
UNIVERSIDAD POLITÉCNICA DE VALENCIA

DEPARTAMENTO DESISTEMAS INFORMÁTICOS Y COMPUTACIÓN

DESIGN AND DEVELOPMENT OFCSP
TECHNIQUES FORFINDING ROBUST SOLUTIONS IN JOB-SHOP

SCHEDULING PROBLEMS WITH OPERATORS

Master Thesis in
Artificial Intelligence, Pattern Recognition

and Digital Imaging

September 2012

Supervised by:
Dr. Miguel Á. Salido Gregorio
Dr. Federico Barber Sanchís

Presented by:
Joan Escamilla Fuster

DESIGN AND DEVELOPMENT OFCSP
TECHNIQUES FORFINDING ROBUST SOLUTIONS IN JOB-SHOP

SCHEDULING PROBLEMS WITH OPERATORS

Joan Escamilla Fuster

Master Thesis in
Artificial Intelligence, Pattern Recognition

and Digital Imaging

Departamento de Sistemas Informáticos y Computación

Valencia, 2012

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Motivation . 2

2 Constraint Satisfaction Problems 5
2.1 Introduction . 5
2.2 Modelling a CSP . 5
2.3 Example of a CSP: Map Colouring Problem 6
2.4 Solving a CSP . 7

2.4.1 Consistency Techniques 7
2.4.2 Search techniques . 8
2.4.3 Hybrid techniques . 9

2.5 Robustness and stability . 10

3 Job-Shop Scheduling Problem With Operators 13
3.1 Introduction to Job-Shop Scheduling Problem 13
3.2 Problem Description . 13
3.3 Techniques to solve Job-Shop Scheduling Problem 14
3.4 Extension with operators . 17
3.5 Robustness in Job-Shop Scheduling Problem 18

4 Modelling JSO(n, p) as a CSP 21
4.1 Introduction . 21
4.2 A modelling Phase . 21
4.3 Solving Phase . 24

5 Heuristic Algorithms for Finding Robust Solutions in Job-Shop Schedul-
ing Problem with Operators 27
5.1 Introduction . 27
5.2 First Step: Modeling and Solving a Constraint Satisfaction and Op-

timization Problem . 27
5.3 Second Step: A Post-process Procedure 28
5.4 Third Step: Distributing Buffer Algorithm 29
5.5 An example . 30

i

6 Evaluation 33
6.1 JSO(n, p) CSP model Evaluation 33
6.2 Evaluation of heuristic algorithm for robust solutions inJSO(n, p) 35

7 Conclusions and Future Work 41
7.1 Conclusions . 41
7.2 Future work . 42
7.3 Related publications . 42

ii

List of Figures

2.1 An example colouring problem 6

3.1 Disjunctive graph for a job-shop scheduling problem. 14
3.2 A feasible solution via a direct graph. 15

4.1 Partial instance of a job-shop problem represented in XCSP. . . . 22

5.1 A scheduling problem: an optimal and a robust solution. 31

6.1 Set of solutions for an instance given 36
6.2 Computational time to calculate the step 1 and the step 2 + step 3 . 38

iii

iv

List of Tables

3.1 Example of a job-shop problem 14

6.1 Avg. Makespan and Computational time (pi = [1, 10]) 34
6.2 Avg. Makespan and Computational time (pi = [1, 50]) 34
6.3 Avg. Makespan and Computational time (pi = [1, 100]) 34
6.4 Avg. Makespan and Robustness 37
6.5 Avg. Robustness with large incidences (pi = [1, 100]) 39

v

vi

List of Algorithms

1 Calculate initial values to reduce domain 23

2 Calculate possible values . 23

3 Select-value-forward-checking with deletion block 24

4 Post-process . 29

5 Distributing buffers . 30

vii

viii

Chapter 1

Introduction

1.1 Introduction

Nowadays, the main objective of many companies and organizations is to improve
profitability and competitiveness. These improvements can be obtained with a
good optimization of resources allocation. The job-shop scheduling problem (JSP)
is a possible representation of a typical problem of scheduling. Many real life
problems can be modelled as a job-shop scheduling problem and can appliedin
some variety of areas, such as process scheduling in an industry, departure and
arrival times of trains at stations, the delivery times of orders in a company,etc.
To solve this problem many techniques have been developed such as branch and
bound, constraint satisfaction techniques, neural networks, genetic algorithms or
tabu search.

In general a scheduling problem is a combinatorial optimization problem. The
aim of scheduling is the resource allocation of tasks when one or more objectives
must be optimized. The resources can be workshop machines, work tools,working
staffs, etc. Tasks can represent operations of a production process, executions of
a computational program, steps of a process, arrivals or departures of a train, etc.
The objective might be to minimize the time execution, to minimize the number of
tasks after a given date, etc.

The job-shop scheduling problem with operators is an extension of the classi-
cal job-shop scheduling problem where each operation has to be assisted by one
operator from a limited set of them. The job-shop scheduling problem with opera-
tors has been recently proposed by Agnetis et al. [1]. This problem is denoted as
JSO(n, p) wheren is the number of jobs andp denotes the number of operators.
It is motivated by manufacturing processes in which part of the work is done by
human operators sharing the same set of tools. The problem is formalized asa
classical job-shop scheduling problem in which the processing of a task on a given
machine requires the assistance of one ofp available operators. The state of the art
of JSO(n, p) is analyzed in Chapter 3. This problem have modelled and solved
by [1] with a branch and bound technique were some heuristics algorithms are also

1

used. Another technique to solve the problem with operators have been developed
by [29] using genetic algorithm. In [28] the problem is solved combining global
pruning rules with depth-first search.

In Chapter 2 the state of the art of constraint satisfaction problem (CSP) is
presented. A CSP is represented as a finite set of variables, a domain of values
for each variable and a set of constraints that bound the combination of values that
variables can simultaneously take. The goal of CSP is to select a value for each
variable so as to satisfy all constraints of the problem.

JSO(n, p) has been modelled as a CSP in Chapter 4 and a branch and bound
(B&B) algorithm with techniques of backtracking has been implemented to solve
it. The cost to solve a CSP is dependent of the domain and the number of variables
so when any of these factors is high the problem is considered NP complexity. If
the aim is to get the optimal solution or solutions optimized (CSOP) [4], a lot of
solutions have to be found in an iterative process and this search is really hard.
For this reason have been applied some techniques to try to simply the domain and
has been modified the original algorithm B&B to be more specific to the problem.
But also with these improvements the problems remains intractable. The algo-
rithm need too much time to found an optimal solution minimizing the makespan.
Makespan is the maximum end time of the operations so if makespan is minimized
the end time is reduced also. The reason to found the optimal solution is because
through this solution or modifying it can be created a solution that also optimize
the makespan and the robustness [41].

A solution is robust if is it able to maintain its functionality under a set of in-
cidences. The robustness in JSP can be obtained trough allocation buffer times
in order to absorb incidences. Another technique with three steps has been de-
veloped, it is showed in Chapter 5, the JSP is solved without taking into account
operators and thus simplifying the problem is named first step. In the secondstep
with a post-procedure the solution is adapted to the operators constrains building
a correct solution toJSO(n, p), this adaptation is taking account a trade off be-
tween optimization and robustness. In the third step, if it is possible, the number
of buffers is increased without losing optimality redistributing the existent buffers.

1.2 Motivation

The job-shop scheduling problem is a well-known general problem of scheduling.
This is not a real problem but in many cases can be related to some real problems.
JSP represents a problem where there are some specific resources which have to
be used to carry out some tasks. The extension with operators (JSO(n, p)) can
represent more real life problems, because it provides the problem to use a new
resource (operators) and those resources are not tied to a specific task.

In scheduling, usually, the most important thing is to finish the task in the
shortest possible time. However, in some cases robustness can be an important
point to keep in mind. For this reason, it appears the idea to solve this scheduling

2

problem with the aim to get a solution that minimizes the ending time; and at the
same time this solution should be able to absorb incidences in the schedule without
modifying any task. This idea opens the motivation to found techniques that can
be used to get robust solutions that try to absorb incidences that can appear due to
machine failures, late deliveries, human errors, etc.

3

4

Chapter 2

Constraint Satisfaction Problems

2.1 Introduction

Constraint Programming is a software technology used to represent and solve large
and complex problems from many real life areas. Many of these problems can be
modeled as constraint satisfaction problems and solved using constraint program-
ming techniques. Examples include scheduling, planning, temporal reasoning, de-
sign engineering, packing problems, cryptography, diagnosis, etc. The complexity
of this type of problem is NP [27].

A CSP is composed with a set of variables where each one can take values of
a specific domain. There is a set of constraints that limit the number of values that
each variable can take. The objective is to select a value to each variable satisfying
the set of constraints.

The resolution of a CSP has two phases: The first one is to model the problem
using the correct syntax and the second part is to solve the problem usingone of
the different techniques.

2.2 Modelling a CSP

A constraint satisfaction problem (CSP) is a triple(X,D,C) where:

• X = {x1, x2, ..., xn} is a set ofn variables.

• D = {d1, d2, ..., dn} is a set of domains, such that each variablexi ∈ X has
a finite set of possible valuesdi.

• C = {c1, c2, ..., cm} is a finite set of constraints which restrict the values that
the variables can simultaneously take.

A constraint can be defined in intensional or extensional form although both
can be equivalent.

5

• Intensional constraints: Constraints are represented as mathematic or logical
function.

Example.x1 ≤ 4 is a unary intensional constraint.

• Extensional constraint: Constraints are represented as a set of valid orinvalid
tuples.

Example. The set of tuples{(0), (1), (2), (3), (4)} is the extensional rep-
resentation of the constraintx1 ≤ 4 by means of valid tuples, considering
the domaind1 : {0..10} for x1.

2.3 Example of a CSP: Map Colouring Problem

The Map Colouring problem tries to colour the areas in map using a number of
colours but with the condition that the neighbouring areas have differentcolours.
The map colouring problem can be represented as a graph colouring problem to
color the vertices of a given graph using predefined number of coloursin such a
way that connected vertices get different colours. It is very easy to model this
problem as a CSP. There are as many variables as vertices, and the domainfor each
variable contains the colours to be used. If there is an edge between the vertices
represented by variablesx andy, then there is an inequality constraint referring to
these two variables, namely:x 6= y.

Figure 2.1: An example colouring problem

Graph colouring is known to be NP-complete, so one does not expect a polynomial-
time algorithm to be found for solving this problem. It is easy to generate a large
number of test graphs with certain parameters, which are more or less difficult to
be coloured, so the family of graph colouring problems is appropriate to testalgo-
rithms thoroughly. Furthermore, many practical problems, like ones from thefield
of scheduling and planning, can be expressed as an appropriate graph colouring
problem [37].

6

Figure 2.1 shows an example of map colouring problem and its graph repre-
sentation. The map is composed on four regions/variables x, y, z, w to be coloured.
Each region can be coloured in three different colours: red (r), green (g) or blue (b).
So the domain of each variable is r,g,b. Each edge represents the binary constraint
which restricts that two adjacent regions must be coloured with different colours.
There are five constraints because there are five edges. A possible solution is the
assignation (x=r), (y=g), (z=g) and (w=b).

2.4 Solving a CSP

A CSP can be solved by assigning values to each variable, the solution space can be
seen as a search tree. In each level, a variable is instantiated and the successors of a
node are the variable values of this level. Most algorithms for solving CSPs search
systematically through the possible assignments of values to variables. Such algo-
rithms are guaranteed to find a solution or to prove that the problem is insoluble.
Prune is only used if the partial search tree contains not solution. The disadvantage
of these algorithms is that they may take a very long time to find a solution.

2.4.1 Consistency Techniques

Consistency techniques were introduced for improving the efficiency of search
techniques. The number of possible combinations can be huge, while only very
few are consistent. By eliminating redundant values from the problem definition,
the size of the solution space decreases. Reduction of the problem can bedone
once, as a pre-processing step for another algorithm, or step by step, interwoven
with the exploration of the solution space by a search algorithm. Local inconsisten-
cies are single values or combination of values for variables that cannot participate
in any solution because they do not satisfy some consistency property [27].

For instance, if a valuea of variablexi is not compatible with all the values in
a variablexj that is constrained withxi, thena is inconsistent and this value can
be removed from the domain of the variablexi. In the following paragraphs we
introduce the most well-known and widely used algorithms for binary CSPs.

• A CSP is node-consistent if all the unary constraints hold for all the el-
ements of the domains. The straightforward node-consistency algorithm
(NC), which removes the redundant elements by checking the domains one
after the other, hasO(dn) time complexity, where d is the maximum size of
the domains. Thus, enforcing this consistency ensures that all values ofthe
variable satisfy all the unary constraints on that variable.

• A CSP is arc-consistent [27] if for any pair of constrained variablesxi, xj ,
for every valuea in Di there is at least one valueb in Dj such that the
assignment (xi, a) and (xj , b) satisfies the constraint betweenxi andxj .
Any value in the domainDi of variablexi that is not arc-consistent can be

7

removed fromDi since it cannot be part of any solution. Arc-consistency
has become very important in CSP solving and it is in the heart of many
constraint programming languages. The optimal algorithms to make the CSP
arc-consistent require timeO(ed2), where e is the number of constraints
(arcs in the constraint network) and d is the size of domains. Arc-consistency
can also be easily extended to non-binary constraints.

• A CSP is path-consistent [30], if for every pair of valuesa and b for two vari-
ablesxi andxj , such that the assignments ofa to xi and b toxj satisfies the
constraint betweenxi andxj , there exist a value for each variable along any
path betweenxi andxj such that all constraints along the path are satisfied.
When a path-consistent problem is also node-consistent and arc-consistent,
then the problem is said to be strongly path-consistent.

Consistency techniques can be exploited during the forward checking stage
of search algorithms in the following way. Each time some search decision is
done (for example, a value is assigned to the variable), the problem is made arc
consistent (arc consistency is typically used during search due to it is low timeand
space complexity). If failure is detected (any domain becomes empty) then it is not
necessary to instantiate other variables and backtracking occurs immediately.

2.4.2 Search techniques

Most algorithms for solving CSPs search systematically through the possible as-
signments of values to variables. Such algorithms are guaranteed to find a solution,
if one exists, or to prove that the problem is insoluble. The disadvantage ofthese
algorithms is that they may take a very long time to do so. The actions of many
search algorithms can be described by a search tree.

Generate and Test.The generate-and-test (GT) method originates from the naive
approach to solving combinatorial problems. First, the GT algorithm guesses
the solution, and then it tests whether this solution is correct, that is, whether
the solution satisfies the original constraints. In this paradigm, each pos-
sible combination of the variable assignments is systematically generated
and tested to see if it satisfies all the constraints. The first combination that
satisfies all the constraints is the solution. The number of combinations con-
sidered by this method is the size of the Cartesian product of all the variable
domains.

The main disadvantage is that it is not very efficient because it generates
many assignments of values to variables which are rejected in the testing
phase. In addition, the generator leaves out the conflicting instantiations and
generates other assignments independently of the conflict. Visibly, one can
get far better efficiency if the validity of the constraint is tested as soon as its
respective variables are instantiated.

8

Backtracking. A simple algorithm for solving a CSP is backtracking search (BT)
[5]. Backtracking works with an initially empty set of consistent instanti-
ated variables and tries to extend the set to a new variable and a value for
that variable. If successful, the process is repeated until all variablesare in-
cluded. If unsuccessful, another value for the most recently added variable is
considered. Returning to an earlier variable in this way is called a backtrack.
If that variable doesn’t have any further values, then the variable is removed
from the set, and the algorithm backtracks again. The simplest backtrack-
ing algorithm is called chronological backtracking because at a dead-end the
algorithm returns to the immediately earlier variable in the ordering.

In the BT method, variables are instantiated sequentially and as soon as all
the variables relevant to a constraint are instantiated, the validity of the con-
straint is checked. If a partial solution violates any of the constraints, back-
tracking is performed to the most recently instantiated variable that still has
alternatives available. Clearly, whenever a partial instantiation violates a
constraint, backtracking is able to eliminate a subspace from the Cartesian
product of all variable domains.

2.4.3 Hybrid techniques

In section 2.4.2 some search techniques to solve CSPs have been presented. In
section 2.4.1 some consistency techniques that delete inconsistent values from the
variable domain have been presented. Therefore, consistency techniques can be
used as a pre-process step where inconsistencies can be detected andremoved.
Otherwise, consistency techniques can be used in the search process.Some of
these hybrid techniques are based on look-back and look-ahead techniques.

• Look-Back Algorithms: BT can suffer from thrashing; the same dead end
can be encountered many times. Ifxi is a dead end, the algorithm will back-
track toxi−1. Suppose a new value forxi−1 exists, but that there is no
constraint betweenxi andxi−1. The same dead end will be reached atxi
again and again until all values ofxi−1 have been explored. Look-back algo-
rithms try to exploit information from the problem to behave more efficiently
in dead-end situations. Like BT, look-back algorithms perform consistency
checks backward (between the current variable and past variables).

Backjumping (BJ) [10] is an algorithm similar to BT except that it behaves
in a more intelligent manner when a dead end (xi) is found. Instead of BT to
the previous variable (xi−1), BJ backjumps to the deepest past variablexj ,
j, i that is in conflict with the current variablexi. It is said that variablexj is
in conflict with the current variablexi if the instantiation ofxj precludes one
of the values inxi. Changing the instantiation ofxj may make it possible
to find a consistent instantiation of the current variable. Thus, BJ avoids any
redundant work that BT does by trying to reassign variables betweenxj and

9

the current variablexi. Conflict-directed BJ [33], backmarking [11], and
learning [9] are examples of look-back algorithms.

• Look-Ahead Algorithms: As we have explained, look-back algorithms try
to enhance the performance of BT by more intelligent behavior when a dead
end is found. Nevertheless, they still perform only backward consistency
checks and ignore the future variables. Look-forward algorithms make for-
ward checks at each step of the search. Let us assume that, when searching
for a solution, the variablexi is given a value which excludes all possible
values for the variablexj . In case of uninformed search, this will only turn
out whenxj will be considered to be instantiated. Moreover, in case of BT,
thrashing will occur: the search tree will be expanded again and again until
xj , as long as the level of BT does not reachxi. Both anomalies could be
avoided by recognizing that the chosen value forxi cannot be part of a so-
lution as there is no value forxj , which is compatible with it. Lookahead
algorithms do this by accepting a value for the current variable only if, after
having looked ahead, it could not be seen that the instantiation would lead to
a dead end. When checking this, problem reduction can also take place by
removing values from the domain of the future variables that are not com-
patible with the current instantiation. The algorithms differ in how far and
thorough they look ahead and how much reduction they perform.

Forward-checking (FC) [16] is one of the most common look-forward algo-
rithms. It checks the satisfiability of the constraints, and removes the values
which are not compatible with the current variable’s instantiation. At each
step, FC checks the current assignment against all the values of futurevari-
ables that are constrained with the current variable. All values of futurevari-
ables that are not consistent with the current assignment are removed from
their domains. If a domain of a future variable becomes empty, the assign-
ment of the current variable is undone and a new value is assigned. If no
value is consistent, then BT is carried out. Thus, FC guarantees that at each
step the current partial solution is consistent with each value in each future
variable. Thus, FC can identify dead ends and prune the search spacesooner.

2.5 Robustness and stability

The concepts of robustness and stability in constraint satisfaction have been mixed
and there is a misunderstanding between the two concepts. Some researchers talk
about stability and others about robustness. But, what is the differencebetween sta-
ble and robust? It is the first question that comes to mind, especially for researchers
who work with quantitative models or mathematical theories.

In general, a solution is stable in a dynamic system, if by means of a few
changes in the solution we can obtain a new solution that is similar to the original
one. However the robustness concept is broader than the stability concept. Ro-

10

bustness is a measure of feature persistence in systems that compel us to focus on
perturbations because they represent changes in the composition or topology of the
system. The perturbations are small differences in the actual state of the system
[21].

Taking into account all these concepts, we can classify the nature of the solu-
tions as:

• The stability (also called flexibility) of a solution is the ability of a solution to
share as many values as possible with a new solution if a change occurs [17].
It is measured in terms of similarity of the new solution with the original
one.

• The robustness of a solution is the measure of the persistence of the solution
after modifications in the original solution. Thus, a solution is robust if it has
a high probability of remaining valid faced with changes in the problem. It
is measured in terms of the persistence of the solution.

Sometimes the robustness is related with the information of the problem. Nor-
mally, in a problem that no information is given, the probability of something goes
wrong or the probability that something cannot be finished in the predicted time is
equal in all the cases. However sometimes there is information about the problem
because there are some historic as previous experiments where some probabilistic
cases can be used, or the help of an expert can be used. When there isno informa-
tion usually the probability that something happens has to be proportional.

11

12

Chapter 3

Job-Shop Scheduling Problem
With Operators

3.1 Introduction to Job-Shop Scheduling Problem

Job-shop scheduling problems (JSP) are among the most intensive combinatorial
problems studied in literature. An instance with ten jobs to be processed on ten
machines, formulated in 1963, was open for more than 25 years. It was finally
solved by a branch-and-bound algorithm. Very simple special cases of the job-
shop problem are already strongly NP-hard.

After a short review of these old challenges, we consider practical applications
in flexible manufacturing, multiprocessor task scheduling, robotic cell scheduling,
railway scheduling, air traffic control which all have an underlying job-shop struc-
ture. Methods to solve these problems and new challenges in connection with them
are indicated.

3.2 Problem Description

The job-shop scheduling problem can be defined as follows. We are given a set
{J1, . . . , Jn} of n jobs that require, for their processing, a set ofm resources or ma-
chines {R1, . . . , Rm}. Each jobJi consists of a sequence ofvi tasks(θi1, . . . , θivi).
Each taskθil has a single resource requirementRθil , an integer durationpθil and
a start timestθil to be determined. A feasible schedule is a complete assignment
of starting times to tasks that satisfies the following constraints: (i) the tasks of
each job are sequentially scheduled, (ii) each machine can process at most one
task at any time, (iii) no preemption is allowed. The objective is finding a feasible
schedule that minimizes the completion time of all the tasks, i.e. the makespan.

In this framework, it is useful to represent the job-shop scheduling problem in
terms of a disjunctive graphG = (V,A,E) [2], whereV is the set of nodes,A is
the set of ordinary arcs (conjunctive) and E the set of disjunctive arcs. The nodes
of G (V) correspond to operations, the directed arcs (A) to precedence relation,

13

and the disjunctive arcs (E) to operations to be performed on the same machine. A
schedule on a disjunctive graphG consists on finding a set of orientations that min-
imizes the length of the longest path (critical path) in the resulting acyclic directed
graph. Let consider the following example:

Table 3.1: Example of a job-shop problem
Job Processing cycle
J1 (1,10) ,(2,5), (3,6)
J2 (2,5) ,(1,8)
J3 (1,2) ,(3,10), (2,4)

The job-shop scheduling problem has three jobs, three machines and eight op-
erations.J1 consists of a sequence of three operations,J2 consists of a sequence of
two operations andJ3 consists of a sequence of three operations. The processing
cycle for each job is a sequence of items (Rθil , pθil) whereRθil denotes the ma-
chine andpθil the processing time for the operationvi, respectively. The disjunctive
graph of the above problem is shown in figure 3.1.

Figure 3.1: Disjunctive graph for a job-shop scheduling problem.

The number outside a node represents the number of operationv ∈ θil ,
whereas the number inside a node is the processing timepθil . A feasible solution
of the problem is represented by the directed graph shown in figure 3.2.

3.3 Techniques to solve Job-Shop Scheduling Problem

Many techniques have been developed to solve the job-shop scheduling problem.
In this section some of these techniques are presented.

Branch and Bound (BB) use a dynamically constructed tree structure to repre-
sents the solution space of all feasible sequences. The search begins at the

14

Figure 3.2: A feasible solution via a direct graph.

topmost node and a complete selection is achieved once the lowest level node
has been evaluated. Each node at a level in the search tree representsa par-
tial sequence of operations. As implied by their name a branching as well
as a bounding scheme is applied to perform the search. From an unselected
node the branching operation determines the next set of possible nodes from
which the search could progress. The BB search technique was initially stud-
ied by [7] and [19]. Another example of such a BB algorithm is cited by [6]
who construct a parallel version of edge finder. A depth first strategyis ap-
plied and the partial enumeration tree is represented by a collection of data
structures held in shared memory.

Constraint Satisfaction techniquesaim at reducing the effective size of the search
space by applying constraints that restrict the order in which variables are
selected and the sequence in which possible values are assigned to each vari-
able. After a value is assigned to a variable any inconsistency arising is
removed. The process of removing inconsistent values is called consistency
checking, while the method of undoing previous assignments is referred to as
backtracking. A backtrack search fixes an order on the variables andalso de-
termines a fixed ordering of the values of each domain. The Constraint Sat-
isfaction Problem (CSP) is solved when a complete allocation of variables is
specified that does not violate the constraints of the problem. Although con-
sidered within the domain of AI, many constraint based scheduling methods
apply a systematic tree search and have close links with BB algorithms. [31]
applies various propagation methods and operation selection heuristics in or-
der to dynamically determine whether to schedule an operation first or last.
[3] proposes a constraint-based model for the Job-Shop Scheduling Problem
to be solved using local search techniques.

Neural Networks (NNs) are organised in a framework based on the brain struc-

15

ture of simple living entities. In these techniques information processing is
carried out through a massively interconnected network of parallel process-
ing units. Their simplicity, along with their capability to perform distributed
computing, as well as their propensity to learn and generalise has made neu-
ral networks a popular methodology. [20] describes some of the main neural
network architectures applied to solve scheduling problems.

Greedy Randomised Adaptive Search Procedure (GRASP)is a problem space
based method that consists of a constructive and an iterative phase. In the
construction phase the solution is built one element at a time. All possible el-
ements which can be chosen next are ordered in a candidate list with respect
to a greedy function. A number of the best candidates are then placed in
a restricted candidate list (RCL). The adaptive nature of GRASP is derived
from its ability to update the values associated with every element, at each
iteration, based on the selection just made. While the probabilistic nature of
the algorithm stems from the random selection of an element in the RCL.
[34] present an application on presents an application of GRASP where the
RCL consists of the operations that when sequenced next would result inthe
lowest overall completion time of the partial sequence.

Genetic Algorithms (GAs) are based on an abstract model of natural evolution,
such that the quality of individuals builds to the highest level compatible
with the environment. Genetic Algorithms are an optimization technique
for functions defined over finite domains. They were first proposed in [18].
Their name refers to their imitation of natural evolutionary processes. In
scheduling and ordering problems, encoding is usually such that the chromo-
somes are the permutation of a basic string. An example of representation is
showed by [23] where a chromosome is a string of symbols of length n and
each symbol identifies the operation to be processed on a machine. Another
work where a GA are used to solve a JSP is presented in [15] the chromo-
some representation of the problem is based on random keys. The schedules
are constructed using a priority rule in which the priorities are defined by the
genetic algorithm and after a schedule is obtained a local search heuristic is
applied to improve the solution.

The Tabu Search (TS) is a metaheuristic approach mainly used to find a near-
optimal solution of combinatorial optimization problems. It was proposed
and formalized by [12], [14] and [13]. The TS technique is based on an
iterative procedure "neighbourhood search method" for finding, in a finite
setT of feasible solutions, a solutiont ∈ T that minimizes a real-valued
objective functionf . [24] present some of the earliest TS approaches in
scheduling. They create three tabu search strategies based on simple move
definitions. [25] apply target analysis to these two works and indicate the
inclusion of job transfers in addition to job swaps improves solution quality,
reduces computing time and allows larger problems to be solved. In [32]

16

a new heuristics method based on a combination of a TS technique and the
SBP has been proposed. The initial solution given by shifting bottleneck, the
special structure of neighbourhood, and the proposed dynamic list allowto
obtain interesting results.

3.4 Extension with operators

The job-shop scheduling problem (JSP) with operators is an extension ofthe clas-
sical job-shop scheduling problem. This extension, proposed by Agnetiset al. [1],
is denotedJSO(n, p) wheren represents the number of jobs andp is the number
of operators. The number of jobsn have to be greater than the number of opera-
torsp otherwise each operators could be assigned to each job and the remains asa
standard JSP.

The extension toJSO(n, p) produce some changes in the problem formula-
tion:

• A new constraint is added: Each operation has to be assisted by one operator
and each operator cannot assist more than one operation at the same time.

• The representation graphG has some changes:G was defined as(V,A,E)
whereV represents the nodes,A precedence relations andE the capacity
constraints. The new graph representation is represented asG = (V,A ∪
E ∪ I ∪O) [39] whereV ,A andE following represents the same. WhileO
represents the operators arcs that includes three types of arc: one arc (u, v)
for each pair of tasks of the problem, and arcs(Ostart

i , u) and(u,Oend
i) for

each operator node and task. The setI includes arcs connecting nodestart
to each nodeOstart

i and arcs connecting each nodeOend
i to nodeend. The

arcs are weighted with the processing time of the task at the source node.

In [1] the authors made a thorough study of this problem and established themini-
malNP -hard cases. Also, a number of exact and approximate algorithms to cope
with this problem were proposed and evaluated on a set of instances generated from
those minimal relevant cases. The results of the experimental study reported in [1]
make it clear that instances of theJSO(n, p) with 3 jobs,3 machines,2 operators
and a number of30 tasks per job may be hard to solve to optimality.

In [40] the authors propose an exact best-first search algorithm andexperiment
with new instances considering more than3 jobs and2 operators. Also, a genetic
algorithm is proposed in [29] which reaches near optimal solutions for large in-
stances. TheJSO(n, p) with total flow time minimization is considered in [39]
where it is solved by means of an exact best first search algorithm and in[28] by
means of an depth-first search algorithm. In both cases, some problem dependent
heuristics and powerful pruning rules were used.

All the developed techniques are focused on obtaining optimized solutions ac-
cording to makespan and total flow time. In this work is extended the objective for

17

searching robust solutions. It is well-known that real life scheduling problems are
dynamic and incidences may occur so that an optimal solution remains unfeasible
after the incidence. The main incidence that can occur in aJSO(n, p) is that a
task must be delayed due to problems with the associated machine or assigned op-
erator. In this way, our main goal is to find robust and optimized solutions to these
problems.

3.5 Robustness in Job-Shop Scheduling Problem

"Robustness" can be defined as the ability of a system to withstand stresses, pres-
sures, perturbations, unpredictable changes or variations in its operating environ-
ment without loss of functionality. A system designed to perform in an expected
environment is "robust" if it is able to maintain its functionality under a set of in-
cidences. In our context a solution of aJSO(n, p) is robust if no rescheduling is
needed after small changes in the problem.

Intuitively, the notion of robustness is easy to define, but its formalization de-
pends on the system, on its expected functionality and on the particular set ofin-
cidences to face up [35]. No general formal definition of robustness has been pro-
posed, except few exceptions or particular cases. Particularly, Kitano[22] mathe-
matically defines the robustness (R) of a system (SY S) with regard to its expected
functionality (F) against a set of perturbations (Z), as (in a simplified way):

RSY S
F,Z =

∫
Z

p(z) ∗ F (z)dz (3.1)

The application of robustness definitions is highly problem-dependent. Let’s
apply (3.1) toJSO(n, p):

• SY S is a solutionS of the JSO(n, p), which we want to assess its ro-
bustness. Robustness is a concept related toJSO(n, p) solutions, not to
JSO(n, p) itself.

• Z is the discrete set of unexpected incidences that are directly related to the
start time or the duration of tasks.

• F is the expected functionality of the system. InJSO(n, p), the expected
functionality of a solution is its feasibility after the disruption. Here a solu-
tion is composed by the start times and duration of all tasks, plus the buffer
times allocated between tasks.

• p(z) = 1

|z| , ∀z ∈ Z. This is the probability for incidencez ∈ Z. All tasks
have the same probability due to no information is given about incidences.

Therefore, the expression (3.1) becomes:

RS
F,Z =

∑
Z

p(z) ∗ F (z) (3.2)

18

Where functionF is defined, in the case of aJSO(n, p) as:

• F (z) = 1 iff only the affected task is modified byz. Thus the buffer assigned
to this task can absorb the incidence.

• F (z) = 0, iff more tasks are modified byz. This means that the buffer
assigned to this task cannot absorb the incidence and it is propagated to the
rest of the schedule.

A robust solution is a solution that maintains its feasibility over the whole set
of expected incidences. Thus, robustness inJSO(n, p) implies that:

• If the duration of a task is greater than expected, then only its final time will
be affected and no other tasks will be delayed.

• If the start time of a task is delayed, then its final time is also delayed but no
other tasks will be affected.

Here, we focus our attention on searching for a robust solution with a minimal
makespan. To do this, we will assign buffer times to tasks. This is an usual way
for introducing robustness in scheduling problems. A buffer is an extra timethat
is given to a task to absorb small incidences. Due to the fact that the duration
of a task is directly dependent of machine and operator involved in this task,the
buffer assigned to this task can be used to absorb small incidences in thesetwo
components. However, there exists a trade-off between optimality and robustness
so buffer times cannot be assigned to all tasks. If it is not known information about
the probability to appear the possible interruptions the number buffers haveto be
as high as possible and these have to be good distributed.

Lemma 1. Let a robust schedule with a given makespan. A buffer can be
assigned to a task iff this task is not involved in any critical path.

Proof by contradiction
→ If a buffer is assigned to a task and it is involved in a critical path, then this

buffer could be removed to reduce makespan. Contradiction: the initial schedule
has minimum makespan.
← It is straightforward. If a task is not involved in a critical path and a buffer

cannot be assigned, then this task takes part of another critical path. Contradiction:
this task is not involved in any critical path.

Thus, we consider that tasks involved in a critical path will not be assigned
buffers to avoid increasing the makespan. Thus our main goal is to assign buffers
to all tasks that are not involved in critical paths, so that we could achieve the
maximum robustness with a given optimality (makespan).

19

20

Chapter 4

Modelling JSO(n, p) as a CSP

4.1 Introduction

In this chapterJSO(n, p) is modelled as a CSP and solved using a look-ahead
algorithm (Forward-checking). By using this algorithm, a solution can be obtained,
However the main aim of this problem is not to obtain a solution but to obtain an
optimized solution. To this end a branch and bound technique has been developed.
When a solution is found the algorithm remains looking for more solutions that
improve the obtained solutions. When the objective is not only to get a solution
of the problem but an optimized solution it is named Constraint Satisfaction and
Optimization Problem (CSOP).

4.2 A modelling Phase

In this approach, we proposed to model theJSO(n, p) as a Constraint Satisfaction
and Optimization Problem (CSOP) [4].

The CSOP model for aJSO(n, p) is characterized by the following elements:

• A set of variablesx1, ..., xn associated with the start time of tasks and with
the operator responsible for carrying out each task. These variablestake val-
ues in finite domainsD1, ..., Dn that may be constrained by unary constraints
over each variable. In these problems, time is usually assumed discrete, with
a problem-dependent granularity.

• A set of constraintsc1, ..., cm among variables defined on the Cartesian prod-
uctDi × ...×Dj and restrict the variable domains.

• The objective function is to minimize the makespan.

Three main constraints appear in this kind of job-shop problems:

1. Precedence constraints: The tasksθij of each jobJi must be scheduled ac-
cording to precedence constraints, i.e., there exists a partial ordering among

21

the tasks of each job and may be represented by a precedence graph ortree-
like structure [38].

2. Capacity constraints: Resources cannot be used simultaneously by more than
one task. Thus, two different tasksθij andθik cannot overlap unless they use
different resources.

3. Operator constraints: An operator can not handle more than one task at a
time.

To modeling theJSO(n, p) as a CSOP we have used the syntax XCSP [36].
The Extensible Markup Language presents a simple and flexible text formatand it
gives the facility to use some functions and structures defined in Abscon [26]. In
the figure 4.1, it can be seen an example of a representation of a job-shoppartial
instance represented in XCSP.

Figure 4.1: Partial instance of a job-shop problem represented in XCSP.

In the modeling phase, we have applied two different filtering techniques to re-
duce the variable domains. The first technique developed (Algorithm 1) calculates
initials values of each tasks and reduces the domain size of the involved variables.
These techniques are similar to the filtering techniques presented in chapter 2(node
consistency, arc-consistency).Thus, a solution can be found more efficiently. This

22

algorithm calculates the maximum time interval in which each task can be sched-
uled. On the one hand, given aθij task, the lowest value of itsstθij is the sum of
the processing times of the tasks that has to be scheduled beforeθij from the same
job i (cumulativeij), subject to the precedence constraints. On the other hand,
the highest value of all the domains forstθij is the sum of all processing times
(maxTime), since this value represents the end of the schedule where the tasks
are scheduled linearly. Due to the fact that at least the following tasks from the
same job must be scheduled beforemaxTime, the highest value for the domain of
each taskθij can be reduced by subtracting the duration of all the tasks from the
same jobi that have to be scheduled afterθij (includingθij) tomaxTime.

Algorithm 1 : Calculate initial values to reduce domain
Data: J : set of jobs;
Result: Relative starts to each task and lineal maxtime
maxTime := 0;
cumulativeij := 0, ∀θij ∈ θ;
foreach i ∈ J do

cumulativeJob← {0};
foreachθij ∈ θ do

maxTime := maxTime+ pt;
cumulativeij ← cumulativeJob;
cumulativeJob← cumulativeJob ∪ {pθij};

return cumulative,maxT ime;

The valuescumulativeij andmaxTime obtained in Algorithm 1 are used to
filter the domains by removing values that cannot take part of feasible solutions.

In the second technique to reduce the variable domains (Algorithm 2), the val-
ues that cannot be possible are calculated.stθij only should get values that repre-
sent the sum of the tasks that can be executed beforeθij .

Algorithm 2 : Calculate possible values
Data: All tasks
Result: New domain of allθ
pV aluesjt ← ∅, ∀θij ∈ θ;
foreach i ∈ J do

foreachθij ∈ θ do
tasksBefore← tasksCanBeBefore(θij)
pV aluesij ← combineDurTasks(tasksBefore)

return pV alues

For example, ifθij is the first task of its job, the possible values are 0 and a set
of the combination of the processing times of all the tasksT that can be scheduled
beforeθij . In this case, these tasksT are all the tasks of the other jobs. For
the following task (θij+1), its possible valuesstθij+1

are the same asθij plus the
processing time ofθij . In the Algorithm 2,tasksCanBeBeforefunction returns the
tasks that can be executed before a given taskθij ; and,combineDurTaskfunction

23

calculates all the possible values forstθij following the precedence constraints.
Thus, by applying these filtering techniques, the variable domains are reduced and
the solving phase can be executed in a more efficient way.

4.3 Solving Phase

Once a CSOP has been modeled and the domains filtered, it is solved by using a
modified algorithm of Forward Checking (FC) (Algorithm 3). When a solutionhas
been found, the algorithm tries to found more solutions with a Branch and Bound
technique. Filtering techniques are also used but prune is only used whenthe set
of not analysed solutions cannot improve the best obtained one. For this reason no
solution is lost. Instead of applying Maintaining Arc-Consistency, this algorithm
performs a filtering procedure that removes the domains in blocks, i.e., it removes
several values at a time. This is due to the fact that if a taskθij must be scheduled
after taskθkl, the stθij can take neither the value of thestθkl nor all successive
values until the ending time ofθkl. Thus, all these values can be removed as a
block of values. The values to delete depend on the type of constraint. If this is
a precedence constraint, all the values beforeθkl plus its processing time will be
deleted. Otherwise, if it is a capacity constraint, the values betweenstθkl (included)
and its processing time will be deleted.

Algorithm 3 : Select-value-forward-checking with deletion block
while D′

i 6= ∅ do
select first elementa ∈ D′

i, and removea fromDi

forall k, i < k ≤ |D′| do
if constraint(i,k) = MachineOrJobConstraintthen

if constraint(i,k)= JobConstraintthen
remove values if(valk < a+ duri) fromD′

k

else
remove values if(valk + durk ≥ a ∧ valk < a+ duri) fromD′

k

else
forall b ∈ D′

k do
if notCONSISTENT (ai−1,xi := a, xk := b) then

removeb fromD′

k

if D′

k = ∅ then
reset eachD′

k, i < k ≤ n to value beforea was selected
else

return a

return null

Some heuristic techniques have been applied to improve the speed and effi-
ciently solving the problem. Variable selection and value selection are two critical
tasks, and with a good heuristic technique can improve the results. The variable
selection is really important because a good solution can be obtained early and it
makes more efficient the prune. Also the value selection is important becausethe

24

values of temporal variables are selected in increase order and the smallest value
for each temporal variable is selected. This is due to the fact that if a task can start
in a defined domain of time interval, the earliest value will be probably the value
that minimizes the makespan. The variable selection heuristic that has given better
results is to select the firsts tasks of each job.

25

26

Chapter 5

Heuristic Algorithms for Finding
Robust Solutions in Job-Shop
Scheduling Problem with
Operators

5.1 Introduction

In chapter 4 a model to solveJSO(n, p) with a CSP implementation with the
objective to get an optimal solution of the problem has been presented. It iswell-
known the trade-off between robustness and optimality. This aim would be used
to calculate a robust solution without lose a big part of optimality. But this job is
really difficult to archive, so a new technique has been developed and itis presented
in this chapter. Our technique has been classified in three steps [8]. At thefirst
step, the job shop problem without taking account operators is solved, sothat an
optimized solution minimizing the makespan is obtained. In the second step this
solution is modified to take into account the operators, modifying the problem to
a JSO(n, p), but now the aim is to get a solution that present a good trade-off
between makespan and robustness. In the third step the solution is modified to
redistribute the buffers but maintaining the same makespan.

5.2 First Step: Modeling and Solving a Constraint Satis-
faction and Optimization Problem

In this approach, we proposed to model the JSP, in the first phase, as a Constraint
Satisfaction and Optimization Problem (CSOP) [4]. Due to the post-process per-
formed, the optimal solution is not necessary to archive, since this solution will be
changed. However, it is still necessary an optimized solution to try to minimize the
makespan. Therefore, a near-optimal solution is looked for by our CSOPsolver.

27

Nevertheless any solver can be used applied to obtain an optimized solution. Our
CSOP solver is an any-time solver that provides a set of solutions. Each new solu-
tion always improves the previous one, until an optimal or a time out is reached.

The phases of modeling and solving are similar to those described in Chap-
ter 4 but without take into account the operators. Only precedence and capacity
constraints are take into account. To model the problem Algorithm 1 and 2 have
been used to calculate the initial values of each tasks and reduce the domain.There
techniques can be used in a JSP because they do not take into account operators.

In the solving phase the techniques presented in Chapter 4 are also used.The
problem is solved using the modified FC (Algorithm 3) explained in Chapter 4.

5.3 Second Step: A Post-process Procedure

Once the CSOP has been solved and an optimized solution to the job-shop schedul-
ing problem have been obtained, this solution is used to allocate the required num-
ber of operators in order to solve theJSO(n, p). This problem consists on finding
a feasible schedule by minimizing makespan and maximizing number of buffers
(Nbuf) to guarantee a certain level of robustness. Note that a feasible schedule for
JSO(n, p) is also feasible for the standard job-shop problem and satisfies the re-
striction that at mostp machines work simultaneously. Therefore, significant cases
are those in whichp < min(n,m), otherwise our problem becomes a standard
job-shop problem [1].

The aim of the Algorithm 4 is to convert a solution without operators in one
where the operator constraints are considered. The idea is to set a number of
machines (remainingMachines) equal to the number of operatorsp and try to
reschedule the tasks of the other machines (machinesFewerTasks) within the
remainingMachines. The tasks inmachinesFewerTasks must be sorted by
their st (tasksToPut). Eachθij in tasksToPut is allocated in the first avail-
able gap between two tasks of each machine inremainingMachines. For each
machine, the search starts from the previous state (savedState). There are cases
whereθij must be allocated without a gap between two tasks due to the prece-
dence constraints. For instance, if we found aθik of the same job asθij and
θik must be scheduled afterθij according to the precedence constraints (k >

j), θij is allocated just beforeθik, being delayedθik. When a task is delayed,
other tasks may be also delayed. The computational cost of the algorithm is
O(tasksToPut ∗ |remainingMachines|).

The best state to allocateθij is the state that maximizes the functionNbuf

Cmax
. This

function could be adjusted depending on the requirements of the user, e.g.either
only minimizing the makespan or maximizing the number of buffers generated.

28

Algorithm 4 : Post-process
Data: S: Solution without operators;m: machines;p: operators;
Result: A solution considering operators

Order the machines by their number of tasks;
machinesFewerTasks← set ofm− p machines with fewer tasks;
tasksToPut← tasks of the machinesmachinesFewerTasks;
remainingMachines← m−machinesFewerTasks;
OrdertasksToPut by Starting Times;

actualState← S;
foreachθi ∈ tasksToPut do

savedState← actualState;
states← {};
for r ∈ remainingMachines do

foundGap := IsThereAGap(r);
if not foundGap then

insertθi before the next task according to its Job;
else

insertθi in this gap;
Delay the needed tasks according to the restrictions among them;

states← states ∪ {actualState};
actualState← savedState;

actualState← chooseBestState(states);

return actualState;

5.4 Third Step: Distributing Buffer Algorithm

The previous step gives us an optimized solution that satisfies all constraintsof
the JSO(n, p). This solution is an optimized solution in terms of minimizing
makespan and maximizing the number of buffers. However, the main goal fora
robust solution, in a scheduling problem where no information about incidences is
given, is to distribute the amount of available buffers among as many tasks aspossi-
ble. It is well-known that all tasks involved in a critical path have not any associate
buffer, because it will affect the makespan. The rest of tasks can bereassigned
to generate a buffer after their ending time. The main goal of this algorithm is to
distribute the amount of buffers without affecting this makespan. Thus, wecan
maximize the number. In this way, the obtained solution is considered more ro-
bust due to more tasks have buffer times to absorb small incidences. Figure 5.1(b)
shows the solution obtained in the second step and all critical paths. It can be ob-
served that 10 buffers were generated, meanwhile the distributing buffer algorithm
was able to find 14 buffers. We remark that our goal is to obtain the maximum
number of buffers since no information is given about incidences so thatall tasks
have the same probability for delaying.

This third step is presented in Algorithm 5. This algorithm looks for the tasks
θij allocated just before each buffer generated in Algorithm 4, and tries to set them
back. A taskθij is only set back if it generates a new buffer. In case a new buffer

29

Algorithm 5 : Distributing buffers
Data: Sch: Schedule;buffers;
Result: New Schedule

foreach b ∈ buffers do
sizeB :=size of the bufferb;
repeat

continue := false;
θij := task allocated beforeb;
Set backθij ;
if this movement generates another buffernb then

continue := true;
Update scheduleSch;

until continue ;

return Sch;

nb is generated, this process is repeated with the task just beforenb. The compu-
tational cost of the algorithm isO(tasks in non-critical path), because tasks in the
non-critical path are the only ones that can be moved to distribute the buffers.

5.5 An example

Figure 5.1 shows different schedules obtained by the CP Optimizer solver and
our technique for a given instance of theJSO(n, p). This instance represents a
scheduling problem with 3 jobs, each with 10 tasks, and 2 operators. Eachrectan-
gle represents a task whose length corresponds to its processing time. Inside the
rectangle, the job, task, machine and operator are showed. The dotted lines showed
in these schedules represent the critical path.

The first schedule Figure 5.1(a) represents the distribution of tasks of the opti-
mal solution obtained by CP Optimizer (only minimizing the makespan) according
to the operators. It can be observed that the obtained makespan was 57 but only
1 buffer was generated due to the fact that only taskθ1,10 was not involved in
any critical path (green and red lines in Figure 5.1(a)). Taking into consideration
the robustness within the objective function, the Figure 5.1(b) representsthe so-
lution obtained by applying step1 + step2 of our algorithm, where all tasks were
distributed by operators.

Finally, Figure 5.1(c) represents the schedule obtained by the third step ofour
algorithm. Although the makespan was increased up to 67, it can be seen thatthe
buffers (black boxes) were distributed between all tasks that they did not take part
of any critical path being increased the robustness of this schedule. These buffers
can be used to absorb incidences or delays from the previous task. Forinstance, if
the resource assigned to the tasksθ23 suffers a small failure, the solution could not
be affected.

30

a)

b)

c) (CSOP+PP steps 1 and 2)

(CSOP+PP steps 1, 2 and 3)

(CP Optimizer)

Figure 5.1: A scheduling problem: an optimal and a robust solution.

31

32

Chapter 6

Evaluation

6.1 JSO(n, p) CSP model Evaluation

We have experimented across the benchmarks proposed in [1], where all instances
haven = 3 andp = 2 and are characterized by the number of machines (m), the
maximum number of tasks per job (vmax) and the range of processing times (pi).
A set of instances was generated combining three values of each parameter: m =
3, 5, 7; vmax = 5, 7, 10 andpi = [1, 10], [1, 50], [1, 100]. In all cases, 10 instances
were considered from each combination and the average results are shown in the
next tables. The sets of instances are identified by the tuple:< m_vmax_pi >.

The set of problems were solved with the algorithm explained in chapter 4.
The aim of the algorithm is found a solution that minimizes the makespan. The
tables 6.1, 6.2 and 6.3 show the results for the instances with 10, 50 and 100 of
processing time. The columnCmax represents the average obtained makespan of
ten instances, the column time represent the computational time (in seconds) to find
these solutions with a maximum time of 300 seconds, the column OptimalCmax

represents the average optimal makespan for 10 instances and the column Diff
Cmax represents the difference between the obtained makespan and the optimal.

The computational time to solve a the instance was variable because a solution
for a specific instance could be found in 10 seconds and no more solutionswere
found in the 300 seconds so the time was 10 seconds but this solution was nota
good solution. Otherwise for other instance a solution was found in 10 seconds
again but it was improved in 250 seconds by the optimal solution so in this case
the computational time was 250 but this solution was better.

For the instances wherepi = [1, 10] the obtained makespan was near to the
optimal because the temporal domain was smaller and so the problem was smaller.
The average difference makespan forpi = [1, 10] was 1.73 moreover for instance
with pi = [1, 50] was 20.41 and for the instance withpi = [1, 100] was 41.81. But
such is not the same 5 units of time (u/t) plus for a solution with a makespan 50 than
500, because for the first makespan represents an increase of 10% but for the sec-
ond an increase of 1%. For this reason percentage for the increment ofmakespan

33

Table 6.1: Avg. Makespan and Computational time (pi = [1, 10])

Instance
CSP with Operators

Cmax Time OptimalCmax Diff Cmax

3_5_10 44,20 46,35 42,70 1,50
3_7_10 60,90 63,90 57,90 3,00
3_10_10 68,70 24,56 65,20 3,50
5_5_10 40,30 43,84 39,40 0,90
5_7_10 55,10 70,00 53,90 1,20
5_10_10 63,30 15,83 60,60 2,70
7_5_10 32,10 3,00 31,00 1,10
7_7_10 46,30 11,92 44,70 1,60
7_10_10 72,20 22,18 70,40 1,80

Table 6.2: Avg. Makespan and Computational time (pi = [1, 50])

Instance
CSP with Operators

Cmax Time OptimalCmax Diff Cmax

3_5_50 218,90 49,29 201,10 17,80
3_7_50 296,10 4,68 267,20 28,90
3_10_50 385,80 7,72 353,30 32,50
5_5_50 200,20 22,28 184,30 15,90
5_7_50 274,00 36,93 253,50 20,50
5_10_50 395,40 18,55 363,00 32,40
7_5_50 186,00 1,77 177,10 8,90
7_7_50 275,10 19,36 252,00 23,10
7_10_50 388,00 12,46 363,90 24,10

Table 6.3: Avg. Makespan and Computational time (pi = [1, 100])

Instance
CSP with Operators

Cmax Time OptimalCmax Diff Cmax

3_5_100 412,80 36,94 389,00 23,80
3_7_100 617,80 3,93 561,40 56,40
3_10_100 858,80 37,45 768,70 90,10
5_5_100 391,60 9,42 349,00 42,60
5_7_100 536,40 53,43 495,00 41,40
5_10_100 771,60 55,84 698,20 73,40
7_5_100 411,90 33,70 391,40 20,50
7_7_100 533,40 12,80 516,00 17,40
7_10_100 797,30 24,99 744,80 52,50

34

were calculated for the three tables and the results were 3.27% , 7.53% and 7.46%
correspondingly. The domain size was bigger in the temporal variables when the
duration of the task was bigger. These results showed that the result obtained in
the instances with a short domain were simpler to solve than the instances with a
bigger domain.

Another thing to note is that the results improved when the number of machines
increase and this was because if the problem was more restricted then search space
was reduced. This can be observed in table 6.3 when the lower value of Diff Cmax

was obtained in the instances with 7 machines comparing between the same value
of vmax = 5, 7, 10.

6.2 Evaluation of heuristic algorithm for robust solutions
in JSO(n, p)

The purpose of this experimental study is to assess our proposal CSOP+Post pro-
cedures (PP) and to compare it with the IBM ILOG CPLEX CP Optimizer tool
(CP). In CP, thep operators were modeled as a nonrenewable cumulative resource
of capacityp. Also, the CP was set to exploit constraint propagation on no over-
lap (NoOverlap) and cumulative function (CumulFunction) constraints to extended
level. The search strategy used was Depth First Search with restarts (default con-
figuration).

We have experimented with the same benchmark of the previous section, where
all instances haven = 3 andp = 2 and are characterized by the number of ma-
chines (m), the maximum number of tasks per job (vmax) and the range of pro-
cessing times (pi). A set of instances was generated combining three values of
each parameter:m = 3, 5, 7; vmax = 5, 7, 10 andpi = [1, 10], [1, 50], [1, 100].

In Figure 6.1, the solutions showed are the schedules for an instance< 3_5_50 >

obtained by the CSOP+PP after both the step 2 (CSOP Step2) and step 3 (CSOP
Step3). The smoothed curve of CSOP Step2 and CSOP Step3 are represented by
dotted lines; by the CP Optimizer without taking into account the operators and
applying steps 2 (CP Step2) and 3 (CP Step3); and, by the CP Optimizer taking
into consideration operators (CP operators). Since two objective functions are con-
sidered in this problem, the solutions that are not dominated by any other solution
are marked with a black point (Non-Dom Sols). It can be observed that keeping
the same makespan (Cmax), solutions given by the step 3 always outperform the
ones obtained by the step 2 according toNbuf . It is important to note that in order
to achieve the minimalCmax, there have to be fewNbuf ; and vice versa, to obtain
moreNbuf , it is needed to increase theCmax. Among the non-dominate solutions
obtained, there is no optimal schedule with the lowestCmax and the maximum
Nbuf , therefore, the users should choose among them according to their necessi-
ties. For instance, let the solutions space is subdivided in four squares according
to whether they minimize or maximize each objective. If the user just needs max-
imizing theNbuf (achieving better robustness), the solutions needed are from the

35

 0

 2

 4

 6

 8

 10
 200 205 210 215 220 225

N
um

be
r

of
 b

uf
fe

rs
 (

N
bu

f)

Makespan (Cmax)

Cmax

Not Nbuf

Not Cmax

Not Nbuf

Not Cmax

Nbuf

Cmax

Nbuf

CSOP Step2 ()
CSOP Step3 ()
CP Step2
CP Step3
CP operators
Non-Dom Sols

Figure 6.1: Set of solutions for an instance given

right-down square.
In the next experiment the first solution given by the CSOP has been chosen to

apply the post-procedure mentioned above because it is the solution that gives the
opportunity to get moreNbuf . This first solution is compared against the optimal
solution. In all cases, 10 instances were considered from each combination and the
average results are shown in the next tables. The sets of instances are identified
by the tuple:< m_vmax_pi >. The incidences (Z) to assess the robustness were
modeled as a delay in a random taskθij from the schedule. For each instance,
a set of 100 incidences were generated with a delay (d) that follows a uniform
distribution between 1 and a 10% ofpi.

Tables 6.4(a), 6.4(b) and 6.4(c) show the performance of both techniques to
absorb incidences. For each technique, we report theCmax, the number of buffers
generated (Nbuf) in step 3, and the robustness (R) for instances for eachm, vmax

andpi.
Following Lemma 1, the number of buffers showed in these tables is a lower

bound of the number of tasks that are not involved in any critical path. Forexample,
in instances< 3_10_10 > the optimal solution had an average of 1.2 buffers in
the 10 instances evaluated, meanwhile our technique obtained an average of 10.90
buffers in the same instances evaluated. This indicates that in average 10.90 out
of 30 tasks were not involved in any critical path and a disruption in one or some
of them could be absorbed and the rest of the tasks would not be involvedin the
disruption.

In all instances the average number of buffers obtained by CSOP+PP was big-
ger than the ones obtained by CP Optimizer. According to the robustness measure
and the number of buffers generated, CSOP+PP procedure always outperformed
the solutions given by the CP Optimizer, although the makespan turned out to be
increased. For instance, in Table 6.4(a) the instances< 3_10_10 > increased up
to 32.6% the number of incidences absorbed.

36

Table 6.4: Avg. Makespan and Robustness
(a) Maximum delay 1 time units

Instance
CP Optimizer CSOP+PP

Cmax Nbuf R (%) Cmax Nbuf R (%)

3_5_10 42.70 2.00 12.50 55.50 4.40 29.20

3_7_10 57.90 1.10 6.80 71.20 7.80 38.60

3_10_10 65.20 1.20 4.60 87.00 10.90 32.60

5_5_10 39.40 0.20 1.20 51.20 4.90 32.90

5_7_10 53.90 0.70 3.10 71.50 7.50 35.90

5_10_10 60.60 0.60 1.70 78.60 8.10 25.50

7_5_10 31.00 0.90 5.40 42.60 5.20 31.10

7_7_10 44.70 0.50 2.30 61.44 5.60 29.40

7_10_10 70.40 0.50 1.50 99.00 8.20 26.90

(b) Maximum delay 5 time units

Instance
CP Optimizer CSOP+PP

Cmax Nbuf R (%) Cmax Nbuf R (%)

3_5_50 201.10 2.20 12.90 232.50 6.60 39.80

3_7_50 267.20 2.20 7.20 317.30 8.80 34.00

3_10_50 353.30 3.50 8.60 450.00 12.60 35.30

5_5_50 184.30 1.20 2.70 252.20 5.70 27.70

5_7_50 253.50 1.10 1.60 340.20 8.30 31.80

5_10_50 363.00 0.90 0.30 467.10 11.60 31.70

7_5_50 177.10 1.10 2.50 237.80 5.80 27.90

7_7_50 252.00 0.40 0.40 380.20 6.20 29.10

7_10_50 363.90 1.00 1.00 512.60 10.40 28.50

(c) Maximum delay 10 time units

Instance
CP Optimizer CSOP+PP

Cmax Nbuf R (%) Cmax Nbuf R (%)

3_5_100 389.00 2.20 12.70 459.00 7.40 41.00

3_7_100 561.40 4.40 16.70 680.90 9.70 38.50

3_10_100 768.70 2.90 4.40 948.90 12.70 34.60

5_5_100 349.00 1.10 2.70 438.90 6.40 34.20

5_7_100 495.00 0.80 0.40 643.90 8.30 33.90

5_10_100 698.20 0.70 1.00 932.10 12.40 35.00

7_5_100 391.40 1.00 2.30 500.80 6.30 37.10

7_7_100 516.00 0.40 2.00 695.80 6.70 27.80

7_10_100 744.80 0.70 0.50 1043.20 10.20 30.00

37

Figure 6.2: Computational time to calculate the step 1 and the step 2 + step 3

It can be seen that for CSOP+PP the greaterpi, the greater robustness values
since the buffers generated could have bigger sizes, e.g., the instanceswith m = 5
andvmax = 10 increased their robustness degree obtaining an average of25.5%
for pi = 10; 31.7% for pi = 50; and35% for pi = 100.

In the figure 6.2 are presented the computational times to calculate the step 1,
CSOP in this case, and the computational time to calculate the post procedure step
2 and step 3. The axisy represent the time in second and the axisx represent each
set of instances. In the graphics can be observed that the computationaltime of the
step 1 is dependent of the durations of task and the number task by job. Butfor the
post procedures the computational time is only dependent of the number of task

38

because the computational time for the post procedures remains stable in the three
graphics.

Table 6.5 presents how large delays in the incidences affect the schedules. As
d increases, the average of incidences absorbed are reduced, reaching the case that
the CP Optimizer obtained an average robustness about0% for most instances with
pi = 100. Even, CP Optimizer was unable to absorb any incidence in instances of
< 7_10_100 >, whereas the CSOP+PP obtained an average of6.9% the number
of incidences absorbed for large delays.

Table 6.5: Avg. Robustness with large incidences (pi = [1, 100])

Instance
CP Optimizer CSOP+PP

d d d d d d

[1,20] [1,50] [1,100] [1,20] [1,50] [1,100]

3_5_100 9.90 6.10 3.10 35.20 20.80 11.90

3_7_100 8.90 6.40 3.30 34.90 22.40 12.00

3_10_100 3.80 1.90 1.30 29.10 17.10 9.50

5_5_100 1.90 1.40 0.50 26.90 12.00 8.30

5_7_100 0.20 0.00 0.00 28.60 14.80 8.50

5_10_100 1.00 0.50 0.30 26.70 16.80 10.80

7_5_100 1.90 0.50 0.40 25.00 11.30 6.70

7_7_100 0.80 0.10 0.10 20.10 10.60 5.60

7_10_100 0.00 0.00 0.00 23.50 13.80 6.90

39

40

Chapter 7

Conclusions and Future Work

7.1 Conclusions

Job-shop scheduling problem is a representation of a hypothetical problem of schedul-
ing, the extension with operators give more difficulty to the problem butJSO(n, p)
can be closer to the reality. Most of the job-shop solving techniques try to find
the optimality of the problem for minimizing the makespan, minimizing tardiness,
minimizing flow-time, etc. But with the developed techniques, the solution also
try to improve the robustness of the solution. A robust solution can resist small
modifications and remains being correct. The developed technique tries to obtain
a solution that take into account both makespan and robustness.

The JSP with operators is really hard to solve efficiently. At the beginning
of this work, the objective was to obtain a solution to the problem with operators
by minimizing the makespan, then to obtain a robust solution from the previous
optimized solution. A technique for solving the problem was developed but the
results were not so goods. For this reason, some techniques were developed to im-
prove the solver and reduce the difficulty of the problem but the problem remained
intractable. In this way, the idea of solving the problem in several parts appeared.

The technique is composed into three steps. The first step consists in solving
a problem without take into account the operators, this step can be done for any
job-shop problem solving technique. In this case in the step one the problemhas
been modelled as a CSP, the output of this step is a correct solution of the problem
minimizing the makespan. The advantage if the technique is separated into three
steps is that the first step can be only calculated one time. This can be an advantage
if the plan of some problems is going to use periodically. The first step can be
calculated only one time where the makespan is minimized and in the second step
can be controlled the trade-off between robustness and optimality desired by the
client. In the second step the problem is modified to take into account operators
and the solution is obtained desiring to improve the robustness. In the third step
the robustness is increased because the number of buffers is also increased. The
computational time cost to execute the second and third step is low comparing the

41

time needed to execute the first step. For this reason this steps can be calculated
repeatedly without causing a very high computational cost and the most expensive
step is calculated only once.

7.2 Future work

The previous section shows techniques to obtain solutions that take into account
robustness to absorb incidences. Related to this robustness concept, a study of the
different robustness measures could be carried out.

These robust solutions have the property to absorb incidences but losing opti-
mality against optimal solution. However a good point to take into account is to
analyze the trade-off between optimality and robustness. Therefore, a good line
of future work is, given an optimal solution, to provide different robustsolutions
according to the optimality level that the client is willing to lose from the optimal
solution given by the first step.

The technique developed in this work is specific for this problem (JSO(n, p))
because between the step one and two, there is a change in the problem dueto
the introduction of a new resource: the operators. This idea of this MasterThesis
about simplifying the problem to model and solve it easier and more efficient can
be used in other problems in the real world. Therefore, another future work could
be designing a general technique to apply it for more schedule problems.

7.3 Related publications

In this section, it is shown a list of published publications to conferences.

• Carlos Mencía, María R. Sierra, Miguel A. Salido, Joan Escamilla and Ramiro
Varela.
Combining Global Pruning Rules with Depth-First Search for the Job Shop
Scheduling Problem with Operators.
In 19th International Workshop on Experimental Evaluation of Algorithms
for Solving Problems with Combinatorial Explosion, RCRA 2012.

• Joan Escamilla, Mario Rodriguez-Molins, Miguel A. Salido, María R. Sierra,
Carlos Mencía and Federico Barber.
Robust Solution to Job-Shop Scheduling Problems with Operators.
In 24th International Conference on Tools with Artificial Intelligence, ICTAI
2102 (CORE B).

42

Bibliography

[1] A. Agnetis, M. Flamini, G. Nicosia, and A. Pacifici. A job-shop problem with
one additional resource type.Journal of Scheduling, 14(3):225–237, 2011.

[2] E. Balas. Machine sequencing via disjunctive graphs: an implicit enumera-
tion algorithm.Operations research, pages 941–957, 1969.

[3] I. Barba, C. Del Valle, and D. Borrego. A constraint-based job-shop schedul-
ing model for software development planning.Actas de los Talleres de las
Jornadas de Ingeniería del Software y Bases de Datos, 3(1), 2009.

[4] J.C. Beck.A schema for constraint relaxation with instantiations for partial
constraint satisfaction and schedule optimization. PhD thesis, University of
Toronto, 1994.

[5] J.R. Bitner and E.M. Reingold. Backtrack programming techniques.Com-
munications of the ACM, 18(11):651–656, 1975.

[6] EA Boyd and R. Burlingame. A parallel algorithm for solving difficult job-
shop scheduling problems.Operations Research Working Paper, Department
of Industrial Engineering, Texas A&M University, College Station, Texas,
pages 77843–3131, 1996.

[7] APG Brown and ZA Lomnicki. Some applications of the" branch-and-bound"
algorithm to the machine scheduling problem.Operations Research, pages
173–186, 1966.

[8] J. Escamilla, M. Rodriguez-Molins, M. A. Salido, M. R. Sierra, C. Mencía,
and F. Barber. Robust solution to job-shop scheduling problems with opera-
tors. In24th IEEE International Conference on Tools with Artificial Intelli-
gence, 2012.(ICTAI 2012).IEEE.

[9] D. Frost and R. Dechter. Dead-end driven learning. InProceedings of the Na-
tional Conference on Artificial Intelligence, pages 294–294. JOHN WILEY
& SONS LTD, 1994.

[10] J. Gaschig. Performance measurement and analysis of certain search algo-
rithms. Technical report, DTIC Document, 1979.

43

[11] J. Gaschnig. A general backtrack algorithm that eliminates most redundant
tests. InProceedings of the Fifth International Joint Conference on Artificial
Intelligence, pages 457–457, 1977.

[12] F. Glover. Future paths for integer programming and links to artificial intelli-
gence.Computers & Operations Research, 13(5):533–549, 1986.

[13] F. Glover. Tabu search-part ii.ORSA Journal on computing, 2(1):4–32, 1990.

[14] F. Glover et al. Tabu search-part i.ORSA Journal on computing, 1(3):190–
206, 1989.

[15] J.F. Gonçalves, J.J. de Magalhães Mendes, and M.G.C. Resende.A hybrid
genetic algorithm for the job shop scheduling problem.European journal of
operational research, 167(1):77–95, 2005.

[16] R.M. Haralick and G.L. Elliott. Increasing tree search efficiency forconstraint
satisfaction problems.Artificial intelligence, 14(3):263–313, 1980.

[17] E. Hebrard, B. Hnich, and T. Walsh. Super csps. Technical report, Technical
report, 2003.

[18] J.H. Holland.Adaptation in natural and artificial systems. Number 53. Uni-
versity of Michigan press, 1975.

[19] E. Ignall and L. Schrage. Application of the branch and bound technique to
some flow-shop scheduling problems.Operations Research, pages 400–412,
1965.

[20] A.S. Jain and S. Meeran. Job-shop scheduling using neural networks. Inter-
national Journal of Production Research, 36(5):1249–1272, 1998.

[21] E. Jen. Stable or robust? whats the difference?Complexity, 8(3):12–18,
2003.

[22] H. Kitano. Towards a theory of biological robustness.Molecular Systems
Biology, 3(137), 2007.

[23] S. Kobayashi, I. Ono, M. Yamamura, et al. An efficient genetic algorithm
for job shop scheduling problems. InProceedings of the 6th International
Conference on Genetic Algorithms, pages 506–511. Morgan Kaufmann, San
Francisco. CA, 1995.

[24] M. Laguna, J.W. Barnes, and F.W. Glover. Tabu search methods for a single
machine scheduling problem.Journal of Intelligent Manufacturing, 2(2):63–
73, 1991.

[25] M. Laguna and F. Glover. Integrating target analysis and tabu search for
improved scheduling systems.Expert Systems with Applications, 6(3):287–
297, 1993.

44

[26] C. Lecoutre and S. Tabary. Abscon 112 toward more robustness. 2008.

[27] A.K. Mackworth. Consistency in networks of relations.Artificial Intelli-
gence, 8(1):99–118, 1977.

[28] C. Mencía, M. R. Sierra, M. A. Salido, J. Escamilla, and R. Varela. Combin-
ing global pruning rules with depth-first search for the job shop scheduling
problem with operators. In19th RCRA International Workshop on Experi-
mental Evaluation of Algorithms for Solving Problems with Combinatorial
Explosion, 2012.

[29] R. Mencía, M. R. Sierra, C. Mencía, and R. Varela. Genetic algorithm for job-
shop scheduling with operators. InProceedings of IWINAC 2011(2). LNCS
6687, pages 305–314. Springer, 2011.

[30] U. Montanari. Networks of constraints: Fundamental properties and applica-
tions to picture processing.Information sciences, 7:95–132, 1974.

[31] W. Nuijten and C. Le Pape. Constraint-based job shop scheduling withiilog
scheduler.Journal of Heuristics, 3(4):271–286, 1998.

[32] F. Pezzella and E. Merelli. A tabu search method guided by shifting bottle-
neck for the job shop scheduling problem.European Journal of Operational
Research, 120(2):297–310, 2000.

[33] P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Com-
putational intelligence, 9(3):268–299, 1993.

[34] M.G.C. Resende. A grasp for job shop scheduling. InINFORMS Spring
Meeting, 1997.

[35] A. Rizk, G. Batt, F. Fages, and S. Solima. A general computational method
for robustness analysis with applications to synthetic gene networks.Bioin-
formatics, 25(12):168–179, 2009.

[36] O. Roussel and C. Lecoutre. Xml representation of constraint networks: For-
mat xcsp 2.1. 2009.

[37] Z. Ruttkay. Constraint satisfaction-a survey.CWI Quarterly, 11(2-3):163–
214, 1998.

[38] N. Sadeh and M.S. Fox. Variable and value ordering heuristics forthe
job shop scheduling constraint satisfaction problem.Artificial Intelligence,
86(1):1–41, 1996.

[39] M. Sierra, C. Mencía, and R. Varela. Optimally scheduling a job-shopwith
operators and total flow time minimization. InAdvances in Artificial In-
telligence: 14th Conf. of the Spanish Association for Artificial Intelligence,
Caepia 2011, LNAI 7023, pages 193–202. Springer, 2011.

45

[40] M. R. Sierra, C. Mencía, and R. Varela. Searching for optimal schedules to the
job-shop problem with operators.Technical report. Computing Technologies
Group. University of Oviedo, 2011.

[41] E. Szathmáry. A robust approach.Nature, 439(7072):19–20, 2006.

46

