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Abstract— Atrial Fibrillation (AF) is the most commonly 
sustained cardiac arrhythmia and the major cause of 
cardiovascular morbidity and mortality. Because of its wide 
availability and initial effectiveness, electrical cardioversion 
(ECV) is the primary method used for reverting this arrhythmia 
to normal sinus rhythm (NSR). However, this procedure presents 
some collateral effects, and barely 80% of the patients prevail in 
NSR after 1 month. Thus, being able to predict the outcome of 
ECV before its application is of great interest in clinical practice, 
so cardiac complications in patients with high probability of early 
AF recurrence could be prevented. For that purpose, this work 
characterizes atrial activity (AA) in patients with persistent AF, 
before ECV, by means of nonlinear multiscale dynamics, 
particularly composite multiscale entropy (CMSE), and 
compares its performance with other recently used parameters, 
such as, dominant atrial frequency, AA’s amplitude and sample 
entropy. The results show that characterizing AA by means of 
CMSE predicts ECV outcome with an accuracy above 90%, 
whereas the remaining parameters only forecast correctly about 
70% of the analyzed patients. As a conclusion, using complexity 
techniques at different time scales for AA characterization 
increases the probability of correctly predicting AF recurrence.  

Keywords— Atrial Fibrillation, Electrical Cardioversion, 
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I. INTRODUCTION 

Atrial fibrillation (AF) is the most commonly sustained 
cardiac arrhythmia, affecting 33 million individuals worldwide. 
It is defined as a tachyarrhythmia characterized by extremely 
rapid and uncoordinated atrial activations with consequent 
deterioration of the mechanical atrial function [1]. In fact, this 
arrhythmia is observed and diagnosed in the ECG by the fact 
that P waves are replaced by fibrillatory waves (f waves), 
which present variable size, amplitude and timing. 
Additionally, although the QRS complex morphology remains 
unchanged, during AF the ventricular response is often rapid 
(90-170 beats per minute) and highly irregular [1-3].  

Attending to its progressive nature, AF is classified into 
four major groups: paroxysmal, persistent, long-standing 
persistent, and permanent [1]. Although AF is initially non-
sustained, it promotes electrical and mechanical changes in the 
atrial, thus contributing to maintain the arrhythmia [1]. In this 
stage, persistent AF is a relevant risk factor of stroke and 
mortality, and its treatment is mainly focused on restoring 
normal sinus rhythm (NSR). Indeed, electrical cardioversion 
(ECV) is the primary used method for that purpose [2]. This 
procedure consists on delivering one or more controlled 
transthoracic electrical shocks to the patient until NSR is 
restored or the maximum allowed power is applied to the heart 
[3]. To increase the probability of NSR maintenance, patients 
are often treated with antiarrhythmic drugs before ECV. 
Nonetheless, nearly 20% of the patients still relapse to AF 
within 30 days, 40-60% revert to AF within 3 months and 
around 60-80% within a year [4]. Moreover, ECV is also 
considered an important cause of collateral effects, such as 
malignant ventricular arrhythmias, arterial thromboembolism 
and other related complications [4]. 

Within this context, being able to characterize and predict 
ECV outcome before its application is of great clinical interest. 
In this way, ECV could be avoided in patients with a limited 
probability of NSR maintenance, thus preventing risks and 
complications, as well as saving costs for healthy systems.  So 
far, numerous studies have attempted to find either invasive [5-
7] and non-invasive [8-9] predictors of the ECV outcome, but 
only a few of them have dealt with complexity analysis of the 
atrial activity (AA) signal [11-14].  

The present work aims to continue the proposal in [13], 
where sample entropy (SampEn) was used to characterize the 
AA signal and then predict ECV outcome. It deals with the 
hypothesis that time series derived from complex systems show 
dynamical variations and structures on different time scales, 
which SampEn does not account for [15]. Composite 
multiscale entropy (CMSE) [16] is then considered here in 
order to improve ECV outcome prediction. Instead of common 
multiscale entropy, this tool  is used due to its  improved ability 



TABLE I.  CLINICAL CHARACTERISTICS OF THE ANALIZED PATIENTS 

Parameter NSR Maintenance AF relapsing 
Patients 14 21 
Men 4 8 
Underlying heart disease 2 5 
Sustained AF duration (months) 9.5 (1-36) 10.5 (1-54) 
Left atrial diameter (mm) 4.88 ± 8.26 46.23 ± 6.20 

 
to reduce the variability that multiscale entropy presents at 
large time scales [17].  

II. DATABASE AND METHODS 

A. Database 

The analyzed database consisted of 35 12-lead ECG 
recordings, sampled at 1024 Hz and classified as a function of 
the patients’ rhythm one month after ECV: NSR maintenance 
or AF recurrence. This work only considered ECG recordings 
from patients who reverted to NSR after only one shock with 
power of 200J. Table 1 provides clinical characteristics of these 
patients.  

Although the 12 standard leads were available for all ECG 
recordings, only lead V1 was considered for AA 
characterization, because it presents the largest f waves [12]. 
Similarly, only a 1.5 minute-length segment before the 
electrical shock was analyzed in this work. A more detailed 
description of this database can be found in [14], where it was 
also studied.    

B. Atrial Activity Characterization 

Before extracting and characterizing the AA signal, the raw 
ECG was preprocessed. This consisted on removing baseline 
wandering, power line interference, and high frequency noise.  
Baseline was estimated by means of a 3rd order Butterworth 
low-pass filter with a cut-off frequency of 0.8Hz and then 
subtracted. Powerline interference was removed through a 
notch filter centered on 50Hz and 4Hz bandwidth. The 
remaining signal was low-pass filtered at 40Hz for high-
frequency noise removal [18]. Next, to extract the AA signal, a 
well-known algorithm based on average QRS complex 
subtraction was used [19]. Briefly, QRS complexes were 
detected using a previously published algorithm [20], and 
QRST length was determined experimentally and set to a 65% 
of the mean RR interval. Whether the ECG presented ectopic 
beats, a two-step cancellation approach was performed. First, a 
template was computed over the ectopic QRST complexes and 
they were subsequently cancelled.  Secondly, this template-
based cancellation algorithm was applied over the remaining 
normal QRST complexes. Note that ectopic beats were 
detected and classified by means of a pattern recognition and 
thresholding algorithm [21]. 

For AA characterization, different parameters were 
considered: AA absolute and normalized amplitudes (i.e., FWA 
and FWAn), the dominant atrial frequency (DAF) and two 
complexity measures (i.e., SampEn and CMSE). Considering 
that the AA signal, referred to as aa(n), is a discrete signal with 
N samples in length, FWA and FWAn were estimated 
according to: 
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where x(n) denotes the ECG, k indexes the QRS complex and 
Nb is the total number of beats in the ECG signal. The DAF 
was estimated as the maximum peak between 3 and 12Hz over 
the AA power spectral density (PSD), i.e.,  

 { }{ } [ ]arg max ( ) , 3,12DAF PSD f f Hz= ∈    (3) 

where the power spectral density was computed from 20s 
length windows with 75% overlapping. 

Next, both SampEn and CMSE were estimated from the 
main atrial wave (MAW) of the AA signal, such as 
recommended by previous works [11-13]. The MAW was 
obtained by band-pass filtering the AA with a 4 Hz bandwidth 
type II Chebychev filter centered on the DAF. These measures 
evaluate the self-similarity within a nonstationary time series, 
so that higher values indicate a less organized behavior. More 
precisely, SampEn estimates the likelihood ratio that the 
number of epochs of length m prevail when these epochs are 
increased in one unit within a tolerance r [15]. From a 
mathematical point of view, if the MAW is considered as a 
discrete time series, referred to as u(n) for n=0:N-1, the first 
step to compute SampEn is to form the subvectors v(i) of 
length m. Next, the distance between every pair of vectors v(i) 
and v(j) is computed and the likelihood of similar patterns of 
length m and tolerance r, Am(r), is estimated as: 
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Finally, SampEn is obtained as:  

 { }1( , , , ) log ( ) / ( )m mSampEn x m r N A r A r+= −  (7) 

Unfortunately, this entropy-based index does not account 
for dynamical variations on different time scales [15]; thus, 
multiscale entropy has been proposed to overcome this 
limitation [17]. However, traditional multiscale entropy has 
shown an increasing variance in the estimated entropy at large 
time scales due to length restrictions, and several alternatives 
have been recently proposed, including CMSE [16]. This 
metric requires computation of a coarse-grained series at each 
time scale τ, which was here computed from the MAW signal, 
such as:  
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Then, CMSE was estimated as the mean of the SampEn 
values computed from the coarse-grained series for all 
considered time scales, i.e.: 
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The MAW signal was divided in 30s intervals, thus 
ensuring a robust enough estimation by preserving a minimum 
segment length of 1500 samples at the maximum considered 
scale τ = 20. SampEn parameters were set to r = 0.2 times the 
standard deviation of the signal and m = 2 [15].  

C. Statistical Analysis 

A Kolmogorov-Smirnov test was used to assess normality 
of data. For indices meeting parametric test assumptions, 
statistical differences between patients maintaining NSR and 
relapsing to AF were estimated by means of a t-Student’s test, 
whereas Kruskal-Wallis test was employed for non-normal 
features. On the other hand, a receiver-operating characteristic 
curve (ROC) was considered to evaluate classification 
performance of each metric. The area under the ROC curve 
(AUC) was taken as an approximation of the diagnostic 
accuracy reached by each index.  

III. RESULTS 

Figure 1 shows a comparative between median values of 
CMSE for NSR maintenance and AF relapsing groups at 
different time scales τ. A similar behavior is found between 
groups, although AF relapsing group shows slightly higher 
entropy values. Statistical tests were performed for every time 
scale and the Kolmogorov-Smirnov test revealed not normal 
distributions for most of them. Thus, the Kruskal-Wallis test 
provided statistical significance (p < 0.05) at all scales, but τ = 
{3, 4, 5}. Additionally, the AUC remained always above 
68.2%. As a summary, Table 2 provides median values, 
statistical significance (p), and AUC for some of the considered 
time scales τ.  Nonetheless, it should be noted that the 
maximum AUC of 90.2% was achieved at τ = 19. 

Regarding the remaining parameters computed from the AA 
signal, Table 3 presents median values, statistical significance 
(p), and AUC for both, patients being able to maintain NSR 
and patients that relapsed to AF after one month. Moreover, 
Figure 2 shows their graphical distribution in boxplots. As it 
can be observed, patients unable to maintain NSR exhibits 
generally, higher values of the three indices DAF, SampEn and  
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Fig. 1. CMSE median values for different scales (τ). In blue NSR 
maintainance (NSRm) and in red AF recurrence (AFr).  

TABLE 2. CMSE VALUES OBTAINED AT DIFFERENT TIME SCALES. MEDIAN 
VALUES, INTERQUARTILIC RANGES, STATISTICAL SIGNIFICANCE AND AUC ARE 

PRESENTED 

τ NSR Maintenance AF recurrence p AUC (%) 

1 0.095 (0.064) 0.106 (0.021) 0.033 71.1 
5 0.494 (0.271) 0.506 (0.050) 0.063 68.5 
10 0.575 (0.170) 0.595 (0.020) 0.013 74.7 
15 0.585 (0.108) 0.612 (0.041) 0.001 86.3 
20 0.613 (0.093) 0.622 (0.109) 0.001 89.6 

TABLE 3. CLASSIFICTION PERFORMANCE OF THE ANALYZED PARAMETERS. 
MEDIAN VALUES, INTERQUARTILIC RANGES,  STATISTICAL SIGNIFICANCE AND 

AUC ARE PRESENTED 

Parameter NSR Maintenance AF recurrence p AUC (%) 

FWAn 0.095 (0.055) 0.106 (0.064) 0.008 71.2 
DAF 5.125 (1.250) 5.625 (1.500) 0.075 69.7 
SampEn 0.095 (0.064) 0.106 (0.021) 0.033 71.1 
CMSE 19 0.607 (0.094) 0.647 (0.094) 0.001 90.2 
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Fig. 2. Graphical distribution of the values obtained for the analyzed indices:   
(a) FWAn, (b) DAF, (c) SampEn, and (d) CMSE (for time-scale τ = 19) for 
both groups, NSR maintenance (NSRm) and AF recurrence (AFr).  

CMSE than NSR maintenance. Note that the optimal scale is 
only given for CMSE, and FWA values are not presented as 
they showed worst performance than FWAn. 

IV. DISCUSION AND CONCLUSIONS 

The DAF, SampEn and CMSE indexes provide higher 
values for patients who relapsed to AF, while the FWAn does 
not. These results are in line with other previous works that 
also associate lower values with a higher AA organization and, 



consequently, higher probability of NSR maintenance one 
month after ECV [11-13]. The DAF and FWAn have been 
widely established in the literature as the best predictors of 
ECV outcome [13]. However, the obtained results show how 
complexity measures have achieved a better classification 
performance. To this respect, it is worth noting that CMSE has 
been able to predict correctly a 20% of cases more than the 
remaining indices (see Table 3). 

The estimated SampEn values in this study are slightly 
higher to those given in [13] (i.e., 0.074 ± 0.015 for NSR 
maintenance and 0.098 ± 0.013 for AF relapsing), although 
they exhibit a similar behavior. The difference between the 
results presented here and those in [13] could be associated 
with two aspects. On the one hand, the SampEn computation 
parameters, and, on the other hand, the MAW extraction 
algorithm. Whereas this work considered 30s length ECG 
segments and a value of 0.2 times the signal standard deviation 
for r, in [13] 10s length intervals were analyzed and a value of 
0.25 was considered for r. Nonetheless, it should be noted that 
the results given in [11, 13] are also different, although they 
analyzed the same patients and used the same parameters for 
SampEn computation.  

Moreover, bearing in mind that the AA signal often 
presents low-frequency residue, the MAW extraction process 
plays a key role for its accurate complexity characterization. To 
this respect, while the MAW was estimated by a band-pass FIR 
filtering in [11], an algorithm based on wavelet decomposition 
was used in [13], and a Type II Chebychev IIR filter has been 
considered in the present work. The results in [13] provided a 
higher specificity than the ones obtained in [11] (79% vs. 
59.1%) and similar sensitivity (91% vs. 90.2%). These findings 
suggest that the better MAW estimation, the better results in 
predicting AF recurrence after ECV. 

On the other hand, it is worth noting that no previous work 
has made use of multiscale entropy approaches for AA 
characterization, nor ECV outcome prediction. Nonetheless, 
Wavelet Entropy was considered in [14], this measure provides 
an spatio-temporal characterization of the AA. Wavelet entropy 
values were higher for AF relapsing (0.627 ± 0.021) than for 
NSR maintenance (0.512±0.0025), obtaining a diagnostic 
accuracy of 84.75%. These results are in line with those 
reported by CMSE at scale 19 (see Table 3), but their 
discriminant ability was lower. Anyway, these findings suggest 
that the most relevant nonlinear dynamics in the AA signal for 
ECV outcome prediction can be found at large time scales.   

Summarizing, the use of nonlinear dynamics indexes, 
particularly CMSE, to characterize the AA signal extracted 
from the surface ECG enables a better ECV outcome 
prediction than other common parameters such as the DAF, 
FWAn and SampEn, providing a diagnostic accuracy higher 
than 90%.  
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