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Abstract: Humans respond cognitively and emotionally to the built environment. The modern pos-
sibility of recording the neural activity of subjects during exposure to environmental situations, us-
ing neuroscientific techniques and virtual reality, provides a promising framework for future design 
and studies of the built environment. The discipline derived is termed “neuroarchitecture”. Given 
neuroarchitecture’s transdisciplinary nature, it progresses needs to be reviewed in a contextualised 
way, together with its precursor approaches. The present article presents a scoping review, which 
maps out the broad areas on which the new discipline is based. The limitations, controversies, ben-
efits, impact on the professional sectors involved, and potential of neuroarchitecture and its precur-
sors’ approaches are critically addressed. 
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1. Introduction 
Architecture has various effects on people. Studies have been undertaken into archi-

tectural aspects most open to objectification such as those related to structure, construc-
tion, and installations of buildings. There exists a broad background with standards and 
norms, that supports these aspects [1]. However, these are not the only factors involved. 
The environment also has effects on humans at the cognitive level (understood as the pro-
cessing and appraisal of perceived information) and the emotional level (understood as 
the adaptive reactions to the perceived information), which both operate through closely 
interrelated systems [2]. For example, it has been found that noise and a lack of vegetation 
can generate stress [3,4], and stress associated with the built environment can even nega-
tively affect life expectancy [5]. Studies on specific spaces have shown a variety of cogni-
tive-emotional impacts, such as poorer patient recoveries in hospital rooms that lack re-
laxing external views of greenery [6]. Thus, the architecture has cognitive-emotional re-
percussions. 

“Designerly ways of knowing” (distinct from the best-known scientific forms of 
knowledge [7]) has been, traditionally, the main way to address the cognitive-emotional 
dimension of architecture [8]. Through this way, which offers a great economy of means, 
architects have explored and exploited some of the perceptual foundations of the experi-
ence of space. However, it is particularly linked to subjective issues in decision-making 
[9], whose use may result in biases [10]. This can lead to inadequate results in responding 
to the users’ cognitive-emotional needs. Although many approaches have addressed this 
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dimension of architecture, they have not overcome some of these intrinsic limitations and, 
in part, because of this, have not been adopted as practical design tools. 

Neuroscience studies the nervous system from different areas, some of which are 
promising in this respect [11,12]. At a general level, the application of neuroscience to 
architecture is often termed “neuroarchitecture” [13]. Although bidirectional human-
space influence, and its impact on neural activity [14], is not new, the modern recording 
of experimental subjects’ neural activity during exposure to physical and simulated envi-
ronmental situations provides a framework for future design and studies. For example, 
neuroarchitecture has allowed researchers to study some design variables in-depth, which 
reduce the stress, previously mentioned, in hospital spaces [15]. Accordingly, the cogni-
tive-emotional effects of architecture have been addressed through different approaches 
and, more recently, through neuroscience. This novel, complex transdisciplinary nature 
of neuroarchitecture make it important to review its progress. However, although reviews 
have been undertaken of the application of neuroscience to other arts, such as dance [16] 
to aesthetics [17] and to architectural aesthetics [18], and more recently to compile findings 
on the effects of architecture, as measured by neurophysiological recordings [19–22], the 
authors’ found no previous study that reviews the application of neuroscience to archi-
tecture (sometimes referred to as “built space”) to study its cognitive-emotional dimen-
sion in a holistic and contextualised way (for which it is necessary to incorporate its pre-
cursor approaches, in a complementary way for the vision of some authors in this respect 
[23]). The objective of this article is to present a scoping review of neuroarchitecture and 
its precursor approaches. This type of literature review is aimed at mapping the broad 
areas in which a discipline is based. 

In this sense, it is worth highlighting the shared ground between architecture, art, 
and aesthetics, which means that the results of the latter two may be, in some way, trans-
ferable to the former (for example, much of what has been studied on colour or geometry). 
Tackling this type of review requires a broad and interrelated perspective, which is char-
acteristic of scoping reviews [24]. This is especially useful in the case of disciplines that 
are complex [25] and have not previously been reviewed at this level, like neuroarchitec-
ture. 

To address this broad objective, the following sub-objectives were set: (a) to provide 
a global vision of related scientific production, showing the trends of the different ap-
proaches in terms of type and date of publication, (b) to expose the need to investigate the 
impact of architecture on people, (c) to synthesise the main precursor approaches of neu-
roarchitecture to study the cognitive-emotional dimension of architecture, (d) to overview 
the progress of tools and methods in neuroscience and virtual reality, on which the new 
discipline is based, (e) define the state of-the-art application of neuroscience to the field of 
art and aesthetics, due to its similarity with architecture, and (f) to describe the main con-
text, lines of research, and specific results of the application of neuroscience to architecture. 
In addition, the current status of the discipline is discussed. Therefore, a literature review 
was conducted. 

2. Materials and Methods 
Literature reviews examine articles to provide further knowledge about topics [26,27]. 

There are various types. The present work was tackled by means of a scoping review [28]. 
This strategy aligns with alternatives to present a broad perspective on complex issues 
involving heterogeneous sources [29]. In addition, this leads to highly explanatory articles 
[30] that update professionals from different fields [31]. These updates of the state-of-the-
art applications are essential to support the development of the neuroarchitecture disci-
pline. Overall, preventative measures were taken to avoid biases, using a rigorous and 
transparent protocol [32]. Denyer and Tranfield’s proposals [33] were used to structure 
the methodology: (1) formulation of objectives, (2) locating studies, (3) selection of studies, 
(4) analysis and synthesis, and (5) the presentation of the results. All the phases are de-
tailed (Figure 1). The objectives of the study are described in the “Introduction” section. 
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The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 
guidelines [34] for systematic reviews were followed for the location and selection of the 
studies. 

The studies were located through searches of various sources. First, the studies were 
found in publishers’ electronic databases (Avery index to architectural periodicals, Cog-
prints, Elsevier, Emerald, IEEE, NDLTD, PsycINFO, PubMed/Medline, Springer, Taylor 
& Francis, Urbadoc, and Wiley) and repositories (Dialnet, SciELO, Google Scholar). Sec-
ond, other reference lists exist, but they contain only redundant information, including 
content already provided by the first lists searched: Academy of Neuroscience for Archi-
tecture (https://www.anfarch.org/research/recommended-reading), Neuroscience+Archi-
tecture (http://dilab.uos.ac.kr/neuroarch/), and International Network for Neuroaesthetics 
(https://neuroaesthetics.net/books, and https://neuroaesthetics.net/papers). To keep the 
data updated, all searches were carried out four times between 28 February 2012 and 19 
July 2019 (see “location of studies” in Figure 1). The same search terms and criteria were 
used throughout. It is worth highlighting some aspects. Regarding terminology, due to 
architecture’s artistic and aesthetic impacts, the following concepts were considered: (ar-
chitecture * OR spa * OR urban * OR “town planning”) AND (neuroscien * OR percept * 
OR emoti * OR cogniti * OR affect *) OR neuro?architectur *; where “*” denotes truncation 
and “?” any character. Three criteria were stablished: language, publication category, and 
study type. The language criterion was that the search was to be conducted in English, 
Spanish, German, and Italian. This involved repeating the process with translations of the 
various terms. The publication-type criterion was three-fold. The most useful sources for 
literature reviews are usually peer-reviewed journals and conference papers [35]. Refer-
ence books were added to help address sub-objectives a, b, and c. It should be noted that, 
within these types of publications, no discard criteria were considered for indications of 
publisher quality. Thus, the suitability of references for this review was assessed inde-
pendently throughout the selection process detailed below. The third criterion was that 
the studies had to be human-based. Given that much neuroscientific research is animal-
based, this represented a significant restriction. It should be noted that, due to the tem-
poral diversity of the approaches involved in sub-objective c, filtering by date of publica-
tion was not applied. The bibliographic references of the works retrieved were also re-
viewed. Therefore, these references were not localised using the above terms and lan-
guage criteria. The saturation point was assumed to have been reached when most of the 
references were found to be redundant. 

The selection process followed the bibliographic search. This consisted of four se-
quential actions: (1) elimination of duplicates, using Excel (http://www.microsoft.com/ex-
cel) and Mendeley (http://www.mendeley.com) software, (2) screening to evaluate rele-
vance of the titles, and to make the final decision on inclusion, (3) abstract evaluation, and 
(4) full-text evaluation. Regarding the latter action, it should be noted that the criterion of 
“not appropriate for the review’s objective” refers to information that is irrelevant or was 
not considered to be of quality judging by its overall content (discarding, among other 
references, a number of bachelor’s or master’s degree final projects), but was not ade-
quately filtered at the abstract stage. The criterion of “not original data” refers to infor-
mation that is redundant, or for which more representative information has been found 
in another article by the same authors (Figure 1). All the actions were centralised, to avoid 
mismatches in such a comprehensive reference base. The sequence made it possible to 
eliminate the references that did not strictly contribute to achieving the review’s objectives. 
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Figure 1. Expository and methodological structure, the PRISMA flow diagram, and its methods. 
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Subsequently, the information selected was analysed and synthesised. Several meth-
ods are available [36]. The content analysis synthesis framework was selected due to its 
ability to interpret content [37] and adapt to the heterogeneous nature of reviews [38]. 
Two approaches were followed. The first is to categorise and group the information we 
undertook as a “conventional content analysis”. The second is to recalculate and compare 
the information we undertook as a “summative content analysis”. The conventional con-
tent analysis was undertaken following Reference [39], which identified relevant catego-
ries. The summative content analysis was structured in two phases. The first is through 
compiling the neurophysiological and design aspects, and the second is by grouping these 
aspects. This latter analysis resulted in summary tables. Collecting the effects of different 
design variables can be useful for different objectives within the design and study of the 
cognitive-emotional dimension of the architecture. For example, in decision-making prior 
to experimental development (to consider variables that may influence the human re-
sponse, and, among other actions, to choose the appropriate sample), to guide the analysis 
(to bring forward brain areas on which to focus data processing, among other actions), 
and even directly in design (given that some of these questions can be understood as de-
sign guidelines). A qualitative analysis software, Atlas.ti (https://atlasti.com), was used 
due to the support it offers to reviews [40]. Three researchers, who are specialists in archi-
tecture, behavioural sciences, and neuroscience, independently carried out analyses. The 
varied profiles of the researchers helped address the heterogeneous nature of the refer-
ences and reduce the effect of possible professional deformation. The analyses were 
shared and discussed until consensus was reached. This gives greater reliability to the 
findings [41,42]. The content obtained from the analyses, which was focused on meeting 
the sub-objectives, was organised into appropriate sections. 

3. Results 
This section synthesises the proposed sub-objectives. 

3.1. Classification of References and Their Descriptive Analysis 
The process identified 612 references that fulfilled the search criteria. A total of 

327,058 were originally identified, with 289,146 from electronic databases, 37,635 from re-
positories, and 278 from reference lists (Table 1). 

Of the 205,462 references remaining after duplicates were removed, only 520 were 
included after a full-text search. In addition, 92 references were added by following a re-
view of the reference bibliography. Of the 612 references, 130 are books, 31 are book chap-
ters, 380 are journal papers, 55 are conference papers, 6 are posters, and 10 are of other 
natures. Figure 2 presents the proportions chronologically. 

In terms of focus, 141 references of the 612 references explicitly examine the applica-
tion of neuroscience to architecture. The remaining 471 focus on the precursor approaches 
to the cognitive-emotional study of architectural space. Two aspects are remarkable about 
the neuroscience in architecture approach references. First, more references might have 
been expected, but this can be explained by the relatively recent emergence of the topic. 
Most were published after 2000 and the trend seems to indicate an increase in the next few 
years. The second aspect focused on the high volume of recently published books. Re-
garding the publication dates, only first editions were considered. In addition to refer-
ences that explicitly address the issue, the others were considered relevant because they 
mentioned, or addressed topics related to, the review’s sub-objectives. 
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Table 1. Number of references identified in each source. 

Source Type Source Number of References 

Database 
(N = 289.145) 

Springer 259,121 
NDLTD 10,962 
PubMed 5609 
Elsevier 3438 

Taylor & Francis 3209 
IEEE 2416 

Avery 1949 
Wiley 1523 

Emerald 453 
Reference Lists 278 

PsvcINFO 178 
Cogprints 9 

Repositories 
(N = 37.635) 

Google Scholar 36,249 
Dialnet 711 
ScieLo 675 

Reference lists 
(N = 278) 

Academy of Neuroscience for Architecture 69 
Neuroscience + Architecture 41 

International Network for Neuroaesthetics 168 
 Total 327,058 

The information in the references was categorised following the previously men-
tioned methodology. Each reference was able to satisfy more than one category. The cat-
egories and sub-categories are shown in Table 2. This organisation serves as a structure 
for the rest of the results section (sub-objectives b to f). In this sense, Figure 3 provides a 
map of the general contents of this article. 

Figure 4 provides temporal information about the sub-category references relating to 
approaches of the cognitive-emotional dimension of architecture. The following should 
be noted: (1) the different approaches that have addressed the human-space relationship 
have enjoyed moments of greater popularity, and (2) neuroscience was applied to archi-
tecture later than to art and aesthetics. Both aspects suggest that including all the sub-
categories helps address the issues that motivate this review. 

 
Figure 2. Number of references included, based on type and publication date. 
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Table 2. Categories and sub-categories linked to the references. 

Category Sub-Category 
1. The impact of architecture on human beings and di-
rectly associated research 

 

2. Base approaches to the cognitive-emotional dimension 
of architecture 

2a Geometry 
2b1 Space phenomenology  
2b2 Geographical experience 
2c1 Philosophy 
2c2 Environmental psychology 
2c3 Evidence-based design 

3. New architectural study and practise tools 

3a Neuroscience 
3b Virtual reality 
3c Combined neuroscientific and virtual reality technolo-
gies 

4. The cognitive-emotional dimension of architecture 
through neuro-aesthetics  4a Neuroscience and psychology in art and aesthetics 

5. Neuroscience in architecture  

 
Figure 3. Expository structure and key-concepts map of the paper. 
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Figure 4. Number of references included, grouped by the categorisation of the approaches to the cognitive-emotional 
dimension, and date of publication. 

3.2. Holistic Framework of the Issue 
This issue comprises various topics. Addressing it requires a holistic approach. The 

expository sequence follows the structure shown in Table 2. 

3.2.1. The Impact of Architecture on Human Beings and Directly Associated Research 
The influence of architecture on human beings that acts of spatial planning have led 

to the current built space [43], which is our largest artifact [44,45]. Beyond its utilitarian 
character, architecture has complementary cognitive-emotional impacts [46]. Architecture 
can both elicit brain activation and modulate genetic function [47]. Consequently, changes 
in the environment have important impacts [48]. Its physiological and social effects should 
be emphasised. At the physiological level, the consequences for human development, per-
formance, and stress are illustrative. Regarding development, a balanced environment can 
improve creativity [49] and cognitive function [50]. In fact, poor environmental stimula-
tion affects brain development [51]. Environmental effects are not limited to growth stages. 
The environmental stimulation provoked by classroom design can improve students’ per-
formance by using cold colours [52] or smaller spaces. As to stress, some environmental 
elements such as noise or the absence of vegetation have been shown to have negative 
consequences [3,53]. Among these impacts are poorer patient recovery [54] and shorter 
life expectancy [5]. On the other hand, in line with the concept of a “healing environment” 
[55], various studies have underlined the curative benefits of architecture [56]. At the so-
cial level, it has been found that, for example, the environment can promote collectivism 
[57], attract candidates for posts in organisations [58], and improve citizens’ sense of be-
longing [59] and behaviour [60]. It should be noted that the impact of environmental ef-
fects depends on the user’s sensitivity [61], and non-architectural elements may also have 
effects [62]. 

Architects have been aware of this impact [63] and that, when designing architecture, 
experience is designed [64]. As Aalto noted, humanising architecture involves “a func-
tionalism much larger than the merely technical” [65]. “When I enter a space, the space 
enters me and transforms me” [66]. These statements make it clear that addressing the 
cognitive-emotional state of the users is a transcendental function of architecture [67,68]. 
Despite this, the aspects most likely to be objectified have been extensively studied, and 
the cognitive-emotional dimension has been underexplored [69,70]. 
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The fundamental limitation of this research is that the architectural design process is 
very complex [71] because the myriad of design solutions (the possible configurations of 
all design variables) makes it impossible to test them all. In addition, the problems that 
the design solutions try to resolve are diverse and vary over time (e.g., the individuals’ 
needs from their houses can vary as they age). Although there has been extensive research 
into the built environment, which indicates that a certain level of analysis is possible, ar-
chitectural design is infrequently, scientifically approached. Hence, the cognitive-emo-
tional dimension of architecture has formed only a small part of the formative content [72], 
and the implementation of the design has been mostly based on an amalgam of practices 
and motivations specific to the architectural project that are part of the ”designerly ways 
of knowing” [7]. 

With this as the main way of approaching the cognitive-emotional dimension of ar-
chitecture, more of the objectives of architectural design have shifted to more tangible and 
easily quantifiable issues, such as those closely related to the constructive processes of 
buildings. This has been pointed out from different perspectives: “Architecture and the 
modern cities that have been built tend to be inhumane” [73]. Have we turned our space 
into an economic-cosmetic product that ignores our primitive codes [74]? The importance 
of the built environment cannot be underestimated. “Any future construction must be 
preceded by a profound study of the relationships between spaces and feelings” [75]. In 
this sense, new tools that show the future of neuroarchitecture have been incorporated 
into the traditional architectural spectrum [76]. 

3.2.2. Base Approaches to the Cognitive-Emotional Dimension of Architecture 
Architectural space has been the focus of thinking and research at the cognitive-emo-

tional level. The concept has been addressed at different times. Therefore, knowledge of 
these bases allows us to contextualise current developments in the application of neuro-
science to architecture and to understand the context of current practice [23]. This section 
exposes the base approaches organized as follows: (1) geometry, (2) phenomenology of 
space and geographical experience, and (3) philosophy, environmental psychology, and 
evidence-based design. This classification acknowledges the relationships between the 
base approaches. 
Geometric Approach 

Although users might not experience the exact dimensions of proportions, they will 
feel the underlying harmony [77]. Architects have worked with geometric proportions to 
address the cognitive-emotional dimension of architecture. Thus, the geometric approach 
is a valid starting point from which to understand how architects work and establish 
bridges that can lead to the development of design tools [71]. 

The geometric connection between the human body and architecture has historically 
been addressed by two fundamental approaches, known as theomorphism and anthropo-
morphism. Theomorphism has existed from classical Greek architecture [78]. A well-
known example is the Parthenon, fundamentally based on geometric proportions. The 
cognitive-emotional effect of the Parthenon’s geometric proportions is similar to that 
sought centuries later by architects, such as Palladio [79] and Le Corbusier [80], through 
a series of geometric-mathematical rules. Anthropomorphism has a long tradition. Exam-
ples are found in the classical Roman world, such as temples based on the symmetry of 
the human body [81], and, more recently, in the Renaissance and the Baroque periods, 
where human bodies appeared in some buildings [82]. However, this architecture-body 
metaphor has been subjected to different efforts to mathematise it, which shows that these 
two approaches are not mutually exclusive. For example, Alberti’s attempts to humanise 
space based on the geometry of the human body [83,84]. This line was exploited with Ra-
tionalism, as opposed to speaking architecture [85], which led to works by Klint [86], Ba-
taille’s anthropomorphic architecture [87], the organic architecture of Zevi [88], the close 
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association with daily human needs of Smithson [89], and Niemeyer’s [90] and Mollino’s 
designs directed toward life actions [91]. 

Many of these geometric concepts are recurring. On the one hand, geometrical rela-
tionships found to be aesthetic, such as the nine-square pattern [92], or the golden section, 
have been validated experimentally [93], with the latter even using virtual reality [94] and 
neuroscientific bases [95]. On the other hand, the new attempts to quantify geometric 
properties to capture the cognitive-emotional dimension of architecture are worthy of 
mention. Among these are isovist analysis, the volume of space visible from a given point 
in space [96], and the application of artificial intelligence to distinguish formal categories, 
based on different features [97]. The recent mathematical-geometric analysis of architec-
tural images is also noteworthy [98–100], through its use in architectural spaces of spatial 
metrics, such as edge density (number of straight and curved edges), fractal dimension 
(visual complexity), entropy (randomness), and colour metrics, such as hue (the dominant 
wavelength), saturation (the intensity of colour), and brightness (the darkness of colour). 
Hence, the geometric approach has not been abandoned. 
The Phenomenology of Space and Geographical Experience Approach 

Phenomenology is the study and description of phenomena as experienced through 
the senses in the first person. It is based on phenomena capable of being felt [101]. Archi-
tects have found affinities with this approach, likely because it is related to intuition. 

One of the first studies into subjective space was Husserl’s exposition of his ideas 
about the external world [102]. Heidegger continued with these influences in “Being and 
Time” [103], addressing the spatiality of humans and the concept of “Stimmung” (or state 
of mind), which is fundamental for understanding subjective space: “being impregnated 
by an environment”. Some of the first explicit formulations were made by References 
[104,105], focusing on vital space. Some of the advances were compiled in “Situation” 
[106]. Later, the concepts of hodological space and distance including the way in which 
people evaluate the routes with the preference being based on subjective and objective 
influences, were introduced by Lewin [107], and developed by Sartre [108]. Bachelard [109] 
developed his space poetics, a concept widely embraced in the theory of architecture, that 
seeks to explain the human being’s relationship with the world through poetic images. 
Rasmussen [110] presented a phenomenological vision of architecture, which exemplified 
the syncretism between phenomenology and architecture. Bollnow [111] presented con-
cepts involved in subjective space: “[...] Unlike mathematical space, subjective space is 
characterised by its lack of homogeneity”. This is because subjective space derives from 
the human’s relationship with space. This has led, even, to suggestions that objective 
space does not exist because it is always perceived [112]. These concepts (objective space 
and subjective space) have been embraced by many authors in different approaches to the 
cognitive-emotional dimension of architecture. At the same time, the concepts have been 
developed in geographical experience [113], and have practical applications in urban 
planning [114]. Lynch work [115], which shows the influence of environmental psychol-
ogy on the phenomenology of space, is representative of its beginnings [116]. More re-
cently, Pallasmaa, influenced by previous authors, examined the phenomenology of space 
in architecture [117,118] that claimed architecture takes account of the human biological 
dimension. Pallasmaa’s line here is shared with Holl and Pérez-Gómez [119,120]. The phe-
nomenology of space has more recently gained momentum under new approaches based 
on the concept of atmospheres [121,122]: quasi-things, without discrete or visible limits, 
that exist because of our emotional encounter with the environment [123,124]. Thus, the 
phenomenology of space and geographical experience have not been neglected. 

The Philosophy, Environmental Psychology, and Evidence-Based Design Approach 
Psychology addresses the behaviours and mental processes involved in its experi-

ence [125]. Its focus on space is “environmental psychology” [126,127]. Environmental 
psychology takes phenomenology as one of its substrates [128]. Hence, it is sometimes 
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difficult to distinguish them nor is it easy to discern the philosophical origins of environ-
mental psychology [129]. 

It is illustrative to consider philosophical milestones. Burke [130] presented an influ-
ential philosophical exposition on aesthetics, theorising about beauty through psycho-
physiological concepts. Burke’s ideas attracted the attention of Kant, who identified space 
and time as the mental structure of things that we know [131]. A series of works contrib-
uted to the expansion of psychology. Among these are Zeising, who combined geometry 
and psychology [132], art, physiology, and emotion linked by Friedrich Theodor Vischer 
[133] and Robert Vischer [134] (who coined the term “einfühlung”: aesthetic empathy, the 
process through which humans project their emotions onto objects), Fechner, who com-
bined physiology and psychology [135], Wundt [136] and Stumpf [137], who combined 
psychophysiology and philosophy. Later, Wertheimer, Koffka, and Köhler (students of 
Stumpf) established gestalt psychology [138]. Gestalt psychology established principles, 
or laws, [139] about the organisation of scenes (Table 3). Many design professionals, in-
cluding architects, have often embraced these principles. It is noteworthy that Koffka [140] 
studied the organisation of the visual field, and Köhler developed the concept of “isomor-
phism” including the correlation between experience and neural activity [141] and expe-
rience as a sensory sum [142]. At this historic point, the connections between psychology 
and neuroscience were evident. Although subsequent studies may have rejected some of 
these findings, some have been accepted and the works themselves have been recognised 
as meritorious [143]. 

Table 3. Compilation of some gestalt principles. 

Principle Trend 
Totality The whole is different from the sum (the perception of entities depends on their context) 
Dialectic Establishing entities separate from their background 
Contrast The entity is better perceived if there is marked contrast with its background 

Hierarchy The greater the importance of an entity, the more hierarchical its parts are 
Birkhoff Entities with multiple axes are more positively perceived 

Symmetry To perceive features as symmetrical, around a centre point 
Multi-stability Perceiving different entities from the same ambiguous experience 

Reification To assign more information to a perception than is contained in the base stimuli  
Completion To perceive forms as closed when they are not  

Closure To perceive closed forms as better  
Continuity To integrate elements of entities if they are aligned  

Good Gestalt To integrate elements of entities if they form a regular pattern 
Invariance To recognise entities, regardless of transformations 
Proximity Group entities based on their proximity 
Similarity Group entities based on their similarities  

Experience To categorise stimuli based on previous experiences  

One of the advantages of environmental psychology for addressing the cognitive-
emotional dimension of architecture is its evaluation instruments. Semantic differential is 
among the most used [144]. This is based on the idea that a concept can acquire meaning 
when a sign (word) provokes the response associated with what it represents, which sug-
gests the existence of an underlying structure. The models of Küller [145–147] and Russell 
& Mehrabian [148], which described the affective-emotional states elicited by the experi-
ence of space, should be highlighted. One of its first applications was in architecture [149]. 
More recently, it has been used to quantify the relative importance of different design 
variables [150]. In this respect, it should be noted that some variables, such as the presence 
of vegetation and illumination, have been examined, but others, such as those focused on 
spatial geometry, have been less explored (probably, in part, because of the experimental 
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difficulty involved in modifying them in a controlled manner). Semantic differential has 
also been used in the context of Kansei engineering, which is a product development 
method that translates the underlying structure into configurations of variables [151]. It 
has been applied in different contexts, including the architectural [152–154] and urban 
planning [153,155]. 

A more practical application of the tools available in environmental psychology is an 
evidence-based design (EBD) approach: “the process of basing decisions about the built 
environment on credible research” [156]. Its origins can be found in the medical field, as 
an extension of evidence-based medicine [157] to architectural design [158]. Illustrative 
are the plan analyses [159] and post-occupancy evaluations [160]. Since Ulrich demon-
strated the influence of the environment on patient recovery [6], it has been widely ap-
plied in healthcare spaces [161–166]. One of the reasons that EBD is so widely used is that 
it is available for any organisation [167]. Various aspects have been studied. For example, 
some aspects include reducing pain [168] and stress [169], improving rest [170], spatial 
orientation [171], wandering [172], privacy and security [173], social cohesion [174], over-
all well-being and satisfaction [175], and the design of children-tailored environments 
[176]. Table 4 compiles effects generated by different design variables, according to differ-
ent studies both in environmental psychology and EBD. 

Table 4. Effects generated by variables or aspects of architectural design frequently studied in the environmental psychol-
ogy and EBD approach. 

Design Variable Effect 

Ceiling height 
High ceilings inspire freedom, low ceilings calm [177]. 
High ceilings generate greater creativity and feelings of comfort [178]. 
Ceiling height positively affects wayfinding [179] 

Presence of  
vegetation 

Vegetation reduces stress and anxiety [4]. 
In parks, pleasure increases based on tree density, and arousal with weed density [180]. 
Biophilia hypothesis: preference for natural forms [181,182]. 
Attention restoration theory: natural environments are restorative. Their restorative characteristics 
are “fascination,” “being away,” “coherence,” and “compatibility” [183]. 

Complexity 
Preference for moderate levels of complexity, similar to a savannah environment [184]. 
Prospect-refuge: preference for natural and built environments, which offer visual control of the 
environment and places to hide [185–187]. 

Illumination 

Colour temperature and illuminance are interrelated with comfort [188]. 
Natural light reduces hospital stays [189]. 
Light and form are interrelated: walls and ceilings influence the perception of brightness. A room 
appears larger when it receives more indirect light [190]. 
Mood valence and cognitive performance alter based on light parameters: colour temperature 
with a less negative effect on mood, improved cognitive performance, the combination of colour 
temperature, and illuminance with better evaluation in mood, improved cognitive performance 
[191]. 
Emotional states affect the perception of brightness [192]. 

Colour 

Extracted at an early stage of visual processing [193] 
Wide variety of effects on aesthetic preferences [194]. 
Hue and saturation are related to the emotional state [195]. 
Warm tones have higher arousal values, and colder tones are lower [196]. 

Use The use to which a space is put influences its psychological evaluation [197]. 

Coherence 
In natural settings, the coherence of a setting with wooden furniture is significantly greater than a 
setting with metal furniture, but significantly less than a setting without furniture [198]. 
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3.2.3. New Tools in Architectural Research and Practice 
The base approaches, in general, have two limitations: (1) the validity of the selected 

stimuli, and (2) the applicability of the evaluations. Regarding the stimuli, although rep-
resentations may be valid [199], they are limited. For example, photos and videos, fre-
quently used, offer little interactivity. This reduces virtual immersion [200] and impover-
ishes the experience. When environmental simulation differs from reality, the results can 
be distorted. Moreover, these stimuli do not allow environmental parameters to be con-
trolled. Regarding evaluations, self-reports are prone to bias [201], as they record only the 
conscious aspects of human responses. This is important, given that most cognitive and 
emotional processes occur at the unconscious level [202]. Taking these points into account, 
the results must be contextualised. 

Regarding new approaches to the cognitive-emotional dimension of architecture, we 
try to overcome these limitations. New research tools provide: (1) artificial stimuli that are 
more similar to physical, real stimuli (in the represented spaces), and (2) new, more objec-
tive evaluations of cognitive-emotional responses. Virtual reality (VR) is frequently used 
to provide stimuli. VR simulates environments in a realistic, immersive, and interactive 
way [203] under controlled laboratory conditions [204]. As for evaluation, neuroscience 
and its related technologies allow researchers to record and interpret human behavioural, 
physiological, and neurological reactions [205], providing high levels of objectivity [206] 
and continuous monitoring [207,208]. Although neuroscientific techniques have been 
available for decades, their application is currently expanding. 

Neuroscience 
Neuroscience focuses on the brain and nervous system [209]. On the basis that nor-

mal human brains are very similar, neuroscience has provided insights into the function-
ing of the nervous system [210,211]. Resorting to the brain is starting from the root [212]. 
Neuroscience has different areas of expertise [213]. This has allowed its results, method-
ologies, and tools to also have an implication on issues directly related to other disciplines. 
For example, cognitive neuroscience, behavioural neuroscience, neurophysiological neu-
roscience, and sensory neuroscience shed light on perception in general [214] and on space 
in particular [215]. Given neuroscience’s applicability to architecture [216], the discipline 
can contribute to quantifying architecture’s impact on humans [217,218]. Thus, designs 
that contribute to their users’ quality of life can be produced [219,220]. 

However, human nervous system studies have had few avenues to explore human 
brain function. They have generally been limited to examining patients with neural inju-
ries or suffering from neurodegenerative diseases [221]. Studies into the effects of neu-
ronal injuries on art production have followed this approach [222]. For example, it has 
been found that frontotemporal dementia changes musical taste [223], that damage to the 
amygdala impairs the identification of sad music [224], and that damage to one hemi-
sphere causes spatial neglect on the opposite side in drawings [225–227]. Paradoxically, 
neuronal injuries can sometimes improve artistic skills [228–230]. Due to the paucity of 
this form of study, they have sometimes been considered “informative anecdotes” [17]. 
The clearest conclusions have only been able to be drawn after the joint analysis of cases 
[231]. 

Neuroimaging techniques open new paths. Based on the non-invasive recording of 
brain responses [232,233], they allow observation of the responses of healthy individuals 
under controlled conditions. From their first applications to art, studies have made sub-
stantial progress [234,235]. These techniques are essential in the exploration of the neural 
processes involved in art generation and appreciation. Various tools are used to obtain 
the recordings [236] from the central (CNS), the autonomic (ANS), and the somatic (SNS) 
nervous systems. 

The CNS is made up of the brain and the spinal cord. The tools most commonly used 
to study CNS functions in living humans are functional magnetic resonance imaging 
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(fMRI), electroencephalography (EEG), and magnetoencephalography (MEG). fMRI 
measures neuronal activity indirectly by detecting changes in magnetic properties related 
to blood flow [237]. Although its temporal resolution is poor, fMRI yields better spatial 
resolution and deep structure identification than other methods. fMRI has been used to 
study aspects such as memory [238]. EEG measures electric field fluctuations due to the 
ionic currents generated by neuronal activity in the brain, mainly the cortical areas be-
cause they are the most superficial [239]. The analysis of the recordings generally involves 
the classification of power spectral densities within defined frequency bands, on the basis 
that the brain is made up of different networks that operate at its frequency, and the rela-
tionships between these networks [240]. The high temporal resolution of EEG allows the 
analysis of stereotyped fluctuations generated by discrete stimuli [241]. EEG has been 
used to study, for example, mental workload [242]. In contrast, MEG measures the mag-
netic fields generated by the ionic current [243]. Although its infrastructure has drawbacks 
(MEG equipment is not wearable or portable), the skull and scalp distort the magnetic 
fields less than the electric. This advantage makes MEG a powerful tool for exploring the 
functions of deeper cellular structures, such as the hippocampal’s role in cognition [244]. 
In parallel, it is possible to stimulate brain areas using transcranial magnetic stimulation 
(TMS), which is a technique used in various fields [245]. 

The ANS, which is part of the peripheral nervous system, controls involuntary ac-
tions. The tools most commonly used to study ANS function monitor electrodermal activ-
ity (EDA, called Galvanic Skin Response, or GSR), heart rate variability (HRV), and pu-
pillometry. EDA measures variations in electrodermal properties, particularly electrical 
conductivity [246]. Sudomotor activity is related to sympathetic nervous system activity 
[247], so it is appropriate for tracking arousal [248]. EDA has been used to study attention 
[249]. HRV measures the variation in time between heartbeats [250]. HRV measurements 
are generally grouped into time-domain and frequency-domain with both having clinical 
and cognitive-emotional significance [251]. It has been used to study issues such as stress 
[252]. Pupillometry is the measurement of the diameter of the pupil of the eye [253]. Alt-
hough the pupil diameter is directly affected by a light level, it has also been related to 
arousal [254] and cognitive load [255]. While ANS activity has been considered insuffi-
cient to study the nuances of emotion [256], it has more recently been favoured [257]. 

The SNS is the part of the peripheral nervous system associated with voluntary 
movement. Eye tracking and electromyography (EMG) are commonly used tools. Eye 
tracking is the measure of gaze movement [258]. Eye movements, to an extent, identify 
the focus of our attention (voluntary and involuntary), and are influenced by cognitive-
emotional states [259]. Various metrics are used to measure eye movements, based on the 
parametrization of the movements [260]. For example, eye tracking has been used to study 
engagement [261]. EMG measures the electrical activity of the muscles [262]. To measure 
facial expressions related to emotion [263], recordings are usually made of the corrugator 
supercilii [264] and the zygomaticus major [265], which are muscles strongly influenced 
by emotional valence [266]. Thus, EMG has been frequently used to study basic emotions 
[267]. There is, in addition, automatic image-based facial expression recognition (facial 
coding). Some architectural studies have applied physical eye tracking [268–270] and eye 
tracking simulated by software [271] and facial coding [272]. 

Given the complexity of neural activity, these tools are insufficient to fully explain it. 
However, they offer information about its bases and are compatible with other ap-
proaches. They make a contribution that, in architecture, recalls the optimism that Framp-
ton attributed to the technique to “replace the devalued motives [...] of our environment 
and turn it into an authentic place” [273]. 

Virtual Reality 
Environmental simulations are representations of actual environments [274]. There 

are different types [275]. VR generates interactive real-time computer representations that 
replace the visual information normally provided by the physical world and create the 
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feeling of “being there” [276]. It is possible, though seldom done, to create virtual repre-
sentations using other sensory channels. This type of stimulation is especially interesting. 
For example, head transfer function (a response to how a sound emitted from a point is 
received after the sound arrives at the listener) is involved in how we perceive physical 
and virtual environments [277]. Hapticity plays an important role in the supramodal ex-
perience of architecture [278], and smell has important cognitive-emotional effects in cer-
tain situations, such as stress reduction [15]. 

Various devices are used to reproduce VR formats. It is common to classify them 
according to immersion: the degree to which the hardware isolates the user from the phys-
ical world [279]. Thus, there are non-immersive devices, such as computer monitors, semi-
immersive devices, such as the cave automatic virtual environment (CAVE), and fully-
immersive devices, such as head-mounted displays (HMDs). Greater immersion gener-
ates a greater sense of presence, that is, the user’s perceptual illusion of non-mediation 
[280,281]. Greater presence also involves the allocation of more brain resources for cogni-
tive/motor control [282]. Although non-immersive devices inherently offer the advantage 
of collaborative viewing [283], the majority of current interests focus on the other two 
types of device and HMDs are now within reach in terms of usability and affordability 
[284]. This increasing popularisation has contributed to VR being used in other fields. 

In architecture, VR has given rise to an explosion of applications [285]. VR allows us 
to modify variables in the same space in isolation and record human interaction with the 
environment, quickly and at low cost [286]. VR, thus, is an optimal tool for evaluating 
human responses to architecture [287] at both behavioural and neurophysiological levels 
[288,289] and even its cartographic representation [290]. For example, it has been used to 
study relationships between experience and space variables [291], facilitate design deci-
sion-making [292], and assess accessibility [293,294] and orientation inside buildings [295], 
including in emergency situations [296]. Thus, VR provides knowledge beyond that pro-
vided by the physical world. 

The interactivity inherent in VR gives rise to a fundamental aspect that should be 
addressed: navigation. Two components of navigation are usually discussed: wayfinding 
and travel [297]. Wayfinding is the cognitive process of establishing a route [298,299]. It 
has been suggested that wayfinding performance in virtual environments is poorer than 
in physical environments [300,301]. The travel component, related to the task of moving 
from one point to another, has been found to be strongly affected by the navigation met-
aphor used to perform the navigation. Many navigation metaphors, classified as physical 
or artificial, are available. Physical metaphors are varied. For example, room-scale based 
metaphors, such as real walking inside a physical space, is the most naturalistic metaphor 
but is highly limited by the physical tracked area [302]. Motion-based metaphors, such as 
walking-in-place, is a pseudo-naturalistic metaphor where the user performs virtual loco-
motion, while remaining stationary (e.g., moving the hands), to navigate [303], or redi-
rected walking, known as a metaphor where users perceive they are walking while they 
are unknowingly being manipulated by the virtual display, which allows navigation in 
an environment larger than the physical tracked area [304]. Artificial metaphors facilitate 
direct movements using joysticks, keyboards, or similar devices [305]. Among these are 
teleportation-based metaphors, which allow users instantaneous movement to a selected 
point [306]. There is no consensus as to which is the most appropriate [307]. Since naviga-
tion can radically condition space perception and, therefore, subsequent human responses, 
it is a key aspect that needs to be considered. 

However, VR does have some problems. These are generally of a technical nature, 
such as the previously discussed navigation [308,309], level of detail [310], and negative 
symptoms and effects [311]. In architecture, an important limitation is that, although VR 
can be combined with auditory and tactile stimulation [312], the richness of the experience 
is limited [313]. A simulation will always be a simulation [314], an abstraction of a complex 
reality [315], and, thus, VR cannot reproduce physical environments [316]. Therefore, 
studies that employ VR must be validated in physical environments [317–319]. Despite 
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these drawbacks, synthetic environments have been shown to elicit behavioural responses 
similar to physical environments [320] and VR has its uses in various fields [321] and, in 
particular, in architecture. It is a tool for architects and cognitive scientists interested in 
spatial perception and cognition. 
Combined Neuroscientific and Virtual Reality Technologies 

Neuroscience and VR can be combined [322]. This combination allows researchers to 
develop virtual environments and record the neurophysiological and behavioural re-
sponses of experimental subjects [323–328]. It has been suggested that this combination is 
more rigorous than research in physical settings using self-reports [329]. This is attractive 
for neuropsychological research [330] and architecture [331]. Thus, combined VR/neuro-
science techniques are increasingly being used to examine the psychological [332] and 
neural bases of different aspects of the human-space relationship [333]. The techniques 
are being used in visuomotor [334] and spatial learning [335], evaluations of cognitive 
rehabilitation [336], assessments of social situations [337], training in simulated environ-
ments [338], quantification of sense of presence [339], and studies exploring the 
neurophysiological foundations of cognitive-emotional states, such as arousal [340–343], 
stress [344–347], and fear [348,349]. The combined approach allows us to evaluate the 
cognitive-emotional influence of architecture from a new perspective [350]. 

3.2.4. The Cognitive-Emotional Dimension of Architecture Measured through Neuro-
Aesthetics 

Neuroscientific and virtual reality technologies have been extensively used in exper-
iments in the related fields of art and aesthetics. They have provided a very valuable 
source of results and methodologies. The discipline derived from applying neuroscience 
to aesthetics has been called “neuro-aesthetics”. Neuro-aesthetic research is an example 
of how technologies can contribute to the study of art [351,352] and, since architecture 
shares lines of action with art and aesthetics, understanding the most illustrative innova-
tions that have taken place in art and aesthetics represents an important new knowledge 
source for architecture [353]. However, although a certain degree of extrapolation could 
be presumed, it should be noted that the current state of development of neuroarchitec-
ture does not yet make it possible to determine to what extent extrapolation is possible. 
Below, we discuss some landmarks that have been considered of special importance and 
affinity with architecture, considering contributions from different artistic contexts and, 
therefore, sensory modalities. 

Psychology has developed various levels of analysis over the last century [354]. Some 
of these analytical levels have focused on the “objective” and “subjective” aspects that 
influence the aesthetic experience [93]. 

Among the “objective” aspects related to the characteristics of objects are: (1) sym-
metry, (2) centre, (3) complexity, (4) order, (5) proportion, (6) colour, (7) context, and (8) 
processing fluency. Table 5 presents some effects and, where appropriate, related neuro-
physiological activity (RNA) and their Brede Database WOROI (a hierarchically struc-
tured directory of brain structures) codes. Many of these objective aspects have been ap-
proached intuitively, from different artistic disciplines, but applying a psychological ap-
proach provides new knowledge that can be of interest both to artists and researchers. For 
example, symmetry, which has been used frequently from early times in some architec-
tural trends and styles, has been associated with faster cognitive processing of stimuli, but 
also with a certain aesthetic rigidity. Other less studied aspects are typicity [355] and se-
mantic content, as opposed to formal qualities [356] and style [357]. Many of these aspects 
are grouped in Ramachandran and Hirstein’s [358] theory of aesthetic experience. This 
conceptualises eight principles: peak shift effect, isolating single clues, perceptual group-
ing, contrast, perceptual problem solving, generic viewpoint, metaphor, and symmetry. 
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Table 5. Effects generated by the “objective” aspects frequently studied in psychology applied to art. The table incorpo-
rates some points about the neuronal activities involved (the nomenclature of the sources is followed, and WOROI codes 
are added). 

Objective Aspect Effect/Related Neurophysiological Activity 
(RNA) 

Appreciation WOROI 

Symmetry 

Symmetry and asymmetry can evoke emotional 
states [359]. 

Between both there is a wide spec-
trum of compositions [360]. 

 

General preference for symmetry [361]. 
In graphic patterns [362].  

In faces [363,364].  
Traditionally linked to beauty [365].  

Various artistic currents have used this [358]. 
A certain tendency to break it to avoid 

rigidity [366].  

Detected rapidly in different circumstances [367]. 
Including in art [368].  

May be due to a cognitive propensity 
to process [369]. 

 

RNA: sustained posterior activity, spontaneously 
during its analysis [370]. 

 21 

Centre 
The geometric centre of a visual work has special 

importance [371]. 

The “colorimetric barycentre” of a 
painting corresponds closely to its ge-

ometric centre [372]. 
 

Colour 

The colour of light has various influences at neuro-
physiological and behavioural levels [373]. 

 
 

RNA: Prefrontal cortex activity is related to col-
oured objects [374]. 

22 

Complexity 

Has great weight in aesthetic judgement [375].   
An aspect that lacks uniqueness [376], a part of 

other variables. 
Has been combined with aspects such 

as symmetry [369]. 
 

Preference for moderate levels of complexity 
[377,378]. 

Its effects depend on the level of ad-
aptation of the observer [379]. 

 

Preference in general for low fractal dimensions, 
between 1.3 and 1.5 [380], and for medium-high in 

architecture [381]. 
Affects EDA recording [382].  

Order 

Can improve the reading of a complex pattern and, 
therefore, its aesthetic evaluation, but a lack of 
complexity evokes monotony, and complexity 

without order evokes chaos [166]. 

Some current architectural works are 
proof of this imbalance, this being one 
of the reasons for the increase in writ-

ten explanations [165]. 

 

Pattern recognition as a factor with a 
high impact on natural selection [383]. 

 

Visual brain understood as a pattern-
recognition device [384]. 

 

Proportion Certain ratios, such as the golden section, generate 
greater preference [93]. 

  

Context Important when making general perceptual judg-
ments [385,386]. 

And when making aesthetic judge-
ments in particular [387,388]. 

 

The representation of the context of 
an object in terms of its relationships 

to other objects or through a statistical 
summary of the scene [389]. 
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A rapid affective precognitive assess-
ment of the environment is under-

taken, based on elements of the scene 
[390]. 

 

RNA: memory subsystems may be altered by con-
text [374].   

RNA: the para-hippocampal cortex participates in 
contextual associations [374].  65 

RNA: the retro-splenial cortex participates in con-
textual associations [391].  310 

Processing  
fluency 

Clear images are processed more easily [358]. 

Contributes to making images more 
preferred [392,393].  

However, to distinguish certain basic 
scenes (such as indoor vs. outdoor), 

very crude information might be suf-
ficient [394]. 

 

Ambiguity is an inherent aspect of the process, re-
lates to openness to multiple interpretations [395].   

RNA: The left fusiform gyrus seems to participate 
more in semantic processing, and the right fusi-

form gyrus participates in visual recognition [396]. 
 133, 134 

Among the “subjective” aspects, related to personal factors, are: (1) emotional state, 
(2) familiarity and novelty, (3) pre-classification, and (4) others of a social nature. Table 6 
summarises some effects. These aspects complement the objective aspects, and play an 
important role [397]. Subjective aspects have been addressed using different evaluation 
instruments, which highlights the variety of psychological tools available for application 
to art. For example, tools such as fMRI and EEG have been recently used to study the 
neuro-behavioural effects of familiarity and novelty of stimuli, whose impacts on aesthetic 
judgement were already known at the psychometric level. In fact, neuroscience is advanc-
ing rapidly [398]. Since the first event-related potentials in aesthetic judgment studies 
were published in 2000, a large number focused on aesthetics in painting have appeared 
[399]. Later, specific aspects of painting and other forms of artistic expression were ad-
dressed [400]. A growing trend exists that is revealing the neurophysiological bases of the 
(previously discussed) objective and subjective aspects that influence the aesthetic expe-
rience. 

Table 6. Effects generated by the “subjective” aspects frequently studied by psychology applied to art. The table incorpo-
rates some points about the neuronal activities involved (the nomenclature of the sources is followed, and WOROI codes 
are added). 

Subjective Aspect Neurobehavioural Effect/Related 
Neurophysiological Activity (RNA) Sub-Effect/Appreciation WOROI 

Emotional state 
Affects aesthetic judgement [401]. 

Influences the way a work of art is 
processed [402]. 

 

Tendency to memorise and associate 
information consistent with the emo-

tional state of the subject [403]. 
 

Affects judgement of distance    
Familiarity—Nov-

elty 
Affects aesthetic judgement [377,404–406]. Objects are processed more efficiently 

in a familiar context [407,408]. 
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For a work to be attractive it must be 
located in a specific range of the “nov-

elty/familiarity’’ ratio [366]. 
 

RNA: the frontal lobe and the right hemi-
sphere participate in novelty processing [366]  18, 707 

RNA: blood-oxygen-dependent level is re-
duced by repeating an image [409]. 

  

RNA: the gamma band exhibits greater activ-
ity in the inferior-temporal, superior-parietal, 
and frontal brain areas when viewing familiar 

than non-familiar objects [410]. 

 16, 168, 18 

RNA: the gamma band exhibits a stronger in-
crease after 250 ms of identification of familiar 

objects [411].  

Related to increased activity in the 
gamma band in the occipital [412] and 
frontal areas, when observing ambigu-

ous objects [413]. 

26, 18 

Pre-classification 

Previous considerations affect aesthetic judg-
ment. 

Knowing that a work of art is a for-
gery alters both familiarity and aes-

thetic judgements [414]. 
 

RNA: neural activity can be modulated by ex-
ternal influences, as with the semantic label-

ling of scents [415]. 
  

Social: Social Sta-
tus 

Demonstrations of dominance or wealth influ-
ence aesthetic judgment [416]. 

Related to activation of the reward-re-
lated brain areas [417]. 

 

RNA: reward circuitry most activated by ob-
jects associated with wealth or social domi-

nance [418]. 
  

RNA: Knowing the economic value of a prod-
uct increases preference and activation of the 

medial OFC [419]. 
 698 

Social: Culture 

Modulates visual perceptual processing [420]. Affects even basic visual aspects, such 
as colour [421]. 

 

Related to artistic sensitivity [422]. 

Can be developed with expertise, 
something for which humans are per-
haps conditioned, given that a self-re-
warding experience is elicited when a 

work is recognised [423]. 

 

Significant in aesthetic judgement 
[424,425].  

Behavioural differences in terms of 
how experts and non-experts experi-

ence art [426]. 
 

Related to style-based processing 
[427].  

Architectural eye tracking-based stud-
ies [428].  

RNA: expertise generates different event-re-
lated potentials in aesthetic judgment [429].   

RNA: expertise generates different eye-move-
ment patterns and visual memory [430].   
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RNA: expertise generates changes in memory 
and perception-related structures [431]. 

  

 

RNA: expertise helps to execute creative pro-
cesses faster (considering that these involve a 

decrease in average arousal measured through 
EDA and EMG).  

  

Distinctions are normally made between the neurophysiological foundations of at-
tention, judgement, and emotion [432]. Table 7 summarises some effects. Taking attention, 
it has been found that visual processing occurs both in parallel and hierarchically [433], as 
more complex issues are gradually solved [434]. In terms of artistic judgement, there are 
two stages known as a general impression of works at around 300 ms and a deeper aes-
thetic evaluation at around 600 ms [435]. Regarding emotion, aesthetics is a complex ex-
perience that involves different affective-emotional processes that activate reward-related 
brain regions [436]. Reward is understood as the positive value attributed to something 
[437]. Hemispheric specialisation has also received attention [438]. Some studies have 
seemed to suggest that there are asymmetric functions in the brain hemispheres, and 
while they might be activated by the same stimuli, they react in different ways [439]. Thus, 
while two parts of the brain might be activated by the same stimuli, only one would be 
the final controller. However, aesthetic experience involves different aspects [440], pro-
cessed through the same systems used in other areas [441]. In this sense, mirror neurons 
are interesting. Mirror neurons are activated both when carrying out an action and when 
observing it. The observers’ neurons “mirror” (hence, the name) the behaviour of the in-
dividual carrying out an action, as if the observers themselves were performing it. It has 
been suggested that the behaviour of mirror neurons is important to social life-linked cog-
nitive capacities, such as empathy [442], but also to the empathic understanding of art 
[443], and, therefore, in the specific context of architecture [444]. 

Table 7. Neurophysiological foundations of the aesthetic experience (the nomenclature of the sources is followed, and 
WOROI codes are added). 

Aspect Related Neurophysiological Activity WOROI 

Attention 

Stimulus loca-
tion 

Frontal eye field [445]. 34 
Cingulate cortex [446]. 4 

Attention given 
to external stim-

uli 

Rostral prefrontal cortex [447]. Plays a role in emotion regulation [448] 
and memory [449]. 46 

Observation 

Dorsolateral prefrontal cortex [450], when stimuli deviate from expec-
tations. 

89 

Inferior temporal area at around 170 ms [451] in visual art. 16 
Insula [452]. 67 

Judgement  

General impression (at around 300 ms): greater negativity in the 
event-related potentials of stimuli judged as not being beautiful 

([370]. Generated by, among others, the right lateral orbitofrontal cor-
tex [398] and the medial rostral prefrontal cortex [453,454]. 

286, 46 

Deep evaluation (at around 600 ms): hemispheric lateralisation to the 
right-hand side of the brain, especially positive when looking at 

something beautiful [370]. 
 

Prefrontal area [455]. 22 
Left prefrontal dorsolateral cortex, between 400 ms and 1000 ms [455]. 90 
Orbitofrontal cortex [456] and its lateral subregion [457,458] for ugly 

stimuli [459]. Related to reward evaluation [460] and the taking of 
morality-related decisions [461].  

685, 286 
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Connection between the orbitofrontal cortex, anterior insula, rostral 
cingulate, and ventral basal ganglia [441]; suggestive of exteroceptive 

and interoceptive information comparisons. 
685, 97, 363, 35 

Medial orbitofrontal cortex [462]. 
Activated together with the perceptual area specialised in the specific 

stimulus mode [454]. 
685 

Anterior medial prefrontal cortex [463]. 55 
Motor cortex [464]. 

While observing sculptures [452]. 
214 

Left parietal cortex [464] and its subdivision, known as the precuneus 
[465]. Concordant with the highest amplitude found in the P3 elec-

trode [466].  
83, 171 

Left cingulate sulcus, bilateral occipital poles, and fusiform gyri, with 
greater activation when looking at preferred pictures [467]. 4, 26, 62 

Occipito-temporal cortex [468]. 178 
Right primary visual cortex [469]. 311 

Anterior cingulate cortex [464]. 8 
Right anterior insula [441]. 454 

Right para-hippocampal cortex [470]. 132 
Caudate nucleus [454], specifically the right-hand side [453]. 39 

Putamen [454]. 38 
Putamen and claustrum [471]. 38,181 

Globus pallidus [471]. 113 
Amygdala [256,471]. 36 

  Connection between the frontal cortex, the precuneus, and the poste-
rior cingulate cortex [472]. 18, 171, 5 

  Default mode network, showing increased activation while viewing 
highly pleasing images [463].  

Emotion  

Orbito-frontal cortex, and its medial subdivision, in different sensorial 
modes.  

Taste: [473]; Smell: [474]; somatosensory: [374]; vision: [464]. 
685, 285 

Medial temporal lobe [475]. 218 
Fusiform gyri when looking at smiling faces [476]. 62 

Striatum [470]. 37 
Nucleus accumbens [477]. 245 

Hippocampus [478]. 40 
Amygdala [479]. 36 

Neural activities have been identified in relation to aspects studied in psychology. 
Tables 6 and 7 display some of these. The fact that the structures involved are both sub-
cortical and cortical, which are commonly associated with emotion and reason, is the basis 
of romantic hypotheses about the complexity of art, and the difficulty of producing beauty, 
in comparison to perceiving it. Given the close coordination between these structures [480], 
it would make sense to accept that the interaction between the structures is both bottom-
up and top-down [481]. 

Different models establish links between studies. On the one hand, the psychological 
model of Leder [482] emphasised the interdependence of emotion and aesthetic judgment 
(they occur simultaneously: the first is the source of aesthetic preference, the second is the 
output of affective-emotional states) and established five phases of aesthetic experience 
(perception, explicit classification, implicit classification, cognitive mastering, and evalu-
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ation). On the other hand, the Chatterjee neuroscientific model [483] proposes that, in ad-
dition to affective-emotional output, there is a decision-making process. The model estab-
lishes five phases (processing of simple components, attention to prominent properties, 
attention modulation, feed-back/feed-forward processes uniting the attentional and at-
tributional circuits, and intervention of the emotional systems). The fundamentals of the 
Chatterjee’s model have recently been contextualised in architecture [484]. Both frame-
works represent the aesthetic experience, and have been useful for interpreting later re-
sults [485]. However, further research is needed. 

3.2.5. Neuroscience in Architecture 
Neuroscience is being incorporated into the study of the cognitive-emotional dimen-

sion of architecture [486]. Seen in retrospect, certain gestalt psychology-influenced devel-
opments link the use of neuroscience in architecture [487]. Von Hayek’s work [488] and 
Arnheim’s research [489] into the psychology of art and perception of images are exam-
ples. Beyond gestalt, and, strictly outside art, Reference [490] made a contribution to the 
application of neuroscience to behaviour by developing a theory of how complex psycho-
logical phenomena can be produced by brain activity. Paired with his ideas, Neutra made 
one of the first more explicit contemporary formulations of the incorporation of neurosci-
entific knowledge into architecture [491]. He explained that architecture should satisfy the 
neurological needs of its users by incorporating the research available into the develop-
ment of architectural designs. In addition, inspirational is the holistic understanding of 
human life that Moholy-Nagy expected from architects [492]. The point at which this 
knowledge began to be accessible to architects, according to some authors [493], was with 
the publication of “The Embodied Mind” [494]. In this work, the authors coined the term 
“neurophenomenology,” and tried to reconcile the scientific approach with experience 
[495]. In this sense, Einfühlung has also acquired a neuroscientific substrate in recent years. 
Freedberg & Gallese [443] proposed that mirror neurons are responsible for what certain 
phenomenology authors called “resonance”. In this way, neuroscience applications, com-
pared to base approaches, offer substantial benefits [496]. 

Two lines stand out in the exploration of architecture’s bases: the design process, and 
the experience of architecture [497]. The first line has been widely developed in art in gen-
eral, and has made progress in the architectural field such as in proposals on how to in-
corporate the knowledge derived from neuroscience’s application to architecture into the 
design process [498–500], and in studies into brain development generated by acquired 
expertise [405,501]. These studies share common ground with neuro-aesthetic research. 
Frequently examined aspects of the second line are orientation, light, and acoustics. Ori-
entation is part of the daily activity of most people [502]. Studies of diverse natures have 
tried to explain the principles involved in wayfinding [503–505] with VR being an effective 
tool [506]. These studies have direct relevance when it comes to improving navigation 
strategies. There is a long tradition of using light for aesthetic purposes. Since the discov-
ery of the eye’s photoreceptive ganglion cells, and their influence on circadian rhythms 
[507,508], light-centred studies have been complemented by health-focused research [509]. 
The application of the recommendations based on the results of light-based research could 
improve the experience of users, especially those with time/light challenges (e.g., night 
shift workers) [510]. Regarding acoustics, there is a relationship between noise and conse-
quences for humans at different levels [511]. For example, studies have been undertaken 
into stress recovery during exposure to sounds of a different quality [512]. Leaving aside 
artistic arguments, the treatment of space acoustics is of considerable importance. In ad-
dition to these aspects (orientation, etc.), studies that identify the mechanisms of exposure 
to restorative environments should be highlighted [513], as should studies into the quan-
tification, based on neurophysiological measures, of the effects of restorative environ-
ments in interior [514] and exterior spaces [515,516], the capture of the emotional impact 
of museum experiences [517–520], the modification of recommended house design varia-
bles [521], and works with mixed design aspects [522]. The results of some studies appear 
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in Table 8. Beyond the relative prominence of wayfinding studies, in this table, it can be 
seen that some variables attract more attention (as do environmental psychology and 
EBD). The variable contours and ornament, which is a basic architectural design aspect, 
stands out. These advances show the usefulness of the neuro-architectural approach to 
the cognitive-emotional dimension of architecture [523–525]. However, although neuro-
scientific research is extensive and rigorous, its application to architecture is an emerging 
discipline [526,527]. Thus, there are, as yet, few practical works exclusively focused on 
improving architectural design. The efforts are dispersed, and a common framework has 
yet to be established. 

Table 8. Neurophysiological foundations of the cognitive-emotional dimension of architecture, and the neuro-behav-
ioural effects generated by architectural design variables studied in the application of neuroscience to architecture. 

Aspect/Variable Neurobehavioural Effect/Related Neurophysiological Activity WOROI 

Wayfinding 

Posterior parietal, premotor, and frontal areas, greater activation when the subject 
uses an egocentric frame of reference [528]. 21, 217, 18 

Occipito and temporal area, greater activation when the subject uses an allocentric 
frame of reference [528]. 26, 15 

Parietal zone with desynchronised alpha band, in environments where orientation is 
difficult [529]. 290 

Occipital area, processes visual features important for landmark recognition [530]. 26 
Medial temporal area, related to allocentric representations [531]. 136 
Right lingual sulcus, participates in perception of buildings [532]. 167 

Posterior cingulate cortex, and occipital lobe, involved in navigation and perception 
from different perspectives [533]. 

5, 26 

Anterior midcingulate cortex, greater activation in closed spaces, possibly generating 
avoidance decisions [534]. 

8 

Entorhinal cortex, relating memory, and navigation data to create a cognitive map of 
events [535]. 

66 

Retro-splenial complex retrieves landmark-related spatial and conceptual infor-
mation [530]. 

310 

Hippocampus, right posterior parietal, and posterodorsal medial parietal cortex, re-
lated to the retrieval of spatial context [531]. 40, 290, 21 

Right hippocampus participates in remembering locations [536]. 108 
Left hippocampus participates in remembering autobiographical events [537]. 107 

Hippocampus, with higher activation in the theta band, hypothetically related to sen-
sorimotor integration during navigation [538]. 40 

Para-hippocampus codes landmark identity [530]. 65 
Para-hippocampus participates in the spatial processing of scenes [539,540]. 65 

Para-hippocampus responds, in general, to rectilinear features [541]. 65 
Alpha band, with increased activation in occipital electrodes, is associated with famil-

iar streetscape images [542]. 26 

Beta band, with increased activation in frontal electrodes, positively correlated with 
RMS (root-mean-square) statistics and fractal dimensions [542]. 18 

Alpha and beta bands indicate that the first three minutes of walking has the greatest 
cognitive effects on users [543].  

Theta band, with increased activation, is associated with increased navigation perfor-
mance in women and decreased navigation performance in men [544].  

Theta/alpha ratio related to higher cognition and memory [158].  

Stress 
Middle frontal gyrus, middle and inferior temporal gyrus, insula, inferior parietal 

lobe, and cuneus with higher activation in highly restorative potential environments 
[513]. 

148, 126, 67, 
183, 3 
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Superior frontal gyrus, precuneus, para-hippocampal gyrus, and posterior cingulate 
with higher activation in low restorative potential environments [513]. 

70, 171, 65, 5 

Alpha band with higher activation in the frontal lobe in non-stressful environments 
[514]. 

18 

High-beta band with higher activation in the temporal lobe in stressful environments 
[514]. 

15 

A combination of multisensory design variables produces a synergistic effect, which 
reduces stress. Measured through EDA, HRV, and EEG [15]. 

 

Illumination 

White light modulates mood and sleep rhythms [545].  
Spaces illuminated above 7500 K increase blood pressure [546].  

Arousal differences demonstrated (measured using EEG) in spaces illuminated at 
5000 K and 3000 K [547].  

Blue light accelerates post-stress relaxation [548].  
Direct/indirect lighting makes subjects feel cooler and more pleasant, compared to di-
rect lighting. It also generates more activity in electrodes F4, F8, T4, and TP7. Under 
these circumstances, the theta band of the F8 electrode correlated with a “cool” self-

assessment [549]. 

91, 296, 130, 
123 

Difference between cold and neutral colour temperature, at the level of alertness, fa-
tigue, cognitive functioning, HRV and EDA [550].  

Colour Red coloured spaces increase arousal measured through EEG metrics [551].  

Contours and 
ornaments 

Anterior cingulate cortex, greater activation when looking at curvilinear spaces [552]. 8 
Anterior cingulate cortex with theta band, related to certain spatial characteristics 

[533] 
8 

Frontal lobes with event-related potentials of higher positive amplitude, between 300 
and 600 ms, when viewing architectural ornaments [553]. 

Susceptible to cultural modulation [554].  
18 

Curved geometric spaces are preferred over angled geometric spaces [552].  
Curved geometric spaces are preferred by non-design expert subjects, and sharp-an-

gled spaces by expert subjects [555]. 
 

Angled geometry is not avoided, but curved geometric spaces prompt approach (ra-
ther than avoidance) behaviours [556]. 

 

Amygdala with greater activation when viewing sharp than curved contours, and im-
ages of landscapes and healthcare objects. However, when viewing images of hospi-
tal interiors and exteriors, there is greater activation with curved contours. it is hy-

pothesised that, in stress-associated environments, curved contours may not be desir-
able [557]. 

36 

Open-office arrangements generate more physical activity, and less stress, measured 
through HRV (SDNN) [558].   

Thigmotaxis plays a role in spatial learning, depending on the phase [559]. 
Human predisposition for walls: people are thigmotactic [560].  

Windows 

The existence of openings can reduce stress, measured by electrocardiogram (HR, 
and HRV-HF, and T-wave amplitude), and cortisol. However, this depends on the 

stressor type [561]. 
 

The geometry of façades, and the lighting that passes through them into interiors, af-
fects physiological (at an HRV level) and psychological responses in different ways. 
Among others, there is deceleration of the heart rate with irregular designs, in com-

parison to blinds, because they attract greater attention [176,562]. 

 

Aesthetic judge-
ment 

Left frontal areas with more theta band activity when viewing pleasant interior 
spaces [563]. 81 
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Fusiform face area, involved in fine-grained neural encoding of architectural scenes 
[564]. 

343 

Theta band increased across the frontal area, in familiar and comfortable environ-
ments [565]. 

18 

Alpha band increased in left-central parietal and frontal areas in pleasant environ-
ments [565]. 

83, 18 

Mu band desynchronised in left motor areas, in pleasant and comfortable environ-
ments [565]. 

350 

Nature 

Views of nature have positive effects on emotional and physiological states [566].  
Natural vistas (in videos) produce significantly higher HR than urban vistas [567].  
The absence of vegetation generates a more oppressive environment, which affects 

the judgment of distance and generates greater arousal measured through EDA [568].  

Similar brain patterns between positive images and open sky multisensory simula-
tions measured through fMRI. The latter also generate activity related to spatial cog-

nition and space expansion [569]. 
 

4. Discussion 
Based on the scoping review of neuroarchitecture and its precursor approaches, four 

aspects of the application of neuroscience to architecture were identified: (1) limitations 
of the approaches, (2) the problems in addressing the cognitive-emotional dimension of 
architecture, (3) ways to solve the problems, and (4) the limitations of this work. 

4.1. Limitations of the Approaches to the Study of Cognitive-Emotional Dimension of 
Architecture 

The study of the cognitive-emotional dimension of architecture is complex. New ap-
proaches are helping to overcome the limitations of the base approaches and to identify 
data that can support the validity of design proposals. However, neither approach is with-
out its limitations. 

The base approaches to the cognitive-emotional dimension of architecture are gener-
ally limited in relation to the environmental stimuli and the evaluation systems used. The 
new approaches, to an extent, try to overcome these limitations by incorporating VR and 
neuroscience. Their application to aesthetics and art provides a basis for their application 
to architecture. However, the fact that art and architecture are related fields does not make 
them equivalent. Thus, the extrapolation of other knowledge bases to architecture must 
be undertaken with caution. These aspects are discussed below at ontological, epistemo-
logical, and methodological levels. 

At an ontological level, the limitations are derived from the perceptual breadth of the 
experiences. Two deficiencies stand out: (1) the modality of the stimuli used, and (2) the 
aspects studied. The first limitation involves unimodality. Previous studies have generally 
focused on the visual domain [570]. Although most of the information we process is in the 
visual domain [571,572], limiting the exposure to only unimodal stimuli in architecture 
reduces the richness of the experience [573,574]. The second limitation fundamentally in-
volves beauty and pleasure. On the one hand, although beauty plays a central role in peo-
ple’s concept of aesthetics, art, and, therefore, architecture [575]. Non-beautiful works can 
be art [576]. On the other hand, although pleasure may be derived from the aesthetic or 
artistic experience [577], pleasurable feelings may be generated for reasons outside the 
work of art or architecture. Thus, beauty and pleasure are not enough [578]. 

At the epistemological level, the limitations derive from the difficulty of explaining 
these experiences in exclusively physiological terms. Two stand out: (1) the neurology-
experience relationship, and (2) the various influential aspects. The first limitation gener-
ates the risk of drawing invalid inferences since a brain area can be related to several pro-
cesses [579]. Emotions are especially complex in this regard [580]. The second limitation 
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relates to the number of aspects that influence artistic and aesthetic experiences [221]. 
These experiences may seem simple because they are simple to recognize, but not at a 
neuro-psychological level. 

At a methodological level, the limitations derive from the wide variety of stimuli and 
the many ways in which works can be displayed. Two stand out: (1) procedural conflicts 
and (2) technical restrictions. The first limitation involves several questions. On the one 
hand, ceteris paribus logic sacrifices the complexity of the stimuli. In addition, the rigidity 
of neuroimaging protocols and the laboratory context can alter results. On the other hand, 
the multiple cognitive-emotional processes involved do not occur simultaneously [581], 
which may misalign the causal assignment of the recordings. The second limitation relates 
to the restrictions associated with neurophysiological recording technologies such as the 
immobility of fMRI. Although these limitations can now be considerably addressed using 
other devices, such as wearable EEG caps [582] and recordings that can be made outside 
the laboratory [583–585], they must be taken into account. The limitations all contribute to 
the lack of a commonly accepted methodology. In a certain way, this lack also obstructs 
the understanding between different research groups and the comparability of results. 
While sometimes studies might provide divergent results, it may be because they are re-
flecting different components of the experience [586]. This leads to the point that the re-
sults are also difficult to extrapolate into design guidelines for practical application in ar-
chitecture. 

4.2. Problems in Addressing the Cognitive-Emotional Dimension of Architecture 
In addition to the limitations discussed above (applicable to the entire domain of art 

and aesthetics), there are more specific architecture-based limitations. Mainly two: (1) it is 
not possible to liken architecture to the artistic-aesthetic, and (2) the experience is not one-
off. The first limitation arises from the depth of the architectural function. Architecture 
tries to meet broad human needs [587]. Although architecture is one of the “Fine Arts” 
[588], the artistic-aesthetic experience is only one of the components of the cognitive-emo-
tional dimension of architecture. The second limitation is that architecture is an experien-
tial continuum [589]. The transition from one space to another can condition the experi-
ence [590], with the “architectural narrative” being significant [560]. In addition, periph-
eral vision is of special importance [591]. In fact, architecture could be experienced in two 
ways: intellectually, through focal processing, and in terms of atmosphere, through am-
bient processing [592]. Furthermore, architecture engages all sensory modalities [278,593], 
so the visual is insufficient to describe it [96]. This is very important in terms of the study 
of sensory interaction [594]. Both limitations impede the fragmentation of the cognitive-
emotional dimension of architecture, which encourages the tendency toward case studies 
[595]. In summary, the application of neuroscience to other fields must be cautiously ex-
trapolated to architecture. 

The debate on the universality of art should not be forgotten [596,597]. Fundamen-
tally, a perspective based on objective principles might be considered [598], but differ-
ences between individuals makes the artistic experience widely subjective [599], which is 
a circumstance echoed in architecture [600]. To deploy ideas about the universality of art 
requires retrospective exposition. To begin with, art has developed in parallel with human 
evolution [601]. It is an exclusively human capacity apart from the structures that some 
animals produce based on their genetic programming [493]. This is not a reference to the 
denaturation of art [602], but to its human focus. The key point is that the brain adapts to 
the environment [603], which is a process known as “neuroplasticity” [604]. Thus, our 
artistic (and, therefore, architectural) experience is conditioned by biological and environ-
mental factors [605], with the latter having a major impact [606]. Additionally, human 
brains may change through pathologies (e.g., Alzheimer’s disease). Achieving universal 
art or architecture may not be possible. In fact, there is less agreement when it comes to 
judging artifacts than natural elements [607]. However, all humans have innately similar 
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brains [608,609], which allows bridges to be built between individuals, societies, and times 
[610]. Therefore, some common architectural design guidelines may be developed. 

4.3. Beyond the Current State: The Challenges Facing Neuroarchitecture and Its Constituent 
Disciplines 

Hitherto, there has been no general study of the foundations underlying the cogni-
tive-emotional dimension of architecture. In this sense, neuroarchitecture has potential. 
The new discipline makes a contribution to an architecture that supports the cognitive-
emotional dimension [611], and does not fall into the reductionism of exclusively aspiring 
to provide relaxation [92]. This might embrace the contemporary emphasis on sustaina-
bility and the social dimension [612]. The examples are as varied as the spaces: hospitals 
that contribute to healing [613], classrooms that support cognitive processes [614], work 
environments that encourage collaboration [615], museums perceptually adapted to the 
works that they house [583], restaurants where multisensory integration enhances the gas-
tronomic experience [616], and, among others, urban planning activities [617–620], where 
one of the challenges lies in the diversity of groups. Designing for specific groups, includ-
ing those with specific pathologies such as dementia [621–623], involves a frontal confron-
tation with design for the masses. The success of the different applications of neuroarchi-
tecture will, in part, depend on the ability of its constituent disciplines to overcome its 
inherent challenges. 

User experience is the main issue in VR. Increasing the capacity of VR set-ups to gen-
erate the illusion of being in a place (characterised as “place illusion”), and the credibility 
of the scenarios, to meet the viewer’s expectations (characterised as “plausibility illusion”), 
is crucial. Although there is limited understanding what affects the sense of presence, 
there is consensus on two factors, known as exteroception and interoception. Exterocep-
tion factors, which are directly related to the experimental set-up (such as interactivity), 
increase the sense of presence particularly in virtual environments not designed to induce 
specific emotions [624]. Interoception factors, defined by the content displayed, increase 
the presence if the user feels emotionally affected [625]. For example, previous studies 
have found a strong correlation between arousal and presence [626]. This suggests that, 
in neuroarchitecture, both factors may be critical. There is a robust interdisciplinary com-
munity [627] that is certainly helpful in meeting this challenge. Furthermore, neuroarchi-
tecture and VR share a synergistic relationship in which the former can help us under-
stand and improve virtual spaces with which we interact more. 

The analysis of neurophysiological data is challenging [628]. Affective computing, 
which is an interdisciplinary field based on psychology, computer science, and biomedical 
engineering [629], will likely play an important role. Several studies have focused on iden-
tifying the cognitive-emotional state of subjects by using machine-learning algorithms 
and by achieving high levels of accuracy [630,631]. Many neuroimaging techniques have 
been used [632]. Affective computing can be transversally applied to many human behav-
iour topics. Although one of the first applications of affective computing was to neuroe-
conomics research due to the important relationship that has been found between emo-
tions and decision-making [633], there are revealing and important examples of its appli-
cation to architecture [634]. In fact, very recent applications in virtual architectural spaces 
have produced encouraging results [635–637]. For neuroarchitecture, the definition of 
neurophysiological indices in relation to the cognitive-emotional dimension of architec-
ture would contribute to the development of an actual architectural design tool. These 
would allow the effect of the architecture on users to be measured in an easy-to-interpret 
way (e.g., stress through neurophysiological measures expressed in well-defined ranges). 
The fact that these indices have not yet been fully developed and made available for aca-
demic and professional use is one of the reasons that may be holding back the growth of 
neuroarchitecture. Developed in real time, these could even contribute to adapting spaces 
to emotional states [638] (for example, automatically modify the lighting of the environ-
ment in order to respond to a stressful situation of its user). In this matter, the combination 
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with virtual reality could potentially present yet another facet of the synergy between 
neuroimaging and virtual reality techniques. For example, by means of augmented reality 
displayed on HMDs, the user could be stimulated to reduce their stress without physically 
modifying variables of the environment (which could affect other users who do not meet 
the same needs). Thus, neuroarchitecture would not only help to answer questions about 
the cognitive-emotional dimension of architecture, but also to develop a technological 
layer that supports our cognitive-emotional processes [639]. 

However, humans are not just neurological entities. Thus, it is not surprising that the 
cognitive-emotional dimension of architecture has been approached from such different 
directions. The polyhedral nature of the cognitive-emotional dimension of architecture 
means that a solution can hardly be derived from one source. Although neuroscience ap-
plied to architecture helps to answer questions about the cognitive-emotional dimension 
of architecture, it does not hold all the answers. Moreover, architecture has traditionally 
been based on designerly ways of knowing. The architect intuitively explores and exploits 
some of its perceptual foundations. This offers an economy of means that, sometimes, is 
ahead of science [640]. Thus, if the ultimate goal is to improve architecture, attention must 
be paid to both the bases and execution. To do this, it will be necessary to take into account 
how architects work. “Scientists and artists need to identify common ground” [641]. Only 
in this way will it be possible to develop the broad and deep knowledge needed to gener-
ate a true design tool. 

4.4. Limitations of the Work 
The present study has some limitations. Fundamentally, (1) the work may be over-

exhaustive, and (2) possible significant references were not discovered. Exhaustiveness is 
due to the multiple disciplines involved. Although some overlap exists, the integration of 
the approaches examined offers a broad view of the issue. As for undiscovered references, 
it is possible that some interesting works have not been addressed including “grey litera-
ture” [642]. 

5. Conclusions 
The application of neuroscience to architecture is gaining prominence. The term 

“neuroarchitecture” seems to work in a promotional sense, likely, in part, due to the ten-
dency to consider neuroscientific content credible [643]. However, it does not seem ap-
propriate at other levels such as computerised searches (mixed with neural architectural 
issues or artificial intelligence), conceptual (does not do justice to neuroscience or archi-
tecture), and technical (does not make clear if it includes works not strictly based on neu-
rophysiological recordings). The ease in translating the term into different languages, and 
the amount of documentation generated, makes it difficult to adopt more appropriate 
terms, such as “emotional architecture” or “mental architecture”. 

In another vein, neuroarchitecture is often decontextualized without considering its 
main precursor approaches. This creates biases about its current possibilities and future 
developments and, as with social sciences [644], neuroscientific applications generate 
some controversy. From some conservative points of view, accepting external guidelines 
infringes on issues deeply established in the project process. Most of the changes generate 
neophobic impulses, and the advent and development of neuroarchitecture may mark a 
paradigm shift. However, the application of neuroscience to architecture is not intended 
to reduce design to universal standards. Understanding the fundamentals on the cogni-
tive-emotional dimension of architecture does not make it less relevant nor will it remove 
the need for architects. It will only complement their tool set, that already includes tools 
(more or less used in practice), such as geometry, phenomenology, geographical experi-
ence, philosophy, and, more recently, psychological and EBD approaches. The knowledge 
offered by neuroarchitecture will help more broadly meet users’ needs. A building might 
not collapse due to poor cognitive-emotional adaptation, but its users might. Although it 
will take years to design projects entirely using principles and knowledge derived from 
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neuroscientific explorations of the built environment, today, we can take steps to improve 
the human cognitive-emotional response in the built architectural environment. This in-
cludes modifying existing spaces and improving decision-making for the design of new 
spaces. The combination of advances in neuroscience and environmental simulation will 
expand the impact of the new discipline. The next great architects may be those who can 
embrace, without prejudice, these new possibilities. The challenge looks exciting. 
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