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Abstract

In this paper we solve the bounded rank perturbation problem for
regular pencils over arbitrary fields. The solution is obtained reducing
the problem to a row completion problem for matrix pencils. The result
generalizes the main result of [1], where a solution to the problem was
given requiring a condition on the underlying field.
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1 Introduction

In this paper we study a classical rank perturbation problem for matrix
pencils. This problem is well studied for some particular cases and from dif-
ferent points of view (see e.g. [1,2,5,8,15,16]). The solution of the differential
algebraic equation Ex′(t) = Ax(t) + f(t) is determined by the Kronecker
structure of the associated pencil A − λE. Therefore, perturbations of the
pencil, apart from theoretical interest, play a strong role in a variety of ap-
plications. Just to mention a few, as pointed out in [4], the description of
the change of the Kronecker structure under low-rank perturbation is use-
ful when introducing modifications in the system which affect only a small
number of parameters. Hence, perturbations involving structured matri-
ces or pencils appear in control design (see, for instance, [3, 6, 13] and the
references therein). In [13], the rank-one perturbation of a regular matrix
pencil has been related to the pole placement problem for a single-input
differential-algebraic equation with feedback.

Let F be an arbitrary field. F[λ] denotes the ring of polynomials in the
indeterminate λ with coefficients in F. Given matrices A,B ∈ Fn×m, we
say that A + λB ∈ F[λ]n×m is a matrix pencil. Let E(λ), E′(λ) ∈ F[λ]n×m

be matrix pencils. We say that they are strictly equivalent, denoted by
E(λ) ∼ E′(λ), if and only if there exist invertible matrices P ∈ Fn×n and
Q ∈ Fm×m such that

E′(λ) = PE(λ)Q.

We say that a pencil E(λ) ∈ F[λ]n×m is regular if and only if n = m and
detE(λ) ̸≡ 0.

The normal rank of a matrix pencil E(λ), denoted by rankE(λ), is the
order of the largest nonidentically zero minor of E(λ), i.e. it is the rank of
E(λ) considered as a matrix on the field of fractions of F[λ].

The low rank perturbation problem for regular matrix pencils is:

Problem 1 Let r be a nonnegative integer. Let B(λ), C(λ) ∈ F[λ](n+r)×(n+r)

be two regular matrix pencils. Find necessary and sufficient conditions for
the existence of matrix pencils B′(λ) and C ′(λ) strictly equivalent to B(λ)
and C(λ), respectively, such that

rank(B′(λ)− C ′(λ)) ≤ r.

We remark that Problem 1 is equivalent to the problem of finding nec-
essary and sufficient conditions for the existence of a matrix pencil P (λ) ∈
F[λ](n+r)×(n+r) of rank(P (λ)) ≤ r such that B(λ) + P (λ) ∼ C(λ).

A solution to Problem 1 is given in [1] for fields F such that at least
one element of the field or the point at infinity is neither an eigenvalue of
B(λ) nor of C(λ). The proof of the necessity of the conditions remains true
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over arbitrary fields, but the proof of the sufficiency does not work if the
restriction is removed.

Recently, a solution to the rank-one perturbation problem for (not nec-
essarily regular) pencils has been obtained independently in [2,8], where the
problem has been related to a row pencil completion problem.

A solution to the row pencil completion problem is given in [9, 10]. In
this paper, using this result and following the approach of [2, 8], we give a
solution to Problem 1. The proof is different from that of [1, Theorem 4.13]
and holds for arbitrary fields.

In Section 2 we introduce some basic definitions and preliminary results.
In particular, in Theorem 1 we recall the result in [10, Theorem 2] and in
Lemma 1 we give a combinatorial result we will need in the solution to
Problem 1. In Section 3 we present our solution in Theorem 3.

2 Notation and auxiliary results

Let F[λ, µ] be the ring of polynomials in two variables λ and µ, with coef-
ficients in F. All polynomials in the paper are homogeneous from F[λ, µ],
and monic with respect to λ. Also, any homogeneous polynomial α(λ, µ)
will be denoted by α. Finally, for any chain of polynomials α1| · · · |αn, we
will assume αi = 1 whenever i < 1.

We shall deal only with regular and quasi-regular matrix pencils: the
complete set of strict equivalence invariants (so called Kronecker invariants)
of a regular matrix pencil is formed by a chain of homogeneous polynomi-
als α1(λ, µ)| · · · |αn(λ, µ), αi(λ, µ) ∈ F[λ, µ], i = 1, . . . , n, called homoge-
nous invariant factors, for more details see [1, 12]. We say that a pencil
E(λ) ∈ F[λ]n×(n+r) is quasi-regular if and only if rankE(λ) = n. The com-
plete set of Kronecker invariants of a quasi-regular matrix pencil is formed by
a collection of nonnegative integers c1 ≥ · · · ≥ cr, called the column minimal
indices, and its homogenous invariant factors. For more details see [7,12,14].

The number of Kronecker invariants of a matrix pencil can be expressed
in terms of the size and the rank of the pencil as follows: a regular pen-
cil E(λ) ∈ F[λ]n×n has n = rankE(λ) homogeneous invariant factors. A
quasi-regular pencil E(λ) ∈ F[λ]n×(n+r), has n = rankE(λ) homogeneous
invariant factors and r (the number of columns minus the rank of E(λ)) col-
umn minimal indices. The sum of the degrees of the homogeneous invariant
factors plus the sum of the colum minimal indices is equal to n. For details
on the Kronecker invariants and the Kronecker canonical form see [7, 12].

In the proof of the main result we shall use the Theorem 2 in [10] for
row completions up to a regular matrix pencil. We bring it here using the
notation appropriate for this paper.
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Theorem 1 Let A(λ) ∈ F[λ]n×(n+r) be a matrix pencil with α1|· · ·|αn and
c1 ≥ · · · ≥ cr as homogeneous invariant factors and column minimal indices,
respectively. Let C(λ) ∈ F[λ](n+r)×(n+r) be a regular matrix pencil with
γ1| · · · |γn+r as homogeneous invariant factors.

There exists a pencil Y (λ) ∈ F[λ]r×(n+r) such that[
A(λ)

Y (λ)

]
is strictly equivalent to C(λ) if and only if the following conditions are sat-
isfied:

(i) γi|αi|γi+r, i = 1, . . . , n,

(ii)

j∑
i=1

ci ≤
j∑

i=1

ai, j = 1, . . . , r,

where aj = d(ϵr−j+1)−d(ϵr−j)−1, j = 1, . . . , r, with ϵj =
∏n+j

i=1 lcm(αi−j , γi),
j = 0, . . . , r.

Remark 2 We note that a1 ≥ · · · ≥ ar (see e.g. [11, Lemma 2]).

We shall also need the following combinatorial result:

Lemma 1 Let β1| · · · |βn+r and γ1| · · · |γn+r be two chains of homoge-
neous polynomials in F[λ, µ], such that

βi|γi+r and γi|βi+r, i = 1, . . . , n, (1)∑n+r
i=1 d(βi) =

∑n+r
i=1 d(γi) = n+ r. (2)

Then
n∑

i=1

d(lcm(βi, γi)) ≤ n. (3)

Proof: Let k :=
∑n+r

i=1 d(γi)−
∑n

i=1 d(lcm(βi, γi)). From (1) we have k ≥ 0.
Suppose on the contrary to (3) that 0 ≤ k < r. Let us denote by

xj :=

n+j∑
i=1

d(lcm(βi−j , γi))−
n+j−1∑
i=1

d(lcm(βi−j+1γi)), j = 1, . . . , r.

By definition,
xj ≥ 0, j = 1, . . . , r, (4)

and from (1) and the definition of k, we have

x1 + · · ·+ xr = k. (5)
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By the convexity property of polynomial chains (see e.g. [11, Lemma 2]),

x1 ≤ · · · ≤ xr. (6)

Equations (4), (5), and (6) give

x1 = x2 = · · · = xr−k = 0. (7)

From (7), x1 + . . .+ xr−k = 0, then

n+r−k∑
i=1

d(lcm(βi−r+k, γi)) =

n∑
i=1

d(lcm(βi, γi)).

Hence, we have

γr−k = 1, and γi+r−k| lcm(βi, γi), i = 1, . . . , n. (8)

Since the conditions are symmetric for β1| · · · |βn+r and γ1| · · · |γn+r,
completely analogously we also obtain

βr−k = 1, and βi+r−k| lcm(βi, γi), i = 1, . . . , n. (9)

Thus (8) and (9) imply

lcm(βi+r−k, γi+r−k)| lcm(βi, γi), i = 1, . . . , n,

i.e.
lcm(βi+r−k, γi+r−k) = lcm(βi, γi), i = 1, . . . , n. (10)

Finally, since βr−k = γr−k = 1, (10) implies lcm(βi, γi) = 1, for i = 1, . . . , n,
and so by definition of k we get k = n + r, contradicting the assumption
that k < r.

Hence k ≥ r, i.e. (3) holds.

3 Main result - a solution to Problem 1

In this section we prove [1, Theorem 4.13] without any restrictions on the
underlying field, and thus solve Problem 1 over arbitrary fields.

Theorem 3 Let B(λ), C(λ) ∈ F[λ](n+r)×(n+r) be two regular matrix pencils.
Let β1| · · · |βn+r and γ1| · · · |γn+r be homogeneous invariant factors of B(λ)
and C(λ), respectively.

There exist matrix pencils B′(λ) and C ′(λ) strictly equivalent to B(λ)
and C(λ), respectively, such that

rank(B′(λ)− C ′(λ)) ≤ r,

if and only if
βi|γi+r and γi|βi+r, i = 1, . . . , n. (11)
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Proof:
Necessity:
It was proven in [1, Proposition 4.3].

Sufficiency:
Let us suppose that condition (11) holds.
Our aim is to define homogeneous polynomials α1| · · · |αn and nonnega-

tive integers c1 ≥ · · · ≥ cr satisfying

n∑
i=1

d(αi) +
r∑

i=1

ci = n, (12)

and

γi|αi|γi+r, and βi|αi|βi+r, i = 1, . . . , n, (13)
j∑

i=1

ci ≤
j∑

i=1

ai, and

j∑
i=1

ci ≤
j∑

i=1

bi, j = 1, . . . , r, (14)

where

aj = d(ϵr−j+1)− d(ϵr−j)− 1, bj = d(ϕr−j+1)− d(ϕr−j)− 1, j = 1, . . . , r,

ϵj =

n+j∏
i=1

lcm(αi−j , γi), ϕj =

n+j∏
i=1

lcm(αi−j , βi), j = 0, . . . , r.

Once this is achieved, from (12) there exists a quasi-regular matrix pencil
A(λ) ∈ F[λ]n×(n+r) having α1| · · · |αn as homogeneous invariant factors and
c1 ≥ · · · ≥ cr as column minimal indices. Then, from (13) and (14), by
Theorem 1 there exist pencils X(λ), Y (λ) ∈ F[λ]r×(n+r) such that

B(λ) ∼
[

A(λ)

X(λ)

]
and C(λ) ∼

[
A(λ)

Y (λ)

]
.

Since

rank(

[
A(λ)

X(λ)

]
−
[

A(λ)

Y (λ)

]
) = rank(

[
0

∗

]
) ≤ r,

taking B′(λ) =

[
A(λ)

X(λ)

]
and C ′(λ) =

[
A(λ)

Y (λ)

]
we shall finish our proof.

Hence, we are left with defining polynomials α1| · · · |αn and nonnegative
integers c1 ≥ · · · ≥ cr satisfying (12)-(14).

Let
αi := lcm(βi, γi), i = 1, . . . , n. (15)
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Then, (13) follows from (11). Moreover, we can write

ϵj =

n+j∏
i=1

lcm(βi−j , γi), ϕj =

n+j∏
i=1

lcm(γi−j , βi), j = 0, . . . , r.

Furthermore,

r∑
i=1

ai =

n+r∑
i=1

d(γi)−
n∑

i=1

d(lcm(βi, γi))− r,

r∑
i=1

bi =

n+r∑
i=1

d(βi)−
n∑

i=1

d(lcm(βi, γi))− r,

and since
∑n+r

i=1 d(βi) =
∑n+r

i=1 d(γi) = n+ r, we have

r∑
i=1

ai =
r∑

i=1

bi = n−
n∑

i=1

d(lcm(βi, γi)). (16)

By Lemma 1, we obtain

r∑
i=1

ai =

r∑
i=1

bi ≥ 0.

We shall define c1 ≥ . . . ≥ cr such that

cr + 1 ≥ c1 ≥ · · · ≥ cr ≥ 0, (17)

and
r∑

i=1

ci = n−
n∑

i=1

d(lcm(βi, γi)) ≥ 0, (18)

i.e., c1, . . . , cr will be the most homogeneous partition of n−
∑n

i=1 d(lcm(βi, γi)).
Explicitly, let q and w be integers such that n−

∑n
i=1 d(lcm(βi, γi)) = qr+w,

with 0 ≤ w < r. Then, let

ci := q + 1, i = 1, . . . , w, (19)

ci := q, i = w + 1, . . . , r. (20)

The non-negative integers c1 ≥ . . . ≥ cr defined by (19) and (20), and the
polynomials α1| · · · |αn given by (15) clearly satisfy (12). Moreover, by (16)
and (18), the sequences a1 ≥ . . . ≥ ar, b1 ≥ . . . ≥ br and c1 ≥ . . . ≥ cr have
the same total sum. Since the sequence c1 ≥ . . . ≥ cr satisfies (17), we have
that (14) holds, as desired. This finishes our proof.
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Société Math. France 74 (1946) 130-146.
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