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Abstract 4 

Previous research has confirmed that the distribution of bids for construction auctions can be 5 

reasonably modelled with the Lognormal distribution. The location parameter of this distribution (the 6 

mean µ) has been found to have a good linear correlation with the bidders’ cost estimates. However, 7 

the scale parameter (standard deviation of the bids, σ) remains noticeably difficult to anticipate. 8 

By analyzing 13 construction auction datasets, hard evidence is provided that the high 9 

variability of σ observed in construction auctions is mostly due to sample size (number of bids per 10 

auction). Moreover, we show that the coefficient of variation (σ/µ) of log-transformed bids follows 11 

the same χ² distribution in uncapped auctions. This means the σ's population value in similar auctions 12 

is nearly proportional to µ provided the bid price is not upper limited. Other findings are that more 13 

frequent bidders do not tend to bid lower, but their dispersion is narrower than sporadic bidders. 14 

These findings allow the introduction of important simplifications in construction bidding models, 15 

especially when access to historical data is limited. 16 
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Introduction 19 

Public tendering and procurement are essential in most economies as they give competitive 20 

bidders the opportunity to secure public contracts (Bergman and Lundberg 2013). In the construction 21 

domain, tendering takes the form of a reverse auction (Ahmed et al. 2016) in which bids are offers for 22 

contracts made by interested contractors to carry out some construction-related work. Irrespective of 23 

the inclusion of other technical or non-price features, these bids always involve an economic offer 24 

(Ballesteros-Pérez et al. 2015d).  25 

Due to its implications in competitive markets, the study of economic bids has been subject to 26 

extensive research (Runeson and Skitmore 1999). Statistical bidding models have traditionally been 27 

among the most popular, as these are capable of handling risk and uncertainty. They also enable a 28 

potentially substantial amount of theoretical knowledge to be applied to real-life bidding problems 29 

(Skitmore 1986). For instance, they can be used by contractors to increase their competitiveness 30 

and/or profits [e.g. (Carr 1982; Friedman 1956; Skitmore 1991)]; applied in avoiding collusion by law 31 

enforcement agencies [e.g. (Bajari and Ye 2003; Ballesteros-Pérez et al. 2013b, 2015c; Signor et al. 32 

2019, 2020a)]; and in designing improved awarding criteria by contracting authorities [e.g. 33 

(Ballesteros-Pérez et al. 2015d, 2016b; Bergman and Lundberg 2013)]. 34 

All these applications share the need to model bids as statistical distributions and imply some 35 

conditions of stability across auctions and/or bidders’ behavior (Yuan 2011). The complete 36 

specification of many such distributions involves three parameters: usually referred to as shape, 37 

location, and spread (Skitmore 1986). Regarding shape, extant studies have proposed or assumed 38 

many distributions for modelling bids (e.g. Uniform, Normal, Weibull, Lognormal, and Gamma) 39 

(Skitmore 2014). However, Ballesteros and Skitmore (2017), in performing an extensive empirical 40 

study, demonstrated that the Lognormal distribution offers the best fit in most situations. Hence, this 41 

distribution should be the first choice when modelling the set of bids submitted by different bidders to 42 

a single auction. The set of bids submitted by a single bidder to different auctions has also been 43 

demonstrated empirically to be well modelled by Lognormal distributions (Ballesteros-Pérez and 44 
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Skitmore 2017) and by two-parameter Gamma distributions (Skitmore 2014), although each bidder’s 45 

distribution parameter values may differ (Skitmore 1991, 2014).  46 

Regarding the location of the distribution of bids, we generally refer to it as the expected 47 

value, mean bid, or average bid. Some studies also refer to it as the market fair price (Benton and 48 

McHenry 2010). Due to differences across countries, tender specifications, markets conditions, or 49 

economic periods, construction contract bids usually include a varying amount of mark-up for profit 50 

(Skitmore and Pemberton 1994). However, we are not interested here in inferring the profits from the 51 

submitted bids, but mostly in predicting the expected value of the bids. In this respect, there have been 52 

several empirical studies identifying a strong mathematical correlation between the bidders’ cost 53 

estimates and the average bid of a past auction (Ballesteros-Pérez et al. 2012a; Ballesteros-Pérez and 54 

Skitmore 2017). Figure 1 shows an example of this mathematical relationship in grey-colored dots 55 

and grey dashed regression lines. The data from Figure 1 are from one of the auction datasets 56 

described later, but this strong regression relationship holds in other datasets too. Moreover, the 57 

relationship is usually stronger − the datapoints are located nearer the regression line − when bid 58 

values are transformed into their logarithmic values (see bottom graph of Figure 1). 59 

<Insert Figure 1 here> 60 

However, the bid spread (also named the standard deviation or dispersion of the bids) often 61 

behaves rather erratically in varying significantly even between similar auctions (Skitmore 2001). 62 

Skitmore’s (1986) first attempts to predict the spread with three datasets found that such estimates 63 

were not readily available. Having attempted several variance stabilizing transformations with little 64 

success, the main problem was that the tests for homoscedasticity (i.e. the assumption of a constant 65 

variance of bids across auctions) were strongly dependent on the bid values being Normally 66 

distributed. Similarly, subsequent work by Ballesteros-Pérez et al. (2013a, 2016b) concluded that no 67 

obvious mathematical expression or regression relationship could anticipate bid spread values from 68 

other auction parameters with sufficient accuracy to be of any practical use. 69 
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The green dots in Figure 1 provide an illustrative example of this problem. In the top graph 70 

(in natural scale), it is difficult to appreciate the different orders of magnitude this parameter can take. 71 

But in the bottom graph (in log scale), it is easy to appreciate the strong level of variation of the green 72 

dots even for auctions with a similar mean bid. This high variability has also been found in multiple 73 

accounts of the classical construction bidding literature. In them, akin studies have reported bid 74 

coefficients of variation (ratio of the standard deviation of the bids to their mean) from around 2% 75 

(Morin and Clough 1969) to 15% (Fine and Hackemar 1970), including many values in between: 4% 76 

(Beeston 1982), 7.5% (Gates 1967), 10% (Rubey and Milner 1966), etc. 77 

In view of this, no studies have considered that the standard deviation of bids could actually 78 

be the same for similar auctions. However, it is worth noting that the confidence intervals (CI) of the 79 

bids sample standard deviation (SD) are very sensitive to low sample sizes (Gurland and Tripathi 80 

1971). For example, for an auction with just two bidders (N=2), the chi-square distribution (χ²) that 81 

models the variability of the SD has 1 degree of freedom (df=N-1) (Lancaster 1971). The result is that 82 

a 95% CI of the SD ranges from 0.45×SD to 31.9×SD! In an auction with more bidders, for example 83 

N=10 bidders, there are 9 degrees of freedom for estimating the SD. In this case a 95% CI ranges 84 

from 0.69×SD to 1.83×SD. Hence, even with a sample (auction) of 10 bidders, the standard deviation 85 

of the population bids can still be almost 85% higher or 30% lower than the SD of the sample bids. 86 

Therefore, the first objective of this study is to check whether the high variability observed in 87 

the standard deviation of the sample bids is due to a low sample size (low number of bids per 88 

auction). That is, whether a common constant or maybe proportional standard deviation of the 89 

population bids exists for similar auctions. The second objective involves analyzing if individual 90 

bidders’ bids also share the same distribution parameters with each other, especially regarding their 91 

dispersion, which has been much less studied in the literature. For achieving both objectives, we will 92 

analyze the bid dispersion (scale) parameters of 13 representative construction datasets from four 93 

continents with various characteristics (auction types, countries, time periods, nature of works, etc.) 94 
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Literature review 95 

Bidding studies since Friedman (1956) assume that “by keeping a record of the competitors’ 96 

past bids, it is possible to evaluate their bidding habits”. In the same vein, McCaffer and Pettitt (1976) 97 

pointed out that there is substantial evidence that bidding processes are much more than purely 98 

random. Hence, a bidder should be able to model the bidding behavior of competitors by tracking 99 

their bids and, in turn, use historical data for analyzing past bids and/or predicting future bids. As a 100 

result, most classical bidding models are built from the archival information of the bids of competitors 101 

[e.g. (Carr 1982; Friedman 1956; Gates 1967; Mercer and Russell 1969; Pim 1974; Wade and Harris 102 

1976)]. These bids are generally stored as ratios (each bid divided by the cost estimate of the bidder 103 

holding the data – often referred to as “the reference” bidder) (Stark and Rothkopf 1979). By 104 

analyzing these ratios, the reference bidder is theoretically capable of calculating the probability of 105 

underbidding its competitors in a future auction and, hence, being awarded the contract. 106 

However, this approach has important limitations. First, as Friedman (1956) also observes, the 107 

reference bidder needs a sufficient number of previous bids of a bidder to provide an accurate 108 

representation of its behaviors (Friedman suggested at least 30 bids). For construction contract 109 

auctions, where the auction-bidder matrix is invariably over 90% sparse (Skitmore 2014), it is 110 

difficult, if not impossible, to gather such an amount of information for every competing bidder. 111 

Second, it is usually difficult to anticipate which bidders will submit (or not) a bid for an upcoming 112 

auction (Ballesteros-Pérez et al. 2016a). Third, as the reference bidder needs to calculate its cost 113 

estimates for all (or nearly all) previous auctions to calculate the bid to cost ratios, these are generally 114 

only available when the reference bidder participated in those auctions. Overall, these limitations pose 115 

a significant challenge regarding the amount of information that can be realistically gathered and 116 

converted into actionable information. 117 

With the intention of removing some of these barriers, other bidding-related models have 118 

resorted to alternative strategies when dealing with the variability of bids. Skitmore (1991), for 119 

example, proposes a bidding model comprising a location and scale parameter for each bidder and a 120 

location parameter for each auction to empirically disavow the general applicability of the 121 
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homogeneity assumption (that the two bidder parameter values are not significantly different between 122 

bidders). Ballesteros-Pérez et al. (2013a) propose a bid forecasting model where statistical 123 

distributions represented the lowest, average, and maximum bids, instead of individual bids – 124 

although this simplification ignores the influence of the number of bidders, which leads to 125 

insufficiently accurate results. Similarly, many multivariate regression models have also been 126 

proposed to anticipate the likely range of bidders’ bids [e.g. (Brocas et al. 2015; Lan Oo et al. 2007; 127 

Williams 2003)] − these generally resort to multiple parameters (e.g. project size, location, client, 128 

nature of works, etc.) as independent variables. However, the latter only provide deterministic 129 

estimates, which do not allow an exhaustive analysis that considers uncertainty and risk factors. More 130 

recently, other researchers have started to apply machine learning and artificial algorithms to model 131 

winning bids from incomplete auction datasets (for instance, datasets where only the lowest bid and 132 

pre-tender estimates are available) (García-Rodríguez et al. 2019; 2020). However, these algorithms 133 

are also extremely data intensive. 134 

Alternatively, other models have tried to break down the bid modelling problem into smaller 135 

chunks with more manageable scopes. In this regard, some attempts have been made to anticipate the 136 

total number of potential bidders who might submit a bid in an upcoming auction (Ballesteros-Pérez 137 

et al. 2015b). Some models focus on anticipating the identities of specific participating bidders 138 

(Ballesteros-Pérez et al. 2016a). Others anticipate only the number of new bidders (bidders from 139 

which there is as yet no previous information), as well as the size of the bidders’ population (market 140 

size) (Ballesteros-Pérez et al. 2019; Ballesteros-Pérez and Skitmore 2016). Finally, models measuring 141 

the performance (effectiveness) of some bidders from past auctions have also been proposed 142 

(Ballesteros-Pérez et al. 2014, 2015a). However, all these models are fragmented and empirical by 143 

nature. That is, they suffer from the usual problems associated with the lack of theoretical 144 

development, in being simply practical tools incapable of producing generalizable results. 145 

Consequently, there is significant room for improvement in theory-based bidding models. But 146 

these improvements must also overcome some of the three limitations stated earlier (information 147 

demand, need to anticipate the identities of future likely bidders, and/or dependence on the 148 
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availability of bidders’ cost estimates). One approach to this is to anticipate the standard deviation of 149 

bids, as an improved understanding of this parameter could enable most bidding models to be 150 

significantly simplified. The first and most obvious response is to model auction bids as being 151 

randomly generated from a (lognormal) distribution whose parameters (location and scale) are known. 152 

Another option is to simplify bidding models by expressing the bid ratios as a function of their 153 

respective auction’s mean bid (instead of another bidder’s cost estimate). In fact, since there is usually 154 

a strong regression relationship between the bidders’ cost estimates and the mean bid, only a few past 155 

datapoints of previous auctions’ cost estimates would suffice to provide a good estimate of a future 156 

auction’s mean bid. Then, we could study separately the bidders’ bids dispersion around that mean 157 

bid, thanks to the bid-to-mean-bid ratios. These ratios are much easier to calculate from previous 158 

auctions, no matter if there is no cost estimate available. Hence, the amount of actionable information 159 

would be much less limiting, and the bidding models that handle it much simpler. 160 

However, before resorting to these alternative bidding analysis strategies, it is necessary to 161 

ensure that our estimates of the standard deviation are sufficiently accurate. To do this, it is important 162 

to understand the level of variation of bids and anticipate its (population) value. 163 

Research methods 164 

This section first describes the auction datasets used in the analysis. Then, the mathematical 165 

transformations are described that are performed on the bid standard deviations to enable them to be 166 

compared irrespective of the contract size. 167 

Datasets of auctions  168 

To draw valid conclusions, 13 extensive and representative auctions datasets are used. The 169 

characteristics of these datasets are summarized in Table 1. Access to the raw data of all datasets is 170 

possible via the supplemental online material and from the original sources stated in the second 171 

column of Table 1 (Ballesteros-Pérez et al. 2012a, 2015a; Ballesteros-Pérez and Skitmore 2017; 172 

Brown 1986; Drew 1995; Fu 2004; Runeson 1987; Shaffer and Micheau 1971; Skitmore 1991, 1981, 173 

1986). 174 
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<Insert Table 1 here> 175 

The datasets are deemed representative as they contain bidding data from five countries 176 

(United Kingdom, United States of America, Hong Kong, Australia, and Spain) and four continents 177 

(Europe, America, Asia, and Oceania). The number of contracts (auctions) of each dataset is never 178 

fewer than 45, even after removing auctions with less than two bidders (the minimum needed to 179 

calculate the bid standard deviation). The sources of these datasets are published papers and/or 180 

dissertations. This allows for replicability by other researchers. 181 

As shown in the ‘Description’ column, the nature of the works is quite varied (different types 182 

of buildings and different types of civil engineering works). Their time span is also quite wide, with 183 

the earliest being from 1965 and the latest from 2014. Similarly, some datasets span 2 years while 184 

others range up to 10 years. The latter feature allows for some longitudinal comparisons within the 185 

same dataset (e.g. considering different market periods, even the potential impact of economic crises).  186 

Regarding the number of bidders (see column ‘Avg. Nº bids/auction’), the datasets have 187 

auctions with small and large numbers of bidders (from 5 to 30 bids per auction on average). This is 188 

convenient for identifying the possible impact of the auctions’ sample size on the bid standard 189 

deviation. The first eight datasets also include information concerning which bidder submitted each 190 

bid, that is, the bidders’ identities (see column “Bidders’ ID”). This information enables an analysis to 191 

be made on the differences between the bidding outcomes of more frequent vs sporadic bidders. 192 

Additionally, some datasets include the reference bidder’s or project designer’s cost estimates of most 193 

(sometimes all) auctions.  194 

Finally, the last column of Table 1 indicates which auction datasets correspond to uncapped 195 

auctions (those where bidders have no price ceiling when submitting their bids) or capped auctions 196 

(those where bidders must necessarily underbid a given price generally made public beforehand by 197 

the contracting authority). As shown later, the difference between capped and uncapped tenders is 198 

relevant to the bid standard deviation similarity across auctions. The HK159 and HK259 datasets are 199 

classified as “mixed”: they involve Class A contractors that are only eligible to bid up to HKD 3 200 
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million, Class B who can bid up to HKD 15 million, and Class C who can bid any value. This means 201 

that the Class A and B contractors’ bids can be considered to be capped to some extent, while Class C 202 

bids are uncapped. That is, although most auctions in these two datasets are uncapped, some of their 203 

bids can be considered to be capped.  204 

Analysis 205 

As introduced earlier in Table 1, each dataset contains contracts (auctions) with different 206 

types of works. For example, the first dataset (UK51) encompasses building-related auctions. Some of 207 

these contracts involve the construction of a building, some the building design, and some 208 

maintenance and/or repair activities. Yet, for the purpose of this study, it is assumed that the contracts 209 

within each dataset are relatively homogeneous, i.e. their scope, project client, and geographical area 210 

are relatively similar. Even though this may not be true in some datasets, especially in datasets 211 

spanning long time periods, it is noted that, should the findings hold under these restrictive conditions, 212 

they will also hold in most real-life auction settings. 213 

Each dataset is also analyzed separately: this is clearly necessary, as the data are from 214 

different countries, types of work, and time periods. Since contracts from each dataset have different 215 

economic sizes, and akin to previous research on bid dispersion (Skitmore 1981), the Coefficient of 216 

Variation (CV) − a standardized measure of dispersion calculated as the standard deviation of the bids 217 

divided by their mean − is used as a substitute for the bid standard deviation. However, a CV needs a 218 

stable base of comparison. In this case, the denominator of the CV ratio (the mean of the bids) is not 219 

reliable as the statistical distribution of the bids is generally not symmetrical. As discussed earlier, 220 

previous research has proven that the distribution of bids in construction auctions can be reasonably 221 

represented with Lognormal distributions (Ballesteros-Pérez and Skitmore 2017). Hence, the 222 

logarithm of the bids are analyzed instead of their natural (monetary) value. With this approach, the 223 

distribution the log bids then becomes approximately symmetrical and the CV is a better 224 

(dimensionless) representation of the bids dispersion. 225 

Before continuing, we introduce some basic notation to understand the upcoming calculations: 226 
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µ, σ are the (unknown) log bids population mean and standard deviation, respectively. 227 

mj, sj are the log bids sample mean and standard deviation, respectively, for auction j. That is, 228 

these are the values we observe of µ and σ in each auction j. 229 

CVj is the sample coefficient of variation of the log-transformed bids in auction j, i.e. CVj=sj/mj. 230 

b(i)j is the ith lowest log bid in auction j. (e.g. b(2)3 is the 2nd lowest log bid in the 3rd auction in the 231 

dataset).  232 

bkj is bidder k’s log bid in auction j. Here, k refers to the identity of bidders, not their position. 233 

Nij is the number of bids in auction j. 234 

Nj is the number of auctions in the dataset. 235 

Nk is the number of different bidders (identities) in the dataset. 236 

To keep the notation as simple as possible, additional subscripts are not used to refer to each 237 

of the 13 datasets, nor to refer to natural (instead of log) bids. 238 

As anticipated and shown earlier in Figure 1, the standard deviations of both the natural and 239 

log bids are highly variable, and this variability remains after calculating the coefficient of variation 240 

CVj of each auction. The question now is: (1) is this variability the result of each auction having 241 

unique characteristics and, hence, each auction having a different population standard deviation σ? 242 

Or, alternatively, (2) are the characteristics of each auction sufficiently similar that the variability of 243 

the observed sj values are simply due to sampling errors (but they all share the same σ value)? 244 

To provide an answer, we need to check whether the sj values of each dataset (now expressed 245 

as CVj) are from the same statistical distribution with the same parameter values. If this is the case, 246 

then question (2) can be regarded as correct. This would also imply that the population standard 247 

deviation of each auction is approximately proportional to its mean. This verification is simple, but 248 

not evident. Indeed, this had never been tested in the construction bidding domain, nor in other 249 

industries. 250 
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If auction j’s log bids sample standard deviation is given by 251 

𝑠𝑠𝑗𝑗 = �∑ �𝑏𝑏(𝑖𝑖)𝑗𝑗−𝑚𝑚𝑗𝑗�
2𝑁𝑁𝑖𝑖𝑗𝑗

1
𝑁𝑁𝑖𝑖𝑗𝑗−1

     (1) 252 

Then, the CV of the log bids of auction j is: 253 

𝐶𝐶𝐶𝐶𝑗𝑗 = 𝑠𝑠𝑗𝑗
𝑚𝑚𝑗𝑗

= �∑ �𝑏𝑏(𝑖𝑖)𝑗𝑗−𝑚𝑚𝑗𝑗�
2𝑁𝑁𝑖𝑖𝑗𝑗

1
𝑚𝑚𝑗𝑗2·�𝑁𝑁𝑖𝑖 𝑗𝑗−1�

= �∑ �
𝑏𝑏(𝑖𝑖)𝑗𝑗
𝑚𝑚𝑗𝑗

−1�
2𝑁𝑁𝑖𝑖𝑗𝑗

1

𝑁𝑁𝑖𝑖𝑗𝑗−1
   (2) 254 

This is the best estimate of the population CV for auction j. It is known that a Chi-square (χ²) 255 

distribution represents the distribution of the sum of squares of n independent standard normal 256 

random variables (Normal distribution with mean=0 and st. dev.=1) (Bartlett and Kendall 1946). It 257 

can also be demonstrated that the sum of squares of n independent standard normal random variables 258 

Xi minus their mean 𝑋𝑋� follow a Chi-square distribution with n-1 degrees of freedom (Lancaster 1971): 259 

∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2~𝜒𝜒𝑛𝑛−12𝑛𝑛
1      (3) 260 

In our case, Xi corresponds to the auction j’s log bids, that is, b(i)j; whereas n corresponds to 261 

the number of bids in auction j, that is, Nij. Now, if a unique population standard deviation σ exists 262 

and is common to all auctions in a dataset, so should be its coefficient of variation CV= σ/µ . 263 

However, by working with the CVs of a symmetrical distribution, we know that µ=1. Hence, the best 264 

estimate of the population coefficient of variation (𝐶𝐶𝐶𝐶� ) consists of applying expressions (1) and (2) to 265 

all bids in the dataset instead of to a single auction, i.e.: 266 

𝐶𝐶𝐶𝐶� = �
∑ ∑ �𝑏𝑏(𝑖𝑖)𝑗𝑗−𝜇𝜇�

2𝑁𝑁𝑖𝑖𝑗𝑗
1

𝑁𝑁𝑗𝑗
1

𝜇𝜇2��∑ 𝑁𝑁𝑖𝑖𝑗𝑗
𝑁𝑁𝑗𝑗
1 �−1�

≈ �
∑ ∑ �

𝑏𝑏(𝑖𝑖)𝑗𝑗
𝑚𝑚𝑗𝑗

−1�
2𝑁𝑁𝑖𝑖𝑗𝑗

1
𝑁𝑁𝑗𝑗
1

�∑ 𝑁𝑁𝑖𝑖𝑗𝑗
𝑁𝑁𝑗𝑗
1 �−1

    (4) 267 

However, construction contract auction datasets usually contain outliers (e.g. Skitmore 2004) 268 

– in this case, abnormally high or low bids. These can be from transcription errors, but also from 269 

excessively aggressive or conservative bidders (Signor et al. 2020b). In most cases, these bids are not 270 
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representative of a truly competitive market and must be removed before expression (4) is applied for 271 

calculating the 𝐶𝐶𝐶𝐶�  value of each dataset. Skitmore (2001, 2004) and Skitmore and Lo (2002) 272 

suggested several approaches to remove outliers in seeking to find the best distributional shape for 273 

construction contract bids. However, Tukey’s fences are used here for removing outliers as the 274 

distribution of the (log) bids is approximately Normal (Tukey 1977). Namely, bids that fall outside the 275 

following range are excluded:  276 

[𝑄𝑄1 − 1.5(𝑄𝑄3 − 𝑄𝑄1),  𝑄𝑄3 + 1.5(𝑄𝑄3 − 𝑄𝑄1) ]    (5) 277 

where Q1 and Q3 are the lower and upper quartiles, respectively, of all b(i)j/mj values in each dataset. 278 

Now, from expressions (3) and (4) it is easily inferred that the probability of obtaining each 279 

auction j’s bids standard deviation sj in the same dataset is given by 280 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑠𝑠𝑗𝑗′� =  𝐶𝐶𝐶𝐶𝐶𝐶 𝜒𝜒𝑁𝑁𝑖𝑖 𝑗𝑗−1
2 �𝑥𝑥 = �𝑁𝑁𝑖𝑖𝑗𝑗 − 1� �𝐶𝐶𝐶𝐶𝑗𝑗

𝐶𝐶𝐶𝐶�
�
2
�   (6) 281 

where Prob(sj’) is the quantile (probability) of obtaining each auction j’s log bids sample standard 282 

deviation sj ; and  𝐶𝐶𝐶𝐶𝐶𝐶 𝜒𝜒𝑁𝑁𝑖𝑖 𝑗𝑗−1
2  is the cumulative distribution function of a Chi-square distribution with 283 

Nij -1 degrees of freedom evaluated at 𝑥𝑥 = �𝑁𝑁𝑖𝑖𝑗𝑗 − 1� �𝐶𝐶𝐶𝐶𝑗𝑗
𝐶𝐶𝐶𝐶�
�
2
. The square term appears because the χ² 284 

distribution actually models the variance, not the standard deviation. 285 

Hence, expression (6) is applied to all auctions in each dataset to obtain the quantiles of all 286 

their sj values. If they indeed follow the same chi-squared distribution, then they will adhere to a 287 

bisector line in a QQ plot (as Figure 2 in the next section shows). Also, it must be noted that only 288 

quantiles (probabilities) can be compared here, as each auction follows a χ² distribution with a 289 

different number of bidders (degrees of freedom). 290 

After taking logs of all the bids, expression (4) is applied to obtain the best estimate of the 291 

population coefficient of variation (𝐶𝐶𝐶𝐶� ) of each dataset. Three calculation approaches are used: 292 

approach (a) implements expression (4) directly from all log bids without excluding any outliers, and 293 

approach (b) excludes outlying log bids according to expression (5) [the number of outliers (bids) 294 
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removed in each dataset can be inferred by the difference between the ‘Nº valid bids’ for (a) and (b)]. 295 

Approach (c) is used when a dataset only contains the auctions’ (sample) mean and standard deviation 296 

values without no information on the individual bids. In this case, the natural mean (mj*) and standard 297 

deviation (sj*) values can be converted to their log-equivalent mj and sj by:  298 

𝑚𝑚𝑗𝑗 = 𝐿𝐿𝑁𝑁�
�𝑚𝑚𝑗𝑗

∗�
2

��𝑚𝑚𝑗𝑗
∗�
2
+�𝑠𝑠𝑗𝑗

∗�
2�    (7) 299 

𝑠𝑠𝑗𝑗 = �𝐿𝐿𝑁𝑁�1 +
�𝑠𝑠𝑗𝑗
∗�
2

�𝑚𝑚𝑗𝑗
∗�
2�     (8) 300 

where LN(·) is the natural logarithm, and the population estimate of the CV be calculated as: 301 

𝐶𝐶𝐶𝐶� = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝐶𝐶𝐶𝐶𝑗𝑗�       j=1, 2…Nj    (9) 302 

Results 303 

The results for three different calculation approaches for population estimate of the CV (noted 304 

as 𝐶𝐶𝐶𝐶� ) are shown in Table 2. 305 

<Insert Table 2 here> 306 

Figure 2 shows the QQ plots of the χ² distribution quantiles of all auctions’ CVj values in the 307 

13 datasets for the three calculation approaches. 308 

<Insert Figure 2 here> 309 

In graph (a), with no outliers removed, the quantile lines obtained in all datasets depart 310 

significantly from the bisector line, which means that the series of auction CVj values do not follow 311 

the same χ² distribution, and therefore the auctions in each dataset do not share the same 𝐶𝐶𝐶𝐶� . Graph 312 

(b), with outliers removed, shows much better fitting results: with the exception of the two capped 313 

auction datasets (dashed lines). In this case, most curves have a significant adherence to the bisector 314 

line. The probability values are lower than in graph (a), indicating that not removing outliers resulted 315 

in 𝐶𝐶𝐶𝐶�  values being overestimated. 316 
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Finally, calculation approach (c) using the auctions’ CVj median also shows a good goodness 317 

of fit to the bisector line (same χ² distribution with varying degrees of freedom). The exceptions in 318 

this case are the same two capped auction datasets (SP51 and SP110 in dashed lines) and the two 319 

Asian datasets (HK199 and HK266 in dotted lines). However, it is worth remembering that the latter 320 

datasets are mixed (contained both capped and uncapped bidders). As a result, both calculation 321 

approaches (b) and (c) seem quite satisfactory. However, whenever possible, approach (b) is more 322 

appropriate as it seems a little more precise. 323 

However, perhaps it could be argued that this goodness of fit is not remarkable. It must be 324 

borne in mind, though, that the auctions of each dataset encompass a wide variety of types of works, 325 

economic sizes, and bidders’ identities; even auctions up to 10 years apart in many cases. Considering 326 

all these sources of variability, the resemblance of the CVj values to the same χ² distribution is indeed 327 

quite high.  328 

However, Kolmogorov-Smirnov (K-S) tests have been implemented to provide a numerical 329 

assessment of the Chi-square distribution fit to the bids dispersion. K-S fit tests measure the 330 

maximum deviation between the actual and theoretical cumulative probabilities (Dmax) of each dataset. 331 

If the probability of occurrence (p-value) of such Dmax is too high (generally a p-value>95%), then, the 332 

null hypothesis is rejected. In our case, the null hypothesis is that a single population CV value exists 333 

for all auctions in the (same) dataset. Table 3 shows a summary of the K-S fit tests in the 13 datasets. 334 

<Insert Table 3 here> 335 

As can be seen, in six out of the 12 datasets, the null hypothesis is rejected (p-values>5%). 336 

Two of these six cases correspond to the capped datasets (SP51 and SP116) which, as expected and 337 

shown in Figure 2, deviate substantially from the Chi-square model. However, the four datasets that 338 

reject the null hypothesis (UK218, HK266, UK272 and UK537), when analyzed in shorter time spans, 339 

also pass the test. In this regard, Table 4 presents another round of K-S tests, but this time with these 340 

datasets split in two halves. Assuming shorter time spans (compare the ‘Period’ column in Tables 3 341 
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and 4), it is expected that each sub dataset was subject to lower market volatility. Hence, the auctions 342 

contained that in each sub dataset apparently become more homogeneous and eventually pass the test. 343 

<Insert Table 4 here> 344 

Discussion 345 

It can be concluded, then, that the population coefficient of variation of the log bids in 346 

uncapped auctions is nearly constant whenever the auctions are relatively homogeneous. An estimate 347 

of this CV value is what we have called 𝐶𝐶𝐶𝐶�  and can be approximated by expressions (4) or (9). Hence, 348 

once the value of 𝐶𝐶𝐶𝐶�  is calculated, it is straightforward to anticipate a future auction’s log bids 349 

standard deviation (σ) by multiplying 𝐶𝐶𝐶𝐶�  by the forecasted mean (µ) of the log bids. This can be 350 

achieved by resorting, for instance, to the usually strong regression relationship between the auction’s 351 

cost estimate and the mean of the log bids, as exemplified in the grey dots of Figure 1. 352 

However, regarding capped auctions, i.e. those in which bidders can only underbid a pre-set 353 

maximum price, the same does not hold. This is to be expected as, with this type of auction, if the 354 

upper bid price (sometimes called the Pre-Tender Estimate, PTE) is too close (or even below) to what 355 

most bidders deem as a competitive bid, then they bid very near the PTE. In these cases, very low bid 356 

dispersions are to be expected. The opposite happens when the PTE is much higher than the 357 

competitive market price of a contract. Hence, it seems reasonable that the constant CV assumption 358 

will not hold in capped auctions.  359 

An alternative is to introduce in the analysis of capped auctions another variable that takes 360 

into account the (positive or negative) difference between the auction’s cost estimate and the PTE to 361 

make the calculation of the population 𝐶𝐶𝐶𝐶�  more accurate. For this type of analysis, though, more 362 

construction capped auctions datasets with information of bidders’ cost estimates would be necessary, 363 

which are extremely difficult to obtain for competitive reasons (bidders seldom share their cost 364 

estimates). 365 

Practical relevance 366 
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The implications of these findings are plentiful in the construction bidding domain. In bid 367 

forecasting, for example, the assumption of a constant population coefficient of variation of bids for 368 

each auction can lead to simpler bidding models. Specifically, in these simplified models, the 369 

coefficient of variation could be treated as a random variable with a fixed mean subject only to 370 

random disturbances in its estimation. Such models can be used by contractors to increase their profit 371 

margins and/or the probability of being awarded a contract. To date, many bidding models have been 372 

too complex for most practical settings (Ballesteros-Pérez et al. 2012a). This had been mostly the 373 

result of some of their basic parameters being very difficult to anticipate − σ being eminently among 374 

them. With this paper’s contributions, these models can be reformulated in simpler mathematical 375 

terms and, most importantly, require much less historical data to be operational. 376 

Other applications of the assumption of a constant population coefficient of variation of bids 377 

also encompass the potential simplification of current collusion-detection models. Collusion is a 378 

widespread phenomenon in which some bidders condition the award of a contract to a previously (and 379 

secretly) agreed bidder. This is obviously an unethical and illegal practice, as it undermines the 380 

benefits of a competitive market, awards contracts with abnormally high mark-ups, and consumes an 381 

excessive amount of resources in its policing and detection. Most law enforcement agencies and 382 

contracting authorities usually have difficulty in finding evidence of collusion from simply analyzing 383 

auctions results. However, by understanding the reduced variation to be expected in the bids standard 384 

deviation, collusion-detection models will be able to provide more reliable reference scenarios 385 

(Signor et al. 2020a) that describe what a truly competitive set of bids must look like. By establishing 386 

comparisons against this reference scenario, it may be easier to identify non-competitive bids and 387 

pursue further evidence of criminal activity – at least until such bidders develop their own counter 388 

measures (Skitmore and Cattell 2013). 389 

Another application of the assumption of a constant population of the coefficient of variation 390 

bids will allow a better design of tender specifications and economic scoring formulae (ESF). ESF are 391 

mathematical expressions governing the allocation of the bidders’ scores as a function of their 392 

economic bids (Ballesteros-Pérez et al. 2012b, 2015d). For example, being able to predict the range in 393 
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which competitive bids will vary will allow contracting authorities to set more realistic criteria for 394 

determining abnormally low bids (e.g. disqualify bids which are 2 or 3 standard deviations below the 395 

pre-tender estimate). This is still an ongoing problem when trying to set a cut-off limit that separates 396 

truly competitive from reckless bids (Ballesteros-Pérez et al. 2013b, 2015c). Additionally, better ESF 397 

should also be able to better distribute the whole range of the economic scoring among all possible 398 

bids in an auction while avoiding the phony (economic) bid weighting (Ballesteros-Pérez et al. 399 

2015d). This is a pervasive phenomenon of multi-attribute auctions where both economic and 400 

technical aspects are evaluated. 401 

Bidding patterns of individual bidders 402 

Finally, there is the question of whether there are significant bidding behavior differences 403 

between bidders. That is, since the coefficient of variation of the log bids is nearly constant in 404 

homogeneous uncapped auctions, is this the consequence of individual bidders’ bids also having the 405 

same dispersion? 406 

<Insert Figure 3 here> 407 

Figure 3 helps answer this question with two graphs taken from the first 8 datasets, as those 408 

are the only ones with the bidders’ identities known. The top graph describes the evolution of the 409 

average log bids as we add more bidders’ bids. However, to make these bids comparable, each of 410 

these bidders’ bids have been divided beforehand by their respective auction’s log bid mean (that is, 411 

we work now with bkj/mj values). Namely, values around 1 are obtained (which would equal the 412 

auctions’ log bid mean) irrespective of the size of auctions involved in the calculation. 413 

Additionally, each dataset (represented in one curve each) contains Nk bidders. These are 414 

ordered from those who bid most frequently to those who bid less so. This means that, for example, in 415 

the X-value Nk=5, the average of the top 5 most frequent bidders’ bids (mk=5) is being taken.  416 

Analogously, in the bottom graph, the same dimensionless bids are taken but calculating their 417 

standard deviation (sk=5). However, in this graph, the sk values are divided by each dataset population 418 

log bid standard deviation (σ). The value of σ is calculated as σ =𝐶𝐶𝐶𝐶� ·µ, but, in this case, µ =1, as all 419 
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bid values are already divided by their respective mj value. Again, using this ratio allows all sk/σ 420 

values to be compared under the same scale. Moreover, all end in 1 when all bids have been 421 

introduced into the calculation. This happens because at x=Nk, sk = σ. 422 

As the top graph (describing the relative bidders’ bids with respect to the auction mean bid) 423 

shows, more frequent bidders do not necessarily bid more aggressively. In our analysis, this outcome 424 

can be inferred by observing that the Y-values of the curves for the first X-values are sometimes 425 

above and sometimes below 1 for different datasets. If more frequent bidders were indeed more 426 

aggressive (submitted lower bids), then all curves would depart from a value <1. They would also 427 

approach the horizontal X=1 line always from below as we incorporated less frequent bidders’ bids in 428 

the computation of the average bid. This, as can be easily seen, does not happen in several datasets. 429 

However, in the bottom graph, the bids dispersion of more frequent bidders is lower than the 430 

average population dispersion in all datasets (curves). Analogously, this is inferred from all curves 431 

remaining below 1 until almost all Nk bidders have been included in the analysis. The only exception, 432 

but very succinctly, may be dataset HK199 (green dotted line), but as noted earlier, this dataset 433 

contains mixed (capped and uncapped) bidders. 434 

Therefore, Figure 3 prompts the conclusion that bidders who bid more frequently do not 435 

necessarily submit lower bids, but instead, their bid dispersion is lower. These results are in line with 436 

the results of De Silva et al. (2003). Through a series of first-price sealed bid road auctions, they 437 

found that entrants (those who compete for a contract) generally submit lower (more aggressive) bids 438 

than the incumbents (bidders who are already performing the contract). However, this phenomenon 439 

does not happen because entrant firms are more efficient, but because their costs evidence a higher 440 

dispersion than the incumbents’. Hence, it is likely that one of the entrants (the one with the most 441 

relevant cost items being incidentally lower than the incumbent’s) eventually wins the auction. More 442 

recently, Camboni and Valbonesi (2020) found that bid prices offered by incumbents are also 443 

frequently higher than the entrants’ lowest bid. Paradoxically, this outcome could not be predicted 444 

neither from the contract, nor the auction characteristics. 445 
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Then, a lower bids dispersion seems to be the consequence of more frequent bidders knowing 446 

their market segment and clients better and/or producing more accurate contract cost estimates. This is 447 

what some researchers have coined as superior market-price alignment (Skitmore 1987). This lower 448 

bid dispersion may also be the result of a more consistent bidding strategy in the form of ranges or 449 

bidding mark ups more focused in the medium/long term rather than in the short term. In this vein, De 450 

Silva et al. (2003) also showed that bidders with more backlog usually bid less aggressively. 451 

Hence, the coefficient of variation of log bids is nearly constant in homogeneous uncapped 452 

auctions, but it is not for individual bidders’ bids; that is, each bidder has its own bid distribution. 453 

How is it possible, then, that the sets of bids from different auctions have the same coefficient of 454 

variation? The only possible explanation is that the proportion of veteran versus novice bidders across 455 

auctions is approximately constant. Veteran (frequent) bidders have lower bidding dispersions, 456 

whereas novice (sporadic or new) bidders have higher dispersions. As less frequent bidders continue 457 

to submit more bids, they keep narrowing their bids dispersion. But new bidders will also keep 458 

arriving and counteract the overall auction bids dispersion. This is a dynamic process in which, as the 459 

data evidences, bids dispersion maintains an approximately constant balance. 460 

Yet, we can observe that the bidding dispersion from the most veteran to more sporadic 461 

bidders is not that big (between 5-20 % lower in a log scale). This means that, in bid forecasting and 462 

analysis models, the error derived from assuming that all bidders have the same bids dispersion (equal 463 

to the auction bids dispersion) will be relatively small. 464 

Conclusions 465 

Previous research has confirmed that the distribution of bid values in construction auctions 466 

can be reasonably approximated with Lognormal distributions. Common Lognormal distributions 467 

have two parameters: the mean (µ) and the standard deviation (σ). µ is known to have a good log 468 

linear correlation with the bidders’ cost estimates. Hence, even counting only on a limited dataset of 469 

previous auctions, it should be easy to infer a good µ estimate from the future auction’s cost estimate.  470 
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However, no studies to date have proposed a mathematical expression to anticipate the 471 

standard deviation (σ) of log bids from other auction variables. In particular, the sample standard 472 

deviation values of a set of homogeneous auctions seemed very erratic and not to follow any 473 

predictable pattern.  474 

In the present study, we provide hard empirical evidence that the population coefficient of 475 

variation (the σ/µ ratio) of log bids for each auction is approximately constant for homogeneous 476 

uncapped auctions − those in which bidders can submit their bids without an upper price limitation. 477 

Homogeneous auctions refer here to those that share a similar nature of works, project client, and 478 

geographical proximity. With this type of auction, the high variation observed in the auctions’ sample 479 

standard deviations, even in very similar auctions, is the consequence of low sample sizes (number of 480 

bidders). Namely, most construction contract auctions usually have a low number of bidders (<15). 481 

This number of datapoints (bids) is frequently insufficient to produce a good estimate of the 482 

(population) standard deviation from a single or few auctions. 483 

In analyzing a wide and representative set of 13 auction datasets from four continents and 484 

different time periods, we have proposed two calculation approaches of this nearly constant 485 

coefficient of variation (noted here as 𝐶𝐶𝐶𝐶� ). One of them – the more accurate – requires all the bidders’ 486 

bids, whereas the second can produce a reasonable estimate of the coefficient of variation whenever 487 

only the mean and standard deviation values of the auction bids are available. In implementing both 488 

approaches, it is concluded that all auctions’ bid standard deviation values follow the same chi-square 489 

(χ²) distribution with varying degrees of freedom − implying that the population coefficient of 490 

variation of the log bids for each auction across homogeneous auctions can be regarded as nearly 491 

constant, the recorded variability being accounted for as random sampling error. 492 

Additionally, in comparing the performance of more versus less frequent bidders through an 493 

analysis of the mean and dispersion values of their bids, it is concluded that more frequent bidders do 494 

not necessarily bid more aggressively (submit lower bids) than sporadic bidders. Instead, they usually 495 

evidence a lower bids dispersion (their bids variation around the bid average is narrower). Yet, it has 496 
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been shown that this dispersion is not usually lower than 80% to 95% of the population bids standard 497 

deviation. This means that most bidding models that differentiate by bidders’ identities when 498 

forecasting the lowest bid may not incur in great inaccuracies by assuming that all bidders (frequent 499 

and new alike) follow the same µ and σ parameters. 500 

Finally, it is acknowledged that the number of capped auction datasets has not been sufficient 501 

to delve into the additional complexities of capped tendering. For example, there might be a way of 502 

adding a correction coefficient of the population estimate of the coefficient of variation of log bids 503 

(𝐶𝐶𝐶𝐶� ), which takes into account the relative distance between the pre-tender estimate and the 504 

(forecasted) mean log bid. However, for such analysis, a larger number of capped auction datasets 505 

with information of the contracts’ bidders’ cost estimates would be necessary, but, as information 506 

relating to cost estimates are usually difficult to obtain from bidders for competitive reasons, this 507 

analysis remains pending for future research. 508 
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Dataset Source Description Period Nº 
bids 

Nº 
auctions 

Avg Nº 
bids/auction 

Avg mean 
bid 

Avg st. 
dev. 

Avg 
skew. 

Avg ex. 
kurt. 

Cost estimates 
provider 

Bidders' 
IDs 

Auction 
type 

UK51 (Skitmore, 1991) London building contracts 1981-82 318 51 6.24 1,770,351 86,753 0.417 0.049 Single bidder Yes Uncapped 

UK218 (Skitmore, 1986) North of England public works 
contracts 1979-82 1,235 218 5.67 143,382 10,238 0.142 0.208 - Yes Uncapped 

UK373 (Skitmore, 1986) London building contracts 1976-77 1,915 373 5.13 828,705 45,438 0.253 0.339 - Yes Uncapped 

US62 (Brown, 1986) USA Government agency building 
contracts 1976-84 417 62 6.73 914,019 71,863 0.686 1.142 Project designer Yes Uncapped 

US50 (Shaffer and 
Micheau, 1971) USA building contracts 1965-69 235 50 4.7 921,970 62,652 0.185 -0.054 Single bidder Yes Uncapped 

HK199 (Drew, 1995) Primary, secondary schools, police, fire 
stations & hostels in Hong Kong 1981-90 2,531 199 12.72 1,122,132 118,579 0.85 1.164 - Yes Unknown 

HK266 (Fu, 2004) Hong Kong Administrative Services 
Department contracts 1991-96 3,566 266 13.3 5,500,889 566,769 0.793 1.15 Project designer Yes Unknown 

AU152 (Runeson, 1987) General contractors’ bids for New 
South Wales Public Works & Housing 1972-82 1,316 152 8.66 1,605,075 101,345 0.656 0.933 Project designer No Uncapped 

AU160 (Runeson, 1987) Specialist contractors’ bids for New 
South Wales Public Works & Housing 1972-82 1,010 160 6.27 230,346 27,515 0.432 0.579 Project designer No Uncapped 

UK272 (Skitmore, 1981) BCIS detailed analyses of UK contracts 1969-79 1,670 272 6.14 835,921 46,048 0.134 0.223 - No Uncapped 

UK537 (Ballesteros-Pérez 
and Skitmore, 2017) 

BCIS detailed analyses of UK building 
contracts 1979-90 3,392 537 6.32 1,397,781 128,051 0.217 0.169 - No Uncapped 

SP51 (Ballesteros-Pérez 
et al., 2012) 

Spanish waste water treatment plants 
and sewer systems 2007-08 761 51 14.93 3,236,328 226,291 -

0.084 -0.377 Single bidder No Capped 

SP116 (Ballesteros-Pérez 
et al., 2015b) Spanish High speed railway contracts 2008-14 3,300 110 30.0 37,610,797 2,222,114 0.447 0.835 - No Capped 

 

Table 1. Auction datasets summary. 



 

 

 

 

 

 

 

Dataset 
All bids all auctions  

(a) 
All bids all auctions  

no outliers (b) 
Median auction  

values (c) 
Nº valid bids 𝑪𝑪𝑪𝑪�  Nº valid bids 𝑪𝑪𝑪𝑪�  Nº valid auctions 𝑪𝑪𝑪𝑪�  

UK51 318 0.0045 301 0,0031 50 0.0031 
UK218 1,235 0.0117 1,154 0,0086 210 0.0083 
UK373 1,915 0.0051 1,827 0,0041 360 0.0040 
US62 387 0.0157 343 0,0070 58 0.0070 
US50 228 0.0064 216 0,0048 48 0.0048 

HK199 2,531 0.0080 2,405 0,0060 198 0.0058 
HK266 3,566 0.0067 3,427 0,0053 266 0.0052 
AU152 1,307 0.0052 1,244 0,0039 149 0.0040 
AU160 1,002 0.0172 932 0,0117 159 0.0112 
UK272 1,660 0.0051 1,602 0,0045 270 0.0043 
UK537 3,392 0.0145 3,114 0,0035 505 0.0034 
SP51 643 0.0048 638 0,0041 46 0.0046 

SP116 3,300 0.0046 3,054 0,0029 109 0.0030 

 

Table 2. Population coefficients of variation estimates (𝐶𝐶𝐶𝐶� ) of each dataset with three calculation 
approaches. 

  



 

 

 

 

 

 

Dataset Period 𝑪𝑪𝑪𝑪�  Dmax Nº valid auctions p-value 

UK51 1981-82 0,0031 0,0837 50 0,267 
UK218 1979-82 0,0086 0,1240 210 0,998 
UK373 1976-77 0,0041 0,0572 360 0,833 
US62 1976-84 0,0070 0,1298 58 0,799 
US50 1965-69 0,0048 0,1046 48 0,490 

HK199 1981-90 0,0060 0,0877 198 0,925 
HK266 1991-96 0,0053 0,1097 266 0,997 
AU152 1972-82 0,0039 0,0970 149 0,911 
AU160 1972-82 0,0117 0,0955 159 0,910 
UK272 1969-79 0,0045 0,0907 270 0,972 
UK537 1979-90 0,0035 0,0760 505 0,996 
SP51 2007-08 0,0041 0,1261 46 1,000 

SP116 2008-14 0,0029 0,2489 109 1,000 

 

Table 3. Kolmogorov-Smirnov test results of a single Chi-Squared (χ2) distribution fitting each 
dataset (p-values rejecting the null hypothesis for α>95% highlighted in bold)  

  



Dataset Period 
(approx.) 𝑪𝑪𝑪𝑪�  Dmax Nº valid auctions p-value 

UK218 1979-80 0,0085 0,1053 105 0,848 
1981-82 0,0088 0,0979 105 0,799 

HK266 1991-93 0,0050 0,0925 133 0,841 
1994-96 0,0057 0,0915 133 0,798 

UK272 1969-74 0,0044 0,0785 134 0,830 
1975-79 0,0042 0,0880 136 0,799 

UK537 1979-85 0,0032 0,0753 254 0,913 
1986-90 0,0038 0,0716 251 0,877 

SP51 2007 0,0040 0,1395 25 0,978 
2008 0,0045 0,1635 16 0,987 

SP116 2008-09 0,0027 0,2185 55 0,988 
2010-14 0,0032 0,2661 54 0,999 

 

Table 4. Kolmogorov-Smirnov test results of a single Chi-Squared (χ2) distribution fit in those 
datasets rejecting the null hypothesis in Table 3 (p-values still rejecting the null hypothesis for α>95% 

highlighted in bold) 

 



 

 

 

 

 

 

Fig. 1. Example of relationships between the auction’s mean bid (X-axis), cost estimate and standard 

deviation (Y-axis) (auction dataset US50).
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Fig. 2. ² distribution QQ plots of all auctions’ CVj values in the 13 datasets with three calculation approaches:  

(a) all bids all auctions, (b) all bids all auctions without outliers, and (c) median auction values. 
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Fig. 3. Variation of bidding competitiveness (expressed in log bids location and dispersion) of the Nk 

bidders in the 13 auction datasets. 
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