. Thus, enforcing this consistency ensures that all valtles of
variable satisfy all the unary constraints on that variable.

e A CSP is arc-consistent [27] if for any pair of constrained variables:;,
for every valuea in D; there is at least one valuein D; such that the
assignments;, a) and ;, b) satisfies the constraint betweep and z;.
Any value in the domairD; of variablez; that is not arc-consistent can be
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removed fromD; since it cannot be part of any solution. Arc-consistency
has become very important in CSP solving and it is in the heart of many
constraint programming languages. The optimal algorithms to make the CSP
arc-consistent require tim@(ed?), where e is the number of constraints
(arcs in the constraint network) and d is the size of domains. Arc-coneyste
can also be easily extended to non-binary constraints.

e A CSP is path-consistent [30], if for every pair of valuesnd b for two vari-
ablesr; andx; , such that the assignmentscofo x; and b tox; satisfies the
constraint between; andz;, there exist a value for each variable along any
path betweemn; andx; such that all constraints along the path are satisfied.
When a path-consistent problem is also node-consistent and aristeots
then the problem is said to be strongly path-consistent.

Consistency techniques can be exploited during the forward checkigg sta
of search algorithms in the following way. Each time some search decision is
done (for example, a value is assigned to the variable), the problem is nmade a
consistent (arc consistency is typically used during search due to it is lovatiche
space complexity). If failure is detected (any domain becomes empty) theroit is n
necessary to instantiate other variables and backtracking occurs immediately

2.4.2 Search techniques

Most algorithms for solving CSPs search systematically through the possible a
signments of values to variables. Such algorithms are guaranteed to filutiarso

if one exists, or to prove that the problem is insoluble. The disadvantatpesd
algorithms is that they may take a very long time to do so. The actions of many
search algorithms can be described by a search tree.

Generate and Test. The generate-and-test (GT) method originates from the naive
approach to solving combinatorial problems. First, the GT algorithm guesses
the solution, and then it tests whether this solution is correct, that is, whether
the solution satisfies the original constraints. In this paradigm, each pos-
sible combination of the variable assignments is systematically generated
and tested to see if it satisfies all the constraints. The first combination that
satisfies all the constraints is the solution. The number of combinations con-
sidered by this method is the size of the Cartesian product of all the variable
domains.

The main disadvantage is that it is not very efficient because it generates
many assignments of values to variables which are rejected in the testing
phase. In addition, the generator leaves out the conflicting instantiatidns an

generates other assignments independently of the conflict. Visibly, one can
get far better efficiency if the validity of the constraint is tested as soon as its

respective variables are instantiated.
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Backtracking. A simple algorithm for solving a CSP is backtracking search (BT)
[5]. Backtracking works with an initially empty set of consistent instanti-
ated variables and tries to extend the set to a new variable and a value for
that variable. If successful, the process is repeated until all variabdeis-
cluded. If unsuccessful, another value for the most recently addebleais
considered. Returning to an earlier variable in this way is called a backtrack
If that variable doesn’t have any further values, then the variablevisved
from the set, and the algorithm backtracks again. The simplest backtrack-
ing algorithm is called chronological backtracking because at a dedthen
algorithm returns to the immediately earlier variable in the ordering.

In the BT method, variables are instantiated sequentially and as soon as all
the variables relevant to a constraint are instantiated, the validity of the con-
straint is checked. If a partial solution violates any of the constraintk-bac
tracking is performed to the most recently instantiated variable that still has
alternatives available. Clearly, whenever a partial instantiation violates a
constraint, backtracking is able to eliminate a subspace from the Cartesian
product of all variable domains.

2.4.3 Hybrid techniques

In section 2.4.2 some search techniques to solve CSPs have been pkesente
section 2.4.1 some consistency techniques that delete inconsistent vatodhdr
variable domain have been presented. Therefore, consistency teebrgn be
used as a pre-process step where inconsistencies can be detecrednaxed.
Otherwise, consistency techniques can be used in the search pr@&mse of
these hybrid techniques are based on look-back and look-aheadjigehin

e Look-Back Algorithms: BT can suffer from thrashing; the same dead end
can be encountered many timeszJfis a dead end, the algorithm will back-
track toz; 1. Suppose a new value far;_; exists, but that there is no
constraint between; andz;_;. The same dead end will be reachedcat
again and again until all values of_; have been explored. Look-back algo-
rithms try to exploit information from the problem to behave more efficiently
in dead-end situations. Like BT, look-back algorithms perform consigtenc
checks backward (between the current variable and past variables)

Backjumping (BJ) [10] is an algorithm similar to BT except that it behaves
in a more intelligent manner when a dead end {s found. Instead of BT to
the previous variablex(_;), BJ backjumps to the deepest past variable

J, @ that is in conflict with the current variablg. Itis said that variable ; is

in conflict with the current variable; if the instantiation of:; precludes one

of the values inz;. Changing the instantiation af; may make it possible

to find a consistent instantiation of the current variable. Thus, BJ avoids a
redundant work that BT does by trying to reassign variables betwgand
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the current variable:;. Conflict-directed BJ [33], backmarking [11], and
learning [9] are examples of look-back algorithms.

e Look-Ahead Algorithms: As we have explained, look-back algorithms try
to enhance the performance of BT by more intelligent behavior when a dead
end is found. Nevertheless, they still perform only backward consigten
checks and ignore the future variables. Look-forward algorithms nmake f
ward checks at each step of the search. Let us assume that, whemrsgar
for a solution, the variable; is given a value which excludes all possible
values for the variable;. In case of uninformed search, this will only turn
out whenz; will be considered to be instantiated. Moreover, in case of BT,
thrashing will occur: the search tree will be expanded again and aggin un
xj, as long as the level of BT does not reagh Both anomalies could be
avoided by recognizing that the chosen valueafpcannot be part of a so-
lution as there is no value far;, which is compatible with it. Lookahead
algorithms do this by accepting a value for the current variable only if, after
having looked ahead, it could not be seen that the instantiation would lead to
a dead end. When checking this, problem reduction can also take place by
removing values from the domain of the future variables that are not com-
patible with the current instantiation. The algorithms differ in how far and
thorough they look ahead and how much reduction they perform.

Forward-checking (FC) [16] is one of the most common look-forward-alg
rithms. It checks the satisfiability of the constraints, and removes the values
which are not compatible with the current variable’s instantiation. At each
step, FC checks the current assignment against all the values of Yatire
ables that are constrained with the current variable. All values of funie
ables that are not consistent with the current assignment are remowed fr
their domains. If a domain of a future variable becomes empty, the assign-
ment of the current variable is undone and a new value is assigned. If no
value is consistent, then BT is carried out. Thus, FC guarantees thathat ea
step the current partial solution is consistent with each value in each future
variable. Thus, FC can identify dead ends and prune the searchssymamss.

2.5 Robustness and stability

The concepts of robustness and stability in constraint satisfaction hametired
and there is a misunderstanding between the two concepts. Some resetriéhe
about stability and others about robustness. But, what is the diffebeteeen sta-
ble and robust? Itis the first question that comes to mind, especially farobezs
who work with quantitative models or mathematical theories.

In general, a solution is stable in a dynamic system, if by means of a few
changes in the solution we can obtain a new solution that is similar to the original
one. However the robustness concept is broader than the stabilityptoriRe-
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bustness is a measure of feature persistence in systems that compelaustorfo
perturbations because they represent changes in the compositionlogioptithe
system. The perturbations are small differences in the actual state ofdfesnsy
[21].

Taking into account all these concepts, we can classify the nature obline s
tions as:

e The stability (also called flexibility) of a solution is the ability of a solution to
share as many values as possible with a new solution if a change occurs [17
It is measured in terms of similarity of the new solution with the original
one.

e The robustness of a solution is the measure of the persistence of the solution
after modifications in the original solution. Thus, a solution is robust if it has
a high probability of remaining valid faced with changes in the problem. It
is measured in terms of the persistence of the solution.

Sometimes the robustness is related with the information of the problem. Nor-
mally, in a problem that no information is given, the probability of something goes
wrong or the probability that something cannot be finished in the predicted time is
equal in all the cases. However sometimes there is information about tHerprob
because there are some historic as previous experiments where sozieilstib
cases can be used, or the help of an expert can be used. When theiefama-
tion usually the probability that something happens has to be proportional.

11
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Chapter 3

Job-Shop Scheduling Problem
With Operators

3.1 Introduction to Job-Shop Scheduling Problem

Job-shop scheduling problems (JSP) are among the most intensive ctariaina
problems studied in literature. An instance with ten jobs to be processed on ten
machines, formulated in 1963, was open for more than 25 years. It wallyfin
solved by a branch-and-bound algorithm. Very simple special case® ¢blth
shop problem are already strongly NP-hard.

After a short review of these old challenges, we consider practicdicatipns
in flexible manufacturing, multiprocessor task scheduling, robotic celldadhmy,
railway scheduling, air traffic control which all have an underlying $btop struc-
ture. Methods to solve these problems and new challenges in connectionamith th
are indicated.

3.2 Problem Description

The job-shop scheduling problem can be defined as follows. We age giset

{J1,...,J,}of njobsthatrequire, for their processing, a setofesources or ma-

chines{Ry, ..., R,}. EachjobJ; consists of a sequenceqftasks(6;1, . . . , Oiy,)-

Each tasld;; has a single resource requireméyt,, an integer duratiop,, and

a start timesty,, to be determined. A feasible schedule is a complete assignment

of starting times to tasks that satisfies the following constraints: (i) the tasks of

each job are sequentially scheduled, (i) each machine can process tabmeos

task at any time, (iii) no preemption is allowed. The objective is finding a feasible

schedule that minimizes the completion time of all the tasks, i.e. the makespan.
In this framework, it is useful to represent the job-shop schedulingl@noin

terms of a disjunctive grap = (V, A, E) [2], whereV is the set of nodesA is

the set of ordinary arcs (conjunctive) and E the set of disjunctive arae nodes

of G (V) correspond to operations, the directed atd}¥ to precedence relation,

13



and the disjunctive arcgy) to operations to be performed on the same machine. A
schedule on a disjunctive graghconsists on finding a set of orientations that min-
imizes the length of the longest path (critical path) in the resulting acyclic ditecte
graph. Let consider the following example:

Table 3.1: Example of a job-shop problem
Job | Processing cycle
J1 | (1,10),(2,5), (3,6)
Jo (2,5) ,(1,8)

Js | (1,2) ,(3,10), (2,4)

The job-shop scheduling problem has three jobs, three machines abhdigh
erations.J; consists of a sequence of three operatighgonsists of a sequence of
two operations ands consists of a sequence of three operations. The processing
cycle for each job is a sequence of itent&(, pg,) where Ry, denotes the ma-
chine andpy,, the processing time for the operationrespectively. The disjunctive
graph of the above problem is shown in figure 3.1.

Figure 3.1: Disjunctive graph for a job-shop scheduling problem.

The number outside a node represents the number of operatiend;; ,
whereas the number inside a node is the processingimeA feasible solution
of the problem is represented by the directed graph shown in figure 3.2.

3.3 Techniques to solve Job-Shop Scheduling Problem

Many techniques have been developed to solve the job-shop schedulrigm.
In this section some of these techniques are presented.

Branch and Bound (BB) use a dynamically constructed tree structure to repre-
sents the solution space of all feasible sequences. The search hethias a

14



Figure 3.2: A feasible solution via a direct graph.

topmost node and a complete selection is achieved once the lowest level node
has been evaluated. Each node at a level in the search tree repeepants

tial sequence of operations. As implied by their name a branching as well
as a bounding scheme is applied to perform the search. From an undelecte
node the branching operation determines the next set of possible modes f
which the search could progress. The BB search technique was initially stu
ied by [7] and [19]. Another example of such a BB algorithm is cited by [6]
who construct a parallel version of edge finder. A depth first strategp-

plied and the partial enumeration tree is represented by a collection of data
structures held in shared memory.

Constraint Satisfaction techniquesaim at reducing the effective size of the search
space by applying constraints that restrict the order in which variabées ar
selected and the sequence in which possible values are assigned tamach v
able. After a value is assigned to a variable any inconsistency arising is
removed. The process of removing inconsistent values is called comgisten
checking, while the method of undoing previous assignments is referred to a
backtracking. A backtrack search fixes an order on the variableslande-
termines a fixed ordering of the values of each domain. The Constraint Sat-
isfaction Problem (CSP) is solved when a complete allocation of variables is
specified that does not violate the constraints of the problem. Although con-
sidered within the domain of Al, many constraint based scheduling methods
apply a systematic tree search and have close links with BB algorithms. [31]
applies various propagation methods and operation selection heuristies in or
der to dynamically determine whether to schedule an operation first or last.
[3] proposes a constraint-based model for the Job-Shop Schedutiblpm
to be solved using local search techniques.

Neural Networks (NNs) are organised in a framework based on the brain struc-
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ture of simple living entities. In these techniques information processing is
carried out through a massively interconnected network of parallekess

ing units. Their simplicity, along with their capability to perform distributed
computing, as well as their propensity to learn and generalise has made neu-
ral networks a popular methodology. [20] describes some of the maialneur
network architectures applied to solve scheduling problems.

Greedy Randomised Adaptive Search Procedure (GRASPIs a problem space
based method that consists of a constructive and an iterative phase2 In th
construction phase the solution is built one element at a time. All possible el-
ements which can be chosen next are ordered in a candidate list witlstrespe
to a greedy function. A number of the best candidates are then placed in
a restricted candidate list (RCL). The adaptive nature of GRASP isatkriv
from its ability to update the values associated with every element, at each
iteration, based on the selection just made. While the probabilistic nature of
the algorithm stems from the random selection of an element in the RCL.
[34] present an application on presents an application of GRASP where th
RCL consists of the operations that when sequenced next would retudt in
lowest overall completion time of the partial sequence.

Genetic Algorithms (GAs) are based on an abstract model of natural evolution,
such that the quality of individuals builds to the highest level compatible
with the environment. Genetic Algorithms are an optimization technique
for functions defined over finite domains. They were first proposed8h [
Their name refers to their imitation of natural evolutionary processes. In
scheduling and ordering problems, encoding is usually such that theohro
somes are the permutation of a basic string. An example of representation is
showed by [23] where a chromosome is a string of symbols of length n and
each symbol identifies the operation to be processed on a machine. Another
work where a GA are used to solve a JSP is presented in [15] the chromo-
some representation of the problem is based on random keys. Theikeshed
are constructed using a priority rule in which the priorities are defined by the
genetic algorithm and after a schedule is obtained a local search heuristic is
applied to improve the solution.

The Tabu Search (TS)is a metaheuristic approach mainly used to find a near-
optimal solution of combinatorial optimization problems. It was proposed
and formalized by [12], [14] and [13]. The TS technique is based on an
iterative procedure "neighbourhood search method" for finding, imite fi
setT of feasible solutions, a solutionh € 7' that minimizes a real-valued
objective functionf. [24] present some of the earliest TS approaches in
scheduling. They create three tabu search strategies based on simple move
definitions. [25] apply target analysis to these two works and indicate the
inclusion of job transfers in addition to job swaps improves solution quality,
reduces computing time and allows larger problems to be solved. In [32]

16



a new heuristics method based on a combination of a TS technique and the
SBP has been proposed. The initial solution given by shifting bottleneek, th
special structure of neighbourhood, and the proposed dynamic list &dlow
obtain interesting results.

3.4 Extension with operators

The job-shop scheduling problem (JSP) with operators is an extensiba ofas-
sical job-shop scheduling problem. This extension, proposed by Agtetis[1],
is denoted/SO(n, p) wheren represents the number of jobs gnt the number
of operators. The number of jobkshave to be greater than the number of opera-
torsp otherwise each operators could be assigned to each job and the remains as
standard JSP.

The extension to/SO(n, p) produce some changes in the problem formula-
tion:

e A new constraint is added: Each operation has to be assisted by om¢avper
and each operator cannot assist more than one operation at the same time.

e The representation gragh has some changeé&: was defined a§V, A, F)
whereV represents the noded, precedence relations arid the capacity
constraints. The new graph representation is representéd-as(V, A U
EUTIUO)[39] whereV,A andE following represents the same. While
represents the operators arcs that includes three types of arc:cofe @
for each pair of tasks of the problem, and af€§'*"*, u) and (u, O¢"?) for
each operator node and task. The Beicludes arcs connecting nodeart
to each node;!"* and arcs connecting each no@¢"? to nodeend The
arcs are weighted with the processing time of the task at the source node.

In [1] the authors made a thorough study of this problem and establisheurie
mal N P-hard cases. Also, a number of exact and approximate algorithms to cope
with this problem were proposed and evaluated on a set of instancestgehfeom
those minimal relevant cases. The results of the experimental study kpofig¢
make it clear that instances of ti&'O(n, p) with 3 jobs,3 machines2 operators
and a number o030 tasks per job may be hard to solve to optimality.

In [40] the authors propose an exact best-first search algorithrexgetiment
with new instances considering more trgajobs and2 operators. Also, a genetic
algorithm is proposed in [29] which reaches near optimal solutions foe larg
stances. The&/SO(n, p) with total flow time minimization is considered in [39]
where it is solved by means of an exact best first search algorithm daé]iby
means of an depth-first search algorithm. In both cases, some probbemdimt
heuristics and powerful pruning rules were used.

All the developed techniques are focused on obtaining optimized solutiens ac
cording to makespan and total flow time. In this work is extended the objective f
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searching robust solutions. It is well-known that real life schedulimiplems are
dynamic and incidences may occur so that an optimal solution remains utdeasib
after the incidence. The main incidence that can occur #6&(n, p) is that a

task must be delayed due to problems with the associated machine or asgigned o
erator. In this way, our main goal is to find robust and optimized solutions sethe
problems.

3.5 Robustness in Job-Shop Scheduling Problem

"Robustnesscan be defined as the ability of a system to withstand stresses, pres-
sures, perturbations, unpredictable changes or variations in its opeeatiiron-
ment without loss of functionality. A system designed to perform in an drgec
environment is fobust' if it is able to maintain its functionality under a set of in-
cidences. In our context a solution of/&O(n, p) is robust if no rescheduling is
needed after small changes in the problem.

Intuitively, the notion of robustness is easy to define, but its formalizatien de
pends on the system, on its expected functionality and on the particularigset of
cidences to face up [35]. No general formal definition of robustnassken pro-
posed, except few exceptions or particular cases. Particularly, Kig2jonathe-
matically defines the robustneds)(of a system §Y S) with regard to its expected
functionality (F") against a set of perturbationg), as (in a simplified way):

R}i}%s = /Zp(z) x F(2)dz (3.1)

The application of robustness definitions is highly problem-dependents Let’
apply (3.1) toJSO(n, p):

e SYS is a solutionS of the JSO(n,p), which we want to assess its ro-
bustness. Robustness is a concept related S0 (n, p) solutions, not to
JSO(n, p) itself.

e 7 is the discrete set of unexpected incidences that are directly related to the
start time or the duration of tasks.

e [ is the expected functionality of the system. J8O(n, p), the expected
functionality of a solution is its feasibility after the disruption. Here a solu-
tion is composed by the start times and duration of all tasks, plus the buffer
times allocated between tasks.

o p(z) = é,w € Z. This is the probability for incidence € Z. All tasks
have the same probability due to no information is given about incidences.

Therefore, the expression (3.1) becomes:

RE, = plz)* F(2) (3.2)
Z
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Where functionF is defined, in the case of.A50(n, p) as:

e [(z) = 1iff only the affected task is modified by, Thus the buffer assigned
to this task can absorb the incidence.

e F(z) = 0, iff more tasks are modified by. This means that the buffer
assigned to this task cannot absorb the incidence and it is propagated to the
rest of the schedule.

A robust solution is a solution that maintains its feasibility over the whole set
of expected incidences. Thus, robustnes$ S (n, p) implies that:

o If the duration of a task is greater than expected, then only its final time will
be affected and no other tasks will be delayed.

¢ If the start time of a task is delayed, then its final time is also delayed but no
other tasks will be affected.

Here, we focus our attention on searching for a robust solution with a minimal
makespan. To do this, we will assign buffer times to tasks. This is an usyal wa
for introducing robustness in scheduling problems. A buffer is an extrattiate
is given to a task to absorb small incidences. Due to the fact that the duration
of a task is directly dependent of machine and operator involved in this ttaesk,
buffer assigned to this task can be used to absorb small incidences intese
components. However, there exists a trade-off between optimality andtnass
so buffer times cannot be assigned to all tasks. If it is not known informatut
the probability to appear the possible interruptions the number buffersthdnae
as high as possible and these have to be good distributed.

Lemma 1. Let a robust schedule with a given makespan. A buffer can be
assigned to a task iff this task is not involved in any critical path.

Proof by contradiction

— If a buffer is assigned to a task and it is involved in a critical path, then this
buffer could be removed to reduce makespan. Contradiction: the initiatatd
has minimum makespan.

+ ltis straightforward. If a task is not involved in a critical path and a buffe
cannot be assigned, then this task takes part of another critical paitra@iction:
this task is not involved in any critical path.

Thus, we consider that tasks involved in a critical path will not be assigned
buffers to avoid increasing the makespan. Thus our main goal is to asdignsb
to all tasks that are not involved in critical paths, so that we could achieve th
maximum robustness with a given optimality (makespan).
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Chapter 4

Modelling JSO(n,p) as a CSP

4.1 Introduction

In this chapterJSO(n, p) is modelled as a CSP and solved using a look-ahead
algorithm (Forward-checking). By using this algorithm, a solution can teiéd,
However the main aim of this problem is not to obtain a solution but to obtain an
optimized solution. To this end a branch and bound technique has bedopisle
When a solution is found the algorithm remains looking for more solutions that
improve the obtained solutions. When the objective is not only to get a solution
of the problem but an optimized solution it is named Constraint Satisfaction and
Optimization Problem (CSOP).

4.2 A modelling Phase

In this approach, we proposed to model th®0O(n, p) as a Constraint Satisfaction
and Optimization Problem (CSOP) [4].
The CSOP model for dSO(n, p) is characterized by the following elements:

e A set of variablesr, ..., z,, associated with the start time of tasks and with
the operator responsible for carrying out each task. These vartakkegal-
ues in finite domain®+, ..., D,, that may be constrained by unary constraints
over each variable. In these problems, time is usually assumed discrete, with
a problem-dependent granularity.

e Asetof constraintsy, ..., ¢, among variables defined on the Cartesian prod-
uctD; x ... x D; and restrict the variable domains.

e The objective function is to minimize the makespan.
Three main constraints appear in this kind of job-shop problems:

1. Precedence constraints: The tagksof each jobJ; must be scheduled ac-
cording to precedence constraints, i.e., there exists a partial orderimggamo
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the tasks of each job and may be represented by a precedence gtegs or
like structure [38].

2. Capacity constraints: Resources cannot be used simultaneouslydjhaor
one task. Thus, two different taskg andé;;, cannot overlap unless they use
different resources.

3. Operator constraints: An operator can not handle more than onettask a
time.

To modeling the/SO(n,p) as a CSOP we have used the syntax XCSP [36].
The Extensible Markup Language presents a simple and flexible text farrdat
gives the facility to use some functions and structures defined in Absé&jnlf2
the figure 4.1, it can be seen an example of a representation of a jolpahad
instance represented in XCSP.

—<instance>

+<presentation format="XCSP 2.1" name="job-shop"></presentation>

—<domains nbDomains="15">
+<domain name="STime0" nbValues="
+<domain name="STimel" nbValues=
+<domain name="STime2" nbValues=
+<domain name="STime3" nbValues=
+<domain name="STime4" nbValues="
+<domain name="STime5" nbValues=
+<domain name="STime6" nbValues="
+<domain name="STime7" nbValues=
+<domain name="STime8" nbValues="
+<domain name="STime9" nbValues=
+<domain name="STimel0" nbValues:
+<domain name="STime11" nbValues:
+<domain name="STimel2" nbValues:
+<domain name="STime13" nbValues=
+<domain name="STimel4" nbValues="54"></domain>

"></domain>
"></domain>

</domains>
+<variables nhVariables="15"></variables>
—<predicates nbPredicates="2">
—<predicate name="P0">
<parameters>int X0 int X1 int X2</parameters>
—<expression>
<functional>le(add(X0,X1),X2)</functional>
</expression>
</predicate>
—<predicate name="P1">
<parameters>int X0 int X1 int X2 int X3</parameters>
—<expression>
<functional>or(le(add(X0,X1),X2),le(add(X2,X3),X0))</functional >
</expression>
</predicate>
</predicates>
—<constraints nbConstraints="36">
—<constraint arity="2" name="C0" reference="P0" scope="]0T0 1 JOT1 1">
<parameters>J0T0_1 5 JOT1_1</parameters>
</constraint>
—<constraint arity="2" name="C1" reference="P0" scope="]0T1 1 JOT2 1">
<parameters>J0T1 1 9 JOT2 1</parameters>

</constraint>
- <constraint arity="2" name="C2" reference="P0" scope="J0T2_1 JOT3_1">
°
°
.

Figure 4.1: Partial instance of a job-shop problem represented in XCSP.

In the modeling phase, we have applied two different filtering techniques to r
duce the variable domains. The first technique developed (Algorithmd)lates
initials values of each tasks and reduces the domain size of the involveblgaria
These technigues are similar to the filtering techniques presented in chépbeie2
consistency, arc-consistency).Thus, a solution can be found mariewetfy. This
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algorithm calculates the maximum time interval in which each task can be sched-
uled. On the one hand, giverdg task, the lowest value of itsty, ; is the sum of

the processing times of the tasks that has to be scheduled Bgfér@m the same

job i (cumulative;;), subject to the precedence constraints. On the other hand,
the highest value of all the domains fety,; is the sum of all processing times
(mazTime), since this value represents the end of the schedule where the tasks
are scheduled linearly. Due to the fact that at least the following tasks tine

same job must be scheduled beforexTime, the highest value for the domain of
each task;; can be reduced by subtracting the duration of all the tasks from the
same jobi that have to be scheduled aftgy (includingf;;) to maxTime.

Algorithm 1: Calculate initial values to reduce domain

Data: J: set of jobs;
Result Relative starts to each task and lineal maxtime
maxTime := 0;
cumulative;; := 0, V0;; € 0;
foreach: € J do
cumulativeJob < {0};
foreach6;; € 6 do
L maxTime := maxTime + py;

cumulative;; <— cumulativeJob,
cumulativeJob + cumulativeJob U {pe,; };

return cumulative, maxTime;

The valuessumulative;; andmaxTime obtained in Algorithm 1 are used to
filter the domains by removing values that cannot take part of feasible swdutio

In the second technique to reduce the variable domains (Algorithm 2), the va
ues that cannot be possible are calculatggl, only should get values that repre-
sent the sum of the tasks that can be executed béfare

Algorithm 2 : Calculate possible values

Data: All tasks

Result New domain of alb
pValuesj, < 0, V0;; € 6;
foreach: € J do

L foreach#;; € 0 do

tasksBefore < t asksCanBeBef or e(0;;)
pValues;; < conmbi neDur Tasks(tasksBefore)

return pValues

For example, iB;; is the first task of its job, the possible values are 0 and a set
of the combination of the processing times of all the tdBkbkat can be scheduled
befored;;. In this case, these tasks are all the tasks of the other jobs. For
the following task €;;+1), its possible valuesty, .., are the same a4; plus the
processing time of;;. In the Algorithm 2 tasksCanBeBeforeinction returns the
tasks that can be executed before a given askand,combineDurTaskunction
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calculates all the possible values fef,; following the precedence constraints.
Thus, by applying these filtering techniques, the variable domains aree@@nd
the solving phase can be executed in a more efficient way.

4.3 Solving Phase

Once a CSOP has been modeled and the domains filtered, it is solved by using a
modified algorithm of Forward Checking (FC) (Algorithm 3). When a solutias
been found, the algorithm tries to found more solutions with a Branch anddBou
technique. Filtering techniques are also used but prune is only usedtimept

of not analysed solutions cannot improve the best obtained one. Foedsisir no
solution is lost. Instead of applying Maintaining Arc-Consistency, this algorith
performs a filtering procedure that removes the domains in blocks, i.e., ivemmo
several values at a time. This is due to the fact that if a #askust be scheduled
after taskfy;, the sty,; can take neither the value of they,, nor all successive
values until the ending time df;. Thus, all these values can be removed as a
block of values. The values to delete depend on the type of constrainis ikth

a precedence constraint, all the values betafelus its processing time will be
deleted. Otherwise, if itis a capacity constraint, the values betsfggr(included)

and its processing time will be deleted.

Algorithm 3: Select-value-forward-checking with deletion block

while D; # () do
select first element € D}, and remove: from D;
forall k, : <k <|D’|do
if constraint(i,k) = MachineOrJobConstrairtihen
if constraint(i,k)= JobConstrainthen
| remove values iffal, < a + dur;) from Dj,
else
| remove values if{aly, + dury, > a Aval, < a + dur;) from Dy,

else
forall b € Dj, do
if Nnot CONSI STENT (a;—1,z; := a,xx := b) then
L | removeb from D;,

if D, = () then
| reseteachDj, i < k < n to value before: was selected

else
L return a

return null

Some heuristic techniques have been applied to improve the speed and effi-
ciently solving the problem. Variable selection and value selection are two tritica
tasks, and with a good heuristic technique can improve the results. Thelgaria
selection is really important because a good solution can be obtained ediity an
makes more efficient the prune. Also the value selection is important betteuse
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values of temporal variables are selected in increase order and the svellles
for each temporal variable is selected. This is due to the fact that if a tasiktaa
in a defined domain of time interval, the earliest value will be probably the value

that minimizes the makespan. The variable selection heuristic that has gten be
results is to select the firsts tasks of each job.
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Chapter 5

Heuristic Algorithms for Finding
Robust Solutions in Job-Shop
Scheduling Problem with
Operators

5.1 Introduction

In chapter 4 a model to solvéSO(n,p) with a CSP implementation with the
objective to get an optimal solution of the problem has been presentedvdtlis
known the trade-off between robustness and optimality. This aim woulddx us
to calculate a robust solution without lose a big part of optimality. But this job is
really difficult to archive, so a new technique has been developed mmarésented

in this chapter. Our technique has been classified in three steps [8]. Aitghe
step, the job shop problem without taking account operators is solvadasan
optimized solution minimizing the makespan is obtained. In the second step this
solution is modified to take into account the operators, modifying the problem to
a JSO(n,p), but now the aim is to get a solution that present a good trade-off
between makespan and robustness. In the third step the solution is modified to
redistribute the buffers but maintaining the same makespan.

5.2 First Step: Modeling and Solving a Constraint Satis-
faction and Optimization Problem

In this approach, we proposed to model the JSP, in the first phase,@sadnt
Satisfaction and Optimization Problem (CSOP) [4]. Due to the post-proegss p
formed, the optimal solution is not necessary to archive, since this solutiidvew
changed. However, it is still necessary an optimized solution to try to minimize the
makespan. Therefore, a hear-optimal solution is looked for by our GRG/er.
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Nevertheless any solver can be used applied to obtain an optimized solution. O
CSOP solver is an any-time solver that provides a set of solutions. Eacbahe-
tion always improves the previous one, until an optimal or a time out is reached

The phases of modeling and solving are similar to those described in Chap-
ter 4 but without take into account the operators. Only precedenceapatity
constraints are take into account. To model the problem Algorithm 1 and& hav
been used to calculate the initial values of each tasks and reduce the dohem.
techniques can be used in a JSP because they do not take into accaratbisp

In the solving phase the techniques presented in Chapter 4 are alsdraged.
problem is solved using the modified FC (Algorithm 3) explained in Chapter 4.

5.3 Second Step: A Post-process Procedure

Once the CSOP has been solved and an optimized solution to the job-shdplsche
ing problem have been obtained, this solution is used to allocate the required n
ber of operators in order to solve tH&'O(n, p). This problem consists on finding

a feasible schedule by minimizing makespan and maximizing number of buffers
(Nyuy) to guarantee a certain level of robustness. Note that a feasible $eliedu
JSO(n,p) is also feasible for the standard job-shop problem and satisfies the re-
striction that at most machines work simultaneously. Therefore, significant cases
are those in whichp < min(n,m), otherwise our problem becomes a standard
job-shop problem [1].

The aim of the Algorithm 4 is to convert a solution without operators in one
where the operator constraints are considered. The idea is to set armoinbe
machines femaining M achines) equal to the number of operatgssand try to
reschedule the tasks of the other machineadhinesFewerTasks) within the
remainingMachines. The tasks inmachinesFewerTasks must be sorted by
their st (tasksToPut). Eachf;; in tasksToPut is allocated in the first avail-
able gap between two tasks of each machineeimainingM achines. For each
machine, the search starts from the previous statee(lState). There are cases
wheref;; must be allocated without a gap between two tasks due to the prece-
dence constraints. For instance, if we found;a of the same job a$;; and
;1 must be scheduled afték; according to the precedence constrairks %

7). 0i; is allocated just beforé;;,, being delayed);;. When a task is delayed,
other tasks may be also delayed. The computational cost of the algorithm is
O(tasksToPut * |[remainingM achines|).

The best state to allocafg; is the state that maximizes the functiéﬁj%. This
function could be adjusted depending on the requirements of the useeithgr.
only minimizing the makespan or maximizing the number of buffers generated.
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Algorithm 4 : Post-process

Data: S: Solution without operatorsp: machinesp: operators;
Result A solution considering operators

Order the machines by their number of tasks;
machinesFewerTasks <+ set ofm — p machines with fewer tasks;
tasksToPut + tasks of the machinesachinesFewerTasks;
remainingM achines <— m — machinesFewerTasks;
OrdertasksToPut by Starting Times;

actual State < S,

foreach 0, € tasksToPut do

savedState < actualState;

states < {};

for r € remainingM achines do
foundGap := 1 sTher eAGap(r);

if not foundGap then
| insertd; before the next task according to its Job;

else
| insertd; in this gap;
Delay the needed tasks according to the restrictions among them;

states < states U {actualState};
actual State < savedState;

actualState <— chooseBest St at e(states);

return actualState;

5.4 Third Step: Distributing Buffer Algorithm

The previous step gives us an optimized solution that satisfies all constints
the JSO(n,p). This solution is an optimized solution in terms of minimizing
makespan and maximizing the number of buffers. However, the main goal for
robust solution, in a scheduling problem where no information about incegteis
given, is to distribute the amount of available buffers among as many tapkssis

ble. It is well-known that all tasks involved in a critical path have not arspeisite
buffer, because it will affect the makespan. The rest of tasks caedssigned

to generate a buffer after their ending time. The main goal of this algorithm is to
distribute the amount of buffers without affecting this makespan. Thus;ame
maximize the number. In this way, the obtained solution is considered more ro-
bust due to more tasks have buffer times to absorb small incidences. Fig(lsg 5
shows the solution obtained in the second step and all critical paths. leca-b
served that 10 buffers were generated, meanwhile the distributing lidferithm

was able to find 14 buffers. We remark that our goal is to obtain the maximum
number of buffers since no information is given about incidences sathiasks
have the same probability for delaying.

This third step is presented in Algorithm 5. This algorithm looks for the tasks
0;; allocated just before each buffer generated in Algorithm 4, and tries thesa
back. A taskd;; is only set back if it generates a new buffer. In case a new buffer
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Algorithm 5: Distributing buffers

Data: Sch: Schedulepuf fers;
Result New Schedule

foreachd € buf fers do
sizeB :=size of the buffeb;
repeat
continue := false;
0,; := task allocated befor&
Set bacld;;;
if this movement generates another bufférthen
continue = true,
L Update schedulgch;

until continue ;

return Sch;

nb is generated, this process is repeated with the task just beforEhe compu-
tational cost of the algorithm i©(tasks in non-critical path because tasks in the
non-critical path are the only ones that can be moved to distribute the fuffer

5.5 Anexample

Figure 5.1 shows different schedules obtained by the CP Optimizer salder a
our technique for a given instance of thi&O(n,p). This instance represents a
scheduling problem with 3 jobs, each with 10 tasks, and 2 operators.r&cteim-
gle represents a task whose length corresponds to its processing tirake thes
rectangle, the job, task, machine and operator are showed. The dotteshovweed

in these schedules represent the critical path.

The first schedule Figure 5.1(a) represents the distribution of taske oftii
mal solution obtained by CP Optimizer (only minimizing the makespan) according
to the operators. It can be observed that the obtained makespan was @yb
1 buffer was generated due to the fact that only sk was not involved in
any critical path (green and red lines in Figure 5.1(a)). Taking into cenreditn
the robustness within the objective function, the Figure 5.1(b) repretfentso-
lution obtained by applying stepl + step2 of our algorithm, where all tasks wer
distributed by operators.

Finally, Figure 5.1(c) represents the schedule obtained by the third step of
algorithm. Although the makespan was increased up to 67, it can be sedmethat
buffers (black boxes) were distributed between all tasks that they didke part
of any critical path being increased the robustness of this schedulee Défers
can be used to absorb incidences or delays from the previous taskskorce, if
the resource assigned to the tagkssuffers a small failure, the solution could not
be affected.
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Figure 5.1: A scheduling problem: an optimal and a robust solution.
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Chapter 6

Evaluation

6.1 JSO(n,p) CSP model Evaluation

We have experimented across the benchmarks proposed in [1], whestances
haven = 3 andp = 2 and are characterized by the number of machines the
maximum number of tasks per job,{,.) and the range of processing times)(

A set of instances was generated combining three values of each paramete
3,5,7; Umaz = 5,7,10 andp; = [1,10], [1, 50], [1, 100]. In all cases, 10 instances
were considered from each combination and the average results ane shthe
next tables. The sets of instances are identified by the tupte; v,,,q,_p; >.

The set of problems were solved with the algorithm explained in chapter 4.
The aim of the algorithm is found a solution that minimizes the makespan. The
tables 6.1, 6.2 and 6.3 show the results for the instances with 10, 50 and 100 o
processing time. The colunf,,,x represents the average obtained makespan of
ten instances, the column time represent the computational time (in secondad) to fin
these solutions with a maximum time of 300 seconds, the column Op@inpak
represents the average optimal makespan for 10 instances and the colffimn D
Cmax represents the difference between the obtained makespan and the optimal.

The computational time to solve a the instance was variable because a solution
for a specific instance could be found in 10 seconds and no more solweres
found in the 300 seconds so the time was 10 seconds but this solution was not
good solution. Otherwise for other instance a solution was found in 1hdeco
again but it was improved in 250 seconds by the optimal solution so in this case
the computational time was 250 but this solution was better.

For the instances whegg = [1, 10] the obtained makespan was near to the
optimal because the temporal domain was smaller and so the problem was smaller.
The average difference makespan fpre= [1, 10] was 1.73 moreover for instance
with p; = [1, 50] was 20.41 and for the instance wjth= [1, 100] was 41.81. But
such is not the same 5 units of time (u/t) plus for a solution with a makespan 50 than
500, because for the first makespan represents an increase ofut s the sec-
ond an increase of 1%. For this reason percentage for the incremeratkeSpan

33



Table 6.1: Avg. Makespan and Computational time=£ [1, 10])

Instance . CSP With Operators '
Cmax | Time | OptimalCax | Diff Cax

3 5 10| 44,20 | 46,35 42,70 1,50
3_7_10| 60,90 | 63,90 57,90 3,00
3_10_10| 68,70 | 24,56 65,20 3,50
55 10| 40,30 | 43,84 39,40 0,90
5 7 10| 55,10 | 70,00 53,90 1,20
510 10| 63,30 | 15,83 60,60 2,70
7.5 10| 32,10 | 3,00 31,00 1,10
7 710 46,30 | 11,92 44,70 1,60
7_10_10| 72,20 | 22,18 70,40 1,80

Table 6.2: Avg. Makespan and Computational time=£ [1, 50])

Instance _ CSP with Operators _
Cmax | Time | OptimalCyax | Diff Chax
3 5 50| 218,90| 49,29 201,10 17,80
3 7 50| 296,10| 4,68 267,20 28,90
3 10 50| 385,80| 7,72 353,30 32,50
5 5 50 | 200,20| 22,28 184,30 15,90
5 7 50| 274,00| 36,93 253,50 20,50
5 10 50| 395,40| 18,55 363,00 32,40
7 5 50| 186,00 1,77 177,10 8,90
7 7 50| 275,10| 19,36 252,00 23,10
7 10 50| 388,00| 12,46 363,90 24,10

Table 6.3: Avg. Makespan and Computational timg=£ [1, 100])

Instance _ CSP with Operators .
Cmax | Time | OptimalCax | Diff Cpax

3. 5.100| 412,80| 36,94 389,00 23,80
3 7.100| 617,80| 3,93 561,40 56,40
3_10_100| 858,80 37,45 768,70 90,10
5 5 100 391,60 9,42 349,00 42,60
5 7 100 | 536,40 53,43 495,00 41,40
5 10 _100| 771,60 55,84 698,20 73,40
7_5 100 | 411,90 33,70 391,40 20,50
7_7_100 | 533,40| 12,80 516,00 17,40
7_10_100| 797,30| 24,99 744,80 52,50
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were calculated for the three tables and the results were 3.27% , 7.53%A&R6 7
correspondingly. The domain size was bigger in the temporal variables thike
duration of the task was bigger. These results showed that the resutteabia
the instances with a short domain were simpler to solve than the instances with a
bigger domain.

Another thing to note is that the results improved when the number of machines
increase and this was because if the problem was more restricted theim sgace
was reduced. This can be observed in table 6.3 when the lower valud & Qi
was obtained in the instances with 7 machines comparing between the same value
of Vypae = 5,7, 10.

6.2 Evaluation of heuristic algorithm for robust solutions
in JSO(n,p)

The purpose of this experimental study is to assess our proposal CBaPpro-
cedures (PP) and to compare it with the IBM ILOG CPLEX CP Optimizer tool
(CP). In CP, the operators were modeled as a nonrenewable cumulative resource
of capacityp. Also, the CP was set to exploit constraint propagation on no over-
lap (NoOverlap and cumulative functionGumulFunctiof constraints to extended
level. The search strategy used was Depth First Search with restdesl{den-
figuration).

We have experimented with the same benchmark of the previous sectioe, wher
all instances have = 3 andp = 2 and are characterized by the number of ma-
chines {n), the maximum number of tasks per joly.(...) and the range of pro-
cessing timesy(). A set of instances was generated combining three values of
each parametern = 3,5, 7; vmae = 5,7, 10 andp; = [1,10], [1,50], [1, 100].

In Figure 6.1, the solutions showed are the schedules for an instabicg 50 >
obtained by the CSOP+PP after both the step 2 (CSOP Step2) and step B (CSO
Step3). The smoothed curve of CSOP Step2 and CSOP Step3 are rigatdsen
dotted lines; by the CP Optimizer without taking into account the operators and
applying steps 2 (CP Step2) and 3 (CP Step3); and, by the CP Optimizer taking
into consideration operators (CP operators). Since two objective fuisdi®@ con-
sidered in this problem, the solutions that are not dominated by any other solutio
are marked with a black point (Non-Dom Sols). It can be observed tegtikg
the same makespan'f,,.), solutions given by the step 3 always outperform the
ones obtained by the step 2 according\g, ;. It is important to note that in order
to achieve the minimal’,,,.., there have to be few, ;; and vice versa, to obtain
more Ny, , it is needed to increase tlig, ... Among the non-dominate solutions
obtained, there is no optimal schedule with the low@st,, and the maximum
Nyu s, therefore, the users should choose among them according to theisineces
ties. For instance, let the solutions space is subdivided in four squaresiang
to whether they minimize or maximize each objective. If the user just needs max-
imizing the IV, r (achieving better robustness), the solutions needed are from the
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Figure 6.1: Set of solutions for an instance given

right-down square.

In the next experiment the first solution given by the CSOP has beeemthos
apply the post-procedure mentioned above because it is the solutionvbsitiye
opportunity to get moreVy, ;. This first solution is compared against the optimal
solution. In all cases, 10 instances were considered from each cdiobiaad the
average results are shown in the next tables. The sets of instancesrargeid
by the tuple:< m_vpnq._pi >. The incidencesX) to assess the robustness were
modeled as a delay in a random task from the schedule. For each instance,
a set of 100 incidences were generated with a defayhat follows a uniform
distribution between 1 and a 10% of

Tables 6.4(a), 6.4(b) and 6.4(c) show the performance of both teamigu
absorb incidences. For each technique, we repor€the., the number of buffers
generated s, ) in step 3, and the robustnegs)(for instances for eact, vyq.
andp;.

Following Lemma 1, the number of buffers showed in these tables is a lower
bound of the number of tasks that are not involved in any critical patheXamnple,
in instances< 3_10_10 > the optimal solution had an average of 1.2 buffers in
the 10 instances evaluated, meanwhile our technique obtained an avieifig@0o
buffers in the same instances evaluated. This indicates that in averageol®.9
of 30 tasks were not involved in any critical path and a disruption in onemes
of them could be absorbed and the rest of the tasks would not be inviolthd
disruption.

In all instances the average number of buffers obtained by CSOP+&Bigva
ger than the ones obtained by CP Optimizer. According to the robustnessrmeas
and the number of buffers generated, CSOP+PP procedure alwtperformed
the solutions given by the CP Optimizer, although the makespan turned out to be
increased. For instance, in Table 6.4(a) the instarc8s10_10 > increased up
to 32.6% the number of incidences absorbed.
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Table 6.4: Avg. Makespan and Robustness
(&) Maximum delay 1 time units

Instance CP Optimizer CSOP+PP
Cmax Nbuf R (%) Cmax Npuf R (%)
3.5 10 42.70 2.00 12.50 55.50 4.40 29.20
3.7_10 57.90 1.10 6.80 71.20 7.80 38.60
3.10_10| 65.20 1.20 4.60 87.00 10.90 32.60
5510 39.40 0.20 1.20 51.20 4.90 32.90
5_7_10 53.90 0.70 3.10 71.50 7.50 35.90
5_10_10| 60.60 0.60 1.70 78.60 8.10 25.50
7.5 10 31.00 0.90 5.40 42.60 5.20 31.10
7_7_10 44.70 0.50 2.30 61.44 5.60 29.40
7_10_10| 70.40 0.50 1.50 99.00 8.20 26.90

(b) Maximum delay 5 time units
CP Optimizer CSOP+PP
Instance
Cmax Nbuf R (%) Cmax Nbuf R (%)
3.5_50 | 201.10 | 2.20 12.90 | 23250 | 6.60 39.80
3_7_50 | 267.20 | 2.20 7.20 317.30 | 8.80 34.00
3_10_50 | 353.30 | 3.50 8.60 450.00 | 12.60 | 35.30
5550 | 184.30 | 1.20 2.70 252.20 | 5.70 27.70
5_7.50 | 25350 | 1.10 1.60 340.20 | 8.30 31.80
5_10_50 | 363.00 | 0.90 0.30 467.10 | 11.60 | 31.70
7550 177.10 1.10 2.50 237.80 5.80 27.90
7_7.50 | 252.00 | 0.40 0.40 380.20 | 6.20 29.10
7_10.50 | 363.90 | 1.00 1.00 512.60 | 10.40 28.50
(c) Maximum delay 10 time units
CP Optimizer CSOP+PP
Instance

Cmax | Npur | R(%) | Cmax | Npur | R (%)
3.5 100 | 389.00 | 2.20 12.70 | 459.00 7.40 41.00
3_7_100 | 561.40 | 4.40 16.70 | 680.90 9.70 38.50
3_10_100| 768.70 | 2.90 4.40 948.90 | 12.70 | 34.60
5_5_100 | 349.00 | 1.10 2.70 438.90 6.40 34.20
5_7 100 | 495.00 | 0.80 0.40 643.90 8.30 33.90
5_10_100| 698.20 | 0.70 1.00 932.10 | 12.40 | 35.00
7_5.100 | 391.40 | 1.00 2.30 500.80 6.30 37.10
7_7_100 | 516.00 0.40 2.00 695.80 6.70 27.80
7_10_100| 744.80 0.70 0.50 1043.20 | 10.20 30.00
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Figure 6.2: Computational time to calculate the step 1 and the step 2 + step 3

It can be seen that for CSOP+PP the greptethe greater robustness values
since the buffers generated could have bigger sizes, e.g., the instétices = 5
andv,,.. = 10 increased their robustness degree obtaining an averadjei6t
for p; = 10; 31.7% for p; = 50; and35% for p; = 100.

In the figure 6.2 are presented the computational times to calculate the step 1,
CSOP in this case, and the computational time to calculate the post procegure ste
2 and step 3. The axigrepresent the time in second and the axigpresent each
set of instances. In the graphics can be observed that the computétiomaf the
step 1 is dependent of the durations of task and the number task by jotmr Bug
post procedures the computational time is only dependent of the humbeskof ta
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because the computational time for the post procedures remains stable irethe th
graphics.
Table 6.5 presents how large delays in the incidences affect the schiedsle
d increases, the average of incidences absorbed are reducdtngehe case that
the CP Optimizer obtained an average robustness abbtdr most instances with
p; = 100. Even, CP Optimizer was unable to absorb any incidence in instances of
< 7_10_100 >, whereas the CSOP+PP obtained an avera@ed6f the number
of incidences absorbed for large delays.

Table 6.5: Avg. Robustness with large incidenggs= [1, 100])
CP Optimizer CSOP+PP
Instance | d d d d d d
[1,20] | [1,50] | [1,200] | [1,20] | [1,50] | [1,100]
35100 | 990 | 610 | 3.0 | 3520 | 20.80 | 11.90
3.7.100 | 890 | 6.40 | 3.30 | 34.90 | 22.40 | 12.00
3.10_100| 3.80 | 1.90 | 1.30 | 29.10 [ 17.10 | 9.50
55100 | 1.90 | 1.40 | 050 | 26.90 | 12.00 | 8.30
57100 | 020 | 0.00 | 000 | 28.60 | 14.80 | 8.50
510_100| 1.00 | 050 | 0.30 | 26.70 | 16.80 | 10.80
7.5.100 | 1.90 | 050 | 040 | 25.00 | 11.30 | 6.70
7.7.100 | 0.80 | 0.10 | 010 | 20.10 | 10.60 | 5.60
7_10_100| 0.00 | 0.00 | 000 | 2350 | 13.80 | 6.90
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Job-shop scheduling problem is a representation of a hypotheticéprobschedul-
ing, the extension with operators give more difficulty to the problem/isi® (n, p)

can be closer to the reality. Most of the job-shop solving techniques try do fin
the optimality of the problem for minimizing the makespan, minimizing tardiness,
minimizing flow-time, etc. But with the developed techniques, the solution also
try to improve the robustness of the solution. A robust solution can residt sma
modifications and remains being correct. The developed technique trietaia ob
a solution that take into account both makespan and robustness.

The JSP with operators is really hard to solve efficiently. At the beginning
of this work, the objective was to obtain a solution to the problem with operators
by minimizing the makespan, then to obtain a robust solution from the previous
optimized solution. A technique for solving the problem was developed but the
results were not so goods. For this reason, some techniques welepgelvi im-
prove the solver and reduce the difficulty of the problem but the probéenained
intractable. In this way, the idea of solving the problem in several partsaapgd.

The technique is composed into three steps. The first step consists in solving
a problem without take into account the operators, this step can be doasyfo
job-shop problem solving technique. In this case in the step one the prolalem
been modelled as a CSP, the output of this step is a correct solution of tilerpro
minimizing the makespan. The advantage if the technique is separated into three
steps is that the first step can be only calculated one time. This can be auteaytva
if the plan of some problems is going to use periodically. The first step can be
calculated only one time where the makespan is minimized and in the second step
can be controlled the trade-off between robustness and optimality desirbe b
client. In the second step the problem is modified to take into account operator
and the solution is obtained desiring to improve the robustness. In the third step
the robustness is increased because the number of buffers is alszs@ttrelhe
computational time cost to execute the second and third step is low comparing the
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time needed to execute the first step. For this reason this steps can betedlcula
repeatedly without causing a very high computational cost and the maestsixp
step is calculated only once.

7.2 Future work

The previous section shows techniques to obtain solutions that take intordcco
robustness to absorb incidences. Related to this robustness condagy, afthe
different robustness measures could be carried out.

These robust solutions have the property to absorb incidences big tdin
mality against optimal solution. However a good point to take into account is to
analyze the trade-off between optimality and robustness. Therefomdlige
of future work is, given an optimal solution, to provide different robssutions
according to the optimality level that the client is willing to lose from the optimal
solution given by the first step.

The technique developed in this work is specific for this problé$i@(n, p))
because between the step one and two, there is a change in the probléon due
the introduction of a new resource: the operators. This idea of this Malsesis
about simplifying the problem to model and solve it easier and more efficéant ¢
be used in other problems in the real world. Therefore, another futore eould
be designing a general technique to apply it for more schedule problems.

7.3 Related publications

In this section, it is shown a list of published publications to conferences.

e Carlos Mencia, Maria R. Sierra, Miguel A. Salido, Joan Escamilla and Ramiro
Varela.
Combining Global Pruning Rules with Depth-First Search for the Job Shop
Scheduling Problem with Operators.
In 19th International Workshop on Experimental Evaluation of Algorithms
for Solving Problems with Combinatorial Explosion, RCRA 2012.

e Joan Escamilla, Mario Rodriguez-Molins, Miguel A. Salido, Maria R. Sjerra
Carlos Mencia and Federico Barber.
Robust Solution to Job-Shop Scheduling Problems with Operators.
In 24th International Conference on Tools with Artificial Intelligence, ACT
2102 (CORE B).

42



Bibliography

[1]

[5]

[6]

A. Agnetis, M. Flamini, G. Nicosia, and A. Pacifici. A job-shop problerithw
one additional resource typdournal of Schedulingl4(3):225-237, 2011.

E. Balas. Machine sequencing via disjunctive graphs: an implicit erasme
tion algorithm.Operations researctpages 941-957, 1969.

I. Barba, C. Del Valle, and D. Borrego. A constraint-based jbbpsschedul-
ing model for software development planningctas de los Talleres de las
Jornadas de Ingenieria del Software y Bases de Dat(i9, 2009.

J.C. Beck.A schema for constraint relaxation with instantiations for partial
constraint satisfaction and schedule optimizatiéthD thesis, University of
Toronto, 1994.

J.R. Bitner and E.M. Reingold. Backtrack programming technigu&sm-
munications of the ACML8(11):651-656, 1975.

EA Boyd and R. Burlingame. A parallel algorithm for solving difficult job
shop scheduling problem8&perations Research Working Paper, Department
of Industrial Engineering, Texas A&M University, College Station, Texas
pages 77843-3131, 1996.

[7] APG Brown and ZA Lomnicki. Some applications of the" branch-andratj

algorithm to the machine scheduling proble@perations Researclpages
173-186, 1966.

[8] J. Escamilla, M. Rodriguez-Molins, M. A. Salido, M. R. Sierra, C. M&n

[10]

and F. Barber. Robust solution to job-shop scheduling problems witaoper
tors. In24th IEEE International Conference on Tools with Artificial Intelli-
gence, 2012.(ICTAI 2012)EEE.

D. Frost and R. Dechter. Dead-end driven learning?ioceedings of the Na-
tional Conference on Artificial Intelligenc@ages 294-294. JOHN WILEY
& SONS LTD, 1994.

J. Gaschig. Performance measurement and analysis of certait sdgo-
rithms. Technical report, DTIC Document, 1979.

43



[11] J. Gaschnig. A general backtrack algorithm that eliminates mosthdzoht
tests. InProceedings of the Fifth International Joint Conference on Artificial
Intelligence pages 457-457, 1977.

[12] F. Glover. Future paths for integer programming and links to artifictallin
gence.Computers & Operations Researd8(5):533-549, 1986.

[13] F. Glover. Tabu search-part @RSA Journal on computing(1):4—32, 1990.

[14] F. Glover et al. Tabu search-part@QRSA Journal on computing(3):190—
206, 1989.

[15] J.F. Gongalves, J.J. de Magalhdes Mendes, and M.G.C. Resartdgrid
genetic algorithm for the job shop scheduling probldfaropean journal of
operational researchl67(1):77-95, 2005.

[16] R.M. Haralick and G.L. Elliott. Increasing tree search efficiencycfmstraint
satisfaction problemgArtificial intelligence 14(3):263-313, 1980.

[17] E. Hebrard, B. Hnich, and T. Walsh. Super csps. TechnigairteTechnical
report, 2003.

[18] J.H. Holland.Adaptation in natural and artificial systemblumber 53. Uni-
versity of Michigan press, 1975.

[19] E. Ignall and L. Schrage. Application of the branch and bountrtiegie to
some flow-shop scheduling problen@perations Researclpages 400-412,
1965.

[20] A.S. Jain and S. Meeran. Job-shop scheduling using neurabrietwnter-
national Journal of Production ResearcB6(5):1249-1272, 1998.

[21] E. Jen. Stable or robust? whats the differenc€dmplexity 8(3):12-18,
2003.

[22] H. Kitano. Towards a theory of biological robustnegddolecular Systems
Biology, 3(137), 2007.

[23] S. Kobayashi, I. Ono, M. Yamamura, et al. An efficient genetic riligm
for job shop scheduling problems. Rroceedings of the 6th International
Conference on Genetic Algorithpyzages 506-511. Morgan Kaufmann, San
Francisco. CA, 1995.

[24] M. Laguna, J.W. Barnes, and F.W. Glover. Tabu search metlodsdingle
machine scheduling problerdournal of Intelligent Manufacturing?(2):63—
73,1991.

[25] M. Laguna and F. Glover. Integrating target analysis and tabrclsdar
improved scheduling system&xpert Systems with Applicatigrn®(3):287—
297, 1993.

44



[26] C. Lecoutre and S. Tabary. Abscon 112 toward more robust2668.

[27] A.K. Mackworth. Consistency in networks of relationgrtificial Intelli-
gence 8(1):99-118, 1977.

[28] C. Mencia, M. R. Sierra, M. A. Salido, J. Escamilla, and R. Varelam@in-
ing global pruning rules with depth-first search for the job shop sdivegiu
problem with operators. 149th RCRA International Workshop on Experi-
mental Evaluation of Algorithms for Solving Problems with Combinatorial
Explosion 2012.

[29] R. Mencia, M. R. Sierra, C. Mencia, and R. Varela. Genetic algurith job-
shop scheduling with operators. Rroceedings of IWINAC 2011(2). LNCS
6687, pages 305-314. Springer, 2011.

[30] U. Montanari. Networks of constraints: Fundamental propertidsaaplica-
tions to picture processingnformation sciences/:95-132, 1974.

[31] W. Nuijten and C. Le Pape. Constraint-based job shop schedulingilegh
schedulerJournal of Heuristics3(4):271-286, 1998.

[32] F. Pezzella and E. Merelli. A tabu search method guided by shifting bottle
neck for the job shop scheduling probleBEuropean Journal of Operational
Research120(2):297-310, 2000.

[33] P. Prosser. Hybrid algorithms for the constraint satisfaction pneblgom-
putational intelligencg9(3):268-299, 1993.

[34] M.G.C. Resende. A grasp for job shop scheduling.INRORMS Spring
Meeting 1997.

[35] A. Rizk, G. Batt, F. Fages, and S. Solima. A general computationaladeth
for robustness analysis with applications to synthetic gene netw@&iksn-
formatics 25(12):168-179, 2009.

[36] O. Roussel and C. Lecoutre. Xml representation of constratatanks: For-
mat xcsp 2.1. 20009.

[37] Z. Ruttkay. Constraint satisfaction-a survegWI Quarterly 11(2-3):163—
214, 1998.

[38] N. Sadeh and M.S. Fox. Variable and value ordering heuristicgher
job shop scheduling constraint satisfaction problefutificial Intelligence
86(1):1-41, 1996.

[39] M. Sierra, C. Mencia, and R. Varela. Optimally scheduling a job-shitip
operators and total flow time minimization. Kdvances in Atrtificial In-
telligence: 14th Conf. of the Spanish Association for Artificial Intelligence,
Caepia 2011LNAI 7023, pages 193-202. Springer, 2011.

45



[40] M.R. Sierra, C. Mencia, and R. Varela. Searching for optimatdules to the
job-shop problem with operator3echnical report. Computing Technologies
Group. University of Oviedd@2011.

[41] E. Szathmary. A robust approadiature 439(7072):19-20, 2006.

46



