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ABSTRACT A combination of distributed multi-tenant infrastructures, such as public Clouds and
on-premises installations belonging to different organisations, are frequently used for scientific research
because of the high computational requirements involved. Although resource sharing maximises their usage,
it typically causes undesirable effects such as the noisy neighbour, producing unpredictable variations of
the infrastructure computing capabilities. These fluctuations affect execution efficiency, even of loosely
coupled applications, such as many Monte Carlo based simulation programs. This highlights the need
of a service capable to handle workload distribution across multiple infrastructures to mitigate these
unpredictable performance fluctuations. With this aim, this work introduces TaScaaS, a highly scalable
and completely serverless service deployed on AWS to distribute loosely coupled jobs among several
computing infrastructures, and load balance them using a completely asynchronous approach to cope with
the performance fluctuations with minimum impact in the execution time. We demonstrate how TaScaaS is
not only capable of handling these fluctuations efficiently, achieving reduction in execution times up to 45%
in our experiments, but also split the jobs to be computed to meet the user-defined execution time.

INDEX TERMS Cloud computing, heterogeneous computing, load balance, serverless.

I. INTRODUCTION
The use of huge computational power is commonly required
in science and engineering to be able to perform computa-
tional experiments. Many of these experiments are carried
out by loosely coupled algorithms which can be easily par-
allelized to be executed in a distributed environment. How-
ever, the high computational power requirements typically
forces the researchers to use several infrastructures belong-
ing to different organisations. For instance, in Monte Carlo
simulations of radiation transport applied to the calculus of
ionisation chamber correction factors, the work presented by
Christian et al. [1] required more than 30000 CPU hours to
simulate a single case consisting onmore than 7·1011 primary
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particles, and Vicent et al. [2] reported approximately 13800
CPU hours to simulate each combination of ionisation cham-
ber and photon beam considered in the study, which results
in a total of 745200 CPU hours. As consequence, both works
have used several independent infrastructures to cope with
the huge computational workload of the studies. These cases,
and many others, highlights the need to efficiently handle
the execution of loosely coupled applications across several
computing infrastructures.

However, distributed infrastructures usually involve het-
erogeneous computing environments. Therefore, a single
infrastructure could exhibit disparate performance among its
available computing nodes due to differences in the underly-
ing hardware. Moreover, it is common for computing infras-
tructures to use a multi-tenancy approach i.e. multiple users
share the same underlying physical infrastructure in order to
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optimise resource usage. This technique is used both in local
infrastructures and in cloud computing environments. As a
consequence, physical resources such as processors, memory,
disk or network bandwidth, could be shared between differ-
ent users or the same user itself, either through virtualiza-
tion or using a queuing system. Sharing hardware resources
causes a non-negligible effect on the whole performance,
commonly known as noisy neighbour [3]. Notice that the
noisy neighbour effect unpredictably affects performance,
since it depends on the tenant’s workload and the resources
being used.

Both effects, hardware heterogeneity and noisy neighbour,
have been widely studied in the literature. For example,
Alexandru et al. [4] performed a long term study of the per-
formance variability on ten production cloud services. In the
same line, Philipp and Jürgen [5] studied the impact of this
variability on four cloud environments, showing a different
impact in each cloud. Furthermore, in a study performed on
Amazon Web Service (AWS) [6], Jörg et al. [7] concluded
that the performance variability not only differs among cloud
providers, but also among Availability Zones (AZs). Recent
studies still confirm the existence of this performance vari-
ability in IaaS providers [8] and services such as AWS
Lambda, as described in our previous work [9]. Indeed, it has
even been studied how to reproduce experiments under these
changing conditions [10].

To face these problems we present TaScaaS (Task Sched-
uler as a Service), a completely serverless and highly scalable
job scheduler and load balancer service for long-running
loosely coupled applications. TaScaaS can be deployed on
any FaaS (Functions as a Service) solution, but we have relied
on AWSLambda 1 to exemplify its deployment in a particular
cloud provider. Thus, it does not require any previously pro-
visioned infrastructure, it can scale automatically and rapidly
according to the workload and it can run at a zero cost if
the usage level does not exceed AWS’s free tier. In addi-
tion, it mitigates the impact on the application performance
introduced by the variability in shared and heterogeneous
environments. This is done via an asynchronous load balancer
system named RUPER-LB [11], which automatically splits
the workload to satisfy execution time constraints specified
by the user. Finally, TaScaaS has been designed to be easily
deployed with the Serverless framework [12] without admin-
istrator privileges and it is provided as an open source project
available in GitHub.2

After the introduction, the remaining sections are organ-
ised as follows. First, section II discusses the related work
in the area. Then, section III introduces TaScaaS and pro-
vides details about the architecture and components. Later,
section IV tests and discusses the capabilities of TaScaaS,
which are compared to a static split approach on section V.
Finally, section VI summarises the conclusions and intro-
duces the future work.

1AWS Lambda - https://aws.amazon.com/lambda
2TaScaaS - https://github.com/grycap/TaScaaS

The contributions of this work are, first, introducing a
service to automatically distribute the workload of iterative
long-running applications among several nodes of different
infrastructures, each of which may belong to a different
organization. Secondly, the work provides a distributed and
asynchronous load balance system whose impact on the exe-
cution time is negligible. Third, TaScaaS assists the infras-
tructures in the scaling process to achieve an efficient usage
of the available resources, avoiding both, over- and under-
provisioning. Finally, an automatic system to partitioning the
incoming jobs is provided to achieve execution time con-
strains set by the user.

II. RELATED WORK
Since this work considers loosely coupled applications, pre-
vious works based on task scheduler systems can be used in
this regard. In this case, the entire execution could be split in
tasks wrapping a portion of the computations.

Focusing on serverless schedulers, there are systems to
distribute the workload according to the application charac-
teristics and/or the underlying hardware performance. For
example, focusing on applications running on serverless
environments, we can find Wukong [13], which provides
a serverless parallel computing framework to handle exe-
cutions on AWS Lambda using a decentralised scheduler.
However, this approach does not allow to combine executions
from other infrastructures. On the same topic, the SDBCS
algorithm, proposed by Pawlik et al. [14], plans serverless
executions according to budget and time constraints, but
it is restricted to serverless executions. These approaches,
assume that the application can be represented as a direct
acyclic graph (DAG) composed of several short fine-grained
tasks. Thus, these tasks are well suited to run directly on a
serverless environment. However, computing intensive tasks
are less suitable to run on serverless environments, due to the
execution time and storage limitations [15], [16]. In addition,
depending on the prices, the cost could be no longer compet-
itive [17].

Another scheduler for DAG applications, but not executed
on serverless environments, is described in the work by
Weiling et al. [18], where the authors consider the perfor-
mance fluctuations of the Virtual Machine (VM) carrying
out the computation to predict its future performance and
schedule the tasks accordingly. However, their approach is
used on tasks with short executions of less than a minute.
As the expected performance fluctuations are slower than
the mean execution time of a single task, the predictions
done by their scheduler are stable enough during the task
execution. Nevertheless, on long tasks, this prediction will
be less accurate. Although the execution could be divided
in smaller tasks, this approach will require a huge amount
of unnecessarily communications. Furthermore, the appli-
cation could require a initialisation step whose execution
time is, usually, negligible considering the whole execution.
However, splitting the computation too much could force
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the initialisation to be repeated on each task, and produce a
non-negligible overhead in the whole execution.

The same applies to other workflow DAG scheduling sys-
tems such as the ones proposed in [19]–[21]. These sched-
ulers attempt to predict the performance of the computing
nodes. Due to the short life of each task, these kind of algo-
rithms could be adapted to fluctuating environments regularly
measuring the performance of the system, and assuming
that the performance will not fluctuate significantly during
the task execution. However, for applications which are not
composed of short fine-grained tasks, but by long-running
independent ones, the performance can strongly fluctuate
during the computation, thus rendering the performance pre-
diction wrong. Thus, for the considered applications, a static
assignment is not well suited for fluctuating environments.

HTCondor [22] is a useful tool tomaximise the usage of the
available resources in a distributed infrastructure, even if the
user does not own the resources. However, it does not provide
a system to minimise the effect of performance fluctuations
on long executions or to satisfy execution time constraints.

To summarise, first, in previous works the strategy fol-
lowed to distribute the jobs consists on measuring and pre-
dicting the infrastructure performance and assume that it
remains stable during the mean execution time of a single
task. Therefore, the tasks are assumed to be short enough.
Thus, those approaches are not suitable for long-running
tasks. To solve this limitation, TaScaaS will use a load bal-
ance system during the job execution, allowing to reassign
the workload among the available resources during the job
execution.

Secondly, most works are unable to handle executions on
multiple infrastructures. Moreover, some works can handle
only executions on a specific service in a specific provider,
such as the work of Carver et al. [13], which is focused in
executions in the AWS Lambda environment. Instead, TaS-
caaS is agnostic to the infrastructures where the executions
take place, allowing to combine resources from different
providers and organizations.

Finally, the studied previous works use a predefined parti-
tioning of the job to be executed. For example, in the DAG
based schedulers, each task is identified by a graph node.
This procedure makes the user responsible for correctly parti-
tioning the work. Thus, it is necessary a previous knowledge
about the execution cost of each task. However, the behaviour
of many applications strongly depends on the input parame-
ters, making it difficult to predict the execution time of each
possible task for each resource type. Alternatively, TaScaaS
handles the job partitioning automatically according to the
execution time constraint specified by the user. Moreover,
the partitioning is updated during the execution to be adapted
to the fluctuating performance.

III. ARCHITECTURE
As discussed in the introduction, TaScaaS provides a com-
plete serverless service to schedule and distribute iterative
jobs among the different infrastructures. To describe the

TaScaaS architecture and functioning we define the following
set of terms and assumptions:

First, we will define the processes to be executed in the
available infrastructures, hereinafter named jobs. The char-
acteristics of these jobs are described as follows and sum-
marised in Table 3. The jobs are supposed to be iterative
processes where each iteration is independent of each other.
Therefore, the job with Ni iterations can be split in Np job
partitions where each one processes, independently, a subset
of the total number of iterations. The easiest way to perform
the split consists on dividing equally the number of iterations
among all partitions, i.e. each one processesNi/Np iterations.
In addition, we suppose that the number of iterations assigned
to each partition can be changed at runtime. Also, as the itera-
tions are independent, the job partitions require no communi-
cation among them to compute their partial results. Although
the assumptions seems to be restrictive, a wide variety of
applications satisfy these conditions, for example, many
Monte Carlo simulations algorithms. Furthermore, consider-
ing only the field of radiation transport simulations, based on
Monte Carlo techniques, there are a wide variety of simu-
lation programs, such as PENELOPE [23], GEANT4 [24],
FLUKA [25], EGS [26], MCNP [27] among others. In addi-
tion, several programs have been developed based on the pre-
vious ones, such as PenEasy [28], PenRed [29] or GATE [30].
This codes are widely used for several applications, and are
considered as the gold standard methods to perform calcu-
lations for clinical radiation based treatments, according to
the Task Group report number 186 [31] of the American
Association of Physicists in Medicine (AAPM), among other
international protocols. Moreover, these characteristics are
met not only by Monte Carlo simulations, but also for other
applications, such as multiparametric explorations, like neu-
ral network design exploration, or file processing, like image
recognition processes. With these assumptions, the execution
speed can be measured in iterations per second, where the
meaning of iteration depends on each application. Following
the same examples, an iteration could be, each simulated
primary particle, for the radiation transport simulation case,
each set of parameters that define a neural network or a set of
images to process.

Second, each job partition will be processed by workers,
which can be physical nodes, CPUs, vCPUs, a computing
cluster, etc., since our framework is agnostic to the underlying
computing infrastructure being used for processing. Notice
that the number of iterations assigned to each partition will
not be a fixed amount. Instead, the number of iterations
assigned to each partition will be recalculated according to
the processing speed of each one, assigning more iterations to
the partitions which are processed faster. Therefore, TaScaaS
maximises the usage of faster resources to achieve reduced
job execution times.
Third, each worker belongs to a single worker infrastruc-

ture, which are composed of one or more workers, such
as a computing cluster, a set of deployed nodes in a pub-
lic or on-premises cloud, a single computer, etc. TaScaaS
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TABLE 1. Summary of the required job characteristics to be handled by
TaScaaS.

will consider each worker as a slot to compute a single
job partition, i.e. a single worker infrastructure can pro-
cess concurrently as many job partitions as the number of
its workers. In addition, each worker infrastructure has a
frontend process which performs periodic communications
with the TaScaaS service to control the infrastructure live
cycle and request more jobs partitions to process. TaScaaS
is intended to distribute job partitions among several worker
infrastructures, as shown in Figure 1, and to balance the
individual jobsworkload among all their partitions according
to their speeds. To achieve this purpose, eachworker performs
communications with the load balancer system during the job
partition processing.

FIGURE 1. TaScaaS functioning diagram.

Once clarified the previous concepts, the TaScaaS archi-
tecture explanation follows. The provided TaScaaS service
package is deployed on AWS, however, as the used services
are commonly found in other public cloud providers, a equiv-
alent approach can be followed on other providers.

TaScaaS does not require any pre-provisioned active com-
puting infrastructure. Instead, it is executed in an event-driven
approach, avoiding executing costs when is unused. In addi-
tion, the scale capabilities of all the services used by TaScaaS
can be handled automatically by the cloud provider.

Notice that TaScaaS does not handle the infrastructure
deployment, since there exist several tools for this purpose,
such as Infrastructure Manager (IM) [32], Terraform [33] or
services offered by cloud providers to automate the deploy-
ment, such as AWS Batch, Amazon EMR, etc. Therefore,

TABLE 2. Required services to implement TaScaaS in different Cloud
providers.

resource provisioning is out of the scope of this work, as TaS-
caaS uses computing infrastructures already deployed by the
user or where the user has access to perform computations.
The motivation for this choice is to take advantage of com-
bining resources of different organizations in which scientists
have access. Nevertheles, as we will see, TaScaaS sends
information to the worker infrastructures to assist them on
the scaling process, requesting more or less slots according
to the total workload.

The components and functionality of TaScaaS are
described in Figure 2, which can be split in two main parts:
jobs and worker infrastructures life cycles. The implementa-
tion of TaScaaS involves four services: A high-performance
object store system, which corresponds to Amazon S3 [34]
in our implementation, a managed NoSQL database service
based on tables, corresponding to Amazon DynamoDB [35],
a Function as a Service (FaaS) serverless service, provided
by AWS Lambda [36], and, finally, a REST API service
to handle the communications with the workers and worker
infrastructures, corresponding to Amazon API Gateway [37].
The motivation to use a REST API is to allow both workers
and worker infrastructures to communicate with TaScaaS
with standardHTTPS requests through a RESTAPI, avoiding
the requirement of using a specific Software Development
Kit (SDK).

Notice that the choice of AWS as the cloud platform to
implement TaScaaS is a mere implementation detail, since
other cloud providers such asMicrosoft Azure [38] or Google
Cloud Platform (GCP) [39] provide similar services. Indeed,
an equivalent set of services for Microsoft Azure and GCP
providers is shown in Table 2.

The S3 service is used to store the input job files and the
results of the executions in a bucket configured by the user.
These buckets are the S3 storage units where the objects
are stored. DynamoDB stores all the required information
about running jobs and the available worker infrastructures.
To handle the system workflow, four Lambda functions
have been created, the Configuration, Dispatcher, LB and
the Data functions. The functionality of each one will be
discussed in the following sections. Finally, as mentioned,
the API Gateway handles the communication between TaS-
caaS, the worker infrastructures and their workers, redirect-
ing the requests to the appropriate Lambda function.

A. JOBS LIFE CYCLE
To start the jobs life cycle, first, the job creation and ini-
tialisation must be discussed. To simplify visualisation of
the description, the involved steps are summarised in the
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FIGURE 2. TaScaaS component interaction diagram. The blue (circle) number represents the only step done by the user,
the job upload. The orange numbers (triangles) correspond to the steps done to prepare the new incoming jobs from the user.
On the infrastructures side, first, the green numbers (squares) describe the steps to register each infrastructure in the TaScaaS
service and mantain the infrastructure information up to date. Then, the red numbers (hexagons) represent the procedure to
request and process job partitions. Finally, the purple numbers (diamonds) describe how data is stored using the TaScaaS
service. Also, the diagram has been split in zones to facilitate the description.

Figure 2, which has been split in zones to facilitate the
description. To create a new job, the steps involved are located
in the Job initialisation or yellow zone. First, a job config-
uration file is uploaded to the jobs storage (blue or circle
number 1). These configuration files specify the required
job parameters, which include the number of iterations to
perform, in how many job partitions the job must be initially
split in, the required input data, and a time constrain to finish
the execution.

Once uploaded, the configuration serverless function will
be triggered (orange or triangle number 2). This will create
an UUID for the job and assign it to all its partitions to be
able to identify the job they belong to. Also, a configuration
file for each initial partition (orange or triangle number 4) and
the corresponding set of entries in the TaScaaS database table
(orange or triangle number 3) will be created to track all the
running jobs information. A single entry is created for each
job partition and another one to store the job configuration
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information. After that, the initial job partitions are created
and ready to be requested and processed by the worker
infrastructures.

When the initial job partitions have been created, they will
be queued in the configuration storage. This is a folder in
the TaScaaS file storage used to store the partitions con-
figuration files until the frontend of a worker infrastructure
requests them to be processed. Once requested, the partition
configuration files will be dispatched following a first in first
out (FIFO) approach.

First, to request job partitions, a worker infrastructure
must be registered in the TaScaaS service, which steps are
summarised by the 1 and 2 green squares in the green or
Infrastructure life cycle zone of the Figure 2. First, theworker
infrastructure sends a register request (green or square num-
ber 1) to the REST API. This request must include the
number of available slots, which is the actual number of job
partitions that can process concurrently, and the maximum
number of achievable slots, i.e, the maximum number of slots
that the infrastructure can allocate increasing the number of
nodes, CPUs, etc, with a scaling process. Then, the request
is handled by the Dispatcher function, which will store that
information in the table (green or square number 2).

Then, the worker infrastructure is allowed to request job
partitions to process, which steps are summarised by the
red or hexagon steps in the green or Infrastructure life cycle
zone of the diagram. As before, the procedure begins with
a request to the REST API, (red or hexagon number 1). The
number of requested partitions is set according to the number
of free slots. Then, the request is redirected by the Gate-
way to the Dispatcher function, which will process the con-
figuration files stored in the Configuration storage (red or
hexagon number 2) and send them to the worker infrastruc-
ture as response (red or hexagon number 3). The input data
to perform the execution is provided via a presigned URL,
which grants a limited time permission to download the file
from the file storage with a simple HTTPS request. These
presigned URLs expire after the specified time, and avoids
the requirement to provide authentication credentials to the
workers.

At this point, the worker infrastructure has received a set
of job partitions to fill some, or all, of its available com-
puting slots. Then, the job execution life cycle starts, which
is represented described in the red or Partitions processing
zone. When the processing starts, the worker must inform
the TaScaaS load balancer system (red or hexagon number 4,
start). This request is handled by the LB function and is
used to inform the load balancer system that this partition is
being processed. By default, TaScaaS uses RUPER-LB [11]
as load balancer, implemented in the LB function, because it
is precisely designed to be used on unpredictable fluctuating
environments. Nevertheless, it can be changed following
the procedure explained in the GitHub repository. All the
information regarding the load balancer system for the job
partition, is stored in the corresponding TaScaaS table entry
(red or hexagon number 5, start).

During the job partition execution, the load balancer sys-
tem expects periodic reports to balance the workload of each
job partition belonging the same job. These is done according
to their relative processing speeds. These reports are handled
by the LB function (red or hexagon number 4, report) and
the period between requests depends on the specified time
constrain and the TaScaaS configuration. During the report,
the job partition information is updated in the table (red
or hexagon number 5, report), and the number of assigned
iterations is recalculated and sent back as response (red or
hexagon number 7). Also, an estimation of the remaining
time to complete the whole job is obtained. If the estimated
execution time is greater than the specified in the job con-
figuration, the LB function will create a set of new partitions
to meet the time constraint (red or hexagon number 6). The
number of new job partitions are limited by the TaScaaS
configuration parameters to avoid overloading the worker
infrastructures. The creation of new job partitions consists of
adding the corresponding entries in the table, and create the
configuration files in the Configuration storage. After that,
the new job partitions could be requested to be processed by
the worker infrastructures with the same procedure as in the
Infrastructure life cycle zone.
To support worker failures, although the behaviour

depends on the used load balancer system, RUPER-LB will
check the latest communication timestamp of each job par-
tition to consider the corresponding process as inactive or
active. Inactive job partitions are not considered during the
iterations distribution, and the corresponding ones will be
distributed among the remaining active job partitions.

Finally, workers should send a finish request to TaScaaS
to inform that this partition will not process more iterations.
This request will be also handled by the LB function (red or
hexagon number 4, finish). Although this request is intended
to be sent when a partition has finished its assigned iterations,
it could be used when the worker must stop the execution
due to external reasons and there are remaining iterations to
compute. For example, if the worker is running on a spot
instance [40] it can be interrupted at any moment, depending
on the used configuration. Another case is a worker running
on a Lambda function, which should send a finish request
when the execution time is approaching the configured time-
out. When the load balancer receives this request, this job
partition is flagged as finished in the table (red or hexagon
number 5, finish), and will not be further considered to dis-
tribute the remaining iterations. Notice that if a job partition
finishes before the assigned iterations have been reached, its
remaining iterations are redistributed among the active job
partitions.

Concerning the results handling, during, or at the end,
the job partition processing, the worker could require to store
results data. The procedure is represented in the purple or
Results zone and is described following. First, the worker
send an upload request to the REST API, which will be
handled by the Data function (purple or diamond number 1).
As response to this request, theData function will send back a
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presigned URL to upload the results in the file storage (purple
or diamond number 2). Like the procedure to obtain the input
data, this approach allows to store data in the file storage
without granting permissions to the worker infrastructure
(purple or diamond number 3).

Even though TaScaaS has been designed to be used with a
decentralised serverless load balancer system, it can be used
as a simple job dispatcher and results storage for applications
which do not support load balancing. Specifying a negative
expected execution time in the job configuration file will dis-
able the load balancer for this job. Nevertheless, TaScaaS will
keep helping the worker infrastructures to fit the incoming
workload, as is described in the next section. Further details
and examples can be found in the TaScaaS repository.3

B. WORKER INFRASTRUCTURE LIFE CYCLE
The worker infrastructures life cycle, as explained in
section III-A, begins with the registration in the TaScaaS ser-
vice (green or Infrastructure life cycle zone of the Figure 2).
After that, each worker infrastructure must perform regular
update requests (green or square number 3). The usefulness
of this is twofold. First, the update informs TaScaaS that the
worker infrastructure is still alive. If a worker infrastructure
does not send any update request during the time specified
in the TaScaaS configuration, it will be marked as inactive.
Thus, it will not be considered to calculate the whole system
computing capacity. Furthermore, if the worker infrastruc-
ture does not send an update request after a configurable
amount of time, it will be removed from the table, requiring
repeating the registration procedure to be able to receive
job partitions. Secondly, the update request can be used to
update the worker infrastructure information stored by TaS-
caaS (green or square number 4). This information includes
the current number of slots and the maximum achievable
slots. The schema of this procedure is included in the green
or Infrastructure life cycle zone.

As mentioned, TaScaaS will assists the worker infrastruc-
tures to scale their slots according to the system workload.
This is done in two steps. In the first one, during the time spec-
ified at the TaScaaS deployment configuration, the informa-
tion about the number of dispatched and queued job partitions
is stored. Then, combining this information with the total
number of available slots of all the registered worker infras-
tructures, and their maximum achievable slots, TaScaaS cal-
culates the required percentage of achievable slots to tackle
the incomingworkload. This information is sent to theworker
infrastructures frontends within the update and job requests
responses. After the data measure step, TaScaaS waits for the
same amount of time to let the worker infrastructures scale
according to the received information. Notice that the worker
infrastructures should send the new number of available
slots using an update request, as explained before. Finally,
to remove a worker infrastructure from the TaScaaS register,
their frontend must perform a disconnect request.

3https://github.com/grycap/TaScaaS/tree/main/examples

C. PARTITIONING PROCEDURE
In this section we will discuss how jobs are partitioned in
TaScaaS and which metrics are used for that purpose. First,
the iterations processed during a job or partition execution
can be approximated to the mean speed in the interval [t0, t1]
as,

nIdone =
∫ t1

t0
s(t)dt ≈ 1t · s(t0, t1) (1)

Since the job execution is split in several partitions,
the mean speed depends on the individual speeds of each
partition. However, as TaScaaS uses a load balance system,
we can assume that the global speed is the result of summing
up the processing speeds of all individual job partitions (N p),

st (t0, t1) =
N p∑
k=1

sk (t0, t1) (2)

In addition, we can divide the speed measures in smaller
time intervals to be able to obtain the processing performance
behaviour with more precision in each instant,

st (0, t) =
nt∑
l=1

st (tl, tl+1) \ t1 = 0, tnt+1 = t (3)

With the previous considerations, the condition to be satis-
fied to achieve a job processing time restriction (tmax) is given
by the equation 4,

tmax ≥
nI0

st (0, tmax)
(4)

where nI0 corresponds to the total number of initial iterations
to be processed. However, if we want to achieve the execution
time constrain at any instant t during the execution, the equa-
tion 4 can be rewritten as a function of the remaining time and
the remaining iterations to process,

tmax−t ≥
nI (t)

st (t, tmax)
(5)

where st (t, tmax) corresponds to the remaining time interval
mean speed, which can differ significantly compared with the
previous measured mean speeds due the fluctuating perfor-
mance behaviour. The remaining iterations to process can be
obtained from the number of processed iterations (equation 1)
as,

nI (t) = nI0 − t · s
t (0, t) (6)

Replacing in the equation 5 we obtain the condition to be
satisfied at any instant t ,

tmax−t ≥
nI0 − t · s

t (0, t)

st (t, tmax)
(7)

As we are assuming an unpredictable behaviour of the
performance, we can’t predict the value of st (t, tmax). Instead,
if at the t instant the number of speed measures is nt , TaScaaS
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will approximate st (t, tmax) to the latest available measure
(nt ), i.e.,

st (t, tmax) ≈ st (tnt , tnt+1) (8)

as st (tnt , tnt+1) provides the most accurate measure of the
actual performance of the system. Then, if the condition of
the equation 9 is not satisfied,

tmax−t ≥
nI0 − t · s

t (0, t)

st (tnt , tnt+1)
(9)

TaScaaS will split the job in more partitions to satisfy the
condition. To calculate the number of required new partitions,
TaScaaS assumes that the new partitions will be processed
by workers with an equal mean speed determined by the
equation 10,

s =
st (tnt , tnt+1)

N p (10)

where N p is the number of actual partitions. This assump-
tion is necessary because TaScaaS does not have informa-
tion about where the new partitions will be executed. Thus,
the new speed is expected to increase, in mean value, as,

st (tnt , tnt+1)→ st (tnt , tnt+1)
N p
f

N p
0

(11)

where N p
f and N p

0 corresponds to the total number of parti-
tions after and before the split respectively. Then, replacing
equation 11 in 9, we obtain the number of required partitions
to achieve the time constraint at each instant t ,

N p
f =

(
N p
0

tmax − t

)(
nI0 − t · s

t (0, t)

st (tnt , tnt+1)

)
(12)

Finally, the number of new partitions (N p
new) will be

assigned according to the maximum number of partitions
constrain (N p

max),

N p
new =

{
N p
f − N

p
0 N p

f ≤ N
p
max

N p
max − N

p
0 N p

f > N p
max

(13)

Notice that the relation of the equation 8 will be, usually,
false. Therefore, this procedure is repeated during each job
execution to adapt the number of partitions according to the
new measured speeds. Also, although the number of parti-
tions can be reduced according to the equation 12, TaScaaS
will not decrease that number to avoid continuous partition
deletions and creations on fluctuating environments. Thus,
depending on the behaviour of the performance, in some
cases TaScaaS could produce and maintain an overparti-
tioning, causing the job to finish earlier than the specified
time constraint. This effect can be caused in the specific
case where the performance maintains a constant increase
trend after a significant degradation measured in the previous
intervals. Nevertheless, this approach ensures that the time
constraint will be achieved, and ensures the synchronisation
of partition processing times due the load balance system.

To compare the TaScaaS dynamic partitioning approach
with a static one, consider now that no load balance system
is used to balance the job partitions. Instead, the number of
partitions, and their assigned iterations, is defined initially
and can’t be changed. In this scenario, the execution time of
each partition is determined by the equation 14,

tj =
nIj

sj(0, tj)
(14)

where nIj is the number of iterations assigned to the partition
number j. Therefore, the whole job execution time will be
determined by the maximum value of tj. In the better case,
the approach used to perform the iteration partitioning will
produce exactly the same execution time t for all partitions,

tj = t ∀j (15)

and the corresponding process speed will be,

st (0, t) =
nI

t
=

N p∑
j=1

nIj
t
=

N p∑
j=1

sj(0, t) (16)

which is equivalent to the equation 2, meaning that, in the
best possible case, we can reproduce a global execution speed
equivalent to the balanced approach. Also, the number of par-
titions cannot be adapted to compensate performance drops.
Thus, normally, a static approach will achieve worst results,
as we will discuss in the section V applied to the results
obtained in the section IV.

IV. RESULTS
We tested the TaScaaS behaviour using three different
worker infrastructure types simultaneously. The first worker
infrastructure has been deployed on an on-premises cloud
and consists on 32 slots running on Intel Xeon (Skylake,
IBRS) processors. The second worker infrastructure has been
deployed on the EGI Federated Cloud (IFCA-LCG2 site)
and consists on 16 slots running on Intel(R) Xeon(R) CPU
E5-26700 @ 2.60GHz processors. Finally, the third consists
on a single computer with an Intel(R) Core(TM) i7-8550U
CPU@ 1.80GHz processor, which has been assigned a max-
imum of 8 slots. These three worker infrastructures will be
used to process concurrently all the incoming jobs via the
TaScaaS service.

To perform the tests, due the importance of the radiation
transport simulations in clinical applications and the long
execution times involved, we have executedMonte Carlo sim-
ulations using PenRed [29], which is a framework for radi-
ation transport simulations using Monte Carlo techniques.
Its executions are iterative-based where each iteration cor-
responds to the simulation of a primary particle and all the
secondary particles produced by interactions with matter.
Being a probabilistic process, the required computation time
of each iteration usually differs. However, as the number of
simulated iterations must be big enough to reduce the sta-
tistical uncertainties, the mean speed measured in iterations
per second converges to a stable value. Thus, to be able to
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control the expected execution time and force the usage of
different number of partitions for each job, we have defined
a set of simulations. Each one has a different execution
time constraint to be achieved by TaScaaS, but exactly the
same configuration and number of iterations to simulate:
106 primary particles.
The executed simulation corresponds to one of the exam-

ples provided in the PenRed package, specifically the 1 −
disc − vr example, which details and description can be
found in their documentation and github repository.4 This one
consists on a point source of monoenergetic electrons with
a energy of 40KeV . The beam aims to a cylindrical copper
phantom. However, as TaScaaS is agnostic to the running
application, the results are valid for other simulations and
applications that meet the already discussed characteristics.
All the required configuration, data base and geometry files
are included in the example provided by PenRed, thus can be
executed directly once the code has been compiled following
the instructions of the corresponding documentation.

Since the number of mean operations for each simulation
converges to the same value, the differences on the required
computation power is determined by the execution time con-
straint. Furthermore, we have checked that the measured
speed, in an isolated environment, requires a few minutes to
stabilise, being very stable after 3−5 minutes. Thus, to create
jobs with different computational power requirements, a set
of 4 jobs have been created, whose characteristics are sum-
marised in the Table 3. The simulation time constraints for
each job type have been set to 3600, 2700, 2100, 1500 and
900 seconds, expecting to require more partitions for lower
time constraints. Taking as a reference the computing power
required by job executions of the first type, the following
types require a 133%, 171%, 240% and a 400%, respectively,
of the computational power required by the type 1 simu-
lations. This selection provides a wide range of jobs with
different requirements.

TABLE 3. Job types with the corresponding time constraint, in seconds,
and the required computational power relative to type 1.

During the experimentation, we will measure the execu-
tion time in seconds of each submitted job and the number
of created partitions to fit the time constrain. In addition,
all the reports done by each job partition of each job have
been registered to evaluate the performance behaviour of the
system. This data includes the speed, measured in iterations
per second, of each time interval, the timestamp of each
report, and the evolution of the assigned iterations to each
partition.

4https://github.com/PenRed/PenRed

For the following analysis, we have considered that the
time spent by TaScaaS to balance the execution is mini-
mal. This is because the used balancer system has been
designed to introduce a negligible overhead on the whole
execution. Moreover, we have extracted the execution time
information of the TaScaaS Lambda functions to ensure that
assumption. The minimum execution time for all the Lambda
invocations is approximately 300 ms, the maximum 1000 ms
and the mean value 400 ms. Considering that TaScaaS has
been configured to perform a mean value of 20 reports
during the execution of each job partition, and considering
also synchronous blocking communications, in the worst
case, the overhead introduced by the TaScaaS processing
time is 20 seconds. Since the mean execution time of the
lambda functions is lower than 1 second, this overhead is
very overestimated. Furthermore, all Lambda functions have
been configured with a capacity of 512 MB. Therefore, this
overhead could be reduced increasing the computing power
of the TaScaaS functions. Nevertheless, considering that the
execution time of each simulation partition is on the order of
hundreds or thousands of seconds, this overhead is effectively
negligible. Regarding communication time, the message data
required by the load balancer is lesser than 1 KB, thus,
the communication time can be neglected too. Furthermore,
the communication can be done asynchronously to con-
tinue the execution while waiting for the TaScaaS response.

The tests have been performed during almost three hours
launching jobs with different time constraints in irregular
intervals and frequencies. The results are shown in Figure 3,
where the purple line represents the number of concurrent
active partitions for each timestamp and the green line rep-
resents the number of slots required by TaScaaS to process
all the workload and finish the executions in the user-defined
time limit. The figure shows how TaScaaS fits the incoming
workload and maintains a pool of free slots to be able to
process a possible peak of incoming jobs or new partitions.
Then, when TaScaaS neither receives new jobs nor requires
to launch more partitions, it decreases the number of required
slots efficiently.

FIGURE 3. Number of active partitions running on the worker
infrastructures (dark) and number of required slots by TaScaaS (light) at
each timestamp.

Notice that TaScaaS not only must be prepared to allocate
new incoming jobs, but also new partitions of the currently

VOLUME 9, 2021 125223



V. Giménez-Alventosa et al.: TaScaaS: Multi-Tenant Serverless Task Scheduler and Load Balancer as Service

running jobs. Since TaScaaS does not have any knowl-
edge about the running applications nor the heterogeneity
behaviour in the environment where the applications run,
it only relies on the reported speeds during the execution to
allocate new partitions to meet the configured execution time.
Thus, a job that initially runs a single partition could require
many more partitions to achieve the time constraint. Further-
more, our tests have been done in the worst scenario. First,
we have launched all the jobs with only a single initial par-
tition, relying on TaScaaS to scale the number of partitions.
Secondly, we have fixed the scaling step time to 300 seconds,
which is relatively low compared to the application execution
times and forces TaScaaS to perform predictions with less
statistics.

In a real application the user could estimate a mean value
of the required partitions and set it during the job config-
uration. For example, using TaScaaS itself, the user could
create sufficient jobs to fill the worker infrastructures and
get an upfront distribution of the required partitions per job.
As the worker infrastructures are working at full capacity,
our test scenario can be considered as the slowest, providing
a mean value of the number of required partitions in the
worst case. This approach avoids TaScaaS to launch several
new partitions during the job execution, providing a more
predictable workload input.

Furthermore, the scale step timemust be selected as a com-
promise between response speed and resources allocation
accuracy. A faster scale step will provide a faster response
time for peaks and troughs of new partitions. However, this
produces larger fluctuations on the workload measures due
to the lower statistic, providing a less accurate allocation
of resources, like the case shown in Figure 3. Notice that a
slower scale step will provide a more accurate, and probably
stable, value of the mean workload. Therefore, the allocated
resources will be less underused. However, the system will
be less responsive to new partition peaks, which may cause
some jobs to take longer to start in this case. The election
of these configuration parameters depends strongly on the
executing applications, the execution time ranges, the worker
infrastructures, the rate of incoming jobs and its variability,
etc. Nonetheless, the user can obtain an occupation diagram
like the shown in the Figure 3 to be able to adjust these
parameters. Nevertheless, the results show that TaScaaS can
handle adverse configurations efficiently.

Turning to the ability to meet the execution time con-
straints, we have grouped the simulations with the same time
limits. Figure 4 represents the execution time with points,
the number of used partitions is represented by the blue
histogram, and the time constraint by the red line. This one
corresponds to the jobs of 1500 seconds. As we can see, all
the jobs satisfy the time limit. Although job number 6 slightly
exceeds the execution time goal, the excess time is negligible
compared to the total execution time. Therefore, TaScaaS
does not request a new worker in order to save resources.

Notice that the execution times present huge differences
among jobs which perform the same simulation. This is

FIGURE 4. Execution times (points) and number of partitions (blue
histogram) required by each job with a time constraint of 1500 seconds
(red line).

because eachworker infrastructure have different capabilities
and TaScaaS does not know where a job partition will be exe-
cuted. This effect could be exacerbated if the worker infras-
tructures present heterogeneity on their workers capabilities,
either because differences with the underlying hardware or
because the resources sharing among both, own partition exe-
cutions and tenants. Also, this causes important differences
on the number of required partitions, even between jobs with
similar execution times.

The simulations with the other execution time limits
presents the same behaviour, as shown in Figures 5 and 6 for
2100 and 2700 seconds respectively.

FIGURE 5. Execution times (points) and number of partitions (blue
histogram) required by each job with a time constraint of 2100 seconds
(red line).

An explanation for the differences in the number of used
partitions for similar simulations could be the heterogeneity
of the worker infrastructure processors. However, the noisy
neighbour has also a non-negligible effect. To exemplify this
fact, Figures 7 and 8 represents the performance behaviour
evolution of the partitions of two specific jobs i.e. the time
evolution of the simulation speed for each partition. In these
figures, the boxes on the X axis mark the partition start,
the vertical lines indicate the first speed report performed by
the partition, and the remaining line shows the mean speed
evolution. Notice that at the partition start TaScaaS does not
have a speed measure, and this is why it is shown as 0 in the
figure.
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FIGURE 6. Execution times (points) and number of partitions (blue
histogram) required by each job with a time constraint of 2700 seconds
(red line).

FIGURE 7. Execution speed at each timestamp for the job number 1 from
type 2 jobs set.

FIGURE 8. Execution speed at each timestamp for the job 1 from the
simulations with a time constraint of 1500 seconds.

The first one, corresponds to the job number 1 from type 2
jobs set, which has a time constraint of 2700 seconds. Accord-
ing to the data shown in the figure 6, TaScaaS has created
three partitions to fit the time constrain, whose individual
speeds evolution are represented by each colour line. The
figure, shows a simple behaviour where the execution of each
partition presents an approximately constant average speed.
So, in this case, the environment presents insignificant time
dependent fluctuations and is only affected by a constant het-
erogeneity, probably caused by hardware differences. Once
the first partition starts to process (Purple box), at the sec-
ond box (Green) TaScaaS calculates that the job require one
more partition to meet the execution time limit. However,
this second partition has been received by a slower worker,
and is not sufficient to meet the time. To solve it, TaScaaS
requests a new partition, which, this time, is processed by a

faster worker. Since TaScaaS works with the mean speed of
all partitions, after the second job begins execution, it esti-
mates that the job requires a third partition with a speed
of, approximately, 200 iterations per second. Since the third
partition is faster, the execution time will be significantly
lower than the configured limit, which can explain some of
the discrepancies seen between the execution times of the
same kind of simulations.

Secondly, Figure 8 corresponds to the job number 0 from
type 4 jobs set. This one has a time constraint of 1500 seconds
and, according to the data in Figure 4, TaScaaS has cre-
ated 9 partitions to achieve it. The figure shows a constantly
decrease of the speed of each partition. So, as opposed to
the previous case, the system capabilities fluctuate during
the execution. More specifically, the system decreases its
performance and, therefore, this could not only be caused
due to the hardware heterogeneity. To mitigate this issue,
TaScaaS creates new partitions several times to compensate
the continuous decreasing performance, and meet the time
constraint. Notice that the execution time of this application
is not expected to decrease as the execution advances, as we
have explained before and proved in several executions, like
the one shown in Figure 7.

As the average speed of this application is expected to be
constant if the environment conditions do not change, this
behaviour is caused by the competition of several processes
for the same resources. It could be caused by both the inter-
ference of our own partitions running on the same workers
and by the effect of tenants (noisy neighbours). Neverthe-
less, TaScaaS has handled correctly both cases, creating new
partitions only when needed. Notice that the partitions of
the same job can be executed by any worker of any worker
infrastructure. Thus, increasing the number of partitions does
not necessarily overload the same worker.
This results demonstrate that TaScaaS can correctly handle

the capability variability on heterogeneous environments cor-
recting its effect on the execution time. Notice that TaScaaS
has no information about the cause of the speed fluctuation,
so it can handle also applications whose speed is not constant
throughout the execution.

V. DISCUSSION
To quantify the efficiency improvement achieved by TaScaaS,
following, we will compare the results obtained in section IV
with a static partitioning approach with no balance, as many
of the works discussed in section II. So, for that analysis,
we will assume that each job is partitioned according to the
system performance information, which can be measured
from previous job executions. However, the iterations can-
not be reassigned once the partitions have been sent to be
computed. As the possible combination of the characteristics
involving a single job executions are too big, considering job
types, number of partitions, resource where the execution is
computed, possible performance fluctuations etc. the study
will be carried out using the measured data from the previous
experiment, which will allow to compare both results.
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First, in Figure 9, the mean speed of each job partition
execution is represented by points. It can be seen that these
points are split in two groups according to the measured
speeds, which corresponds to the two different types of points
in Figure 9. In addition, the line of each group represents the
fitted evolution of the mean speed according to the measured
data. The area surrounding the line represents one standard
deviation of the fitted model. Although we could classify
the measures according to the worker hardware where the
partition has been executed, in many providers services the
information about the underlying hardware where the exe-
cution is carried out is not, or only partially, accessible.
Therefore, wewill classify the resource types according to the
observable measures. However, notice that the fits standard
deviations of each group are about 15% and 2% for the slower
and faster group respectively, which are significantly lower
than the performance fluctuationsmeasured in different cloud
services by the works discussed in the section I.

FIGURE 9. Mean execution speed for each processed partition (points).
The measures are divided according to two speed levels. The lines
represents the fitted time dependency of the mean speed for each set of
points. The area surrounding the line represents one standard deviation
of the fitted model.

Moreover, the measured mean speeds of a single partition,
whose execution is performed completely in the sameworker,
presents standard deviations up to 50% and 10% for the
slower and faster group. Thus, considering that the speed
in this kind of applications is determined by the slowest
process, because the processes are not balanced, the expected
real results will be worst than the predictions of our fitted
models. This fact can be seen in the residuals of both fits,
represented in Figures 10 and 11 for the slower and faster
group respectively.

Then, as we discussed in the section III-C, the job execu-
tion can be estimated using the equation 14 applied to the
slowest partition, whose mean speed can be predicted by the
fitted models. As we cannot know the specific speed of each
partition before the execution starts, we will assume that all
partitions computed in the same performance group have an
equal iteration assignation. Also, to minimise the differences
in execution time of partitions executed in different groups,
the iteration assignation for the partition of each group must
satisfy the relation,

nIf
sf (t)

=
nIs
ss(t)

(17)

FIGURE 10. Residuals of the fit from the slower group. Error bars
represent one standard deviation of measured points. The area
surrounding the line represents one standard deviation of the fitted
model.

FIGURE 11. Residuals of the fit from the slower group. Error bars
represent one standard deviation. The area surrounding the line
represents one standard deviation of the fitted model.

where nIf and nIs are the number of iterations assigned to
each partition executed in a fast and slowworker respectively,
and sf (t) and ss(t) the corresponding mean speeds. Then the
number of assigned iterations to partitions of the slower group
can be obtained as follows,

nI = nIf nf + n
I
sns

nI = nIs
sf (t)
ss(t)

nf + nIsns

nI = nIs

(
sf (t)
ss(t)

nf + ns

)
nIs =

nI

sf (t)
ss(t)

nf + ns
(18)

and nIf can be calculated using the equation 17. Also,
to fit the time constraint, the condition of the equation 19
must be satisfied,

tmax <
nIi
si(t)

∀i ∈ s, f (19)

where i is the partition index and nIi takes the nIf or nIs
values depending on the group to which it belongs, the fast
or the slow respectively. However, if we suppose normally
distributed mean speeds around our fitted model, the parti-
tions execution time will have a non negligible probability
of not satisfying the equation 19. As a single slow partition
will delay the whole run, the probability to produce a delay is
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equivalent to the probability to have a single slow partition.
To quantify this effect, the Table 4 shows the delay intervals
corresponding to 1σ , 2σ , 3σ and greater than 3σ for both
groups, the fast and the slow. For each interval, the depen-
dency of the probability with the number of partitions of each
group is shown, and the specific probability for 5 partitions
has been calculated, which is, approximately, the mean num-
ber of partitions used in our experimentation. In the worst
case, the delay produced in the whole job execution time will
be equal to the top limit of each delay interval, which possibly
causes the condition of the equation 19 to not be met.

TABLE 4. Expected delay probabilities caused by performance
fluctuations for both groups, fast and slow. The variable n, represents the
number of partitions belonging to the specific group.

Notice also that, due the symmetry of the distribution,
the same probabilities can be applied to partitions which
mean speed is faster than the model prediction. Thus, these
analysis can be also used to calculate the probability to
have underused resources. Although the mean speed of our
model can be artificially decreased to increase the probability
to satisfy the time constraint, for example multiplying the
speed by a ‘‘security’’ factor ρ ∈ (0, 1) \ s′(t) = ρs(t),
this will cause an increment of the required resources to
perform the calculus, producing an unnecessary resources
over-provisioning. Moreover, this method will not handle the
differences in partitions execution speeds, remaining faster
resources potentially unused when their partial execution
finishes. Furthermore, this method will produce an excess of
partitions, which will increase the post-processing cost of the
partial results. Depending on the application and the quantity
of generated data, an excessive partitioning could produce
post-processing times comparable to the execution time.

However, notice that if the fluctuations of our infrastruc-
tures are sufficiently low, like the faster performance group,
the delays could be assumed and the use of a static approach
may be good enough. Thus, to evaluate the suitability of using
TaScaaS, could be useful to perform a benchmark following
the procedure discussed in this section.

VI. CONCLUSION
In this work, we presented TaScaaS an open source serverless
job scheduler and load balancer service to distribute and
balance jobs among multiple heterogeneous infrastructures
deployed or accessed by the user. As it is deployed on AWS
Lambda, it benefits from the AWS free tier, minimising the
cost of its execution. Also, TaScaaS is created as a serverless
application, so it produces a cost only when it is used. More-
over, AWS Lambda provides a highly scalable environment,
thus TaScaaS is capable to handle a large number of simulta-
neous workers.

We have demonstrated how TaScaaS overcomes static par-
titioning approaches depending on the performance fluctua-
tions of the available infrastructures, which affect not only
public cloud providers, but also on-premises and federated
cloud infrastructures. In addition, TaScaaS has proved its
capabilities to handle efficiently both kinds of heterogeneity,
on hardware and due to sharing resources across multiple
tenants. Furthermore, TaScaaS correctly handles time con-
straints in the execution time in this kind of environments.

In future versions of TaScaaS we will implement improve-
ments such as an adaptive system to select the scale step time
and change it according to the incoming workload, and sup-
port to deploy the TaScaaS service on other cloud providers.
As it is accessed via HTTPS requests, the worker infras-
tructures are agnostic about where the TaScaaS back-end is
running, and changing the provider require no changes on
the infrastructure side. We will also investigate its behaviour
in scenarios of computing continuum where resources from
the edge are used in coordination with resources from
on-premises and public Clouds. This will allow to achieve
load balancing across highly heterogeneous computing plat-
forms across a variety of infrastructures.
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