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Acoustics on the Poincaré Disk

Michael M. Tung [1

([) Instituto de Matemática Multidisciplinar,
Universitat Politècnica de València.

1 Introduction
The Poincaré disk model is a straightforward model of hyperbolic geometry [1] on the 2-
dimensional disk taking over certain properties from the Poincaré half-plane [2, 3]. The cor-
responding metric of this manifold weighs radial distances from the center of the disk to its
circumference in a characteristic manner. Not only from the mathematical viewpoint has this
model fundamental relevance, but we will argue that its prominent feature can be interpreted as
somewhat that of a black hole turned upside down, a quality absent from the related half-plane
analogue [4]. This particular geometry and topology make it an attractive candidate for acous-
tic wave simulation with metamaterial devices—devices composed of extraordinary materials
which allow to implement curved background spacetimes in acoustics, see [5–9] and references
therein.

In this work we study the feasibility to implement acoustics on the Poincaré disk and investigate
the wave propagation in such a medium. We explore the main differential-geometric features
of this spacetime with its asymptotic behaviour and causal boundaries very much alike to
those of acoustic black holes [9]. By employing the framework developed in [6, 7] we find the
acoustic laboratory parameters (mass-density tensor and bulk modulus) corresponding to the
underlying spacetime structure. We also derive the equations of motion which govern acoustic
wave propagation on the Poincaré disk. This work concludes with numerical simulations for
one illustrative example.

2 Spacetime geometry
The Poincaré disk, henceforth denoted by DP, is the resulting image of the stereographic pro-
jection (X, Y, Z) 7→ (x, y) of the upper part of a circular hyperboloid of two sheets, represented
by the equation X2 + Y 2 − Z2 = −a2, onto the xy-plane.

Fig. 1 provides a schematic view of the stereographic mapping, and shows the similar triangles
to yield the following relations between the coordinates of the hyperboloid and its projection

1e-mail: mtung@imm.upv.es
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to the plane, i.e.
x

a
= X

Z + a
,

y

a
= Y

Z + a
. (1)
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Figure 1: Schematic view of the stereographic projection of point P on the upper sheet of a
circular hyperboloid to point P ′ located on the plane z = 0. The projection gives the Poincaré
disk, DP, endowed with a characteristic metric.

Using the conventional radial polar coordinate r on the xy-plane, it is not difficult to find

X = 2x
1− r2/a2

Y = 2y
1− r2/a2

Z = 1 + r2/a2

1− r2/a2a


for 0 ≤ r < a, (2)

This induces the following spatial line element for distances ` on Poincaré disk DP:

d`2 = dX2 + dY 2 = 4 dx2 + dy2(
1− r2/a2

)2 . (3)

Now, it is customary to introduce the geodesic radius % = artanh(r/a), which converts (3) to
the much simpler form

d`2 = a2d%2 + a2 sinh2% dϕ2. (4)
Note that (4) represents the metric of hyperbolic geometry underlying much of the famous
artwork by the Dutch artist M.C. Escher [10]. Then, adding the time component, the full
spacetime metric for the Lorentzian manifold M = DP × R is given by

ggg = −
(
cdt
)
⊗
(
cdt
)

︸ ︷︷ ︸
θ0

+
(
ad%

)
⊗
(
ad%

)
︸ ︷︷ ︸
θ1

+
(
a sinh % dϕ

)
⊗
(
a sinh % dϕ

)
︸ ︷︷ ︸

θ2

, (5)

where θµ (µ = 0, 1, 2) indicates the dual-base forms of the local coframe. Recall that a > 0
is a physical length scale, further % and ϕ are geodesic polar coordinates. Moreover, c > 0
is a constant speed. This completes the spacetime setup necessary for the succeeding wave
simulation.
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3 Physical construction
In combination with Cartan’s structure equations, the dual base {θ0, θ1, θ2} introduced by (5)
allows to straightforwardly compute the Riemann curvature tensor R̂α

βγδ in the coframe of
manifold M = DP × R. The only non-zero and independent component turns out to be

R̂1
212 = − 1

a2 ⇒ G00 = Ĝ00 = − 1
a2 . (6)

In the final step of (6), we have given the corresponding Einstein tensor Ĝαβ, whose 00-
components in the local coframe and coordinate frame are identical. As an immediate con-
sequence of (6) the underlying energy-matter density ρ0 is exotic:

G00︸︷︷︸
−1/a2

= 8πG
c4 T00︸︷︷︸

ρ0c
2

⇒ ρ0 = − c2

8πGa2 < 0, (7)

where G is the usual gravitational constant. As expected, if the disk extends to infinity, viz.
a→∞, the energy-matter content will vanish and M becomes asymptotically flat.

Obviously, current—and likely any future technology—does not permit to implement such
physical configuration with negative energy-matter density. However, fine-tuning the acoustic
parameters of a suitable metamaterial will presumably allow to do so in the near future. In
Ref. [7], we have shown that there exists a general 1-to-1 correspondence between spacetime
metric g and the parameters κ (bulk modulus) and ρ (density tensor) of an acoustic metama-
terial device. In this case, using (5), we obtain for 0 ≤ r < a:

κ = 4
(1− r2/a2)2 κ0, ρ0ρ

ij = 1
4

(
1− r2/a2

)2
(

1 0
0 1

)
. (8)

Note that the constants κ0 and ρ0 are fixed by the physical properties of the corresponding flat
space. This completes the implementation of the Poincaré disk M = DP × R for metamaterial
acoustics.

4 Wave simulation
Once the acoustic metamaterial is configured, wave propagation can be simulated in such media.
Acoustic phenomena will be governed by an elementary variational principle, namely that for
a spacetime M , endowed with metric ggg, the action will be stationary with respect to variations
of the acoustic potential φ : M → R, such that integration over bounded spacetime domain
Ω ⊆M with volume element dvolg satisfies [7]:

δ

δφ

∫
Ω

dvolg ggg(∇φ,∇φ) = 0. (9)

Next, the variational principle, (9), amounts to solving

∗d∗dφ = 0, (10)
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where ∗ is the Hodge dual. In local coordinates, (10) takes the form of the wave equation with
the Laplace-Beltrami ∆M operator for the curved spacetime background M .

To take advantage of the underlying rotational symmetry, we choose concentric waves centered
around the origin for acoustic probing. Then, all non-trivial behaviour of the acoustic potential
φ is contained in a radial factor, which we denote by φ1(%). Furthermore, considering rotational
symmetry, we can show that the exact solutions for φ1(%), satisfying (10), are combinations of
Legendre polynomials with complex arguments.

Apart from the exact result, we have derived a relatively simple and accurate approximate
solution for the radial dependence of the potential:

φ1(%) = e−%/2
[
Ae
√

1−4a2ω2/c2% +Be−
√

1−4a2ω2/c2%
]
. (11)

Here, ω specifies the frequency of the monochromatic sound waves, and A and B are constants
determined by the boundary conditions. Extreme damping occurs in the asymptotic limit
%→∞ (r → a), and consequently it will never be possible to escape DP. Moreover, oscillatory
behaviour emerges when ω > c

2a . For a numerical simulation, we assume a = 1, c = 1, and
ω = 1 > 1/2, so that naturally harmonic wave features will materialize. Fig. 2 captures exact
and approximate results for the boundary conditions φ1(1) = 1 and φ′1(1) = 0. The absolute
error is exceptionally good and ranges between 2.65 · 10−8 and 0.018 (only close to % = 3.4).
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Figure 2: Non-trivial radial dependence of the acoustic potential for scale a = 1, speed c = 1,
frequency ω = 1, with conditions φ1(1) = 1, φ′1(1) = 0.
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