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Exponential time differencing schemes for pricing
American option under the Heston model

R. Company [, F. Fuster\1 and L. Jódar [

([) Institut Universitari de Matemàtica Multidisciplinar,
Universitat Politècnica de València,

(\) Banco Santander,
Av. de Cantabria, s/n, 28660 Boadilla del Monte, Madrid.

1 Introduction
The classic Black-Scholes model makes assumptions that are not empirically valid. The model
is widely employed as a useful approximation to reality, but proper application requires under-
standing its limitations and constant volatility of the stock returns is one of them. In fact, this
assumption is one of the biggest source of weakness, because the variance has been observed
to be non-constant leading to models, such as GARCH, to model volatility changes. There are
other approaches to model the asset volatility, as consider that follows a random process or,
in other words, consider the volatility as a stochastic process. This point of view lead us to
a Partial Differential Equation (PDE) different from the classic Black-Scholes, now there are
involved two different variables, apart of the time: asset level S and variance ν. Deal with this
PDE and the presence of cross-derivatives is a challenging task. It is even more difficult to deal
with American options which allows to exercise the option at any time before the expiration
date. But the solution to this problem is of great interest to the financial markets.

2 The pricing problem
To the pricing of American options we use the Heston model [5]:

dS(t) = µS(t)dt+
√
ν(t)S(t)dW1,

dν(t) = κ(θ − ν(t))dt+ σ
√
ν(t)dW2,

dW1dW2 = ρdt,

(1)

and a penalty method similar as in [3]. With this assumptions, applying Itô’s lemma and
standard arbitrage arguments we achieve the following PDE:

∂U

∂t
+ 1

2νS
2∂

2U

∂S2 + ρσνS
∂2U

∂S∂ν
+ 1

2σ
2ν
∂2U

∂ν2 + rS
∂U

∂S
+ κ̄(θ̄− ν)∂U

∂ν
− rU + f(E, S, U) = 0, (2)

1e-mail: ferran.ffv@gmail.com
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at which we will remove the cross-derivatives with the classical technique for the reduction of
second order linear PDE to canonical form [4, chapter 3]. It is well known that, using finite dif-
ferences, cross-derivatives involves negative coefficients. So, like we are talking about prices we
must guarantee the solution’s positivity. This fact motivates the transformation of the problem.

The following step of the semi-discretization. We apply centered finite difference to the spatial
derivatives, letting alone the temporal-derivatives, achieving a system of ODEs:

dP

dt
= A(ξ)P (t) + f (ξ, P ) . (3)

Now we apply the ETD method [2] and the temporal discretization. Finally, making some
assumptions to provide solutions, we achieve a numerical scheme to the PDE (2):

P n+1 = eAkP n + k ϕ(A, k) f(ξ, P n). (4)

3 Positivity and stability
Like we are computing prices, we must assure the positivity an stability of the provided solu-
tions. And in the case that we were interested in computing put prices, we also must assure
that our numerical scheme provides bounded profits.

We can assure the positivity of our numerical scheme bounding the numerical derivative’s step-
size of the spatial variables. Specifically:

h ≤ α

δ
, (5)

where α is the minimum main diagonal coefficient of matrix A(ξ) and δ the maximum of non-
diagonal elements.

The stability condition is fulfilled if the temporal step-size verify the following:

k ≤ h2

(λ+ r)h2 + 2αm
(

1+m2

m2

) , (6)

where αm is the maximum main diagonal coefficient of matrix A(ξ), r the risk-free rate, m the
relationship between the spatial step-sizes and λ a constant dependent of the penalty term.

It can be verified for put options, using the induction principle, that at any time step:

‖ P n ‖∞≤ E. (7)

4 Numerical experiments
Fig. 1 shows the numerical solution for American put options under the set of parameters:
S1 = 0.25, S2 = 40, ν1 = 0.002, ν2 = 1.2, r = 0.1, ρ = 0.1, E = 10, T = 0.25, λ = 200, κ =
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5, θ = 0.16, σ = 0.9 for k and h verifying the stability condition.

S

0 5 10 15 20 25 30 35 40

volatilit
y

0.0
0.2

0.4
0.6

0.8
1.0

1.2

Op
tio

n 
va

lu
e

0

2

4

6

8

Figure 1: Numerical solution for τ = T , h = 0.07 and k = 5 · 10−5.

We can see that for a big values of the underlying asset, the option values tends to zero. On
the other hand, when the asset tends to zero the option value tends to the strike price E, as we
expect because of (7). Other relevant issue that our numerical solution catches is that for a big
values of the volatility the option value is bigger than for low values, but this is only relevant
when the asset is near to the strike price. Proposed numerical solution are competitive with
other approaches in the literature [1, 6–10].
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