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Recent identification of several different types of RNA editing
factors in plant organelles suggests complex RNA editosomes within
which each factor has a different task. However, the precise protein
interactions between the different editing factors are still poorly
understood. In this paper, we show that the E+-type pentatricopep-
tide repeat (PPR) protein SLO2, which lacks a C-terminal cytidine
deaminase-like DYW domain, interacts in vivo with the DYW-type
PPR protein DYW2 and the P-type PPR protein NUWA in mitochon-
dria, and that the latter enhances the interaction of the former ones.
These results may reflect a protein scaffold or complex stabilization
role of NUWA between E+-type PPR and DYW2 proteins. Interest-
ingly, DYW2 and NUWA also interact in chloroplasts, and DYW2-GFP
overexpressing lines show broad editing defects in both organelles,
with predominant specificity for sites edited by E+-type PPR proteins.
The latter suggests a coordinated regulation of organellar multiple
site editing through DYW2, which probably provides the deaminase
activity to E+ editosomes.
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The PPR family is classified into the P and PLS subfamilies,
depending on the PPR signature domains. The P subfamily

was described to participate in RNA stabilization, cleavage, splic-
ing, and translation (1). Their members can bind specific RNA
sequences to protect them from endonucleases or modify their
secondary structure to recruit other RNA maturation factors (2).
The P-type PPR protein PPME was the first one described with a
role in RNA editing via RNA binding (3). The PLS subfamily is
further divided into PLS, E, E+, and DYW subgroups, based on
the C-terminal extensions and plays a major role in C-to-U RNA
editing in plant organelles. Among them, E and E+-type PPR
proteins do not have the DYW domain, which is considered to be a
part of the catalytic domain due to the similarity to cytidine de-
aminase (2), suggesting the requirement of forming protein com-
plexes with a DYW protein for a complete editing event. Indeed,
the E-type PPR protein CRR4 forms a complex with DYW1,
which consists of only a DYW domain, to edit an ndhD site in
chloroplasts (4). However, such transassociated DYW-type PPR
protein in an editing complex was reported only at this site in
chloroplasts. It is still unclear whether this scenario is universal for
numerous RNA editing sites in plant mitochondria. Not only the
composition but the stoichiometry of the proteins in the editosome
complexes remains unsolved (5). Some PPR proteins can homo-
dimerize to bind RNA, although dimerization can also occur in the
absence of the RNA target (6).
Most of the PPR proteins are located in mitochondria (65%) or

chloroplasts (17%) (7). Systematic localization experiments and
data integration showed that PPR dual targeting occurs more
frequently than expected (7, 8). Interestingly, some heat shock
proteins (HSPs) have also been associated with editing processes,
translocating the editing factors into the required organelle (9).

Previously, we characterized the mitochondrial E+-type PPR
protein SLO2, which participates in the editing of mttB-144, mttB-
145, nad4L-110, nad7-739, mttB-666, nad1-2, and nad1-40 sites,
affecting four proteins of complex I in the mitochondrial electron
transport chain (10). However, SLO2 lacks a catalytic domain re-
sponsible for the editing task. In this report, we aimed to elucidate
which proteins participate in the working mechanism of SLO2 by
identifying its interacting partners.

Results
Immunoprecipitation with SLO2 Reveals PPR- and HSP-Type Candidate
Interactors. As a first approach to identify interacting partners of
the E+-type PPR protein SLO2, we performed an immunopre-
cipitation and mass spectrometry (IP–MS) assay. Total protein
extracts from Arabidopsis seedlings expressing a green fluorescent
protein (GFP)-tagged SLO2 protein (SLO2-GFP), either under
control of the SLO2 or the CaMV 35S promoter, were taken as
starting material. Among the top 25 interactors, after selection of
significant data (P value <0.05) and sorting based on the ratio of
pSLO2::SLO2 to the Col-0 wild-type control (Fig. S1), three types
of proteins were chosen: PPR proteins with a DYW domain
(DYW2-At2g15690 and MEF57-At5g44230), P-type PPR proteins
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(NUWA-At3g49240, P486-At3g60980, and P487-At3g60960), and
mtHSP60 chaperones (HSP60.2-At2g33210, HSP60.3A-At3g13860,
and HSP60.3B-At3g23990), considered to be part of the import
apparatus specific to the mitochondrial matrix (11) (Fig. 1). The
limited number of PPRmotifs in the DYW2 protein (Fig. 1), is likely
to be insufficient for specific recognition of target RNAs and is
reminiscent of the DYW1 protein in chloroplast (4).

Several SLO2 Interacting Partners Are Uniquely Localized in Mitochondria;
Others Are Dual Localized in Mitochondria and Chloroplasts.As SLO2 is
localized in mitochondria (10), its interactors are also expected
to show mitochondrial localization. All of the SLO2 interacting
partners were predicted to be localized in mitochondria by the
SUBAcon program (12), except MEF57, predicted to be in plas-
tids. For DYW2 and NUWA, proteomic data and reporter studies
indicated dual targeting to mitochondria and chloroplasts (7, 8).
NUWA mitochondrial localization was confirmed in Arabidopsis
transgenic seedlings under the native promoter (13). In Fig. S2A,
we show that the GFP signal of all GFP-tagged SLO2 candidate
interactors consistently colocalized with the mitochondrial marker
mitotracker/mt-rb in Nicotiana leaves, corroborating their mito-
chondrial localization, including for MEF57. In addition, a remark-
ably strong signal of NUWA-GFP was more frequently detected in
chloroplasts (Fig. S2B) than in mitochondria. Likewise, DYW2-
GFP showed strong chloroplast signals in several cells, in a dotted
pattern (Fig. S2B), supporting dual localization for both proteins.
The background signal at high laser gain, including chloroplast
autofluorescence, is shown in Fig. S3A. HSP60 proteins, apart from
the mitochondrial signal, also exhibited a signal associated with the
cytosol (Fig. S2A).

SLO2 and Its Binding Partners Interact in Vivo with HSP60 Import
Factors in Mitochondria. The suggested interaction between
SLO2 and the mtHSP60 chaperones (Fig. S1), motivated us not
only to confirm that these interactions occur in vivo in mito-
chondria, but also to check a possible interaction between the
SLO2 binding PPR proteins and mtHSP60 import factors. All
interactions were tested by bimolecular fluorescence comple-
mentation (BiFC). Both potential protein partners were tagged
with the respective halves of the split-yellow fluorescent pro-
tein (YFP) protein and coinfiltrated pairwise in Nicotiana
leaves. As summarized in Fig. 2A, the YFP signal was recovered
when combining SLO2 or the selected PPR proteins with each
of the mtHSP60 proteins, corroborating their interaction. No
signal was recovered when combining them with ABERRANT
PEROXISOME MORPHOLOGY 9 (APEM9) protein (14)
(Fig. 2A and Fig. S3). The recovered YFP signal colocalized

with the signal of the mitotracker/mt-rb mitochondrial marker
(Fig. S4), proving that the interactions occur in mitochondria.
To further substantiate the interaction of SLO2 and its binding
PPR partners with the HSP60 chaperones, we coimmunopre-
cipitated human influenza hemagglutinin (HA)-/GFP-tagged
SLO2, DYW2, or NUWA proteins together with GFP-/HA-
tagged HSP60.2 and HSP60.3B proteins. Fig. 2B shows that
HSP60.2 and HSP60.3B immunoprecipitated together with
SLO2, DYW2, or NUWA, whereas APEM9 did not (Fig. S5A).
Taken together, these results support the protein interaction of
SLO2, DYW2, and NUWA with HSP60.2 and HSP60.3B in
mitochondria.
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Fig. 1. Scheme of the primary structure of SLO2 and its interacting partners. The names/ID and locus codes and the type of PPR protein are indicated on the left,
and the sizes in base pairs (bp) and amino acids (aa) on the right side of each scheme. The coding/exon fragments are indicated with gray boxes. The different PPR
protein motifs (13, 37) are indicated with colors and capital letters (L1, brown; L2, red; S, yellow; P, orange; E, light green; E+, dark green; and DYW, blue).
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Fig. 2. Protein interaction of SLO2 and its partners MEF57, DYW2, P486, P487,
and NUWA with mtHSP60 import factors. (A) Summary of the protein interac-
tions between SLO2 or its partners and the HSP60 import factors in mitochon-
dria, detected by BiFC assay in Figs. S3 B–D and S4. “Strong” and “weak” indicate
the strength of the interactions according to the signal intensity under similar
conditions. No, no interaction; n.c., not checked. (B) Total protein extracts (input)
and GFP-immunoprecipitated proteins (GFP-IP) from N. benthamiana leaves
infiltrated with SLO2-HA or HSP60.2-/HSP60.3B-HA together with HSP60.2-/
HSP60.3B-GFP or DYW2-/NUWA-GFP constructs, 3 d after infiltration, ana-
lyzed by Western blot with anti-HA and anti-GFP antibodies (HA-Ab and GFP-
Ab). N. benthamiana leaves infiltrated with the corresponding HA-tag constructs
alone were taken as negative controls of the immunoprecipitation. Represen-
tative blots of at least two independent experiments for each combination are
shown. Blots were cropped to the bands of interest (full-length blots in Fig. S5B).
The contrast/brightness was adjusted for good visualization.

8884 | www.pnas.org/cgi/doi/10.1073/pnas.1705815114 Andrés-Colás et al.

D
ow

nl
oa

de
d 

at
 C

A
M

IN
O

 P
O

LY
T

E
C

H
N

IC
 o

n 
O

ct
ob

er
 2

6,
 2

02
0 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705815114/-/DCSupplemental/pnas.201705815SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705815114/-/DCSupplemental/pnas.201705815SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705815114/-/DCSupplemental/pnas.201705815SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705815114/-/DCSupplemental/pnas.201705815SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705815114/-/DCSupplemental/pnas.201705815SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705815114/-/DCSupplemental/pnas.201705815SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705815114/-/DCSupplemental/pnas.201705815SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705815114/-/DCSupplemental/pnas.201705815SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705815114/-/DCSupplemental/pnas.201705815SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705815114/-/DCSupplemental/pnas.201705815SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705815114/-/DCSupplemental/pnas.201705815SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705815114/-/DCSupplemental/pnas.201705815SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705815114/-/DCSupplemental/pnas.201705815SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705815114/-/DCSupplemental/pnas.201705815SI.pdf?targetid=nameddest=SF5
www.pnas.org/cgi/doi/10.1073/pnas.1705815114


SLO2 Interacts in Vivo with DYW2 and NUWA Proteins in Mitochondria.
Next we verified by BiFC whether the interaction of SLO2 with the
P- and DYW-type PPR proteins detected by immunoprecipitation
occurs in mitochondria. As presented in Fig. 3A, the recovery of
the YFP signal when combining SLO2 with each PPR protein,
confirmed the physical interaction of SLO2 with all of the tested
PPR proteins. The colocalization of the recovered YFP signal with
the mitotracker/mt-rb mitochondrial marker (Fig. S6A) certified
that the interaction takes place in mitochondria. However, the
recovery of the YFP signal was observed with a low frequency (less
than 10% of the cells) and low intensity, except when combining
SLO2 with NUWA (Fig. 3A and Fig. S6A). Because BiFC analyses
tend to also detect rather weak and transient interactions, to cor-
roborate the stable interaction between SLO2 and the DYW pro-
teins or the P-type PPR protein NUWA, we coimmunoprecipitated
tagged DYW proteins (MEF57-GFP and DYW2-GFP) and P-type
PPR protein (NUWA-HA), together with tagged SLO2 (SLO2-HA
or SLO2-GFP). As shown in Fig. 3B and Fig. S5A, SLO2 was
immunoprecipitated together with all of the candidates tested, ex-
cept with MEF57 and APEM9 control. These results endorse the
specific interaction of SLO2 with all of the candidates tested, except
for MEF57.

NUWA Enhances the Interaction Between SLO2 and DYW2 in Mitochondria
in Vivo. Because some HSPs have been described to enhance mRNA
or protein stability (15–17), we investigated whether the three
SLO2 associated HSP60 proteins, interacting also with both DYW
proteins (Fig. 2A), could stabilize the DYW proteins or the SLO2/
DYW complexes, directly or through binding their target RNAs.
Such stabilization could result in an increased interaction signal be-
tween SLO2 and the DYW proteins. To this end, we tested the in-
teraction by BiFC in the presence and absence of the HSP60 partners
(HSP60-HA), in parallel experiments, in different halves of the same
Nicotiana leaf. The addition of HSP60 chaperones did not result in
an increased interaction signal (Fig. S6A).
P-type PPR proteins also have been described to possess RNA

or complex stabilization properties (2). Therefore, we checked
whether the addition of the P-type PPR proteins detected as
SLO2-interacting partners could improve the interaction between
SLO2 and the DYW proteins. Interestingly, a clear increase in
the SLO2 interaction with DYW2, appreciated by a high frequency
(in around 90% of the cells) and intensity of the recovered YFP
signal in parallel experiments, was detected in mitochondria in the
presence of the P-type PPR protein NUWA (NUWA-HA) (Fig. 3
A and C and Fig. S6A), whereas coexpression of the other two
P-type PPR proteins did not enhance the interaction (Fig. S6A).
The increase in the interaction of SLO2 with DYW2 in the pres-
ence of NUWA (NUWA-His) was corroborated by coimmuno-
precipitation (Fig. 3B), as reflected by a more intense SLO2-HA
signal in the GFP immunoprecipitate (GFP-IP) compared with the
input signal. The addition of NUWA, on the other hand, did not
result in an enhanced signal for the SLO2/MEF57 interaction (Fig.
3 A and C and Fig. S6A).

DYW2 and NUWA Proteins Interact in Mitochondria and Chloroplasts.
To elucidate whether the specific enhancement of the SLO2/
DYW2 interaction by NUWA was conferred through their direct
protein interactions, we compared affinities between each P-type
PPR protein and the two DYW-type PPR proteins by BiFC as-
say. Although all three P-type PPR proteins could interact with
both DYW-type PPR proteins in mitochondria, NUWA showed
significantly stronger BiFC signal than the other two P-type PPR
proteins (Fig. 3A and Fig. S6B). Interestingly, the interaction
between NUWA and DYW2 took place mainly in mitochondria
but, in some cells, the signal was detected in chloroplasts
(Fig. S6B). This result is in agreement with the identification of
NUWA and DYW2 as interactors of the chloroplastic E+-type
PPR CLB19 (18). Furthermore, the interaction between NUWA

and DYW2 proteins was corroborated by coimmunoprecipita-
tion (Fig. 3B and Fig. S5A).

DYW2 and NUWA Proteins Form Homomers. We further investigated
the capacity of SLO2 and its interacting PPR partners to homo-
merize by BiFC assay. Only the PPR proteins DYW2 and NUWA
showed the capacity to form homomers (Fig. 4). Moreover,
whereas NUWA homodimers were formed in both mitochondria
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Fig. 3. Protein interaction between SLO2 and its PPR interacting partners
MEF57, DYW2, P486, P487, and NUWA. (A) Summary of the protein inter-
actions between SLO2, its DYW- and P-type PPR partners in mitochondria,
detected by BiFC assay in Figs. S3 B–D and S6, as indicated in Fig. 2A. (B) Total
protein extracts (input) and GFP-immunoprecipitated proteins (GFP-IP) from
N. benthamiana leaves infiltrated with SLO2-HA together with MEF57-/
DYW2-GFP, or NUWA-HA together with SLO2-/DYW2-GFP, or infiltrated
with SLO2-HA together with DYW2-GFP or NUWA-His, or the combination of
the three constructs. Proteins were extracted 3 d after infiltration and ana-
lyzed by Western blot as indicated in Fig. 2B (full-length blots in Fig. S5B). (C)
N. benthamiana leaves infiltrated with SLO2-nYFP together with MEF57-/
DYW2-cYFP, in the absence or presence of NUWA-HA construct, analyzed by
confocal microscopy 3–6 d after infiltration. Green fluorescence is indicative
of the localization of the reconstituted whole YFP protein (protein in-
teraction). Representative individual cells of at least three independent ex-
periments are shown. Single cells were cropped from the original image.
(Scale bar, 50 μm.) Images for combinations without NUWA-HA (Left), with
really low fluorescent signal, were taken at a higher laser gain condition,
whereas the images where NUWA-HA was added (Right) were taken under
lower gain conditions. For a proper comparison between proteins, images for
both DYW2 and MEF57 proteins were taken under the same conditions. Im-
ages were extracted from Fig. S6A.
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and chloroplasts, DYW2 homomerization was restricted to chlo-
roplasts (Fig. 4).

DYW2 Is Involved in the Editing of the E+-Type PPR Edited Sites. Fi-
nally, to clarify the biological relevance of the SLO2/DYW2 in-
teraction, because we could not analyze homozygous dyw2
knockout lines due to their embryo lethality (18), we generated
Arabidopsis plants overexpressing the GFP-tagged DYW2 gene
(Fig. S7). Two independent lines, containing at least fourfold higher
levels of DYW2/DYW2-GFP transcripts than the DYW2 transcripts
in wild type (Fig. S7A), were isolated. They showed a slow growth
phenotype (Fig. 5 A and B), reminiscent of other PPR loss-of-
function mutants. Editing analysis revealed a high number of af-
fected editing sites, mainly down-edited, and some completely
(100%) affected (Dataset S1). In particular, the E+-type PPR
SLO2 edited sites (10), including one identified in this work (Fig.
S8), were down-edited (Dataset S1). Interestingly, this down-
editing was also the case for most of the sites described to be
edited by other E+-type PPR proteins, but only for a few ones
edited by DYW- or E-type PPRs, both in mitochondria and
chloroplasts (Fig. 5 C and D). This result suggests that DYW2-
mediated editing events are basically linked to E+-type PPR
proteins. Interestingly, as shown in Fig. S7B, the NUWA ex-
pression levels were higher in these DYW2-GFP overexpressing
(DYW2-GFP-OE) lines compared with the wild-type plants,
indicative of coordinated regulation. The work of Guillaumot
et al. (18) on dyw2 and nuwa loss-of-function mutants (18) also
revealed a clear editing defect in most of the E+-type PPR edited
sites, including the SLO2 sites, corroborating a predominant role
of DYW2 and NUWA proteins in E+-type PPR-associated
editing. Moreover, some sites not described to be regulated by
known PPR proteins were also altered in the DYW2-GFP-OE
lines (Dataset S1). This result points toward a hub function for
DYW2; however, further investigation will be needed to estab-
lish a clear connection between DYW2 and non-PPR editing
factors. The knockout line of the other DYW-type PPR partner
of SLO2, MEF57 (Fig. S9), shows RNA editing defect at the
nad9-92 site (Fig. S8), but no alteration at the SLO2 edited sites.

Discussion
PPR Editing Complexes. To date, the interactions between PPR
proteins were restricted to the chloroplastic PPR protein DYW1,

which can function in trans with the E-type PPR protein CRR4 (4).
In this paper, we present evidence for the interaction between
three types of PPR proteins (E+, DYW, and P type) in mito-
chondria (SLO2, DYW2, and NUWA) (Figs. 1 and 3). The high
NUWA expression levels in the DYW2-GFP-OE lines (Fig. S7B)
reinforces the idea that NUWA is required by DYW2 to form a
functional editosome with other editing factors. In addition, the
dual localization and interaction of the DYW2 and the NUWA
partner proteins (Figs. S2 and S6) suggest a coordinated regulation
of organellar editing, supported by the identification of NUWA
and DYW2 as interactors of the chloroplastic E+-type PPR protein
CLB19 (18) and the broad effect of DYW2 in E+-type PPR edited
sites (Fig. 5) (18). Taken together, we propose that E+-type PPR
proteins target the specific RNA sites, whereas P-type PPR protein
NUWA assists the interaction between the E+ partner and DYW2.
Based on the current evidence (5), we hypothesize that DYW2 would
provide the editing catalytic domain, both in mitochondria and
chloroplasts. A model for the proposed PPR editosome mechanism
is shown in Fig. 6.

DYW2-nYFP
DYW2-cYFP

NUWA-nYFP
NUWA-cYFP

NUWA

DYW2
DYW2

NUWA

YFP merge light

YFP mitotracker merge light

Fig. 4. Dimerization of DYW2 and NUWA. N. benthamiana leaves infiltrated
with DYW2-/NUWA-nYFP together with DYW2-/NUWA-cYFP constructs and an-
alyzed by confocal microscopy 3 d after infiltration. Green and red fluorescence
are indicative of the localization of the reconstituted whole YFP protein (protein
interaction) and the mitotracker mitochondrial marker, respectively. Represen-
tative individual cells of at least two independent experiments are shown, in-
cluding their merged and light fields. Single cells were cropped from the original
image. (Scale bar, 50 μm.) White arrows point to a mitochondrial signal dot and
yellow arrows to a chloroplast signal. The contrast/brightness was adjusted for
good visualization.
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Fig. 5. Characterization of DYW2-GFP-OE lines. (A and B) Morphology of
adult plants. Images of adult plants from the homozygous DYW2-GFP-OE2 line
and the WT control, grown in parallel (A), and a detail of the morphology in
two independent heterozygous DYW2-GFP-OE lines (B). Representative images
of at least two independent experiments are shown. (C and D) RNA editing
analysis of DYW2-GFP-OE lines. Editing analysis of rosette leaves from WT and
two independent DYW2-GFP-OE lines are shown. Each independent line was
analyzed once. The media and SD of the differences in editing percentage in
both DYW2-GFP-OE lines with respect to theWT (Δ%) were calculated (Dataset
S1). The number of sites modified by a particular type of PPR protein is rep-
resented. Both mitochondrial and chloroplastic sites are shown, split into down-
edited (C) and nonaffected (D). A value of Δ% = 24% was taken as cutoff. The
consistent data in both OE lines are shown. The list of PPR associated with
editing sites was formed according to the literature (2, 20, 38) and this work.
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Fig. 6. Model of the tripartite PPR protein interaction in editosomes in
mitochondria and chloroplasts.
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Although the interaction between SLO2 and MEF57 detected
by IP–MS could be confirmed by BiFC, it was not corroborated
by coimmunoprecipitation (CoIP) (Fig. 3). The immunoprecip-
itation was realized from stable transgenic Arabidopsis plants,
whereas the coimmunoprecipitation and BiFC assays were per-
formed on transiently transformed Nicotiana leaves. These dif-
ferences suggest the possibility that a factor present in Arabidopsis
but not in Nicotiana could assist in the SLO2/MEF57 interaction.
However, the possibility of absence of MEF57/SLO2 interaction
would also be plausible. Indeed, the RNA editing analysis suggests
that MEF57 protein is not required for the SLO2 editing ability
(Fig. S8).
The observed down-editing effect in the DYW2-GFP-OE lines

(Fig. 5 and Dataset S1) could likely be explained by a dominant
negative effect of an inappropriate stoichiometry of the complex
(19) or through capture of DYW2 interacting factors required by
other editing complexes that target the same sites or by com-
petition with other factors for the same editing sites (20–22).
Furthermore, it was reported that the addition of a C-terminal
tag to DYW proteins could inhibit their editing function (23, 24),
while allowing interaction with other editing partners (4, 25–27).
This might lead to a nonfunctional editosome, explaining the
down-editing effect in these overexpressing lines. The observed
DYW2-GFP-OE phenotype (Fig. 5) could be explained by the
broad editing defect that would affect the organellar functions,
impairing plant growth. This broad defect in the essential RNA
editing process, would justify the lethality of the homozygous
dyw2 loss-of-function mutants (18).

Dual Localization of PPR Proteins. The PPR proteins DYW2 and
NUWA have dual localization in both mitochondria and chloro-
plasts (Fig. S2). However, the protein characteristics and mecha-
nisms responsible for this dual localization remain unclear. A
significant number of proteins are dual targeted to both organelles
via ambiguous targeting signals (28). It has been proposed that
cytosolic chaperones may play a role in determining targeting spec-
ificity (29). In Arabidopsis, the mitochondrial HSP60 family has three
members, considered to be part of the import apparatus specific to
the mitochondrial matrix (30). We would expect that mutants of the
interacting HSP60 proteins in this work affect RNA editing. How-
ever, if the three mtHSP60 proteins have any redundant function, a
triple mutant would be needed to observe such editing defects.

PPR mRNA and Protein Complex Stabilization. The increased in-
teraction of SLO2 and DYW2 when adding NUWA (Fig. 3) and
the protein interaction of NUWA with both SLO2 and DYW2
(Fig. 3) suggest a possible scaffold or complex stabilization role of
NUWA for the interaction between SLO2 and DYW2 in the
editosome. In this context, a non-PPR editing factor (MORF8) was
described to assist the interaction between an E+-type PPR protein
(MEF13) and another non-PPR factor (MORF3) (31). The fact
that the P-type PPR protein NUWA assists in the interaction be-
tween an E+ (SLO2) and a DYW (DYW2) protein, could reflect a
more general mode of action of PPR proteins, hence representing
the key for the discovery of similar tripartite PPR interactions and
shedding light on the complex PPR editosome formation and
action mechanisms.
Our results suggest that HSP60 proteins do not participate in

the protein complex stabilization (Fig. S6A). They may assist in

mitochondrial import of the partner proteins, as previously men-
tioned, or support RNA binding of the editing complexes. The
chaperone HSP60 was suggested to have a highly specific nucleic
acid-binding activity, presumably implicated in mtDNA stability
(32). In protozoa, it has been demonstrated that a chaperone
activity in the editosome increases the flexibility of U residues in
the pre-mRNAs to facilitate the binding of gRNAs (33), providing
a rational explanation for the U specificity of the editing reaction.
P-type PPR subfamily members can also bind to specific RNA
sequences (2), protecting the RNA from endonucleases and/or
modifying its secondary structure to recruit general factors involved
in RNA maturation. In this context, it will be interesting to check
RNA binding activity of the HSP60 and P-type PPR proteins de-
tected in this work.
Further investigation will be needed to understand the precise

function of SLO2, DYW2, NUWA, and the HSP60 proteins in
the SLO2 editosome complex and beyond.

Materials and Methods
IP–MS Assay. The IP–MS assay was performed as previously described (34),
without modifications. Three biological replicates were used for each line.

BiFC. The predicted subcellular localization was analyzed by SUBAcon and
SUBA3 programs (12, 35). For experimental subcellular localization and BiFC,
the corresponding binary vectors were introduced into Agrobacterium
tumefaciens strain GV3101. Agrobacterium was used to transiently trans-
form young leaves of Nicotiana benthamiana grown on soil under long day
conditions. For details, see SI Materials and Methods.

CoIP. A modified μMACS Epitope Tag Protein Isolation Kit (Miltenyi) protocol
(34) was followed. For details, see SI Materials and Methods.

T-DNA Insertion, Complemented, and Overexpressing Lines. Arabidopsis thali-
ana T-DNA insertion mutant line N585176 from the SALK collection was used
and complemented with the 35S::MEF57-GFP construct. The DYW2-GFP-OE
lines were generated transforming Col-0 A. thaliana plants with the 35S::
DYW2-GFP construct.

RNA Editing Analysis. Specific cDNAs were generated as described previously
(36). The sequence data for each gene-specific RT-PCR product were obtained
commercially and compared for analysis (Macrogen). Ratios between heights
of C and T signals were calculated with the DNADynamo software (Blue-
TractorSoftware). The Arabidopsis slo2-2, slo2-3, complemented slo2-2, and
complemented slo2-3 lines were taken from our previous work (10).

A detailed description of the plasmid construction and full methods are
described in SI Materials and Methods.

Data Availability. All data generated or analyzed during this study are in-
cluded in this article (and Supporting Information).
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