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Abstract

Glaucoma is one of the leading causes of blindness worldwide and Optical Coherence Tomography (OCT) is the
quintessential imaging technique for its detection. Unlike most of the state-of-the-art studies focused on glaucoma
detection, in this paper, we propose, for the first time, a novel framework for glaucoma grading using raw circum-
papillary B-scans. In particular, we set out a new OCT-based hybrid network which combines hand-driven and deep
learning algorithms. An OCT-specific descriptor is proposed to extract hand-crafted features related to the retinal
nerve fibre layer (RNFL). In parallel, an innovative CNN is developed using skip-connections to include tailored
residual and attention modules to refine the automatic features of the latent space. The proposed architecture is used
as a backbone to conduct a novel few-shot learning based on static and dynamic prototypical networks. The k−shot
paradigm is redefined giving rise to a supervised end-to-end system which provides substantial improvements dis-
criminating between healthy, early and advanced glaucoma samples. The training and evaluation processes of the
dynamic prototypical network are addressed from two fused databases acquired via Heidelberg Spectralis system.
Validation and testing results reach a categorical accuracy of 0.9459 and 0.8788 for glaucoma grading, respectively.
Besides, the high performance reported by the proposed model for glaucoma detection deserves a special mention.
The findings from the class activation maps are directly in line with the clinicians’ opinion since the heatmaps pointed
out the RNFL as the most relevant structure for glaucoma diagnosis.

Keywords: Glaucoma Grading, Prototypical Neural Networks, Circumpapillary, Hybrid Learning, Retinal Nerve
Fiber Layer, Optical Coherence Tomography

1. Introduction

Glaucoma is a chronic and progressive disease that
affects the optic nerve head (ONH) of the retina causing
several structural changes and functional damage [1].
Nowadays, this optic neuropathy has become the lead-
ing cause of blindness worldwide, according to [2]. Re-
cent studies suggest that the impact of this disease will
continue to rise, affecting 111.8 million people in 2040
[3]. Therefore, early diagnosis of glaucoma could be
essential for timely treatment in order to prevent irre-
versible vision loss [2].

Currently, there is no single accurate test to cer-
tify glaucoma, the diagnostic procedure includes sev-
eral time-consuming tests such as pachymetry, tonome-
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try and visual field tests, as well as the examination of
different kinds of interpretable retinal images. Specif-
ically, techniques based on image analysis like fundus
photography and optical coherence tomography (OCT)
have become very important in the context of glaucoma
detection. Fundus image is a great cost-effectiveness
technique which has reported promising results in the
diagnosis of several eye-focused diseases, e.g. diabetic
retinopathy [4, 5] and age-related macular degenera-
tion [6, 7]. However, OCT imaging modality [8] is the
quintessential technique for glaucomatous damage eval-
uation [9] since it allows quantifying glaucoma-specific
regions such as retinal nerve fibre layer (RNFL) and
ganglion cell inner plexiform layer (GCIPL), which are
useful biomarkers for the progression of this disease
[10]. Additionally, glaucoma is evident in the deteriora-
tion of the cell layers around the optic disc, whose infor-
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mation could be exploited by the OCT imaging modal-
ity since it focuses on the depth axis of the retina to
identify structural changes, unlike the 2D projection of
the fundus image (see Fig. 1).

Note that, although fundus image modality is cheaper
than OCT, it is colour-dependent on the training data set
and its interpretation remains subjective [11, 12]. The
contrary, OCT is a non-contact and non-invasive tech-
nique that provides objective information about the op-
tic nerve head and RNFL structures [13]. It is important
to remark that glaucoma detection entails a subjective
examination from different experts, whose mismatch ra-
tio is usually high [14]. Consequently, many state-of-
the-art studies developed different machine learning al-
gorithms intended to detect glaucoma via fundus image
and OCT samples.

2. Related work

According to the recent study [15], which describes
a review of deep learning methods for glaucoma detec-
tion, spectral domain (SD) OCT has become the most
widespread diagnostic tool for analysing glaucomatous
pathologies. Besides, the OCT system is routinely used
in clinical practice for determining glaucoma severity
since it allows emphasising the significance of the struc-
tural changes of the retina [16]. There are several
clinical studies which claim the potential of the OCT
imaging modality in the glaucoma detection paradigm.
Medeiros et al. [17] enhanced the importance of the
RNFL structure demonstrating that an early patholog-
ical degeneration of the retinal cells is associated with
a thinning of the RNFL. In [16], authors evidenced the
usefulness of the RNFL thickness to determine patho-
logical variations of the retina associated with different
glaucomatous stages. Ojima et al. [18] reported that the
RNFL thickness has a higher potential for glaucoma di-
agnosis than a complete macular volume. Moreover, in
[19], researchers declared that RNFL features extracted
from SD-OCT scans are a powerful indicator for glau-
comatous damage evaluation, which is directly in line
with the outcomes from our previous work [20].

Inspired by the aforementioned clinical studies, many
researchers have developed predictive models to dis-
cern between normal and glaucomatous patients via
OCT scans analysis. Most of them focused on the op-
tic disc due to the known potential of the circumpap-
illary OCT images for glaucoma detection [21]. In
[22, 23], authors extracted hand-crafted features from
the B-scans and combined them with transformations
of A-scans and visual field parameters to discriminate

between healthy and glaucoma classes. They used dif-
ferent machine learning classifiers such as support vec-
tor machine (SVM), random forest (RF) and k-nearest
neighbour (KNN). In [24], an automated framework to
estimate the thickness of specific OCT layers was pre-
sented in order to monitor retinal abnormalities, simi-
larly to [25, 26], where the proposed methods were in-
tended to quantify retinal layers thicknesses in search
of abnormal retinal pathologies. Gao et al [27], made
a comparison between the thickness measurements au-
tomatically reported by the Topcon OCT system and
their end-to-end framework composed of a segmenta-
tion stage followed by a feature extraction based on the
RNFL thicknesses average. It is important to note that
this kind of hand-driven learning methodologies usu-
ally requires a previous manual or automatic segmen-
tation of the retinal layers to delimit the regions from
which extracting the discriminative features [15]. For
that reason, several studies have been proposed in the
literature for the sole purpose of addressing this long-
standing problem [28–35].

However, segmentation algorithms should entail er-
rors which are transferred to the feature extraction stage
[15]. To avoid this shortcoming, deep learning models
arise to provide alternative ways of quantifying struc-
tural damage since they can learn features from data au-
tomatically without reliance on previous segmentation
stages or predefined features. In this context, ophthal-
mology has risen to a forefront in which application
of deep learning (DL) algorithms can boost to a bet-
ter artificial intelligence-based diagnosis in the medical
fields. Specifically, glaucoma broadly meets the condi-
tions to aid in the management of the vast amount of
information coming from SD-OCT scans, according to
the review outlined in [15]. Following the deep learning
trend, Thompson et al. [36] demonstrated in a recent
study that their segmentation-free DL algorithm (trained
with raw SD-OCT B-scans) exceeded the conventional
RNFL thickness parameters to directly discern between
glaucomatous and healthy eyes. Maetschke et al. [37]
also conducted a comparison between hand-driven and
data-driven learning strategies applied on raw OCT vol-
umes around the ONH of the retina for glaucoma detec-
tion. The main outcomes revealed that the deep learning
approach outperformed conventional SD-OCT param-
eters to discriminate glaucomatous from normal sam-
ples. At this point, it should be noted that there are
other studies which addressed the binary classification
between healthy and glaucomatous cases by applying
deep learning algorithms on spectral-domain OCT vol-
umes [38–40], including our previous work [41].

However, to the best of the authors’ knowledge, the
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Figure 1: (a) Eyeball with interesting regions. (b) Fundus image focused on the optic nerve head (ONH). (c) Arrangement of the retinal fiber
layers. (d) A-scan corresponding to the depth of retinal cells at a specific point. (e) B-scan representing the fiber layers of the retina with different
gray-intensity levels.

deep learning application is not very widespread on cir-
cumpapillary OCT images. A recent review of the lit-
erature found that most of the deep learning-focused
studies using B-scans are conducted in a combination
of fundus images to detect glaucoma via RNFL prob-
ability maps [42–44]. To fill this gap in the litera-
ture, we previously proposed different hand-driven and
data-driven learning strategies for glaucoma diagnosis
in [20, 41, 45], whose outcomes support the basis of
this paper.

2.1. Contribution of this work
Inspired by the high performance reported from our

previous circumpapillary-based studies, we have ex-
panded the database of B-scans around the ONH to go
deeper into the glaucoma paradigm. In particular, we
propose in this paper an innovative framework based
on prototypical networks for glaucoma grading using
raw circumpapillary images. As far as we know, this
work is the first OCT-focused study intended to grade
the glaucoma severity by discerning between healthy,
early and advanced classes, which adds significant value
to the body of knowledge. Most of the previous stud-
ies centred on B-scans are designed to discriminate
glaucoma from healthy samples [36, 46–50]. Other
state-of-the-art studies also pursued the classification of
healthy and glaucomatous cases, but using the OCT vol-
umes as an input to their models [37–41]. Additional
glaucoma-related studies were addressed from B-scans
to accomplish different discrimination tasks such as pre-
perimetric vs perimetric glaucoma [51, 52], progressing
vs non-progressing glaucoma [53, 54] and close angle
vs open-angle glaucoma [55, 56], among others. Fur-
thermore, there are studies which used a different kind
of input data, e.g. visual field tests [57, 58] to discern
between healthy and glaucomatous patients. On a wider
level, the sub-classification of early and advanced glau-
coma has already been conducted in the literature, but
throughout fundus image material [59–61].

At this point, it should be noted that a very recent
work [62] also proposes a kind of glaucoma grading set
up making use of the Armed Forces Institute of Oph-
thalmology (AFIO) data set [63], which contains OCT
scans centred on the ONH. However, it pursues the dis-
crimination between healthy, suspects and glaucoma-
tous samples by computing the distance of different reti-
nal layers of interest previously segmented. In particu-
lar, Raja et al. in [62] propose an encoder-decoder ar-
chitecture to carry out the glaucoma classification. The
encoder structure was used to provide a feature map
capable of discerning between healthy and glaucoma
classes via softmax function; whereas the decoder com-
ponent was intended to segment the interesting layers
of the retina to distinguish between suspect and glau-
coma cases from the samples previously predicted as
glaucoma. To accomplish this part, the mean of the seg-
mented layers was used as a feature input of an SVM
classifier. Unlike AFIO database whose labels corre-
spond to non-successive phases of the disease (healthy,
suspect and glaucoma), our database includes different
levels of glaucoma severity annotated according to the
medical literature [64, 65]. Contrary to Raja et al. [62],
we can conduct a learning framework that enables the
analysis of glaucoma progression by differentiating be-
tween healthy, early and advanced glaucomatous sam-
ples. Another essential difference with respect to [62]
is that we develop the predictive models from raw gray-
scale B-scans, whereas Raja et al. [62] made use of
pre-processed RGB scans containing manual annota-
tions and highlighted structures.

Furthermore, the proposed work documents addi-
tional key contributions concerning the deep learning
application in the glaucoma field. For the first time, we
raise a glaucoma scenario based on prototypical neural
networks (PNN) [66], which have demonstrated a high
rate of performance in recent image analysis tasks, such
as domain adaptation [67], noisy evaluation [68], text
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classification [69], etc. Note that prototypical networks
are usually formulated as a baseline within the few-shot
paradigm [70–73], but in this paper, we exploit the pro-
totypical concept in the k-shot methodology to optimize
the learning process for glaucoma grading.

Tatham et al. [74] argued that circumpapillary RNFL
(cpRNFL) thickness was the best structure to measure
glaucoma progression and the most widely used param-
eter in clinical practice. So, according to this, and in-
spired by our previous works [20, 45], we outline in this
paper a novel OCT-based hybrid backbone as a feature
extractor of the prototypical framework. Specifically,
from [20], we observed that hand-crafted features could
outperform the automatic features extracted by deep
learning models trained from scratch. Nevertheless,
from the study carried out in [45], we detected that fine-
tuned models also improved the model’s performance
compared with algorithms trained from scratch. For
that reason, in this approach, we propose a novel back-
bone composed of pre-trained deep learning networks
(with additional attention modules and residual blocks)
in a combination of hand-crafted RNFL-based features,
similar to the hybrid methodology that reported the best
performance in [20].

In summary, the main contributions of this work are:

• Raw circumpapillary OCT images are used for the
first time to measure the glaucoma severity.

• Tailored prototype-based solutions are formulated
in a novel framework for glaucoma grading.

• An adapted k-shot supervised learning, inspired by
the few-shot paradigm, is conducted to exploit the
specific-glaucoma knowledge.

• A new OCT-based hybrid backbone is proposed as
a feature extractor to combine automatic and hand-
crafted information from B-scans.

The rest of the paper is organized as follows. Section
3 outlines the proposed methodology composed of two
stages: i) base encoder development and ii) prototype-
based learning strategies. Section 4 shows the ablation
experiments performed during the validation stage. Sec-
tion 5 presents the quantitative and qualitative results
achieved in the prediction of the test set. A wide dis-
cussion about the proposed framework is conducted in
Section 6, and a summary of the main conclusions is
addressed in Section 7.

3. Methods

3.1. Base encoder development
In this paper, we pay special attention to this section

since the performance of the prototypical frameworks
largely depends on the representation vectors encoded
in the latent space by the feature extractor. The original
study of the prototypical neural networks (PNN) [66],
as well as others derived from it [67, 70], made use of
a 4-layer CNN trained from scratch as an encoder of
the feature representation. However, we observed from
our previous glaucoma-based works [20, 45] that deep
learning models trained from scratch reported the poor-
est performance in comparison to fine-tuning the mod-
els or even extracting hand-crafted features. For that
reason, we built on our previous experience to propose
in this work a new tailored backbone able to capture
the OCT-specific cues for an optimal glaucoma grading.
Specifically, we inspired on the OCT hybrid method-
ology followed in [20], but using pre-trained networks
according to [41, 45], to provide a novel base encoder
Ψφ with some novelties that allow improving the pre-
vious approaches. The proposed backbone is composed
of two learning branches giving rise to a multi-input fea-
ture model, as observed in Fig. 2.

3.1.1. Deep learning branch
From the sweep of the pre-trained networks carried

out in [45], we selected the VGG16 architecture as the
baseline of our deep learning branch Γφ. In particular,
we applied a deep fine-tuning strategy [75] to freeze the
weights of the three first convolutional blocks, which
were pre-trained with around 14 million of natural im-
ages corresponding to the ImageNet data set. As a nov-
elty, we propose a glaucoma-specific residual structure
which allows propagating the information from the ini-
tial VGG layers to the last ones, via convolutional-skip
connections. Thereby, the shortcut flows through the
gradient of a deeper network to mitigate the problem of
vanishing gradients. The proposed residual block aims
to optimise the dimensionality of the filters by combin-
ing 1 × 1 convolutions (green boxes) with a customized
3×1 convolutional layer (yellow box). This tailored ker-
nel size allows taking advantage of the domain-specific
knowledge of the OCT images to provide local cues for
the glaucoma learning process. In this way, the network
is encouraged to focus on the OCT vertical axis in or-
der to learn the glaucoma-specific information under-
lying the contrast differences of the retinal layers. An
additional 1 × 1 convolutional layer was included to re-
duce the filters’ dimension after concatenating the fea-
ture maps from the VGG and residual structures. At this
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Figure 2: Illustration of the end-to-end backbone proposed as a benchmark to conduct the prototype-based learning strategies. Blue, yellow and
green frames correspond to the base encoder network which consists of deep learning and hand-driven learning branches followed by a combination
module, respectively. A projection head (red) maps the embedded representations in a lower-dimensional space to maximize the agreement in the
classification stage (cyan).

point, we also included an attention module via skip-
connections to refine the features in the spatial dimen-
sion. The proposed module works as a kind of autoen-
coder composed of 1 × 1 convolutions in which the fil-
ters are decreased and increased, respectively. At the
bottleneck, a single convolutional filter activated by a
sigmoid function (purple layer) was included to recal-
ibrate the inputs and forcing the network to learn use-
ful properties from the input representations. The skip-
connection allows propagating larger gradients to previ-
ous layers throughout an identity shortcut. At the end of
the deep learning branch (see Fig. 2), another 1×1 con-
volutional layer was defined to provide a volume map
G = {g1, g2, ..., gk, ..., gC}, where C = 8 is the number of
feature maps gk, of size H×W = 7×12, which compose
the set of the deep learning representations Γφ : I → G.

3.1.2. Hand-driven learning branch
Otherwise, inspired by the clinical study [74], we

conducted an additional hand-driven learning branch
Ωφ focused on hand-crafted features extracted from
the retinal nerve fibre layer (RNFL). Specifically, we
made use of an innovative RNFL descriptor, which was
proposed in our previous work [20] to include RNFL
thickness-based information by computing a bespoke
OCT-specific histogram. Unlike [19, 22, 23, 62, 76],
among others, where descriptors were based on the
RNFL mean, the proposed method allows leveraging the
individual information provided by the RNFL thickness

at each point of the B-scan, by considering bags of sim-
ilar thicknesses values. Thus, let I be a raw circumpap-
illary image of dimensions M × N × d, and S its corre-
sponding RNFL mask segmented automatically by the
Heidelberg Spectralis OCT system, a vector of thick-
nesses T = {t1, t2, ..., t j, ..., tN} was computed, where t j

is the thickness value at the position j of the B-scan I,
with j = 1, 2, 3, ...,N. The proposed histogram-based
descriptor is able to quantify the RNFL information into
b = 4 bags depending on the thickness values. In this
way, each bag βb collects the number of thicknesses
t j whose value is ranged between Db and Db+1, being
D = [0, 15, 30, 45,∞] a vector of relevant distances op-
timized on the training images. Additionally, the min-
imum, maximum and average of the RNFL thickness,
besides the age of the patients, were also considered ac-
cording to the equations formulated in Fig. 2. Finally,
the hand-driven learning branch provides a feature vec-
tor F consisted of C = 8 RNFL-specific features, such
that Ωφ : I → F.

3.1.3. Combination module
Once automatic and hand-crafted features were ex-

tracted from their respective branches, a simple combi-
nation module was proposed to join the embedded in-
formation in a holistic map representation R composed
of C′ = 16 variables per learning instance, as observed
in Fig. 2. In particular, the feature volume G extracted
from the deep learning branch was mapped to a vector
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G′ by a Global Average Pooling (GAP) layer, accord-
ing to Equation 1. This operation computes a spatial
squeeze from H × W to H′ × W ′ that enables the con-
catenation between the features G and F coming from
the different branches. Thereby, the proposed hybrid en-
coder Ψφ learns the embedding representations R from
the input I as follows: R = Ψφ(I) = Γφ(I)⊕Ωφ(I), where
⊕ denotes a concatenation operation.

g′k =
1

H ×W

H∑
h=1

W∑
w=1

gk(h,w) (1)

3.1.4. Projection head module
In this paper, we instantiate a projection head net-

work Υφ that maps the representations R to an em-
bedding vector Z where the classification stage is ad-
dressed in a lower-dimensional space. The projection
head Υφ is comprised of a small multi-layer perceptron
(MLP) with one hidden layer non-linearly activated by
the ReLU function (see Fig. 2). The use of a projec-
tion head network is widely used in very recent state-
of-the-art techniques, such as contrastive learning [77–
79], to maximize the classification agreement. In this
paper, we project the representations of the latent space
via Z = Ψφ(R) to evidence that the new backbone Ψφ is
better than the previous feature extractors proposed in
[20, 41, 45]. According to the aforementioned studies
[77–79], the projection head network is then discarded
during the prototypical learning stage to measure the
distances from the representations R = Ψφ(I) to each
prototype. For comparison purposes, a softmax func-
tion with three neurons was defined in the last dense
layer to contrast a conventional classification approach
with the proposed prototypical frameworks.

As a summary of the detailed base encoder backbone,
we show a pipeline in Fig. 3 that collects the essential
information. Given an input B-scan I ∈ RM×N×d, with
M × N × d = 248 × 384 × 3 the dimensions of I, a
feature embedded map R ∈ RH′×W′×C′ is provided by the
encoder Ψφ : I → R. Then, the projection head module
Υφ maps R to a metric vector Z ∈ RU , Υφ : R → Z,
where U = 8 < C′ denotes a lower dimensional space
than the latent space R. At the end of the convolutional
network, a softmax-activated dense layer is applied to
address the classification stage.

3.2. Prototype-based learning strategies

Prototypical networks were born from the idea that
there exists an embedding space in which the features
from the same class cluster around a single latent group,

a.k.a prototype [66]. In this paper, we conduct an exper-
imental methodology to analyse the performance of two
different prototype-based solutions with respect to con-
ventional learning strategies for glaucoma grading. To
this end, the traditional approach was defined accord-
ing to the backbone architecture exposed in Fig. 3, i.e.
a base encoder network followed by a projection head
module with a softmax-activated function of three neu-
rons corresponding to healthy, early and advanced glau-
comatous classes. Concerning the prototype strategies,
we present below a comparison between two novel ap-
proaches -static and dynamic- that use the embedding
space R to determine the glaucoma severity.

3.2.1. Static prototypes
In this paper, we introduce the concept “static” to

reference the use of rigid prototypes extracted from an
encoder network Ψφ whose weights φ were pre-trained
in a previous stage through a conventional approach.
Thereby, the frozen weights (denoted by Θ) are inferred
to the base encoder model to extract the embedding rep-
resentations R from both training τ and validation ν sets.
Note that Rτ is used to obtain the prototypes and Rν to
find the nearest class prototype in the latent space.

A similar procedure based on measuring the simi-
larity of the latent features from different input data
has been applied on different state-of-the-art techniques,
such as contrastive learning [77–79] or content-based
image retrieval (CBIR) [80–82]. In contrastive learning
tasks, an encoder network followed by a projection head
is trained to differentiate between positive and negative
samples, being positive samples the augmented version
of a query (or samples with the same label in the case of
supervised contrastive [77]), and negative samples the
entire remainder of the batch. Contrarily, CBIR stud-
ies train convolutional autoencoders and extract the la-
tent space from the encoder structure to find relevant
images retrieved from a set of reference that shares sim-
ilar embedding features with the query image. Previ-
ous systems present some similarities with the proposed
static prototype approach, since all the methods train
an encoder network that is then frozen to face a second
classification stage. In the case of contrastive-learning
studies, the feature map extracted by the encoder archi-
tecture is used to predict the class of the query sample
via MLP, k-nearest neighbours (KNN) or inferred pro-
totypes, according to [77]. In contrast, CBIR studies
are intended to find the reference set samples that most
closely resemble the query image by measuring the sim-
ilarity of the embedded representations extracted by the
encoder structure. The proposed approach differs from
the previous ones in a critical point: the encoder net-
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Figure 3: Pipeline showing the backbone architecture composed of the base encoder Ψφ, the projection head network Υφ and the softmax function.

work is trained during the first stage for the same objec-
tive to be achieved in the second one, i.e. glaucoma
grading. Oppositely, contrastive-learning and CBIR-
based studies use backbones that were pre-trained for
a different task during the first stage.

Below, we detail the training of the proposed ap-
proach based on static prototypes, which is composed
of two (online and offline) stages, according to Fig. 4.

In the online stage, a conventional classification
pipeline was conducted to optimize the weights of the
proposed OCT-hybrid backbone by minimizing the cat-
egorical cross-entropy loss function L(yτ, ŷτ) in each
training epoch e = 1, 2, 3, ..., ε, as detailed in Algorithm
1. In the offline stage, the weights of the pre-trained en-
coder Ψφ were frozen (φ −→ Θ) and the projection head
Υφ and softmax modules were discarded to avoid the
non-linearity of the top model. The embedding repre-
sentations Eτ = {R1,R2, ...,Ri, ...,RPτ }, with Pτ the num-
ber of samples of the minority class in the training set
τ, were used to infer the rigid prototypes. In particular,
each ρc was calculated as the mean of the latent repre-
sentations Rτc

i = Ψφ(Ii), where Ii ∈ τc ⊂ τ denotes the
i-sample of the training set τ associated with the class c
(see Equation 2).

ρc =
1

Pτc

Pτc∑
i=1

Rτc
i (2)

During the prediction phase, a matrix of distances
δc,i was achieved by measuring the Euclidean distance
(Equation 3) between each prototype ρc and the embed-
ding representation Rν

i = Ψφ(Vi), where Vi ∈ ν corre-
sponds to the i-scan of the validation subset ν. From
here, a probability of belonging to each class was cal-
culated (Equation 4) to determine the predicted class ŷνi ,
as detailed in Algorithm 1.

δc,i =

√
(ρc − Rν

i )2 (3)

pi,c =
exp (−δc,i)∑
c′ exp (−δc′,i)

(4)

Algorithm 1: Static prototype-based strategy.

Data: Training τ = {(I1, yτ1), ..., (IPτ , yτPτ )} and
validation ν = {(V1, yν1), ..., (VPν , yνPν )} sets.

Results:
Online stage← Trained base encoder Ψφ ;
Offline stage← Inferred prototypes ρc ;
Prediction stage← Predicted labels ŷνi .

Algorithm:
Online stage:
φ← random;
for e← 1 to ε do

for i← 1 to Pτ do
Rτ

i ← Ψφ(Ii) ;
Zi ← Υφ(Rτ

i ) ;
ŷτi ← softmax(Zi) ;

L(yτ, ŷτ)← −
∑

i yτi log(ŷτi ) ;
Update φ using ∇φL ;

Offline stage:
for c← 1 to 3 do

ρc ←
1

Pτ
∑Pτ

i=1 ΨΘ(Ii) ;

Prediction phase:
for i← 1 to Pν do

Rν
i ← ΨΘ(Vi) ;

for c← 1 to 3 do
δi,c ←

√
(ρc − Rν

i )2 ;
pi,c ←

exp (−δi,c)∑
c′ exp (−δi,c′ )

;

ŷνi ← argmax(pi,c)

3.2.2. Dynamic prototypes

Inspired by [66], where prototypical neural net-
works (PNNs) were proposed for few-shot learning, we
present in this paper a PNN-based framework for grad-
ing glaucoma by exploiting the k-shot methodology.
The main difference with respect to the previous static
approach lies in the online stage since dynamic proto-
types are trained in an end-to-end manner, such that pro-
totypes are updated after each epoch e. In this way, the
base encoder network can be optimized according to la-
tent distances, instead of a conventional classification
top model, as observed in Fig. 5.
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Figure 4: Proposed static prototype-based learning strategy. A conventional approach is conducted in the online stage to optimize the encoder. In
the offline stage, the weights of the pre-trained backbone are inferred to extract a prototype ρc per class. In the prediction phase, the class of a
validation B-scan Vi is determined by measuring the latent distance between each prototype ρc and the embedding representations Rνi = Ψφ(Vi).

From here on, we will employ the terminology
(N-way, K-shot) used in the literature for few-shot
learning, where K is the number of labelled sam-
ples and N the number of classes in the training set
[66]. In the state-of-the-art studies based on proto-
typical networks [66, 83, 84], a labelled support set
S = {(s1, y1), ..., (si, yi), ..., (sK , yK )} and an unlabelled
query set Q = {q1, q2, ..., qi, ..., qU}, are considered to
train the PNN-based models in a few-shot scenario, be-
ing U the number of unlabelled samples selected from
the training set τ. Specifically, S is used to extract each
of N prototypes ρc, whereas Q is employed to find the
nearest class prototype for an embedded query point
RQi = Ψφ(qi). A negative log-probability loss is updated
according to the distance metrics from ρc and RQi .

The proposed dynamic prototype-based learning
strategy differs from the state of the art in multiple ways.
Unlike aforementioned studies [66, 83, 84], where au-
thors selected a specific number ofU = 5, 10 or 15 un-
labelled samples, depending on the database addressed,
in this study we made use ofU = P −K labelled query
samples to get the most out of the training set τ. Note
that we propose, for the first time, the use of a labelled
query set Q, giving rise to a novel Supervised Proto-

typical Neural Network for Glaucoma Grading (SPNN-
GG). This results in another difference concerning the
literature, since a supervised approach allows including
the ground truth label yQ in the loss function, so learning
proceeds by minimizing the categorical cross-entropy,
instead of a log-probability function. Also, as a novelty,
we move away from the few-shot setting by proposing
an optimal k−shot scenario in which K ∈ [1, P − U]
is optimized as an additional hyper-parameter, unlike in
the previous studies where K ∈ [1, 5].

The online training of the proposed dynamic
prototype-based approach is conducted in a supervised
end-to-end way, according to Fig. 5. It is important to
remark that the main difference between static and dy-
namic prototypes lies here since the static approach in-
fers rigid prototypes from a backbone trained by a pro-
jection head module, whereas the dynamic strategy up-
dates the prototypes during the training phase by opti-
mizing a backbone based on latent distances. Also note
that offline and prediction phases are addressed as in the
static approach, i.e. using the entire training set τ to
extract the prototypes ρc, as detailed in Algorithm 2.

From the training set τ containing Pτ
c samples for

each class c, a support set S = {(s1, yS1 ), ..., (sK , ySK )}
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Figure 5: Flowchart of the online stage corresponding to the dynamic prototype-based learning strategy. A support set S and a query set Q are
randomly selected from the training set τ to develop a supervised PNN. The hybrid OCT-based backbone Ψφ is used to extract the embedding
representations from both S, to determine the prototypes ρc, and Q, to map the latent representations from the query samples. At the end of the
training process, a softmax function is applied to predict the query label based on the latent distances δi,c.

and a query set Q = {(q1, yQ1 ), ..., (qU , yQU)}, with U =

P−K , are obtained after a randomization process at ev-
ery epoch e. The hybrid OCT-based backbone Ψφ was
used as the encoder network to extract the embedding
representations from the support si and query qi sam-
ples. Specifically, latent support set-coming features
ES = Ψφ(S) = {RS1 , ...,R

S
i , ...R

S

K
} are used to extract

each class-prototype ρc as the mean of the embedded
representations RSi = Ψφ(si). In contrast, query repre-
sentations EQ = Ψφ(Q) = {RQ1 , ...,R

Q
i , ...R

Q

U
} are mapped

in the latent space to find the closest prototype ρc, in
terms of Euclidean distance. Then, a softmax func-
tion is applied to determine the probability of belong-
ing to each class p(ŷQi = c|RQi ). During the backward-
propagation step, the embedding representations are re-
fined by updating the weights of the base encoder net-
work at every epoch, according to the categorical cross-
entropy loss function, denoted byL(yQ, ŷQ). In this way,
prototypes are optimized under the hypothesis that each
class can be described by just one subspace. There-
fore, learning progresses by minimizing the latent dis-
tances between RQc⊂τc

i and ρc, unlike in the static ap-
proach where the encoder was updated according to the
embedding representations Z = Υ(Ψ(Ii)) extracted from
the projection network.

4. Ablation experiments

4.1. Data sets

Two private databases coming from different sources
were used to develop and evaluate the predictive models
for glaucoma grading. Both data sets (Database 1 and
Database 2) contain high-resolution SD-OCT scans,
which were acquired from healthy, early and advanced-
glaucomatous patients with an axial resolution of 3-4

µm using the Heidelberg Spectralis OCT system. This
equipment provides circumpapillary B-scans centred on
the optical nerve head (ONH) of the retina throughout
a super-luminescence diode with an infrared beam of
an average wavelength of 870 nm and a bandwidth of
25 nm. In particular, the samples were extracted with a
resolution of 496 × 768 pixels.

Note that subjects with open-angle glaucoma
(POAG) were included in the study, whereas patients
suffering other ocular disorders, such as closed-angle
glaucoma or pseudoexfoliation syndrome were dis-
carded from both databases. Also, patients with media
opacity were excluded if the opacity disturbs the B-scan
OCT imaging critically. Thus, B-scans with a poor-
quality OCT image were discarded from the study. Two
different senior ophthalmologists (with more than 25
years of professional experience in clinical ophthalmol-
ogy) carried out the annotation of the databases. Specif-
ically, each expert manually labelled just one data set,
following the European guideline for Glaucoma diag-
nosis. The examination included several tests such as
Goldman applanation tonometry, gonioscopy, slit lamp
examination, standard automated perimetry and thick-
ness measurement of specific retinal layers of interest.
According to the clinical literature [64, 65], the mean
deviation (MD) score plays an essential role in the glau-
coma grading scale, such that the severity of the glau-
coma depends on the range in which the MD value is
found. Conforming to [64], MD >= −6dB is Early;
−6dB > MD ≥ −12dB is Moderate; −12dB > MD ≥
−20dB is Advanced and MD < −20dB is Severe. Since
our objective is contributing to the glaucoma grading
just from OCT images, without performing additional
time-consuming tests, we simplify the glaucoma stag-
ing scale by labelling as Advanced those glaucomatous
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Algorithm 2: Dynamic prototype-based learn-
ing strategy.

Data: Training τ = {(I1, yτ1), ..., (IPτ , yτPτ )} and
validation ν = {(V1, yν1), ..., (VPν , yνPν )} sets.

Results:
Online stage← Trained base encoder Ψφ ;
Offline stage← Refined prototypes ρc ;
Prediction stage← Predicted labels ŷνi .

Online stage:
φ← random;
for e← 1 to ε do

for i← 1 to K do
(si, ySi )← (Irandom(i), yτrandom(i)) ;
RSi ← Ψφ(si) ;

for i← 1 toU do
(qi, yQi )← (Irandom(i), yτrandom(i)) < S ;
RQi ← Ψφ(qi) ;
for c← 1 to N do

ρc ←
1
K

∑K
i=1 RSi ;

δi,c ←

√
(ρc − RQi )2;

pi,c ←
exp (−δi,c)∑

c′ exp (−δi,c′ )
;

ŷQi ← argmax(pi,c)

L(yQ, ŷQ)← −
∑

u yQi log(ŷQi ) ;
Update φ using ∇φL ;

Offline stage:
for c← 1 to N do

ρc ←
1

Pτ
∑Pτ

i=1 ΨΘ(Ii) ;

Prediction phase:
for i← 1 to Pν do

Rν
i ← ΨΘ(Vi) ;

for c← 1 to 3 do
δi,c ←

√
(ρc − Rν

i )2 ;
pi,c ←

exp (−δi,c)∑
c′ exp (−δi,c′ )

;

ŷνi ← argmax(pi,c) ;

samples with an MD < −6dB. Note that the proposed
system is not intended to serve as a definitive glaucoma
diagnosis, but as a diagnositc tool which allows guiding
the expert’s decision through approximate but reliable
OCT-based results. Based on the above analyses, all B-
scans were classified as healthy, early or advanced. In
Tables 1 and 2, we show more information about the
specifications of each data set.

It is important to note that, as claimed in [62], there
are no public glaucoma-labelled OCT databases that en-
able an objective comparison with our work. To the
best of the authors’ knowledge, Armed Forces Insti-

Table 1: Number of patients (pat.) and samples (samp.) in each
database grouped by categories, according to the experts’ annotation.

Healthy
(pat./samp.)

Early
(pat./samp.)

Advanced
(pat./samp.)

TOTAL
(pat./samp.)

Database 1 32 / 41 28 / 35 25 / 31 85 / 107
Database 2 26 / 49 24 / 37 21 / 26 71 / 112

TOTAL 58 / 90 52 / 72 46 / 57 156 / 219

Table 2: Additional information about the age and gender of the pa-
tients who compose each database.

Age Gender
Range µ ± σ Male Female

Database 1 [19-88] 60,45±16,54 46 (54,12%) 39 (45,88%)
Database 2 [30-90] 64,80±13,93 26 (36,62%) 45 (63,38%)

TOTAL [19-90] 62,44±15,51 72 (46,15%) 84 (53,85%)

tute of Ophthalmology (AFIO) data set [63] is the only
publicly available repository of ONH SD-OCT scans of
healthy and glaucomatous subjects. However, the dif-
ferences between those B-scans and ours make the di-
rect application of our algorithms impossible for mul-
tiple reasons: i) B-scans from AFIO data set present
manual annotations and highlighted structures of inter-
est. ii) OCT images have been pre-processed showing
an RGB colour mode in which cup-to-disk regions ap-
pears remarked. iii) AFIO database was acquired using
Topcon 3D OCT-1000 machines. iv) The experts’ an-
notations include healthy, glaucoma and suspect labels.
Differently, the databases used here contain the gray-
scale OCT samples extracted in raw by the Heidelberg
Spectralis OCT equipment, without any manual annota-
tion or pre-processing. In addition, our database is ex-
plicitly labelled into healthy, early and advanced glau-
coma classes, according to the visual field-based criteria
of the medical literature [64, 65].

Furthermore, another OCT database (OCTID) (with
raw ONH B-scans similar to ours) is publicly available
in [85]. However, OCTID data set includes Normal
(NO), Macular Hole (MH), Age-related Macular De-
generation (AMD), Central Serous Retinopathy (CSR)
and Diabetic Retinopathy (DR) image classes, but it
does not contemplate the glaucoma class.

Data partitioning. In this paper, we fuse Database
1 and Database 2 in order to increase the number of
samples from which to develop our machine learning
algorithms and to evidence the reliability of the predic-
tive models using two data sets coming from different
sources. Making use of the entire fused database, we
conducted a patient-level data partitioning procedure to
separate training and testing sets. Specifically, 1

6 of the
data was used to test the models, whereas the remainder
of the database was employed to train the algorithms.
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From the training set, we randomly split the data again
into training and validation subsets, according to Table
3, to optimise the models’ hyper-parameters and moni-
tor the over-fitting.

Table 3: Partition of the circumpapillary B-scans to develop and eval-
uate the predictive models.

Healthy Early Advanced
Training 60 48 41

Validation 15 12 10
Test 15 12 6

4.2. Backbone selection
Unlike most of the state-of-the-art studies which used

as a feature extractor either well-known architectures
such as ResNet or VGG [77, 84] or simpler CNNs
trained from scratch [66, 67], we pretend to exploit the
feature extraction stage to get the most out from the
circumpapillary OCT scans. For this reason, we pro-
pose a novel OCT-hybrid backbone inspired by oph-
thalmic clinical studies [74] and our previous glaucoma
detection-based experience applying hand-driven [20]
and deep learning algorithms [41, 45]. To address an
objective comparison with other state-of-the-art stud-
ies, we contrast in Tables 4 and 5 the validation re-
sults achieved by different architectures trained in a
multi-class scenario. Particularly, we compared four ap-
proaches, as detailed below.

1. RNFL features. A simple MLP was trained us-
ing the output of the hand-driven learning branch
Ωφ(I) as an input data, similarly to [20].

2. Fine-tuned VGG16. This very popular architec-
ture was used (freezing the three first convolutional
blocks) as a feature extractor followed by the same
MLP classifier as before, according to [45].

3. Fine-tuned RAGNet. An expanded version of the
previous approach was conducted by including
residual and attention modules in the feature ex-
traction architecture. This approach, correspond-
ing to the deep learning branch Γφ(I), was intro-
duced in our previous work [41].

4. OCT-hybrid network. This approach corresponds
to the end-to-end backbone Ψφ(I) exposed in Fig.
2, which proposes a combination of hand-crafted
and automatic features before the top model.

The comparison was handled by means of different
figures of merit, such as sensitivity (SN), specificity
(SP), positive predictive value (PPV), negative predic-
tive value (NPV), F-score (FS) and accuracy (ACC).

Notably, the backbone reporting the best performance
during the validation stage was selected as the base en-
coder network to address the next prototypical-based
learning strategy.

Training details. All the contrasting approaches
were implemented using Tensorflow 2.3.1 on Python
3.6. Experiments were conducted on a machine with
Intel(R) Core(TM) i7-9700 CPU @3.00GHz processor
and 16GB RAM. A single NVIDIA GeForce RTX 2080
having cuDNN 7.5 and a CUDA Toolkit 10.1 was used
to develop the deep learning algorithms. All models
were trained during 200 epochs using a learning rate of
0.0005 with a batch size of 16. Stochastic gradient de-
scent (SGD) optimizer was applied trying to minimize
the categorical cross-entropy (CCE) loss function at ev-
ery epoch. The rest of the architecture hyper-parameters
and input dimensions are shown in Fig. 2.

4.3. Prototype-based learning strategies

In this section, we report the validation performance
of the static and dynamic prototype-based methods in
comparison to the conventional multi-class approach. It
is important to note that the comparison was conducted
using the proposed OCT-hybrid backbone as a feature
extractor for all the scenarios. Following the organiza-
tion of the previous section, Tables 6 and 7 show the
comparison between the three involved learning strate-
gies during the validation phase.

Training details. The same hardware and software
systems as before were used to accomplish this section.
However, some differences in the dynamic prototypi-
cal approach are worth noting. Dimensions of the in-
put image must be downsized to 124 × 192 × 3 to face
the GPU memory constraints. Additionally, a decreased
learning rate of 0.001 allowed the convergence of the
model in 50 training epochs. A batch size of 16 sam-
ples was defined to minimize the CEE loss function us-
ing the SGD optimizer. Regarding the specific parame-
ters of the dynamic prototype-based strategy, the num-
ber ofK shots and the number ofU query samples were
determined after an optimization process, according to
Fig. 6. Specifically, K = 20 support samples were se-
lected to extract the prototypes ρc as the mean of the
embedding representations ES, whereas U = 21 query
samples were used to measure the Euclidean distance
between the latent features EQ and each ρc. Note that
P = 41 denotes the number of training samples of the
minority class (see Table 1). Also, other statistics and
distance metrics were considered during the optimiza-
tion of the models, as observed in Table 8. The rest of
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Figure 6: Models’ performance using K samples from each class c to
define the prototypes ρc and U = P − K query samples to measure
the embedding distances to minimize the loss function.

the hyper-parameters related to the dynamic prototypes
is detailed in Section 3.2.2.

5. Prediction results

5.1. Quantitative results
In this section, we show the quantitative results

achieved by the three learning strategies conducted dur-
ing the prediction of the test set. It is worth noting that
all the approaches contrasted here were addressed using
the proposed OCT-based hybrid backbone as a feature
extractor since it reported the best results in the vali-
dation phase. As before, we evaluate the models’ per-
formance both per class (Table 9) and in terms of aver-
age (Table 10), using different figures of merit. Addi-
tionally, in Fig. 7, we show the confusion matrix ob-
tained by the best approach, i.e. the dynamic prototype-
based model, to evidence the overall behaviour of the
proposed method when predicting new samples.

Also, to provide a more comprehensive interpretation
of the glaucoma grading scenario, we illustrate in Fig.
8 a 2D map corresponding to the latent space arranged
by the dynamic learning. In particular, the prototypes
(denoted by asterisks) were calculated from the train-
ing and validation sets, whereas spots and crosses make
reference to the embedding representations of the well
and miss-classified test data, respectively. In addition
to this, Euclidean distance-based probabilities reported
from the miss-classified samples are also detailed in Fig.
8 to manifest the confidence of the dynamic model when
it is wrong in the prediction.
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5.2. Qualitative results

Class activation maps (CAMs) [86] were computed
to remark the regions in which the proposed dynamic
prototypical network paid attention to predict the class
of the test samples. The reported heatmaps allow a
better understanding of the CNN-extracted features by
highlighting the most relevant information of the B-scan
for the predictions. These activated maps may provide
an additional interpretation of the results for glaucoma
grading depending on the patterns highlighted for each

12



Table 4: Backbone selection: Validation results per class achieved from different architectures in a multi-class scenario.
HEALTHY EARLY GLAUCOMA ADVANCED GLAUCOMA

RNFL

features [20]

Fine-tuned

VGG16 [45]

Fine-tuned

RAGNet [41]

OCT-hybrid

network

RNFL

features [20]

Fine-tuned

VGG16 [45]

Fine-tuned

RAGNet [41]

OCT-hybrid

network

RNFL

features [20]

Fine-tuned

VGG16 [45]

Fine-tuned

RAGNet [41]

OCT-hybrid

network

SN 1 1 0.9333 1 0.6667 0.5833 0.7500 0.7500 0.8000 0.9000 0.9000 0.9000
SP 0.8636 0.8636 0.9545 0.9091 0.9200 0.9600 0.9200 0.9600 0.9630 0.9259 0.9259 0.9630

PPV 0.8333 0.8333 0.9333 0.8824 0.8000 0.8750 0.8182 0.9000 0.8889 0.8182 0.8182 0.9000
NPV 1 1 0.9545 1 0.8519 0.8276 0.8846 0.8889 0.9286 0.9615 0.9615 0.9630
FS 0.9091 0.9091 0.9333 0.9375 0.7273 0.7000 0.7826 0.8182 0.8421 0.8571 0.8571 0.9000

ACC 0.9189 0.9189 0.9459 0.9459 0.8378 0.8378 0.8649 0.8919 0.9189 0.9189 0.9189 0.9459

Table 5: Backbone selection: Validation results from different multi-class approaches in terms of micro and macro-averages.
Micro-Average Macro-Average

RNFL

features [20]

Fine-tuned

VGG16 [45]

Fine-tuned

RAGNet [41]

OCT-hybrid

network

RNFL

features [20]

Fine-tuned

VGG16 [45]

Fine-tuned

RAGNet [41]

OCT-hybrid

network

SN 0.8378 0.8378 0.8649 0.8919 0.8222 0.8278 0.8611 0.8833
SP 0.9189 0.9189 0.9324 0.9459 0.9155 0.9165 0.9335 0.9440

PPV 0.8378 0.8378 0.8649 0.8919 0.8407 0.8422 0.8566 0.8941
NPV 0.9189 0.9189 0.9324 0.9459 0.9268 0.9297 0.9336 0.9506
FS 0.8378 0.8378 0.8649 0.8919 0.8262 0.8221 0.8577 0.8852

ACC 0.8919 0.8919 0.9099 0.9279 0.8919 0.8919 0.9099 0.9279

Table 6: Learning strategy: Validation results per class using the proposed OCT-hybrid backbone for glaucoma grading.
HEALTHY EARLY GLAUCOMA ADVANCED GLAUCOMA

Conventional

multi-class

Static

prototypes

Dynamic

prototypes

Conventional

multi-class

Static

prototypes

Dynamic

prototypes

Conventional

multi-class

Static

prototypes

Dynamic

prototypes

SN 1 1 1 0.7500 0.7500 0.8333 0.9000 0.8000 0.9000
SP 0.9091 0.9091 1 0.9600 0.9200 0.9600 0.9630 0.9630 0.9259

PPV 0.8824 0.8824 1 0.9000 0.8182 0.9091 0.9000 0.8889 0.8182

NPV 1 1 1 0.8889 0.8846 0.9231 0.9630 0.9286 0.9615

FS 0.9375 0.9375 1 0.8182 0.7826 0.8696 0.9000 0.8421 0.8571

ACC 0.9459 0.9459 1 0.8919 0.8649 0.9189 0.9459 0.9189 0.9189

Table 7: Learning strategy: Validation results in terms of micro and macro-averages using the proposed OCT-hybrid backbone.

Micro-Average Macro-Average
Conventional

multi-class

Static

prototypes

Dynamic

prototypes

Conventional

multi-class

Static

prototypes

Dynamic

prototypes

SN 0.8919 0.8649 0.9189 0.8833 0.8500 0.9111
SP 0.9459 0.9324 0.9595 0.9440 0.9307 0.9620

PPV 0.8919 0.8649 0.9189 0.8941 0.8631 0.9091
NPV 0.9459 0.9324 0.9595 0.9506 0.9377 0.9615
FS 0.8919 0.8649 0.9189 0.8852 0.8541 0.9089

ACC 0.9279 0.9099 0.9459 0.9279 0.9099 0.9459

Table 8: Validation accuracy reached by the dynamic prototypical approach using different statistics and distance metrics.

Distance Euclidean Cosine Manhattan Canberra Euclidean Cosine Manhattan Canberra

Statistic median median median median mean mean mean mean

Accuracy 0.9279 0.9279 0.9099 0.8559 0.9459 0.9099 0.9279 0.8739
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class. However, it should be mentioned that CAMs usu-
ally do not present a high precision at pixel-level since
the heatmaps are created from the last layers of the pro-
posed model, which output a down-sampled map from
the input image.

In Fig. 9, we show several examples of CAMs cor-
responding to correctly and wrongly predicted samples
to elucidate the relevant patterns found by the dynamic
prototypical network to address the B-scans prediction.
Specifically, we expose three well-classified heatmaps
for each class to demonstrate the criteria followed by
the proposed model to determine the predicted labels.
Also, we report in the red frame of Fig. 9 some ex-
amples of miss-classified B-scans to visually evidence
the reason why the model gets wrong in the prediction.
Note that rows and columns in the illustration represent
the predictions and labels, respectively.

6. Discussion

It should be noted that OCT B-scans contain informa-
tion too limited to provide a complex diagnosis based on
glaucoma grading. So, additional tests are usually car-
ried out to accomplish a more exhaustive and reliable
glaucoma grading diagnosis considering all the stages
of the disease. Currently, the OCT systems can provide
a result indicating if the B-scan is within normal limits,
borderline or outside normal limits, which is equivalent
to discern between healthy, suspect and glaucomatous
cases. At this point, our system has demonstrated to
provide a very high performance achieving an accuracy
of 100% and 96, 97% during the validation and testing
phases, respectively. However, with the proposed sys-
tem, we pretend to go beyond the binary classification of
healthy vs glaucoma by means of a prototypical frame-
work able to discern early from advanced glaucoma
only using OCT samples, which adds significant value
to the body of knowledge. Below, we discuss about
the different CNN configurations and learning strategies
carried out in this work for glaucoma grading.

6.1. About the ablation experiments

Backbone selection. One of the main novelties ad-
dressed in this paper lies in the proposed OCT-based
hybrid network, which combines hand-crafted and au-
tomatic features extracted from the input B-scans. In
order to elucidate the superiority of the proposed model
with respect to similar approaches, we raise a multi-
class glaucoma-grading scenario comparing different
methodologies. Note that a direct comparison with
other state-of-the-art studies was not possible because

of the lack of public repositories with annotations of dif-
ferent glaucoma severity levels, as claimed in [62]. For
that reason, in this paper, we contrasted the proposed
model with other own glaucoma-detection methods re-
cently published in [20, 41, 45]. It should be mentioned
that all the approaches were adapted to the multi-class
environment to provide a reliable comparison during the
validation stage, as detailed in Tables 4 and 5. Particu-
larly, from Table 4 we can observe that the fine-tuned
RAGNet model [41] introduces slight improvements as
compared with the traditional VGG16 architecture and
the hand-crafted RNFL features. The use of tailored
residual blocks and attention modules allows surpass-
ing the results for most of the metrics by providing more
distinctive feature maps. However, the proposed OCT-
based hybrid network outperforms the rest of the models
in the discrimination of all the classes. Focusing on the
healthy column, RNFL features, VGG16 architecture
and the proposed hybrid backbone report a more sen-
sible behaviour highlighting for the SN and NPV met-
rics, whereas RAGNet model showcases more specific
results by outstanding for the SP and PPV figures of
merit. More global metrics, such as FS and ACC show
higher values for RAGNet and OCT-hybrid approaches.
Contrarily, the models differ to a greater extent in the
discrimination of the glaucoma severity grades. Specif-
ically, the proposed OCT-hybrid network report the best
performance distinguishing between early and advanced
glaucomatous samples for all the measures. The results
detailed in Table 5 further strengthens our confidence in
the proposed OCT-hybrid network since it reports the
higher values for all figures of merit in terms of mi-
cro and macro-average. Table 5 is especially interesting
to compare the model’s performance since it gives an
idea of their overall precision. In such a table, we can
observe that hand-driven and basic deep learning ap-
proaches present a similar behaviour, whereas more so-
phisticated CNNs provide substantial performance im-
provements. Nevertheless, the combination of hand-
crafted RNFL-based features and refined CNN archi-
tectures yields the best multi-class model for glaucoma
grading, achieving an average accuracy of 0.9279.

Prototype-based learning strategy. The best ap-
proach reported during the validation phase was used as
a feature extractor to address the next stage correspond-
ing to the prototype-based learning strategy. So, ac-
cording to the previous statements, the proposed OCT-
hybrid network Ψφ was selected as the backbone of the
prototypical architectures. At this point, several con-
tributions are proposed in a novel framework for glau-
coma grading. The method based on static prototypes
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Table 9: Prediction stage: Test results per class reached by the different proposed learning strategies for glaucoma grading.
HEALTHY EARLY GLAUCOMA ADVANCED GLAUCOMA

Conventional
multi-class

Static
prototypes

Dynamic
prototypes

Conventional
multi-class

Static
prototypes

Dynamic
prototypes

Conventional
multi-class

Static
prototypes

Dynamic
prototypes

SN 0.9333 0.9333 0.9333 0.5000 0.4167 0.6667 1 0.8333 0.8333
SP 1 1 1 0.9524 0.9048 0.9048 0.7778 0.7407 0.8519

PPV 1 1 1 0.8571 0.7143 0.8000 0.5000 0.4167 0.5556
NPV 0.9474 0.9474 0.9474 0.7692 0.7308 0.8210 1 0.9524 0.9583
FS 0.9655 0.9655 0.9655 0.6316 0.5263 0.7273 0.6667 0.5556 0.6667

ACC 0.9697 0.9697 0.9697 0.7879 0.7273 0.8182 0.8182 0.7576 0.8485

Table 10: Prediction stage: Test results reached in terms of micro and macro-average by the different proposed learning strategies.
Micro-Average Macro-Average

Conventional
multi-class

Static
prototypes

Dynamic
prototypes

Conventional
multi-class

Static
prototypes

Dynamic
prototypes

SN 0.7879 0.7273 0.8182 0.8111 0.7278 0.8112
SP 0.8939 0.8636 0.9091 0.9101 0.8818 0.9189

PPV 0.7879 0.7273 0.8182 0.7852 0.7103 0.7857
NPV 0.8939 0.8636 0.9091 0.9055 0.8768 0.9106
FS 0.7879 0.7273 0.8182 0.7446 0.6825 0.7865

ACC 0.8586 0.8182 0.8788 0.8586 0.8182 0.8788
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Figure 9: CAMs showing the regions of interest in which the proposed prototypical-dynamic model pays attention to predict each class. Heatmaps
over the green background (a-c) correspond to well-classified images, whereas the red frame (d-f) represents the miss-classified samples.
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was conducted for the first time by inferring the weights
(φ → Θ) of class-based prediction networks, instead
of auto-encoders, as in the case of CBIR-based studies
[80–82], or architectures intended to discern between
positive and negative classes, as in the contrastive learn-
ing works [77–79]. Notwithstanding, the main nov-
elties related to the prototypical environment were in-
troduced in the dynamic approximation. As detailed
in Section 3.2.2, state-of-the-art studies usually made
use of K ∈ [1, 5] labelled images to extract the proto-
types and U = 5, 10 or 15 unlabelled query samples to
measure the latent distance to the prototypes during the
training of the models. Unlike them, in this paper, the
few-shot paradigm was redefined by dealing the K and
U = P − K variables as any other hyper-parameter to
be optimized in the validation phase. As another nov-
elty, we made use of labelled samples to build the query
set Q in order to make the most of all available infor-
mation about the B-scans for glaucoma grading. Our
hypothesis claimed that the use of more than K = 5
support images to extract the prototypes would provide
better results. However, it would be necessary to find
the optimal balance between the number of support and
query samples, because the data used to extract the pro-
totypes ρc is just as important as the data employed to
know how well the prototypes work. For that reason,
we show in Fig. 6 the categorical accuracy and the loss
value achieved by the dynamic prototypical model us-
ing K ∈ [1, P] samples, being P = 41 the total number
of the training samples of the minority class (see Table
3). As expected, the model’s performance using a few
K samples remains low and it improves as the num-
ber of support samples increases. However, the model
reaches the best in the middle of the plotting, and then,
the curve stabilizes or even worsens. This fact consol-
idates our hypothesis which holds the importance of a
similar splitting of the support and query samples to
train the models. In particular, the highest performance
is reached usingK = 20 shots andU = 21 query scans,
which reports a validation accuracy of 0.9459 and a loss
value of 0.3209, according to Fig. 6.

In Tables 6 and 7, both static and dynamic prototype-
based approaches are compared with a conventional
multi-class system based on the OCT-hybrid network
trained for glaucoma grading. The classification of
healthy samples in Table 6 deserves special attention
since the dynamic prototypical model perfectly works
for detecting the non-glaucomatous data, achieving the
100% of performance for all figures of merit. The dis-
crimination of the middle class, i.e. early class, makes
the outperforming of the dynamic prototypical network
evident. However, the conventional multi-class strategy

exceeds the results for advanced glaucoma cases in all
the metrics. Similar results can be appreciated in Ta-
ble 7, which provides a comparison of the models’ be-
haviour in terms of micro and macro-average. Specif-
ically, the dynamic prototype reaches the best results
with values higher than 0.90 for all the figures of merit.
It should be highlighted that the baseline approach out-
performs the strategy based on static prototypes, which
reveals that end-to-end methodologies provide more ro-
bust models, as expected.

Furthermore, we carried out an empirical exploration
of different distance metrics and statistical parameters
to maximize the classification agreement in the la-
tent space between the prototypes and the embedding
query representations. Particularly, statistics based on
mean and median operations were considered to ex-
tract the prototypes from the support samples, whereas
Euclidean, Cosine, Manhattan and Canberra distances
were subject to study to determine the class of the query
representations according to the closest prototype in the
latent space. As detailed in Table 8, the highest valida-
tion accuracy was reached using the Euclidean distance
and the mean statistic, which reported a validation ac-
curacy of 0.9459.

6.2. About the prediction results

Quantitative results. In this section, we compare the
performance of the different proposed learning strate-
gies during the prediction of the test set. As in the val-
idation phase, results per class and in terms of micro
and macro-average are reported in Tables 9 and 10, re-
spectively. According to the previous section, the dis-
crimination between healthy and glaucoma classes is
successfully accomplished by achieving results higher
than 0.93 in the prediction of healthy samples for all
figures of merit (see Table 9). It is remarkable that the
three contrasted models provide the same effectiveness
in distinguishing the healthy class. However, the glau-
coma grading results make clear the differences between
the models. In particular, the dynamic prototypical net-
work shows better SN and NPV results, whereas the
baseline approach out stands for SP and PPV metrics
in the early glaucoma detection. The opposite happens
in the advanced glaucoma case since the conventional
approach reveals a more sensitive behaviour (higher re-
call and NPV) and the dynamic prototypical model pro-
vides more specific results (better specificity and pre-
cision). Note that F-score (FS) and Accuracy (ACC)
metrics reach higher values using the dynamic proto-
typical strategy. Additionally, the results in Table 10
are directly in line with those reported in the validation
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phase, since the dynamic prototypical method is con-
solidated as the best model, followed by the conven-
tional multi-class approach and leaving the static pro-
totypical network in the last position. From here, we
can conclude that end-to-end trained systems are more
compelling and allow providing more reliable and ro-
bust models.

From the confusion matrix in Fig. 7, promising re-
sults are evidenced for glaucoma detection since the dy-
namic prototype strategy almost perfectly distinguishes
glaucomatous from healthy samples. Only a specific
healthy B-scan was wrongly predicted as a sample with
early glaucoma. However, the proposed model makes
more mistakes predicting the early class since it some-
times confuses early and advanced patterns of the dis-
ease. Nonetheless, in the case of the advanced glaucoma
class, the prototypical network only disagrees with the
expert ophthalmologist once, in which a severe glauco-
matous scan was classified as early glaucoma.

In order to visualise the results of the confusion ma-
trix in a more interpretable scenario, we illustrated the
latent space environment arranged by the proposed dy-
namic prototypical network in Fig. 8. The TSNE tech-
nique allows showing the distribution of the embedding
test representations on a 2D map, as well as the proto-
types extracted from the training samples. As appreci-
ated in Fig. 8, three well-differentiated sub-spaces arise
on the 2D map locating the healthy and advanced repre-
sentations in the opposite corners and the prototypes of
early and advanced classes very close, as expected. Ad-
ditionally, early glaucoma-related features are mapped
in the middle of the plotting, which matches with the
order of the glaucoma severity scale. In addition, the
prediction probabilities for the miss-classified samples
are detailed in Fig. 8 to demonstrate the coherence of
the proposed model using the embedding features for
glaucoma grading. For example, the nicknamed repre-
sentations 1 − 4 correspond to early glaucomatous sam-
ples which were miss-classified as advanced glaucoma
items with a level of confidence less than 0.8 in some
cases. Regarding the tagged representation 5, the dy-
namic prototypical network wrongly predicted an early
B-scan as an advanced sample, but with serious diffi-
culties since the prediction probabilities are 0.53 and
0.39 for early and advanced classes, respectively. Some-
thing similar happens for the nicknamed point 6, which
was miss-classified as an early glaucoma sample when
it was actually healthy. In spite of this, the embedding
representation 6 is located near the decision boundary
between early and healthy classes, which manifests the
robustness of the model despite being wrong.

Qualitative results. The findings from the Class Ac-
tivation Maps (CAMs) reported in Fig. 9 keep con-
sistency with the clinical interpretation provided by
the ophthalmologists, who claim that a thinning of the
RNFL structure is usually associated with glaucoma-
tous patterns, whereas a thickening of the RNFL de-
notes cues of healthy samples [16, 17]. As appreciated
in Fig. 9, the proposed model pays special attention to
specific regions of the RNFL depending on the reported
prediction, according to the outcomes found in our pre-
vious work [45].

In the green frame of Fig. 9, three random exam-
ples are illustrated to demonstrate that there is a re-
peating pattern for each of the classes. Well-classified
samples corresponding to the healthy class (Fig. 9.
(a)) show heatmaps with highlighted pixels in regions
characterised by a thickening of the RNFL. Oppositely,
well-classified early and advanced glaucomatous sam-
ples (Fig. 9. (b), (c)) provide apparent cues of RNFL de-
terioration, which is visible in the heatmaps highlight-
ing regions where a thinning of the RNFL is evident. As
observed, the degradation level of the RNFL thickness
is accentuated the greater the severity of the disease.

The wrongly predicted CAMs can be also appreci-
ated in the red frame of Fig. 9. Particularly, the exam-
ple showed in Fig. 9 (d) shows a healthy B-scan miss-
classified as an early glaucoma sample. Nevertheless,
the model’s decision shows to be coherent with the es-
tablished patterns, since the B-scan presents several ar-
eas in which the RNFL appears slightly thinned. Some-
thing similar happens with the remainder of cases of the
red frame. Specifically, the example in Fig. 9 (e) is
striking since the RNFL seems to be widely deteriorated
throughout the entire B-scan, so the model associates
the image with an advanced glaucomatous sample. The
opposite occurs in Fig. 9 (f), where an advanced glau-
coma OCT image is predicted with the early label. In
this case, the B-scan shows several regions in which the
RNFL thickness agrees more with early than advanced
glaucoma patterns. Therefore, from the red frame of
Fig. 9, it is possible to elucidate the complexity in the
diagnosis of the different grades of glaucoma, even for
expert ophthalmologists, who often disagree. It is im-
portant to remember at this point that, in this paper, we
only made use of raw circumpapillary OCT images to
build the predictive models. So, in future research lines,
it would be interesting to include additional data in or-
der to provide the model with the necessary information
that clinicians take into account to determine the sever-
ity of the glaucoma disease.
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7. Conclusion

In this paper, we have proposed several artificial in-
telligence solutions for glaucoma grading using raw cir-
cumpapillay OCT images. A new base encoder network
has been developed improving the multi-class method-
ologies addressed to date for glaucoma severity detec-
tion. The proposed model introduces a residual convo-
lutional block with tailored kernel sizes to get the most
out from the B-scans and an attention module able to
refine the features of the latent space to maximize the
classification agreement. Besides, the encoder network
uses, for the first time, a combination of hand-crafted
and automatic features giving rise to an OCT-based hy-
brid model which adds substantial improvements in the
final prediction. As a novelty, this architecture was em-
ployed as the backbone of a novel framework based on
prototypical learning, in which the limits of the few-shot
paradigm have been redefined for an optimal glaucoma
grading procedure. This innovative approach carried
out in an end-to-end manner has surpassed the multi-
class baseline and it has reported promising results for
both glaucoma detection and glaucoma grading scenar-
ios, achieving testing accuracy of 0.9697 and 0.8788, re-
spectively. In future research lines, the efforts should be
focused on improving the discrimination of the differ-
ent grades of glaucoma severity by including additional
information outside the SD-OCT images.
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