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Abstract: The improvement in energy saving aspects in water systems is currently a topic of major
interest. The utilization of pumps working as turbines is a relevant strategy in water distribution
networks consisting of pressurized pipes, using these machines to recover energy, generate green
energy and reduce leakages in water systems. The need to develop energy studies, prior to the
installation of these facilities, requires the use of simulation tools. These tools should be able to define
the operation curves of the machine as a function of the flow rate. This research proposes a new
strategy to develop a mathematics model for pumps working as turbines (PATs), considering the
modified affinity laws. This proposed model, which can be input into hydraulic simulation tools
(e.g., Epanet, WaterGems), allows estimation of the head, efficiency, and power curves of the PATs
when operating at different rotational speeds. The research used 87 different curves for 15 different
machines to develop the new model. This model improves the results of the previously published
models, reducing the error in the estimation of the height, efficiency, and power values. The proposed
model reduced the errors by between 30 and 50% compared to the rest of the models.

Keywords: PAT model; modified affinity laws; hydraulic simulation tool

1. Introduction

Mathematical models have been a very useful tool to improve the management of
water networks [1]. These models improved both pressurized systems [2], as well as free
surface channels [3], improving their management and behavior in steady and unsteady
flows. Some of these models were focused on the integration of the management into the
new sustainability challenges of the infrastructures [4].

The improvement of the sustainability has been analyzed in water systems from
different points of view, such as leakage reduction [5], minimizing consumed energy in
pump systems [6], and quality parameters in the water supply [7], among others. One of
these strategies has been the use of pumps working as turbines (PATs). These machines
replace the pressure reduction valves, taking advantage of the excess of energy in the
pressurized water systems [8]. A PAT is a pump which works in reverse mode and it is
cheaper than classical turbines of the same small size [9]. When this machine operates in
this mode, it generates energy. The efficiency of these machines is lower than traditional
turbines and its hydraulic efficiency value is between 0.6 and 0.7 [10]. The global efficiency
is between 0.5 and 0.6 when all the electromechanical equipment (electric and electronic
devices) is considered. The traditional machines are classified as action (e.g., Pelton,
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Turgo, among others) and reaction (Francis, Kaplan, among others), as described in [11]. In
contrast, the PATs are pumps, and, therefore, their classification depends on the specific
velocity (i.e., radial, mixed, or axial machines) [12,13].

Previously, different investigations were published in which the use and analysis of
PATs focused on analyzing the theoretical energy recovery [11] as well as the duty point
of these machines, when information about the manufacturer was not known [12]. When
the curves are not known, the head, efficiency, and power curves (these curves are called
characteristic curves of the PATs) should be estimated when the pump is used in turbine
mode. These expressions are defined by the following equations:

H0 = A + BQ0 + CQ2
0 (1)

η0 = E4Q4
0 + E3Q3

0 + E2Q2
0 + E1Q0 + E0 (2)

P0 = P4Q4
0 + P3Q3

0 + P2Q2
0 + P1Q0 + P5 (3)

where H0 is the recovered head in nominal rotational speed in m w.c. (water column);
Q0 is the flow rate in m3/s; A, B, and C are the coefficients, which define the head
curve of the PAT; η0 is the efficiency of the machine for each flow (non-dimensional);
E4, E3, E2, E1, and E0 are the coefficients, which define the efficiency curve; P0 is the
generated power in kW; P4, P3, P2, P1, and P5 are the coefficients, defining the power
curve of the machine.

The head curve enables the determination of the recovered head as a function of
the flow. The efficiency curve determines the efficiency of the machine according to the
circulating flow; finally, the power curve establishes the generated power by the machine for
each flow value. Previous references demonstrated the possibility to estimate these curves
by use of non-dimensional parameters [14]. This estimation should be developed using
non-dimensional parameters and they are head number (h), flow number (q), efficiency
number (e), and torque number (b) [15]. The different non-dimensional parameters, which
are used to regulate the machines by variation of the rotational speed, are the following:

q =
Qi

QBEP
(4)

h =
Hi

HBEP
(5)

e =
ηi

ηBEP
(6)

p =
Pi

PBEP
= qhe (7)

where q, h, e, and p are the flow, head, efficiency, and power coefficients; Qi is any flow
value of the PAT in m3/s; Hi is the head for Qi according to the head curve in m w.c.; ηi is
the efficiency of the machine when the flow is Qi; Pi is the effective power for Qi; QBEP,
HBEP, PBEP, and ηBEP refer to the best efficiency point (BEP) of the machine, which define
the best efficiency head (BEH) when the rotational speed is changed.

In line with this, the reduction of the uncertainties by estimating the characteristic
curves with respect to their known behavior as pumps has been an objective of different
studies [16]. Different semiempirical methods have been published, proposing polyno-
mial expressions to estimate the PAT curves, when the machine operates with constant
rotational speed [10,12,17,18]. The development of these mathematical expressions was
crucial to improve the characterization of the PATs and the energy models to analyze the
energy recovery.

However, the flow rate changes over time in the different pipes of the water networks
due to the demands of the users. Therefore, the energy analyses are not maximized when
they consider PATs, if they work under constant rotational speed. To increase energy re-
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covery, different strategies have been published in which the energy maximization was
reached when the machine operated at different rotational speeds, called the variable
operation strategy (named VOS) [19]. The variation of the rotational speed is crucial to
reach the best efficiency values in the water systems, and it is the focus of new challenges in
hydropower systems also applied to Francis turbines [20]. Furthermore, when the rotation
speed changes, it is necessary to introduce knowledge of PAT curves into mathematical
models, which analyze energy recovery in water systems. The lack of mathematical expres-
sions makes it difficult to improve energy estimates when applying the VOS strategy in the
modeling of water systems [14].

In recent years, some researchers have published different methods which allow
water managers and companies to estimate the characteristic curves of PATs, avoiding
the experimental tests when developing preliminary energy studies. Efficiency and head
curves operating without variation of rotational speed were described in [21,22]. The
analysis of PAT curves was carried out using other methods, which proposed expressions
considering specific speed as well as the best efficiency point [23–25]. These methods did
not consider the variation in the rotational speed, which is of paramount importance to
reach the maximization of the recovered energy [26].

A step forward was taken in 2014, when some researchers analyzed the variation
in rotational speed through experimental tests to improve the maximization of energy
recovery. Research described in [12] proposed empirical expressions using four different
tested machines in 2016. These equations should only be considered when the specific
speed is between 120 and 162 (m, kW). In 2018, two PATs were tested and they were
used to define other expressions, which could estimate the characteristic curves when the
best efficiency point was known [27]. Research published in [28] studied the efficiency,
power, and head curves in one PAT, which was installed in water pressurized systems
in 2020. All studies used between one and four machines [12,14,27,28]. The low number
of machines reduces the applicability of the proposed expressions, when other machines
are used. To solve this issue, the present research goes one step further, using 87 different
tested characteristic curves (i.e., head, efficiency, and power) of the majority of hydraulic
machines, which have been published in previous references.

New empirical expressions are here proposed. These expressions could be used by
modelers, who could improve their energy analysis when they apply the VOS strategy in
water systems. Previous research has conducted similar analyses to define the characteristic
curves of the machine [12,14,27,28]. They used non-dimensional numbers (i.e., q, h, e, and
p), which are calculated at the best efficiency point. These values were used to propose
functions, which depended on the ratio of the rotational speed of the machine to modify
the affinity laws. This proposal improves the use of PATs in the simulation tools. It will
enable the reduction of the uncertainty in the previous energy analysis when the use of
PATs is considered in a real case study. The proposed expressions reduced the error indexes
when they were compared with the other published methods, as well as increasing the
validity range. Furthermore, these expressions are based on fifteen different machines,
which had 87 different curves, increasing the number of experimental curves.

2. Materials and Methods
2.1. Methodology

The methodology proposed herein is focused on obtaining some particular empiric
expressions, which allow water managers to develop tools for modeling PATs in water
systems, when they operate at variable rotational speed. The strategy is based on the
knowledge of the operation curves (head, efficiency, and power) at nominal speed [29]. The
proposed method is based on classical expressions of the hydraulic machines, proposing a
strategy to modify them by the affinity laws.

The main objective of the strategy is to propose an empirical expression that allows
water managers to introduce management tools to simulate the different scenarios under
the VOS operation. Furthermore, the method will reduce the errors when the characteristic
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curves are estimated in variable velocity conditions. To achieve this, different steps were
proposed to derive the new expressions considering the modification of the affinity laws
of hydraulic machines. [30]. Finally, the method was validated with the different tested
machines. Figure 1 shows the different proposed steps. These steps are the following:

1. Obtaining experimental characteristic curves of the PATs. The characteristic curves (i.e.,
head, efficiency, and power curve) were made available for the different machines using
experimental data which were published by other researchers. Both the nominal curve
and the curves for different rotational speeds were digitized using Equations (1)–(3).

2. Definition of the dimensionless values of the curve to apply the affinity laws. This is
developed using the previously defined equations (Equations (4)–(8)). When the affinity
laws are applied, the congruence parabola is defined by the following equation [29]:

HPC =
H0

Q2
0

Q2
j = kALQ2

j (8)

where Qj is the new flow rate in m3/s in which the machine has to operate. HPC is a
parabola, which has the same efficiency at each point. This consideration is theoretical,
since (in practice) it is only acceptable for values around +/−20% of the best efficiency
point of the machine [29]. This variation in the rotational speed of the machine is
defined by the ratio between the rotational speed (nj) of the machine to reach the
value (Qj) and the nominal rotational speed (n0). This ratio between nj and n0 is
called α.

The affinity laws are expressions which define points similar to each other under
conditions of restricted similarity, neglecting the stresses due to viscosity. These expression
are defined by the following expressions [29]:

Q1

Q0
=

n1

n0
= α (9)

H1

H0
=

(
n1

n0

)2
= α2 (10)

P1

P0
=

(
n1

n0

)3
= α3 (11)

where Q1 is the flow under the new conditions of rotational speed (n1) in m3/s; H1 is the
head under the new conditions in m w.c.; P1 is the shaft power under the new conditions
in kW.

When affinity laws are applied for different rotational speeds, the variable operation
strategy (VOS) can be defined between ratios of αmin and αmax.

When affinity laws are applied, the dimensionless parameters are:

q = α (12)

h = α2 (13)

e = 1 (14)

p = α3 (15)

Applying the affinity laws, kAL, BEH is defined by the following expression, consider-
ing that the ratio h

q2 = 1 (if the classical affinity laws is applied ideally):

kAL,BEH =
A

QBEP2 +
B

QBEP
+ C (16)
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Figure 1. Methodology proposed to derive the expressions (m is the number of experimental
machines, N is the maximum number of the tested machine).

3. Once the dimensionless parameters (q, h, e, and p) are defined, the best efficiency
curve (BEH) of the machine is determined. BEH is the curve which establishes the
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recovered head for each flow, maximizing efficiency and changing the rotation speed
of the machine. This curve is defined in [27].

4. When the BEH is known for each machine, the ratio h/q2 is defined for the different
values, using the experimental data as well as the regression of the different head and
efficiency curves. This parameter is defined for each rotational speed of the machine.
The rotational speed varies between the αmin and αmax of the VOS. The operation
area is defined by the maximum and minimum rotational speed, determined by the
tested machine.

5. In [27,31], variations of the affinity laws are proposed, where the flow ratio (Q/Q0)
is a function that depends on α; taking into account this modification of the affinity
laws, the corresponding parameter kAL for the modified affinity laws (MOAL) can be
defined when the affinity laws are modified by the following expression:

kMOAL,BEH =
h
q2

(
A

QBEP2 +
B

QBEP
+ C

)
(17)

6. The value of the kMOAL, BEH coefficient is defined for the different rotational speeds
of the machine, determining the cut-off point with the hypothetical head surface and
machine efficiency (Figure 2).
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Figure 2. Congruence parabolas for the different values and rotational speeds when modified affinity
laws (MOAL) is applied.

Once the kMOAL, BEH is defined using QBEP and HBEP, kMOAL is extended for different
values of Q0, defining the kMOAL,i for each rotational speed and the intersection points with
head and efficiency areas are calculated. These points are Q0, H0, η0, Qi,αj , Hi,αj and ηi,αj
(Figure 3a,b). The values of these parameters enable definition of the new non-dimensional
values, which will define the functions of the modified affinity laws. Each of these points
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is calculated considering the intersection point for each rotational speed curve. The new
non-dimensional parameters are defined by the following expressions:

qi,j =
Qi,αj

Qi,0
(18)

hi,j =
Hi,αj

Hi,0
(19)

ηi,j =
ηi,αj

ηi,0
(20)
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7. Once the non-dimensional parameters for the different rotational speeds are defined,
the regression expressions are proposed. These functions depend on rotational speed
(α), which is a significant variable [31] when the non-dimensional parameters are de-
fined (i.e., h, q, and e). Moreover, different expressions are also proposed considering
the ratio Q/QBEP. This parameter is considered since it measures the gap between the
flow value and the flow for the best efficiency point. The incorporation of this param-
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eter will improve the regression coefficient of the expressions, as well as reducing the
errors. The modified affinity laws are then defined according to different expressions:

H = h(A + B
Q
q
+ C

(
Q
q

)2
) (21)

η = e (E4

(
Q
q

)4
+ E3

(
Q
q

)3
+ E2

(
Q
q

)2
+ E1

(
Q
q

)
+ E0) (22)

P = p (P4

(
Q
q

)4
+ P3

(
Q
q

)3
+ P2

(
Q
q

)2
+ P1

(
Q
q

)
+ P5) (23)

Ten different functions (Fi) were proposed, in order to be analyzed and obtain the best
one to estimate the behavior of the machine when it operates at variable rotational speed.
Table 1 shows the proposed functions in which the different coefficients (βi) are calculated
as a function on the analyzed Fi. This analysis proposes six polynomial functions and four
exponential expressions.

Table 1. Proposed functions to be analyzed.

Function Model (FM)

Polynomial Function (from F1to F6):

NP=β1(α Q
QBEP

)+β2( Q
QBEP

)
2
+β3( Q

QBEP
)+β4α2+β5α+β6

Exponential Function (from F7 to F10):

NP=( Q
QBEP

)
β3

αβ5 ·expβ6

F1 NP = β4α2 + β5α
F2 NP = β4α2 + β5α + β6

F3 NP = β2

(
Q

QBEP

)2
+ β4α2 + β5α

F4 NP = β2

(
Q

QBEP

)2
+ β4α2 + β5α + β6

F5 NP = β1

(
α Q

QBEP

)
+ β2

(
Q

QBEP

)2
+ β3

(
Q

QBEP

)
+ β4α2 + β5α

F6 NP = β1

(
α Q

QBEP

)
+ β2

(
Q

QBEP

)2
+ β3

(
Q

QBEP

)
+ β4α2 + β5α + β6

F7 NP = αβ5

F8 NP = αβ5 ·expβ6

F9 NP =
(

Q
QBEP

)β3
αβ5

F10 NP =
(

Q
QBEP

)β3
αβ5 ·expβ6

* NP is the non-dimensional parameter. It can be h, q, e, h
q2 , he

q2 .

8. This step is related to the previous step and concerns the recalculation of the coeffi-
cients βi considering the values of all the tested machines qi,j,m, hi,j,m, and ei,j,m. The
sub-index “m” refers to each tested machine.

9. Having the coefficients for the different functions (Fi) as well as the non-dimensional
parameters (i.e., h, q, e, h

q2 , he
q2 ) defined, the errors of the proposed functions by MOAL

are calculated. The error indices considered were root mean square error (RMSE),
mean absolute deviation (MAD), the mean relative deviation (MRD), and BIAS:

(a) RMSE. This error index measures the error between the empirical expression
and experimental values. When RMSE is zero, this value indicates a perfect fit.
It is defined by (24):

RMSE =

√
∑x

i=1[Oi − Pi]
2

x
(24)

where Oi are the estimated values; Pi the experimental values, and x is the
number of observations.
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(b) MAD. This index measures the average of the errors in the estimated values,
using the absolute differences between estimated and experimental values.
The perfect fit is defined when MAD is zero, and it is defined by the following
expression (25):

MAD = ∑x
1

1
x
|Oi − Pi| (25)

(c) MRD. This index considers the weight of the error to the variable value. If MRD
is zero, this value indicates a perfect fit. Formally, it is defined as follows (26):

MRD = ∑x
1
|Oi − Pi|/Pi

x
(26)

(d) BIAS. The index considers the variable tendency, analyzing whether the es-
timated values are greater (negative value) or smaller (positive value) than
experimental values. It is defined by the following expression (27):

BIAS =
∑N

i=1[Oi − Pi]

x
(27)

If the error values are acceptable and the goodness of the expressions is correct, the
best expression is chosen in order to be applied. The best expression should set low error
values, and it should consider a smaller number of variables.

2.2. Materials

The proposed methodology was applied using different experimental machines. As
indicated, 15 PATs were used in this research, as shown in Table 2. The experimental
database was developed from different consulted studies. These PATs were tested con-
sidering different rotation speeds (Table 3), which allowed interpolation of the different
experimental values among rotation speeds. The specific speed (nst) of the used machines
was between 5 and 50 rpm. nst is defined as:

nst = n0
P

1
2

0

H
5
4
0

(28)

Table 2. Characteristics of the used pumps working as turbines (PATs).

ID Ref. nst (m, kW) n0 (rpm) D (mm) QBEP (l/s) HBEP
(m w.c.) ηBEP RS IP AP

1 [32] 20.66 1020 139 3461 4144 0.615 4 766 2393
2

[33]
28.34 1200 200 24,460 12,437 0.596 7 621 3812

3 25.57 1100 225 22,295 11,941 0.714 7 851 5646
4 26.43 1100 250 23,731 11,910 0.766 7 766 5086
5

[34]
17.68 1200 210 16,755 18,126 0.718 6 846 4377

6 27.03 800 265 27,322 8305 0.800 5 680 2997
7 25.44 1200 255 28,392 15,859 0.715 6 580 3035
8 [35] 13.65 1200 139 4906 11,283 0.543 3 714 1937
9 [36] 5.67 1100 193 9762 51,267 0.703 6 680 3514

10
[37]

31.16 3000 127 17,985 30,288 0.695 6 802 4535
11 20.97 3000 158 17,975 51,355 0.727 6 777 4516
12 50.71 2700 127 36,909 22,207 0.705 7 609 4139
13 [38] 21.75 1000 419 95,591 34,428 0.795 4 745 2595
14 [39] 13.84 1250 175 8990 17,525 0.622 6 804 3020
15 [40] 33.1 2900 189 50,050 52,849 0.646 7 708 4848

Total 87 10,949 56,450

RS, number of experimental curves, which were tested for different rotational speeds; IP, number of interpolated parabolas using the
experimental curves for each rotational speed; AP, number of analyzed points.
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Table 3. Values of the different βi for each proposed function model and considering the different non-dimensional parameters.

q p

FM R2 β1 β2 β3 β4 β5 β6 FM R2 β1 β2 β3 β4 β5 β6

F1 0.9945 – – – −0.4603 1.4250 – F1 0.9133 – – – 0.4447 0.4063 –
F2 0.8630 – – – −0.7538 2.0117 −0.2765 F2 0.6836 – – – −0.8423 2.9793 −1.2124
F3 0.9955 – 0.1112 – −0.4566 1.3510 – F3 0.9244 – 0.3783 – 0.4574 0.1547 –
F4 0.8802 – 0.0925 – −0.6867 1.8224 −0.2163 F4 0.7109 – 0.2897 – −0.6325 2.3865 −1.0239
F5 0.9956 −0.0109 0.2984 −0.2918 −0.5549 1.5705 – F5 0.9357 2.0926 0.4300 −2.2315 −1.0984 1.8245 –
F6 0.8809 −0.1525 0.1958 −0.0118 −0.6429 1.8489 −0.2241 F6 0.7297 1.6724 0.1255 −1.4005 −1.3596 2.6509 −0.6651
F7 0.8310 – – – – 0.7439 – F7 0.8098 – – – – 2.4762 –
F8 0.8243 – – – – 0.6796 −0.0540 F8 0.8019 – – – – 2.2406 −0.1978
F9 0.8949 – – 0.1847 – 0.5541 – F9 0.8825 – – 0.6644 – 1.7937 –
F10 0.8567 – – 0.1675 – 0.5617 −0.0085 F10 0.8374 – – 0.5858 – 1.8282 −0.0388

h h/q2

FM R2 β1 β2 β3 β4 β5 β6 FM R2 β1 β2 β3 β4 β5 β6

F1 0.9910 – – – 0.5072 0.4588 – F1 0.9781 – – – −0.5118 1.6305 –
F2 0.9474 – – – 0.0943 1.2844 −0.3890 F2 0.7375 – – – 1.0476 −1.4870 1.4690
F3 0.9919 – 0.1161 – 0.5111 0.3816 – F3 0.9811 – −0.2347 – −0.5196 1.7866 –
F4 0.9506 – 0.0874 – 0.1576 1.1055 −0.3321 F4 0.7639 – −0.1139 – 0.9651 −1.2538 1.3948
F5 0.9922 −0.0942 0.4740 −0.4828 0.3765 0.7450 – F5 0.9862 −1.5078 −0.4706 1.9296 0.7143 0.3415 –
F6 0.9512 −0.3107 0.3172 −0.0546 0.2420 1.1708 −0.3426 F6 0.7780 −0.6902 0.1218 0.3127 1.2224 −1.2665 1.2940
F7 0.9653 – – – – 1.7017 – F7 0.2070 – – – – 0.2140 –
F8 0.9620 – – – – 1.6646 −0.0312 F8 0.4018 – – – – 0.3055 0.0768
F9 0.9734 – – 0.1392 – 1.5587 – F9 0.5060 – – −0.2302 – 0.4505 –
F10 0.9684 – – 0.1689 – 1.5457 0.0147 F10 0.4786 – – −0.1660 – 0.4223 0.0317

e he/q2

FM R2 β1 β2 β3 β4 β5 β6 FM R2 β1 β2 β3 β4 β5 β6

F1 0.9796 – – – −1.2039 2.1823 – F1 0.9792 – – – −0.8255 1.8427 –
F2 0.2391 – – – −0.8235 1.4219 0.3583 F2 0.1508 – – – −0.1706 0.5336 0.6169
F3 0.9798 – 0.0535 – −1.2021 2.1467 – F3 0.9792 – −0.0236 – −0.8263 1.8584 –
F4 0.2602 – 0.0896 – −0.7586 1.2385 0.4167 F4 0.1538 – 0.0316 – −0.1478 0.4690 0.6374
F5 0.9803 0.5100 −0.5485 0.4514 −1.2321 1.8052 – F5 0.9801 0.5319 −0.8280 0.7565 −0.7572 1.2873 –
F6 0.2832 0.8271 −0.3187 −0.1758 −1.0350 1.1815 0.5019 F6 0.1912 0.9930 −0.4939 −0.1555 −0.4706 0.3804 0.7298
F7 0.0017 – – – – 0.0306 – F7 0.1753 – – – – 0.2447 –
F8 0.0214 – – – – −0.1036 −0.1127 F8 0.1160 – – – – 0.2019 −0.0359
F9 0.2677 – – 0.3404 – −0.3191 – F9 0.2197 – – 0.1102 – 0.1315 –
F10 0.1019 – – 0.2494 – −0.2791 −0.0450 F10 0.1288 – – 0.0834 – 0.1432 −0.0132
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Table 2 also shows the number of experimental curves (RS) which were tested consid-
ering different rotational speeds for each machine, the number of interpolated curves used,
as well as the number of used points to develop the regression and database analysis. The
analysis of the 87 tested curves for different PATs, which operated on different rotational
speeds, enabled us to obtain 10,949 interpolated parabolas, as well as 56,450 work points,
to develop the surface (Q, H, α; Figure 2).

3. Results
3.1. Proposed Function Models

Once the experimental data from the referred 15 tested PATs were analyzed, the βi coef-
ficients were determined for the different non-dimensional parameters (i.e., q, h, e, p, h/q2,
he/q2). Table 3 shows the different values of coefficients βi for each proposed function
(Fi) to model the non-dimensional parameters (NP). Table 3 also shows the regression
coefficient (R2).

The goodness of these models was measured according to the different error indexes,
which were described previously in the Methodology section by Equations (21)–(23). The
different dimensionless parameters proposed for each machine and rotation speed were
determined, defining the error rates for the ten different functions of the model. Table 4
shows the error values for each index, as well as its ranking compared among the ten
functions. This table determines the average values of the error indexes, since these errors
were calculated for each rotational speed in each tested machine (87 curves). BIAS shows
the absolute value, in order to know the magnitude of this error in case of oversize or
undersize of a variable (i.e., H, η, and P).

Table 4 shows the average error values for each FM. These errors values enable us
to decide the best function model for each dimensionless parameter (i.e., h, q, e, and
p). When the error analysis was developed, the best function model (FM) was F6 for h
and e dimensionless parameters. Although different FMs could be used, F6 considered
both rotational speed as well as the ratio Q

QBEP
. The use of this ratio is interesting since

it measures the distance between Q and QBEP. This is an important difference, since it
allows water managers to fix the operation range of flow in order for the affinity laws to be
applied [29].

Table 4. Average error indexes for the different characteristic curves using the defined MOAL.

Expression (21) Expression (22) Expression (23)

H = h
(

A + B Q
q + C

(
Q
q

)2
) η =

e
(

E4

(
Q
q

)4
+ E3

(
Q
q

)3
+ E2

(
Q
q

)2
+ E1

(
Q
q

)
+ E0

) P =

p
(

P4

(
Q
q

)4
+ P3

(
Q
q

)3
+ P2

(
Q
q

)2
+ P1

(
Q
q

)
+ P5

)
FM RMSE MAD MRD BIAS FM RMSE MAD MRD BIAS FM RMSE MAD MRD BIAS

F1
0.6869

(6)
0.5733

(6)
0.0325

(8)
0.1695

(7) F1
0.0596

(8)
0.0486

(8)
0.1161

(8)
0.0198

(9) F1
0.2666

(8)
0.221

(9)
0.1467

(9)
0.0678

(8)

F2
0.7234

(9)
0.6007

(9)
0.0296

(5)
0.1054

(6) F2
0.0656

(10)
0.0493

(10)
0.1185

(10)
0.0173

(7) F2
0.2391

(6)
0.1983

(7)
0.1313

(7)
0.049

(4)

F3
0.6099

(3)
0.5109

(1)
0.0286

(3)
0.0272

(5) F3
0.0487

(4)
0.042

(6)
0.1139

(7)
0.004

(4) F3
0.3341

(10)
0.259
(10)

0.1626
(10)

0.1305
(10)

F4
0.6535

(5)
0.5448

(5)
0.0274

(2)
0.0264

(4) F4
0.0469

(2)
0.0381

(3)
0.1015

(2)
0.0009

(1) F4
0.2732

(9)
0.213

(8)
0.1398

(8)
0.0222

(1)

F5
0.6077

(2)
0.5113

(2)
0.0289

(4)
0.0026

(2) F5
0.0494

(5)
0.0424

(7)
0.1115

(6)
0.0052

(5) F5
0.2314

(5)
0.1775

(5)
0.1216

(5)
0.0646

(6)

F6
0.6075

(1)
0.5154

(3)
0.0266

(1)
0.005

(3) F6
0.0397

(1)
0.0331

(1)
0.0883

(1)
0.0027

(3) F6
0.2472

(7)
0.194

(6)
0.1272

(6)
0.0654

(7)

F7
0.6101

(4)
0.5186

(4)
0.0302

(6)
0.3739

(9) F7
0.054

(7)
0.0419

(5)
0.1033

(3)
0.0016

(2) F7
0.1169

(1)
0.1017

(1)
0.0858

(1)
0.023

(2)

F8
0.6979

(7)
0.5911

(8)
0.0332

(9)
0.0021

(1) F8
0.0652

(9)
0.049

(9)
0.111

(5)
0.0222

(10) F8
0.174

(4)
0.1471

(4)
0.0886

(2)
0.1127

(9)

F9
0.7697

(10)
0.6154

(10)
0.0349

(10)
0.4324

(10) F9
0.0506

(6)
0.0414

(4)
0.1174

(9)
0.0182

(8) F9
0.1486

(2)
0.13
(2)

0.0964
(4)

0.0364
(3)

F10
0.7085

(8)
0.5847

(7)
0.0321

(7)
0.216

(8) F10
0.047

(3)
0.0379

(2)
0.1107

(4)
0.0064

(6) F10
0.1504

(3)
0.1345

(3)
0.0942

(3)
0.0629

(5)

The ranking of the Fi when the error indexes are compared from (1) to (9) as indicated.
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When non-parameter p was analyzed, the F7 function also was chosen since it only
considered one variable (α), yielding good results in the estimation of the PATs curve. F7
was used to determine the power curve directly by expression (23). However, when water
managers wish to determine the power curve by the use of Q, H, and η, they should use
the F6 function.

3.2. Error Distribution Compared to Rotational Speed

Once F6 was chosen, the error of the modified affinity laws was compared with all
tested curves. All error indexes were calculated for head, efficiency, and power.

When head was analyzed, the MRD was smaller than 0.05, with a cumulated frequency
equal to 91%. The maximum value was 0.089. In head values, RMSE was smaller than
0.6 in 57 compared curves and BIAS was smaller than 0.25 in 49 compared curves.

When efficiency was compared, RMSE was smaller than 0.035 in 58% of the compar-
isons and it was smaller than 0.07 in 88% of the comparisons. When MRD was checked, it
was smaller than 0.15, showing a BIAS value smaller than 0.069 in 92% of the cases.

When the error values for the power curve using the F6 function model were analyzed,
RMSE was smaller than 0.2 (72% cumulated frequency). When MAD was analyzed, similar
values were obtained. MAD was lower than 0.17, and the MRD was smaller than 0.2 in
90% of the samples.

However, when the errors of F7 were analyzed for the power curve, they showed the
best approach. Figure 4 shows the error values for the power curve using the F7 expression.
RMSE was analyzed (Figure 4a), and it was smaller than 0.18 (70% of cumulated frequency).
This value was smaller than 0.09 in 51 cases. Moreover, when the α value was observed,
smaller values were located between 0.8 and 1.2, reaching a minimum around 0.9.
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When MAD was analyzed (Figure 4b), similar values were obtained. In this case, MAD
values were smaller than 0.16 (92% of cumulated frequency). When MRD was analyzed
(Figure 4c), this value was smaller than 0.2 in 94% of the samples. This value had a value of
65% of cumulated frequency for values lower than 0.07. Finally, BIAS had good accuracy,
showing values lower than 0.1 in 85% of the sample. In all cases, the minimum errors were
reached when the machine operated using α rates between 0.8 and 1.2, being the minimum
for values near 0.9.
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3.3. Proposed Functions vs. Other Published Functions

Once the relative errors of the selected function model (F6) were compared for each
rotational speed of the different tested machine in the different proposed functions of head,
efficiency, and power, the proposed expressions were compared with other expressions
which have already been published in the literature.

This research proposes the following particular functions to define the characteristic
curves of the machine according to expressions (21)–(23). The model F6 was chosen when
head and efficiency curves should be estimated. F6 showed the lowest errors compared to
the rest of the models. Moreover, this model contained the variation of the rotational speed
(α) as well as the use of the ratio Q/QBEP, enabling us to measure the closeness to BEP. To
calculate the power, F7 was chosen since it had the minimum error values, and it uses a
simpler expression. The final expressions proposed herein are:

q = −0.1525
(

α
Q

QBEP

)
+ 0.1958

(
Q

QBEP

)2
− 0.0118

(
Q

QBEP

)
− 0.6429α2 + 1.8489α− 0.2241

h = −0.31070
(

α
Q

QBEP

)
+ 0.3172

(
Q

QBEP

)2
− 0.0546

(
Q

QBEP

)
+ 0.242α2 + 1.1708α− 0.3426

e = 0.8271
(

α
Q

QBEP

)
− 0.3187

(
Q

QBEP

)2
− 0.1758

(
Q

QBEP

)
− 1.035α2 + 1.1815α + 0.5019

p = α2.4762;

q = α0.7439

The comparison concerns the model proposed in this research and four published
proposals that are shown in Table 5.

Table 5. Methods used for the comparison.

Method Reference h q p η

Carravetta et al. (2014) [14] 1.0253α1.5615 1.0323α0.7977 0.9741α2.3207 −0.4013α2 + 0.845α + 0.5606
Fecarotta et al. (2016) [12] 0.972α1.603 1.004α0.825 – −0.317α2 + 0.587α + 0.707

Pérez-Sánchez et al. (2018) [27] 1.89α2 − 1.54α + 0.74 1.08α0.7 4.59α2 − 6.33α + 2.50 −0.36α2 − 0.69α + 0.66
Tahani et al. (2020) [28] 0.9962α1.0851 0.9974α0.3651 0.9767α1.4888 −4.3506α2 + 8.8879α− 3.544

Figure 5 shows the different values for error, when head, efficiency, and power were
estimated using the proposed model (in black color, “this study”) and the rest of the published
models. In all cases, the present proposed model presented the best results.

When head curve was analyzed, the error indexes (RMSE, MAD, and MRD) were
reduced between 20 and 45% compared to the second-best model (Carravetta et al.). The
BIAS value for this characteristic curve was −0.005, compared to the second-best model
(0.048). Similar values were shown when the efficiency curve was compared. When ef-
ficiency errors were compared, RMS, MAD, and MRD were reduced by 33% compared
to the second-best model, while BIAS was ten times lower than the second-best model.
Finally, when the power errors were checked using the F7 model, the error indexes were
reduced between 36 and 63% compared to the second-best model. Only when BIAS was
checked, the second-best value was observed. Moreover, the F6 model was also compared
to the rest of the proposed models for the power curve. This model (F6) showed good
accuracy and the error indexes were 0.2209 (RMSE), 0.1884 (MAD), 0.0823 (MRD), and
−0.097 (BIAS). All values were better than the second-best model, except for BIAS, which
was the third-best value.

Finally, a visual comparison was carried out on the proposed model and the remaining
models compared to an experimental PAT curve (Figure 6). To develop this comparison,
the chosen PAT was a radial machine. The specific speed was 5.67 rpm (m, kW) and its
nominal rotational speed was 1100 rpm. The best operation point of this machine was
defined as 9.762 l/s and 51.267 m w.c., the efficiency being equal to 0.703 [24]
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Figure 6a,b show the good accuracy of the proposed model compared to the rest of
the models. This accuracy can be observed for each α value. Figure 6a shows the accuracy
of the proposed study, other published models, and experimental data. All models showed
good accuracy when the head curve was compared with the experimental data. However,
this accuracy decreased in the rest of the models when α was higher than one. The accuracy
of the proposed expressions was much better when the efficiency curves were compared.
This visual accuracy, which can only be observed, is supported by analysis of errors indexes
shown in Figure 5. In this graph, the proposed expressions reduced over 20% of the error
of the other published methods. The mean reduction in the error was 60%. To improve
this perception, Figure 6c,d show the comparison between the proposed model and the
experimental data. In all cases, the accuracy was good but, when the α was between 0.8
and 1.2, the estimation of the curves showed excellent accuracy.

4. Conclusions

This research proposed a modification of the affinity laws (MOAL) of the hydraulic
machines that are used as pumps working as turbines. This modification was established
according to a new methodology, which was defined in this research. The research proposed
an analysis with ten general expressions (polynomial and exponential), considering the
most significant variables (the ratio of the rotational speed, α, and the ratio of Q and
QBEP). Finally, a polynomial model (namely F6) depending on α and Q

QBEP
was selected,

when head and efficiency were estimated, and a potential model (F7) if the power is to be
calculated directly. All proposed models exhibited good error indexes (RMSE, MAD, MRD,
and BIAS) compared to the others, reducing the errors between 30 and 50% compared to
the second-best model.

In addition, the proposed models were checked and compared to 15 different machines,
which were tested by varying their rotational speed and its specific speed between 5 and
50 rpm (m, kW). The present model is based on 87 different curves and 56,450 operation
points, using the largest database ever published.

The use of these models, which have excellent accuracy when α is between 0.8 and 1.2,
is crucial to the development of mathematical models. These are of paramount importance
to introduce the use of PATs when the manufacturer curve is not known. This is common
when PATs are used, since the manufacturers do not publish these curves in their catalogue.
Therefore, the inclusion of these equations will allow water managers to develop simulation
tools, which can be introduced in the management of the water systems, improving the
accuracy in their operation estimation. These models are expected to give a new impetus
in the inclusion of the analysis tools when PATs operate at variable speed in water systems,
and water modelers need mathematical expressions to develop simulations and operational
limitations. Consequently, future works should be developed in which different procedures
are proposed to establish the best variable operating strategy (VOS) in order to maximize
the energy recovery using these expressions.
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