Contents

Abstract	v
Resumen	vii
Resum	ix
Acknowledgment	xi
Contents	xiii
List of Tables	xvi
List of Figures	xvii
Nomenclature	xxiii
1. Introduction	29
1.1 Two-phase flow Numerical methods	29
1.2 Review for the past work	31
1.2.1 One-way coupling	31
1.2.2 Two-way coupling	31
1.2.2.1 Source terms in the momentum equation	32
1.2.2.2 Bubble induced turbulence effect	33
1.2.3 Four-way coupling	34
1.2.3.1 Collision modeling	34
1.2.3.2 Coalescence modeling	35
1.2.3.3 Breakup modeling	35
1.2.4 Works used stochastic modeling for bubbles diffusion.	36
1.3 Objectives of the present research	36
1.4 Experimental database	37
1.5 Thesis outline	44
2. Numerical modeling	47
2.1 Bubbles hydrodynamics	47
2.1.1 Acting forces	47
2.1.1.1 Indications of Forces for Different Cases	69
2.1.2 Collision modeling	72
2.1.3 Coalescence modeling	75

2.1.4 Breakup modeling	85
2.2. The Euler Solver Overview	95
2.2.1 Conservation Equations	95
2.2.2 Turbulence modeling	96
2.2.3 Control input file	98
2.3. The Lagrangian Solver Overview	99
2.3.1 Equation of motion	99
2.3.2 Methods for locating particles in elements of arbitrary shape	100
2.3.3 Algorithms for Locating particles	103
3. Turbulence modeling	107
3.1 Introduction	107
3.2 Turbulence modeling for the Euler solver	110
3.3 Stochastic modeling of particles diffusion	111
3.4 Bubbles induced turbulence (BIT) modeling	118
3.5 Indication for the CRW model including the BIT effect	122
4. One-way Coupling Process Study and Discussion	125
4.1 Approximating Eulerian quantities at bubble location	125
4.2 Computational domain and boundary conditions	127
4.3 Time stepping	128
4.4 Code algorithm	128
4.5 Study for the Effect of the BIT formula on the void fraction	130
distribution.	
4.6 Study for the Effect of the lift coefficient on the void fraction	137
distribution.	
4.7 Results and discussion	140
5. Two-way Coupling Process Study and Discussion	145
5.1 Two way coupling without considering bubbles interactions	145
5.1.1 Time stepping	145
5.1.2 Bubble data Interpolation at computational cells	146
5.1.3 Modifications in Euler solvers equations in the two-way coupling	150
5.1.3.1 Modification in momentum equations	150

5.1.3.2 Modification in turbulence equations	151
5.1.3.3 Source terms and density definition in the Euler solver	152
5.1.4 Code algorithm for two-way coupling without bubbles interactions	153
5.1.5 Results and discussion	157
5.1.5.1 Effect of Two-way coupling on liquid properties.	157
5.1.5.2 Effect of Two-way coupling on the gas phase.	160
5.1.5.3 Study of the Lift coefficient effect on the void profiles	162
5.2 Two way coupling with considering bubbles collision	164
5.2.1 Time stepping	165
5.2.2 Code algorithm	165
5.2.3 Results and Discussion	167
5.2.4 Study for the effect of the BIT coefficient on the void fraction	168
distribution	
5.2.5 Number of collisions density	180
5.2.6 Effect of gas holdup on turbulence data	184
5.2.7 Effect of considering bubbles coalescence	187
5.3 Two way coupling considering bubble's collision, coalescence and	190
breakup	
5.3.1 Time stepping	190
5.3.2 Code algorithm	190
5.3.3 Results and comparisons	192
5.4 Calculation time discussion	198
6. Conclusions and future work	201
6.1 Conclusions from the present work	201
6.1.1 One-way coupling	201
6.1.2 Two-way coupling	201
6.1.3 CRW model	202
6.1.4 New features in bubbly flow simulations	203
6.2 Future Work	204
Bibliography	205

Appendixes 22	21
Appendix A Acceleration Derivation in Cylindrical coordinates 22	21
Appendix B Data structure for the Lagrangian solver22	24
B.1 Lagrangian variables 22	24
B.1.1 Data structure applied for bubbles coalescence 22	25
B.1.2 Data structure applied for bubbles breakup 22	26
B.2 Common data variables 22	26
Publications from the present research22	27