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Numerical integral transform methods for random
hyperbolic models

M.-C. Casabán[1, R. Company[ and L. Jódar[

([) Instituto Universitario de Matemática Multidisciplinar,
Universitat Politècnica de València.

1 Introduction

This work deals with the construction of analytic-numerical solutions, in the mean square
sense [1], of the random heterogeneous telegraph type problem

utt(x, t) = (k(x)ux(x, t))x + a(x)u(x, t) + ψ(x, t) , x > 0, t > 0 , (1)
u(0, t) = g1(t) , (2)
ux(0, t) = g2(t) , (3)
u(x, 0) = g(x) , (4)

where a(x), k(x), ψ(x, t), g1(t), g2(t) and g(x) are stochastic processes (s.p.’s) with a finite
degree of randomness [1].

Efficient methods for solving numerically deterministic problems such as finite-difference meth-
ods become unsuitable for the random case because of the computation of the expectation and
the variance of the approximation solution s.p. The drawbacks are essentially of computational
complexity such as the handling of big random matrices which appear throughout the iterative
levels of the discretization steps and the necessity to store the information of all the previous
levels of the iteration process. Then, they motive the search of non iterative alternatives. In this
sense, this paper provides an approximation solution s.p. of the problem (1)–(4) which com-
bines the random Fourier sine transform, the Gauss-Laguerre quadrature rule and the Monte
Carlo method.

2 Gauss-Laguerre solution of a random hyperbolic model

The construction of an approximated solution s.p. of the problem (1)–(4) will be in two-stages.
Firstly, using the Fourier sine transform, an infinite integral form solution of the theoretical

1email: macabar@imm.upv.es
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solution is obtained. Then, using random Gauss-Laguerre quadrature formulae a random nu-
merical solution is represented that is further computer by means of Monte Carlo simulations
at appropriated root points of the Laguerre polynomials.
Let V (x)(ξ) = Fs[u(x, ·)](ξ) be the Fourier sine transform of the unknown u(x, ·):

V (x)(ξ) = Fs[u(x, ·)](ξ) =
∫ +∞

0
u(x, t) sin(ξ t) dt , ξ > 0 , x > 0 . (5)

Let us denote

G1(ξ) = Fs[u(0, ·)](ξ) = Fs[g1(t)](ξ) , ξ > 0 , (6)
G2(ξ) = Fs[ux(0, ·)](ξ) = Fs[g2(t)](ξ) , ξ > 0 , (7)

Ψ(x)(ξ) = Fs[ψ(x, ·)](ξ) , x > 0, ξ > 0 . (8)

Let us assume that the s.p.’s k(x), a(x), ψ(x, t), g1(t), g2(t) and g(x) of problem (1)–(4) are
mean four (m.f.) continuous with a finite degree of randomness. Let k(x) be a positive s.p.
4-differentiable and let ψ(x, t), g1(t), g2(t) be m.f. absolutely integrable s.p.’s in t > 0. By
applying random Fourier sine transform to problem (1)–(4) and using the properties of the
random Fourier sine transform, [2] , one gets, for ξ > 0 fixed

d2

dx2 (V (x))(ξ) + k′(x)
k(x)

d

dx
(V (x))(ξ) + a(x) + ξ2

k(x) V (x)(ξ) = Ψ(x)(ξ)− ξ g(x)
k(x) , (9)

together with

V (0)(ξ) = G1(ξ) ,
d

dx
(V (0))(ξ) = G2(ξ) . (10)

Solution of problem (9)–(10) is the first component of the solution of extended random linear
differential system, V (x)(ξ) = [1, 0]X(x)(ξ),

X ′(x)(ξ) = L(x)(ξ)X(x)(ξ) +B(x)(ξ) , x > 0 ,
X(0)(ξ) = Y0(ξ) ,

}
(11)

where

L(x)(ξ)=

 0 1

−ξ
2 + a(x)
k(x) −k

′(x)
k(x)

 , B(x)(ξ)=

 0
Ψ(x)(ξ)− ξ g(x)

k(x)

 ,

Y0(ξ)=
[
G1(ξ)
G2(ξ)

]
.


(12)

Assuming that 4-s.p.’s a(x), k(x) and k′(x) satisfy the moment condition

E [|s(x)|r] ≤ mhr < +∞ , ∀ r ≥ 0 , (13)

for every x > 0, it is guaranteed that the entries of the matrix s.p. L(x)(ξ) ∈ L2×2
4 (Ω),

for ξ > 0 fixed, satisfy condition (13). Condition (13) guarantees that L(x)(ξ) is 4-locally
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absolutely integrable. Furthermore, it is verifies that vector s.p.’s both B(x)(ξ) and Y0(x)(ξ)
lie in L2×1

4 (Ω) and they are absolutely integrables in x ∈ [0,+∞). By using random inverse
Fourier sine transform to V (x)(ξ) one gets

u(x, t) = 2
π

∫ ∞
0

V (x)(ξ) sin(ξ t) dξ = 2
π

∫ ∞
0

X1(x)(ξ) sin(ξ t) dξ , (14)

where X1(x)(ξ) = [1, 0]X(x)(ξ) . Now, taking advantage of the Gauss-Laguerre quadrature
formula of degree N , see page 890 of [3], for a s.p. J (ξ) ∈ L2(Ω) being m.f.-absolutely integrable
respect to ξ > 0, we can consider the following numerical approximation for each event ω ∈ Ω

IG-L
N [J ](ω) =

N∑
j=1

νj J (ϑj;ω) , νj = ϑj

[(N + 1)LN+1(ϑj)]2
, (15)

where ϑj is the j-th root of the deterministic Laguerre polynomial, LN(ϑ), of degree N and νj
is the weight. This quadrature formula is going to be applied to the r.v. u(x, t) given by (14)
taking

J (ξ) = J (x, t, ξ) = 2
π
X1(x)(ξ) sin(ξ t) eξ .

Given the degree N , let us denote by uG-L
N (x, t) the Gauss-Laguerre s.p. approximation of

degree N of the exact solution s.p. u(x, t) of the random problem (1)–(4), evaluated at (x, t)
and expressed as the r.v.

uG-L
N (x, t) = 2

π

N∑
j=1

νj sin(ϑj t) eϑj X1(x)(ϑj) . (16)

The exact solution X1(x)(ϑj) is going to be obtained using Monte Carlo simulation because
it is not available. We denoted by EKMC [X̄1(x)(ϑj)] and CovKMC

[
X̄1(x)(ϑj) , X̄1(x)(ϑ`)

]
the

expectation and the covariance, respectively, of K number of realizations used in the Monte
Carlo (MC) simulation and X̄1(x)(ϑj) the deterministic numerical solution obtained after taking
K realizations. Thus the final expressions for the approximations of the expectation and the
variance of the solution s.p. take the form

E[uG-L
N (x, t)] ≈ E[uG-L

N,K(x, t)] = 2
π

N∑
j=1

νj sin(ϑj t) eϑj EKMC [X̄1(x)(ϑj)] , (17)

Var
[
uG-L
N (x, t)

]
≈ Var

[
uG-L
N,K(x, t)

]
=( 2

π

)2 N∑
j=1

N∑
`=1

νj ν` sin(ϑj t) sin(ϑ` t) eϑj+ϑ` CovKMC

[
X̄1(x)(ϑj) , X̄1(x)(ϑ`)

]
. (18)

3 Numerical example
Consider the random heterogeneous telegraph type problem (1)–(4) with the following input
data having a finite degree of randomness

k(x) = 1 + b cos(π x) , a(x) = e−ax , ψ(x, t) = e−(x+t)

g1(t) = 0 , g2(t) = 0 , g(x) = 0

}
, (19)
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where parameters a and b are assumed to be both independent r.v.’s, specifically, a has a uni-
form distribution giving values in [0, 1], that is, a ∼ Un(0, 1), and b > 0 has an exponential
distribution of parameter 2 truncated on the interval [0.1, 0.2], that is, b ∼ Exp[0.1,0.2](2). Then
it is verified that s.p.’s k(x), a(x) and the deterministic functions ψ(x, t), g1(t), g2(t) and g(x)
are 4-continuous and 4-absolutely integrable with respect to the time variable those depending
on t. Furthermore, k(x) is positive and 4-differentiable.

To study the numerical convergence of the approximations of both the expectation and the
standard deviation we have studied the behaviour of their root mean square deviations (RMSD)
and the absolute deviations (AbsDev), that is

RMSD
[
E[uG-L

N,K`K`+1
(xi, t)]

]
=

√
1

(n+1)
∑n

`=0

(
E[uG-L

N,K`+1
(xi, t)]− E[uG-L

N,K`
(xi, t)]

)2
,

RMSD
[√

Var[uG-L
N,K`K`+1

(xi, t)]
]

=
√

1
(n+1)

∑n
`=0

(√
Var[uG-L

N,K`+1
(xi, t)−

√
Var[uG-L

N,K`
(xi, t)

)2
,

AbsDev
(
E[uG-L

N`N`+1,K(x, t)]
)

=
∣∣∣E[uG-L

N`+1,K(x, t)]− E[uG-L
N`,K(x, t)]

∣∣∣ ,
AbsDev

(√
Var[uG-L

N`N`+1,K(x, t)]
)

=
∣∣∣√Var[uG-L

N`+1,K(x, t)]−
√

Var[G-L
N`,K(x, t)]

∣∣∣ ,
in two stages. Firstly, varying the number K of realizations in the Monte Carlo method
but considering fixed N in the Gauss-Laguerre quadrature rule and secondly, varying N but
considering the number of realizations K fixed. Table 1 and Figure 1 illustrated the numerical
convergence of our approximations.
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Figure 1: (a): Comparative graphics of the absolute deviations for successive approximations
to the expectation E[uG-L

N`N`+1,K
(xi, 1)]. (b): Comparative graphics of the absolute deviations

for successive approximations to the standard deviation
√

Var[uG-L
N`N`+1,K

(xi, 1)]. Both graphics
correspond to the time t = 1 on the spatial interval 0 ≤ x ≤ 1, K = 1000 realizations and the
degrees N = {4, 6, 8, 10} for the Laguerre polynomials.
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Tables

K`K`+1 RMSD
[
E[uG-L

6,K`K`+1
(xi, 1)]

]
RMSD

[√
Var[uG-L

6,K`K`+1
(xi, 1)]

]
K0K1 2.81922e− 05 2.91484e− 05
K1K2 1.96565e− 05 1.18180e− 05
K2K3 1.11618e− 05 2.49163e− 06
K3K4 1.07918e− 05 4.96128e− 06
K4K5 3.59937e− 06 2.83452e− 06

Table 1: Values of the RMSDs for the approximations of the expectation,
RMSD

[
EG-L
N,K`K`+1

(xi, t)
]

, and the standard deviation, RMSD
[√

VarG-L
N,K`K`+1

(xi, t)
]
, at

t = 1 on the spatial domain 0 ≤ x ≤ 1, N = 6 the degree of the Laguerre polynomial and the
realizations K0 = 2500, K1 = 5000, K2 = 104, K3 = 2× 104, K4 = 4× 104 and K5 = 5× 104.
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