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Abstract—Catheter ablation (CA) is the most popular treat-
ment of atrial fibrillation (AF) with good results in paroxysmal
AF, while its efficiency is significantly reduced in persistent AF.
With the equipment used for CA strongly depending on electro-
gram (EGM) fractionation quantification, the use of a reliable
fractionation estimator is crucial to reduce the high recurrence
rates in persistent AF. This work introduces a non-linear EGM
fractionation quantification technique, which is based on coarse-
grained correlation dimension (CGCD) computed over epochs
of 1 second. Recordings were firstly normalized, denoised and
lowpass filtered. The final CGCD value was calculated by the
median CGCD value of all the epochs that a recording consisted
of. Results were evaluated on three groups. Groups 1 and 2
contained 24 high-quality and 119 mid-range EGMs, respectively,
manually pre-classified by AF types following Wells’ criteria, then
classified according to their CGCD values. 20 pseudo-real Type
IV EGMs formed group 3 that was also automatically classified
by AF type. In Groups 1 and 2, classification accuracy was
100% and 84-85.7 %, respectively, using 10-fold cross-validation.
The receiver-operating characteristics (ROC) analysis for highly
fractionated EGMs, showed 100% specificity and sensitivity in
Group 1 and 87.5% specificity and 93.6% sensitivity in Group 2.
CGCD was always consistent with the fractionation degree of
EGMs. 100% of the EGMs in Group 3 were correctly identified
as Type IV AF. High accuracy results indicate that the method
can estimate precisely the AF Type and detect the existence of
AF Type IV cases. Both things are crucial in assisting improved
substrate mapping during CA procedures of persistent AF.

Keywords—Atrial fibrillation; catheter ablation; electrogram
fractionation; correlation dimension.

I. INTRODUCTION

Atrial fibrillation (AF) is the most common cardiac arrhyth-
mia in the developed countries, associated with high mortality
risk [1]. Challenges regarding AF deal with understanding the
AF perpetuating mechanisms and developing the appropriate
therapeutic scheme, adapting to each patient’s needs.

Common AF treatments include electrical and pharmacolog-
ical cardioversion and surgical or catheter ablation (CA) [1].
Due to the significance of pulmonary veins (PVs) in the
generation of fibrillatory activity [2], CA of PVs, called

pulmonary vein isolation (PVI), is considered the first-line AF
therapy [3]. High-efficiency of PVI is limited to paroxysmal
AF patients whereas recurrence rates of PVI in persistent AF
(peAF) cases remain high, being the structural remodelling of
peAF the most probable reason [4].

Fibrosis is considered the principal remodelling phe-
nomenon that favors the perpetuation of AF [3], [4]. Works ori-
entated to detecting fibrotic tissue have recently been focused
on the detection and study of dynamic phenomena, such as low
voltage (LV) areas and atrial regions with high electrogram
fractionation [3].

A vast amount of studies have dealt with the detection and
ablation of areas presenting EGMs with high fractionation,
commonly known as complex fractionated atrial electrograms
(CFAEs). While CFAEs have often been a cause of argument
either regarding its own definition [5], [6] or the efficiency
of the CFAEs ablation [7]-[9], the need for a precise and
reliable definition as well as estimation of such types of EGMs
is emerging. To this respect, correlation dimension and its
alternative version used in biomedical signals, coarse-grained
correlation dimension (CGCD), are two very interesting chaos-
based approaches [10] that can be interesting tools in assessing
the electrophysiological substrate of atrial fibrillation. In fact,
both have been previously used in order to assess the organi-
zation of AF dynamics [11], [12].

This work presents a customized version of CGCD, de-
signed to operate in very short time and to adapt to any
signal length. This method was proved to efficiently express
the fragmentation level of bipolar EGMs and correctly classify
patients by AF types, according to Wells’ criteria [13]. Rapid
changes in AF type were easily detected and AF Type IV was
successfully diagnosed, while in traditional analysis would be
misinterpreted as AF Type II or III . High performance in
short-time and adaptability suggest this fractionation estimator
to be implemented on current medical devices.
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Fig. 1. Example of bipolar AF EGMs of different types. AF Type IV consists
of alternating Type I/II and Type III segments.

II. MATERIALS

The database employed in this study consisted of 119 10-s
duration bipolar EGMs of 22 peAF patients undergoing CA for
the first time. Data was obtained using a CardioLab® system
(General Electric, Wauwatosa, WI, USA) with a sampling fre-
quency of 1 kHz. EGMs were visually inspected and classified
according to their AF Type following Wells’ criteria [13].
Figure 1 shows an example of different AF types of the EGMs
processed. In total, 11 EGMs were classified as Type I, 36 as
Type II and 72 as Type III. Visual classification by AF type can
be confusing in cases that an EGM does not clearly belong to
an AF type. In order to make a fair assessment of CGCD as a
fractionation index, 8 EGMs from each category were selected
by expert phisicians as the most representative of their type.
Additionally, 20 pseudo-real AF Type IV EGMs were created
by the concatenation of parts of the real EGMs.

Data analysis has been performed on three groups. Group 1
consisted of the 24 most representative EGMs, eight of each
type, as explained previously. Group 2 consisted of all the
electrograms in the database, while Group 3 consisted of the
artificial Type IV electrograms.

III. METHODS

A. Data preprocessing and analysis

All preprocessing and evaluation steps were performed
using MATLAB 2018a software (The Mathworks®). Signal
normalization by its root mean square (RMS) value was the
first step to be performed, in order to minimize the influence
of the signal amplitude on CGCD. RMS value of each signal
depends on its properties and the choice of this normalization
parameter was made in order to keep the information of each
time-series intact.

After that, signal preprocessing continued by using a 3rd
order Butterworth lowpass filter with cut-off frequency at
300 Hz and a wavelet-based denoising technique which re-
duced effectively high frequency noise [14]. Finally, EGMs
were segmented to one second intervals, so that any changes
in the pattern of AF can be captured rapidly and the CGCD

computational parameters can be used regardless of the signal
length.

For the computation of CGCD, a N-points long signal
X = (21,%a,...,2N) needs to be firstly reconstructed in the
m dimensional phase-space [15] using a time delay 7 between
vectors [11], therefore

Yz()m) = (:Cp7 Tpt7; Tp427y -+, xp+(m71)‘r>7 (1)

where m=1,23...andp=1,2,...,.N — (m — 1)T.

Then, the correlation integral C'™)(r) is calculated, as the
proportion of pairs of vectors that are closer to each other than
a distance r, thus

2 Nref
cmr) =
Nref(Nref —1)
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where © is the Heaviside function, ||-|| is the Euclidean

distance of each pair chosen and N,.; is the number of
reference points, as a chosen number of the N — (m — 1)
vectors of Equation 1.

Correlation dimension is calculated from the saturation
areas on the double logarithmic plot of C'™)(r) as a func-
tion of r, plotted in sequential embedded dimensions from
m =1,2,...,20 [12]. In biosignals, CGCD, a rough estimator
of correlation dimension which does not express precisely the
dimension of the dynamics but serves as a comparative mea-
sure between dynamics of different levels of organization [11],
[12], can be used by setting a fixed embedded dimension m
and a finite resolution distance 7.4

ln[C(m) (Teg)]
In(reg)

CGCD was computed for each time-series at the segmented
one second intervals and then the final CGCD value was
obtained by the median index of all the intervals. Parameters
selection of CGCD were made so that the comparative analysis
of fractionation of each EGM is optimal. Firstly, the time
when mutual information dropped to its first minimum was
calculated. Analysis indicated that for our dataset, this value
was for 7 = 8 ms. N,..; was firstly set equal to 1/3 of signal
length [16], that is, in our case, 334 points. Distance 7., was
computed for each signal equal to half of its standard devia-
tion, normalized by its peak-to-peak amplitude [12]. Finally,
CGCD was computed for different embedded dimensions
from m = 1,2,...20 and the dimension providing the most
discriminative power and, at the same time, avoiding infinite
CGCD values was selected. In this case, dimension m = 4
was the optimal choice.

After setting the parameters, different sizes of reference
points N,..; were tried in order to find the optimal value. N,
was firstly increased to 1/2 of the signal length and then the
maximum number of N,..; was used for the analysis. However,
discrimination through fractionation levels was not improved,

CGCD ™ (r.,) = 3)



TABLE 1
RESULTS OF ROC ANALYSIS FOR GROUPS 1 AND 2 IN THE DATABASE.
AUC STANDS FOR AREA UNDER THE ROC CURVE.

AF Type AUC Sensitivity Specificity

Group 1

Type 1 vs I/IIT 1.0000 100% 100%

Type III vs /1T 1.0000 100% 100%
Group 2

Type I vs II/IIT 0.9907 97.22% 100.00%

Type III vs /1T 0.9515 87.50% 93.62%
TABLE 1T

CLASSIFICATION ACCURACY BY COARSE DECISION TREE FOR GROUPS 1
AND 2 TOGETHER WITH THE NUMBER OF EGMS WRONGLY CLASSIFIED.

Group Nr of EGMs Accuracy Wrongly classified
1 24 100% 0
2 119 84 — 85.7% 17

while execution time was significantly increased. The number
of reference points was therefore kept to N,y = 334.

B. Evaluation

Groups 1 and 2 were classified by AF types according to
their CGCD values by a one-vs-all receiver-operating charac-
teristics (ROC) curve, firstly used in order to define the upper
threshold CGCD value for AF Type 1. In the same way, the
lower threshold CGCD value for AF Type III was calculated.
ROC characteristics were then used in order to see how clearly
AF Type I and III can be discriminated from the rest of the AF
types. Discriminative power of CGCD was also assessed by
a coarse decision tree with a maximum of 2 number of splits
and 10-fold cross validation,making use of the Classification
Learner App (MATLAB 2018a & Simulink 9.1).

The ability of the method to detect AF Type IV cases was
investigated by an algorithm that was developed especially
for that purpose. CGCD analysis was firstly performed as
described in section III-A. Then, the AF Type of signals was
calculated at each epoch, using the thresholds obtained by the
decision tree analysis on Group 2. The final AF Type of an
EGM was defined by the median CGCD value of all its epochs
unless a signal was found to consist of segments of both AF
Type IIT and AF Type I or II. In such case, the EGM was finally
assigned to AF Type IV. Figure 2 shows the steps followed
for the Group 3 analysis. Performance classification on this
Group was expressed as the percentage of the EGMs correctly
classified as AF Type IV.

IV. RESULTS

Receiver operating characteristic (ROC) analysis performed
on Groups 1 and 2 can be observed in table I. Mean and
standard deviations of all three groups are shown on the
boxplots of figure 3. As can be seen, EGMs of Group 1
can be completely distinguished by AF types using CGCD.
In Group 2, ROC analysis showed very satisfactory results.
Although there are some overlapping CGCD values between
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Fig. 2. Illustration of the algorithmic steps for the detection of AF Type IV
on Group 3.
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Fig. 3. Boxplots illustrating the distribution of the values of AF types at each
one of the Groups. m:mean; std: standard deviation.

the three AF types, AF Type I can be perfectly distinguished
with 97.22% Sensitivity and 100% Specificity, while AF Type
III can be discriminated by the other two AF types with 87.5%
Sensitivity and 93.62% Specificity.

As can be seen from figure 3, CGCD values of AF Type
IV are located between CGCD values of AF types II and
III. This means that in a compact analysis, without the use
of one second segments, EGMs of AF Type IV would be
misinterpreted either as AF Type II or III. Table II shows the
classification accuracy of Groups 1 and 2. For Group 3, all
EGMs were correctly classified as AF Type IV.



V. DISCUSSION

The work presented combines previously studied concepts
with new preprocessing and analysis techniques, with the aim
to improve the mapping process of the AF substrate. To the
best of our knowledge, this is the first study to employ CGCD
for the estimation of the fractionation level of bipolar EGMs
and to analyze segments of one second length, confronting
some common problems regarding the EGM fractionation
analysis. Stability of the recording catheter appears to be such
an issue [17] that can be solved by using short-time intervals.

Detection of AF Type IV is a rather complicated task.
Analysis performed on this study showed that CGCD values
of AF Type IV lie dispersedly between AF types II and III.
Consequently, a strategy without signal segmentation would
wrongly classify the corresponding EGMs as either of the two
above-mentioned AF types. Analysis in short-length epochs on
the contrary, allowed the quick capture of changes in signal’s
morphology and as a result, the rapid detection of AF Type
Iv.

Choice of the signal reconstruction parameters should be
done with caution and depend on the data size [18]. While
longer segments are preferred, attractor dynamics can be
preserved in short signals. Since different studies analyze time-
series of different size, the use of the same parameters as a
common reference would serve both for comparative reasons
and for the optimization of the results. Segments of one
second duration can effectively adapt to the needs of each
study, while the parameters with the highest discriminative
power could be incorporated into the medical devices. As
signal amplitude may affect CGCD values, RMS normalization
allows an amplitude-independent comparison, leading to more
robust results.

VI. CONCLUSIONS

The proposed customized method demonstrated competent
results. AF fractionation levels were in all cases in consistency
with the CGCD values. AF Type IV was correctly detected in
all the cases. As this method appears to be quick, robust and
independent of common procedural issues such as catheter
stability, it could contribute to AF mapping and assist CA
procedures.
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