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1 Introduction
In this paper, the convergence of improved Chebyshev-Secant-type iterative methods are stud-
ied for solving nonlinear equations in Banach space settings. Its semilocal convergence is
established using recurrence relations under weaker continuity conditions on first order divided
differences. Convergence theorems are established for the existence-uniqueness of the solutions.

Consider approximating a locally unique solution ρ∗ of

F(x) = 0, (1)

where F is a continuous nonlinear operator defined on a non-empty open convex subset D of
a Banach space X with values in another Banach space Y. This is one of the most important
problems in applied mathematics and engineering.

The next family of iterative methods used for the solution of (1) is known as the Chebyshev-
Secant-type methods (CSTM).

yk = xk − [xk−1, xk; F]−1F(xk),
zk = xk + α(yk − xk),

xk+1 = xk − [xk−1, xk; F]−1(βF(xk) + γF(zk)), (2)

where x−1, x0 ∈ D are two starting iterates and [x, y; F] ∈ L(X,Y) satisfies [x, y; F](x − y) =
F(x) − F(y) for x, y ∈ D and x �= y, for x = y, [x, y; F] = F′(x). Here, α, β and γ are
nonnegative real parameters carefully chosen so that the sequence {xk} converges to ρ∗.

1e-mail: alfa2205@gmail.com
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The improved Chebyshev-Secant-type method (ICSTM) proposed by us is given for k ≥ 0 by

xk+1 = xk − B−1
k F(xk), Bk = [xk, yk; F],

zk = xk + α(xk+1 − xk),
yk+1 = xk − B−1

k (βF(xk) + γF(zk)), (3)

where x0, y0 ∈ D are two starting iterates and α, β and γ are nonnegative real parameters.
Considering α = β = γ = 1 we obtain the double step Secant method [1, 2] with order of
convergence 1 +

√
2. It can be easily seen that the number of functions evaluations and the

corresponding divided differences used in CSTM and ICSTM are equal. The importance of the
ICSTM lies in the fact that for α = β = γ = 1, its convergence order is 1 +

√
2, while the

convergence order of the CSTM is 2.

2 Semilocal convergence of ICSTM

In this section, the semilocal convergence of ICSTM for solving (1) is established. Let B(x, r)
and B(x, r) denote open and closed balls with center at x and radius r, respectively. For suitably
chosen initial approximations x0 and y0, we define a class S(Θ, δ, η, σ), where Θ > 0, δ > 0, η >
0 are some positive real numbers and σ is to be defined. The triplet (F, x0, y0) ∈ S(Θ, δ, η, σ) if

[C1] ‖x0 − y0‖ ≤ Θ for x0, y0 ∈ D.

[C2] B−1
0 ∈ L(Y,X) such that ‖B−1

0 ‖ ≤ δ.

[C3] ‖B−1
0 F(x0)‖ ≤ η.

[C4] ‖([x, y; F] − [u, v; F])‖ ≤ σ(‖x − u‖, ‖y − v‖), where σ : R+ × R+ → R+ is a continuous
and non decreasing function in its both arguments for x, y, u, v ∈ D.

[C5] (1 − β) = (1 − α)γ and α ∈ (0, 1].

[C6] The equation
(1 − g(t))t − η = 0

where, g(t) = M

1 − δσ(t, t +Θ),

and M = max(αγδσ(η,Θ), αδσ(η,Θ), δσ(η,Θ), αγδσ(η, (1+p)η)), where p = αγδσ(η,Θ),
has at least one positive root. The smallest positive root is denoted by R.

[C7] g(R) ∈ (0, 0.618034...).

[C8] B(x0, R) ⊆ D.

Lemma 1 For the improved Chebyshev-Secant-type method (ICSTM) proposed in (3) it is ver-
ified:

(i) F(zk) = α([zk, xk; F] − Bk)(xk+1 − xk) + (1 − α)F(xk).

(ii) F(xk+1) = ([xk+1, xk; F] − [xk, yk; F]) (xk+1 − xk).
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Proof: The proof follows obviously by (3) and the application of the usual property of the
divided difference operator, [x, y,F](x − y) = F(x) − F(y), hence omitted here. �

Lemma 2 For method ICSTM proposed in (3) under conditions [C1]−[C8] and for (F, x0, y0) ∈
S(Θ, δ, η, σ), we obtain the following bounds:

(i) There exists B−1
k satisfying ‖B−1

k ‖ ≤ δ
1−δσ(R,R+Θ) ,

(ii) ‖xk+1 − xk‖ ≤ g(R)‖xk − xk−1‖,

(iii) ‖yk+1 − xk‖ ≤ (1 + g(R))‖xk+1 − xk‖,

(iv) ‖yk+1 − xk+1‖ ≤ g(R)‖xk+1 − xk‖,

(v) ‖xk+1 − x0‖ ≤
k∑

j=0
g(R)jη < R,

(vi) ‖yk+1 − x0‖ ≤
k+1∑
j=0

g(R)jη < R,

(vii) ‖zk − x0‖ ≤
k∑

j=0
g(R)jη < R.

Proof: The above inequalities can be proved by using mathematical induction. Using Lemma
1 and the definition of class S(Θ, δ, η, σ), we get ‖x1 − x0‖ ≤ η, ‖z0 − x0‖ ≤ η and

‖y1 − x0‖ = ‖x1 − x0 − αγB−1
0 σ(‖z0 − x0‖, ‖x0 − y0‖)(x1 − x0)‖

≤ (1 + αγδσ(η,Θ)) ‖x1 − x0‖ < (1 + g(R))η < R.

with ‖y1−x1‖ ≤ αγδσ(η,Θ)‖x1−x0‖ ≤ g(R)‖x1−x0‖. Thus, lemma holds for n = 0. Suppose
that it holds for some n ≤ k. Now,

‖I − B−1
0 Bk‖ ≤ δσ(‖xk − x0‖, ‖yk − x0‖ + ‖y0 − x0‖) ≤ δσ(R, R +Θ) < 1.

So using Banach’s lemma on invertible operators [3], it is verified

‖B−1
k ‖ ≤ δ

1 − δσ(R, R +Θ) .

Using Lemma 1 once more, we get

‖xk+1 − xk‖ ≤ ‖B−1
k ‖‖F(xk)‖

≤ δσ(‖xk − xk−1‖, ‖xk−1 − yk−1‖)
1 − δσ(R, R +Θ) ‖xk − xk−1‖

≤ g(R)‖xk − xk−1‖.

Now,

‖yk+1 − xk‖ ≤ ‖xk+1 − xk − αγB−1
k σ(‖zk − xk‖, ‖xk − yk‖)(xk+1 − xk)‖

≤
(
1 + αγδσ(‖zk − xk‖, ‖xk − yk‖)

1 − δσ(R, R +Θ)

)
‖xk+1 − xk‖

≤ (1 + g(R))‖xk+1 − xk‖.
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This gives

‖yk+1 − xk+1‖ ≤ ‖αγB−1
k σ(‖zk − xk‖, ‖xk − yk‖)(xk+1 − xk)‖ ≤ g(R)‖xk+1 − xk‖.

Thus this proves (i)-(iv). (v), (vi) and (vii) can easily be obtained with the recursive use of
(i)-(iv). Hence, this proves the lemma. �

Theorem 1 Let F : D ⊆ X → Y be a continuous nonlinear operator, and consider the triplet
(F, x0, y0) ∈ S(Θ, δ, η, σ) defined in section 2, with x0, y0 ∈ D verifiying conditions [C1] − [C8].
Then, by taking x0, y0 as starting points, the sequences {xk}, {yk} and {zk} generated by (3)
are well defined and belong to B(x0, R) ⊆ D. Also, the iterate xk, yk and zk converge to
ρ∗ ∈ B(x0, R) ⊆ D, where ρ∗ is the unique solution of (1) in B(x0, R) ∩ D.

Proof: Using Lemma 1 and Lemma 2, we see that the iterates xk and yk are well defined and
belong to B(x0, R). It is sufficient to show that {xk} is a Cauchy sequence. For fixed k and
m ≥ 1, we get

‖xk+m − xk‖ ≤ ‖xk+m − xk+m−1‖ + . . . + ‖xk+1 − xk‖
≤

(
g(R)m−1 + g(R)m−2 + . . . + g(R) + 1

)
‖xk+1 − xk‖

≤
(
g(R)m−1 + g(R)m−2 + . . . + g(R) + 1

)
‖xk+1 − xk‖

≤
(
1 − g(R)m

1 − g(R)

)
g(R)k‖x1 − x0‖.

Therefore xk → ρ∗ as k → ∞. Now, we show that ρ∗ is a solution of (1). From Lemma 1, we
get

‖F(xk+1)‖ ≤ ‖[xk+1, xk; F] − [xk, yk; F]‖‖xk+1 − xk‖ → 0 as k → ∞.

From the continuity of F, it is assured that F(ρ∗) = 0. To show the uniqueness of ρ∗, let ρ̂ be
another solution of (1) in B(x0, R) such that F(ρ̂) = 0. For B∗ = [ρ∗, ρ̂; F], we get

‖I − B−1
0 B∗‖ ≤ δσ(‖xk − x0‖, ‖yk − x0‖ + ‖y0 − x0‖) ≤ δσ(R, R +Θ) < 1.

This shows that B∗ is invertible and from the identity [ρ∗, ρ̂; F](ρ∗ − ρ̂) = F(ρ∗) − F(ρ̂), taking
norms on both sides, we get ρ∗ = ρ̂. This implies the uniqueness of ρ∗. �
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