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Abstract. This document describes the details of the simulations and uncertainty quantification 

of the Cold-Leg Mixing benchmark performed at the Institute for Energy Engineering 

(Polytechnic University of Valencia, Spain). The experiment, carried out by Texas A&M 

University, consists of the mixing of two water flows with different densities inside two tanks 

joined by a pipeline or cold leg. The tank that accumulates the low-density water and its 

connection to the cold leg are designed to create a downcomer like the one found in a PWR 

reactor vessel. On the other hand, the high-density water reservoir represents the cold-water 

injection accumulator. The method of Polynomial Chaos Expansion (PCE) based on Gaussian 

Quadrature is applied to calculate the uncertainty of the results, and a model created in Ansys 

CFX is developed to carry out the simulations. A 5th order Polynomial Chaos Expansion by 

Gaussian-Hermite Quadrature has been applied using as uncertain parameter the density 

difference between the mixing fluids. Therefore, five simulations have been done for both the 

open and the blind test. This methodology aims to provide an efficient solution since PCE 

solved by Gaussian Quadrature allows to obtain uncertainty quantification through a low 

number of simulations when the amount of uncertain input variables is low. It has been observed 

that the turbulence model significantly affects the results obtained, being the LES model the 

only one able to reproduce the real behavior consistently. Simulation results show a good 

agreement with experimental data for the cold-leg measurement zone while, in the downcomer 

a slightly different velocity profile than the one measured experimentally is obtained. The 

concentration profile of each fluid shows a gap in the transition zone that does not seem to agree 

with the velocity results. That behavior remains for higher time averages when comparing 

simulation results with experimental measurements. 
 

 

1 INTRODUCTION 

Computational Fluid Dynamic (CFD) codes are a very useful tool in the nuclear field but 

there are still scenarios in which their application is complex or requires high computational 

power. To validate the results obtained with these codes it is necessary, among other things, to 

carry out studies based on experimental measurements (ASME V&V 20, 2009). A very good 

way to advance in the validation of CFD codes is to carry out benchmarks in which different 
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organizations or companies at an international level participate by simulating a concrete 

experiment using different CFD codes and different modeling approaches. This practice serves 

to share the different methodologies and codes used by the different participants, as well as to 

increase the know-how about the different CFD models, as for instance averaged Navier Stokes 

Equations with k-epsilon model or Large Eddy Simulation model (LES), when we apply this 

kind of codes to different types of experiments. 

 

CFD codes are a widely used tool in the nuclear field because of the multiple applications, 

which they have both in design and licensing  of nuclear power plants and in addition in nuclear 

reactor safety (Mahaffy et al., 2014). This type of methods is especially useful when we focus 

on studying the specific operation of a reactor component, being able to observe the behavior 

of the fluids moving inside of it. Despite being available for several years, CFD codes still 

require a lot of research to ensure that the results are correct; especially in scenarios where 

safety is the most relevant factor. However, best practice guidelines for the nuclear codes in 

nuclear safety applications developed in the last few years have increased the confidence of the 

regulatory bodies in this type of codes (Mahaffy et al., 2014). Nevertheless, CFD codes are 

becoming more and more established as they offer great advantages such as the possibility of 

simulating complex 3D geometries, optimized numerical codes, etc (Smith et al., 2008). 

 

To continue making progress in the use and knowledge of CFD codes, the Institute of Energy 

Engineering of the Polytechnical University of Valencia (UPV) has participated with many 

organizations of different countries as PSI, CEA, NRC, JAERI, KAERI, among others. In the 

six latest benchmarks organized by the OECD/NEA WGAMA group, including: 

 

• OECD/NEA-Vattenfall CFD Benchmark Exercise 2008-2010. Simulation of an 

experiment in one of the facilities of the Älvkarleby laboratory, Vattenfall Research and 

Development about mixing fluids at different temperatures in a T-junction. Details 

could be found in Smith et al. (2013) and the official OECD/NEA report (OECD/NEA/ 

CSNI et al., 2011). 

• OECD/NEA-KAERI CFD Benchmark Exercise 2010-2012 Simulation of the MATiS-

H experiment that studies the cross flow in a subchannel with several measurements 

downstream of a spacer grid. All the information can be found in the document 

presented by Chang et al. (2014) and in the OECD/NEA/CSNI report (B.L. Smith et al., 

2013). 

• OECD/NEA-PSI CFD Benchmark Exercise 2012-2014. Simulation of an experiment in 

the PANDA installation of the PSI about helium concentration in different parts of a 

vessel. A synthesis of the benchmark exercise is described in Andreani's et al. (2016) 

paper and a more detailed report can be found in OECD/NEA/CSNI (2016). 

• OECD/NEA-PSI CFD Benchmark Exercise 2014-2016. Simulation of an experiment in 

the PSI GEMIX installation about the mixing of two fluids with different temperature. 

In this benchmark, in addition to the modeling, the participants were required to 

calculate the uncertainty of the simulations. The most important information and all the 

data can be found in the report Fokken et al. (2019) and the paper Badillo et al. (2013). 
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• OECD/NEA-Texas A&M University Benchmark Exercise 2017-2019 Simulation of an 

experiment in the COLD-LEG MIXING installation of Texas A&M University about 

the mixing of two fluids with different density (𝛥𝜌 between 100 −  200 𝑘𝑔/𝑚3). 
Authors have already published a paper (Orea et al., 2020) explaining the experimental 

approach, measurement techniques, test conditions and results. Some of the more active 

members of the benchmark group are already writing the official OECD/NEA report 

and it is expected to be available soon. 

 

In the field of nuclear reactor safety, it is mandatory to know the uncertainty of the 

predictions obtained from computational codes. These statistical techniques are known as Best 

Estimate plus Uncertainty (BEPU) methodologies because these codes use the best physical 

and numerical methods available (state of the art) and at the same time these methodologies 

include an estimation of the uncertainty in the results (D ’Auria et al., 2012). Therefore, 

different techniques are being adapted for their use in CFD simulations considering both 

intrusive and non-intrusive methodologies. For the last two benchmark exercises, GEMIX 

(Fokken et al., 2019) and Cold-leg mixing, the study has been extended to consider not only the 

development of the model but also the uncertainty quantification of the results.  

 

This research together with that of the other participants will show the capabilities of CFD 

codes to predict fluid mixing by turbulence and buoyancy effects. The results obtained by the 

Institute for Energy Engineering and the different international organizations that are involved 

in these benchmarks will be used to develop a set of best practices guidelines (also known as 

BPG) for the use of CFD codes for Nuclear Reactor Safety issues. As a reference, the document 

(Mahaffy et al., 2014) collect a lot of information regarding this aspect, but more documentation 

can be added to a new version for both new and experienced users. 

 

Throughout this paper, the application of CFD methods to the scenario selected for the Cold 

Leg Mixing benchmark exercise is shown. As usual in these activities, the exercise consists of 

two assessment, first an open test from which the experimental measurements are known, and 

secondly a blind test from which only the initial conditions are given to the participants. For 

each of those tests two different parts have been addressed throughout the document. Firstly, 

the development of the experimental facility model which includes the activities of geometry 

generation, mesh development and optimization, preparation of the setup and the different 

simulation models, and post-processing. The second step is the development of an efficient 

methodology of uncertainty quantification for the predictions of the model of the experimental 

facility. For this purpose, the different alternatives already known by other authors must be 

studied and the most convenient one selected. For this benchmark it has been decided to use the 

Polynomial Chaos Expansion (PCE) based on Gaussian Quadrature because of its efficiency 

when the number of uncertain variables is small. 

 

The theoretical aspects of PCE were first developed by Wiener (1938), and later generalized 

by Xiu and Karniadakis (2003a), based on previous studies by Askey and Wilson (1985). Since 

the early stages of its development, PCE has been successfully applied to numerous CFD 

simulations, and more recently to system thermal-hydraulic codes by Muñoz-Cobo et al. (2018). 
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A complete review of the different PCE techniques, along with some CFD applications, is 

presented by Knio and Le Maître (2006) and Najm (2009). 

 

Special mention should be made of the study carried out in Badillo's et al. (2013) research 

where the PCE method is applied to quantify the uncertainty in the GEMIX Benchmark results. 

The authors used a methodology similar to the one presented in this paper although they chose 

Collocation Points instead of Gaussian Quadrature as the technique for the resolution of the 

system derived from the Polynomial Chaos Expansion. 

 

Many investigations have emerged from GEMIX benchmark, proposing different 

uncertainty quantification methodologies. For example in Rakhimov's et al. (2018) research the 

Latin Hypercube Sampling (LHS) technique is applied following the ASME standard for 

verification and validation in CFD and Heat Transfer (ASME V&V 20, 2009) obtaining a good 

agreement between experiment and simulation. Moreover, the authors present in Rakhimov et 

al. (2019) the application of the Deterministic Sampling (DS) technique based on the research 

done by Hessling (2013) to increase the efficiency by reducing the number of simulations 

required while maintaining a high level of reliability. In addition, they carry out comparisons 

between DS-standard ensemble and DS-simplex ensemble, obtaining the highest degree of 

accuracy-efficiency with the second one. 

 

A different approach is investigated in the paper presented by Prošek et al. (2017), where the 

authors use the Optimal Statistical Estimator (OSE) method as response surface generator to 

apply in Monte Carlo analysis. This method, as the one presented in this paper, is optimal when 

the number of uncertain variables is small. Consequently, they need a total of 30 simulations 

when two input parameters are considered as uncertain variables.  

 

Many other authors have presented interesting results on the GEMIX benchmark although 

some of them without uncertainty calculation as Krpan and Končar (2018) or Kim (2019). This 

paper aims to bring the Polynomial Chaos Expansion by Gaussian Quadrature methodology for 

the calculation of uncertainty in CFD simulations to all, allowing its application in an efficient 

way. Therefore, it is possible to overcome the high computational cost barrier derived from the 

use of CFD in simulations where the uncertainty calculation is needed. 

 

In order to achieve the objectives mentioned in this introduction, the document is structured 

as follows. Section 2 contains the information related to the experimental installation. The 

section 3 covers the details of the model and the simulation conditions, and the section 4 the 

quantification of the uncertainty. Finally, section 5 contains the results obtained and their 

discussion, followed by the conclusions of the research. 

 

2 EXPERIMENTAL FACILITY COLD-LEG MIXING 

The Cold-Leg Mixing Texas A&M University experiment (Orea et al., 2020) adds some 

complexity to the previous GEMIX benchmark (Badillo et al., 2013) performed at PSI. The 

geometry becomes more realistic in relation to the design of a light water PWR and the 
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phenomena involved are transient. Following the guidelines of the previous benchmark, 

participants should carry out an uncertainty calculation (UQ) under conditions, which are closer 

to the existing ones in real reactors. 

 

The experiment consists of two streams of water of different densities that are mixed after 

the opening of a valve located approximately in the center of a pipeline that links two liquid 

tanks (Figure 1a). The left tank contains the high-density fluid, and the right tank contains the 

lighter fluid as happens inside the downcomer of the reactor vessel. The two fluids are initially 

at rest and when the valve is opened, a temporary mixing process of several minutes begins, 

because of the heavier fluid tends to move below the lighter one towards the downcomer. 

 

 
(a) (b) 

 
Figure 1: Experimental facility Cold-Leg Mixing (Orea et al., 2020) (a) 3D design and (b) Measurement zones of 

the experiment: Cold-Leg on the upper side (PIV+LIF) and below the downcomer zone (PIV). 

Texas A&M University carried out velocity measurements in two study areas (Figure 1b) 

using a PIV (Particle Image Velocimetry) system. The first zone is located near the end of the 

cold-leg, and the second one in the entrance zone to the downcomer. In the first zone, in addition 

to the PIV system, the density has been measured using a LIF system (Laser-induced 

fluorescence). Detailed information about the experiment can be found in (Orea et al., 2020). 

 

The characteristics of the fluids for the open test are shown in Table 1. Additionally, the 

standard deviations of the measurements of the properties of the two fluids denoted as 

𝜎𝐻 𝑎𝑛𝑑 𝜎𝐿are 6.505 and 7.311 𝑘𝑔/𝑚3 respectively and the viscosity ±1.5% for both fluids. 

The Atwood number is defined as the ratio of the difference of the densities divided by their 

sum. 
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Table 1. Fluid characteristics for the open and blind test. 

Case Fluid 
Density 

[𝒌𝒈/𝒎𝟑] 

Density 

difference 

[𝒌𝒈/𝒎𝟑]  

Atwood 

Number 

Viscosity 

[𝑷𝒂 · 𝒔] 

OPEN TEST 
High density 1064.7 

108.16 0.054 
1.09 · 10−3 

Low density 956.54 2.45 · 10−3 

BLIND TEST 
High density 1107.07 

195.73 0.097 
1.377 · 10−3 

Low density 911.34 2.847 · 10−3 

 

Three Reynolds numbers have been obtained for near-developed conditions, two in the cold-

leg and one in the downcomer. Since in the cold-leg the two fluids move in different directions, 

an approximate hydraulic diameter has been obtained taking into account the position of the 

interface between both fluids. In the downcomer, the downward movement of the mixture 

predominates, so only one Reynolds number has been calculated. Table 2 shows their values 

for both the Open Test and the Blind Test. Fluids moving along the cold-leg have a Reynolds 

number much lower than that of the downcomer mixture. This is directly related to the flow 

regime and turbulence of each of these zones. In the cold-leg, buoyancy and gravity forces 

predominate although eddies can be seen at the front of the moving fluid. With time, slight 

oscillations also appear at the interface. On the other hand, in the downcomer, turbulence 

predominates over other forces 

Table 2. Characteristic velocities, lengths and Reynolds Numbers for the Open and Blind Test. 

OPEN TEST 

Zone Fluid 
Characteristic 

velocity [m/s] 

Characteristic 

length [m] 

Reynolds 

Number 

Cold-Leg 
Low-density fluid 0.054 0.038 2060 

High-density fluid 0.075 0.026 1964 

Downcomer Mixture 0.194 0.078 15137 

BLIND TEST 

Zone Fluid 
Characteristic 

velocity [m/s] 

Characteristic 

length [m] 

Reynolds 

Number 

Cold-Leg 
Low-density fluid 0.067 0.038 2527 

High-density fluid 0.116 0.027 3114 

Downcomer Mixture 0.212 0.078 16497 

 

 

To focus the experiment only on the phenomenology derived from the density difference 

between the fluids, the heights of the low-density water and high-density water tanks were 

balanced so that the pressure difference on both sides of the valve located in the pipe center was 

equal to zero. Thus, for the open test, the high-density liquid tank reached the height of 
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25.06 𝑐𝑚 while for the blind test only 22.97 𝑐𝑚 were needed. This must be considered since 

it is needed to vary the geometry and the mesh depending on the test that we want to perform. 

 

The experiment starts with the opening of the valve. At this moment, the two fluids, which 

had remained separated, begin to mix. The high-density fluid starts to flow through the bottom 

of the pipe entering the region where there was only low-density fluid (first measurement area). 

At some point, the high-density fluid reaches the low-density liquid tank and descends through 

the downcomer, thus reaching the second measurement zone. The opening of the valve has been 

simplified, so the start of the simulation is the opening of the "invisible wall" that separates the 

high and low density fluid instead of the physical opening of a valve. The total measurement 

time is 42 seconds. 

 

Benchmark participants must simulate this behavior of the fluid by means of CFD codes. In 

addition, they need to carry out an uncertainty study of the most important output variables. 

Table 3 shows the required averages in 2 lines located in the cold-leg and another 2 in the 

downcomer. Note that the prefix “d” refers to the uncertainty or error, e.g. U-dU would 

correspond to the mean value of U minus the lower error band. 

Table 3. Averaged variables required for the Cold-Leg Mixing benchmark and its averaged upper and lower 

uncertainty band. 

Name Variables Equation 

Mean velocity 

components 

U, U-dU, U+dU,  

V, V-dV, V+dV 

[cm/s] 

𝑈𝑚𝑒𝑎𝑛 = 𝑈 =
1

𝑁
∑𝑢𝑖

𝑁

𝑖=1

 

Standard deviation 

of the velocity 

components 

Usd, Usd-dUsd, Usd+dUsd, Vsd, 

Vsd-dVsd, Vsd+dVsd 

[cm/s] 
𝑈𝑠𝑑 = √

1

𝑁 − 1
∑(𝑢𝑖 − 𝑈𝑚𝑒𝑎𝑛)

2

𝑁

𝑖=1

 

Reynolds stresses 

Restress, 

Restress-dRestress,  

Restress+dRestress 

[cm2/s2] 

𝑅𝑒𝑠𝑡𝑟𝑒𝑠𝑠 =
1

𝑁 − 1
∑(𝑢𝑖 − 𝑈𝑚𝑒𝑎𝑛)(𝑣𝑖 − 𝑉𝑚𝑒𝑎𝑛)

𝑁

𝑖=1

 

Concentration 

(only in the cold-

leg) 

C, C-dC, C+dC  

[%] 
𝐶𝑚𝑒𝑎𝑛 = 𝐶 =

1

𝑁
∑𝑐𝑖

𝑁

𝑖=1

 

 

The averaged times intervals of the velocity are 0-5s, 5-10s, 10-15s, 15-22.5s, 0-10s y 10-

22.5s in the cold-leg. In the downcomer the averages are 10.5-15.5s, 15.5-20.5s, 20.5-25.5s, 

25.5-30.5s, 30.5-35.5s, 35.5-41.538s, 10.5-20.5s, 20.5-30.5s, and 30.5-41.538s. Therefore, 

each participant must provide all the averages defined in Table 3 for each variable. 

 

In addition, to this set of averaged measures, it is also necessary to present measures of 

instantaneous variables, see Table 4. The timestep used is a decision of each participant. As for 

the averaged variables, its two error bands should be send along with each instantaneous result. 
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Table 4. Instantaneous variables required for the Cold-Leg Mixing benchmark. 

Name Variables Details 

Instantaneous 

velocity 

ui, ui-dui, ui+dui  

vi, vi-dvi, vi+dvi 

Speed ui and vi in 6 determined points of the cold leg from 

the second 0 to 22.24 and other 6 points of the downcomer 

between the seconds 10.5 and 41.538.  

Instantaneous 

concentration 

(only in the cold 

leg) 

ci, ci-dci, ci+dci 

Instantaneous concentration in the 6 points of the cold leg 

from the second 0 to 22.24 and their corresponding error 

bands. 

 

3 CFD MODEL 

The CFD code Ansys CFX has been used to make the model. The geometry of the 

experimental setup provided by Texas A&M University is shown in Figure 2. The part of the 

domain where the low-density fluid is stored is represented by the blue color. On the other side, 

the orange color corresponds to the high-density fluid. In the middle of the pipe is located the 

valve, which starts the experiment after opening allowing the motion and the mixing of both 

fluids. Adjustments has been implemented in the geometry provided by TAMU to decrease the 

incompatibility problems with the Ansys geometry manager. For this purpose, a debugging and 

reduction of sharp edges has been carried out. 

 

 
 

Figure 2: Domain geometry provided by (Orea et al., 2020).  

ICEM CFD software has been selected to create the unstructured, conformal hexa mesh. 

Figure 3 shows the details of some important parts of the mesh. The total number of nodes of 

the mesh is 4 million. 
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Figure 3: Mesh details, (a) longitudinal cut of the cold leg, (b) connection between the cold leg and the 

downcomer and (c) longitudinal cut of the cold leg and downcomer connection 

In order to facilitate the replicability of the simulations Table 5 has been included, showing 

the most important parameters and models used in the simulations. The column corresponding 

to the LES model represents the final configuration used for the benchmark simulations, as well 

as for the simulations performed for uncertainty quantification. 

Table 5. Most important model and parameters applied for the different simulations. 

 LES 

SIMULATION 
DES SST LAMINAR 

Code CFX CFX CFX CFX 

Fluid modelling 

approach 

LES 

SIMULATION 
Hybrid URANS LAMINAR 

Specific turbulence 

(URANS) or SGS (LES) 

model 

Smagorinsky 
Detached eddy 

simulation 
SST - 

Variable density 

treatment 
Density difference 

Advection Scheme 

Central 

Difference 

Scheme 

CFX High 

resolution 

scheme 

CFX High 

resolution 

scheme 

CFX High 

resolution 

scheme 
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Time discretization 

scheme 
Second order backward Euler 

Time step size (dt) 0.005s 

Total time 42s 20s 60s 60s 

Maximum and average 

CFL 

13 (max) 8 (max) 7 (max) 10 (max) 

0.4 (average) 0.23 (average) 0.2 (average) 0.34 (average) 

Meshing features 

4 million 

nodes, 

unstructured, 

conformal, 

hexa mesh 

2 million 

nodes, 

unstructured, 

conformal, 

hexa mesh 

1.5 million 

nodes, 

unstructured, 

conformal, 

hexa+tetra 

1.3 million 

nodes, 

unstructured, 

conformal, 

hexa 

Wall treatment - type 

possibly including 

details on near wall 

damping 

Automatic 

CFX near-wall 

treatment 

Automatic 

CFX near-

wall treatment 

Automatic 

CFX near-

wall treatment 

- 

Wall treatment - 

maximum y+ value 

30 (max) 25 (max) 23 (max) - 

1.3 (ave) 1.7 (average) 0.7 (average) - 

Boundary condition for 

the free surface 
No-slip wall 

Modelling/assumptions 

for the valve opening 

Opening not modelled. Fluid domain initialized at heavy fluid 

mass fraction equal 1 and 0 on the heavy and light side, 

respectively. 

 

Following the parameters included in CFD best practice guidelines (Mahaffy et al., 2014) 

and Ansys Meshing User Manual (Canonsburg, 2011), almost all of the mesh elements are 

within the high quality rating. There are certain regions of the mesh that are outside the best 

quality parameters. These zones are very complicated to mesh keeping the different parameters 

of quality of mesh at a high value. Each one of the most compromised elements has been 

analyzed and it has been observed that its impact in the solution is very small. 

 

Figure 4 shows the elements that remains outside the high-quality standards. As can be seen, 

these elements are mainly found in the high-density water tank and do not pose a problem for 

the motion of the fluid in this experiment. Most of the volumes could be eliminated by 

increasing the refining of the mesh, but the computational cost is too high to justify it (Salvetti 

et al., 2018). 
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Figure 4: Lower quality elements of the mesh located entirely in the upper and lower area of the high-density 

water tank 

The total simulation time was 42 seconds in order to measure the high-density fluid flowing 

down the downcomer. The timestep was set to 5 milliseconds in order to obtain acceptable 

Courant numbers during the transient simulation. The time scheme used in all cases is Second 

Order Backward Euler, which is an implicit time-stepping scheme with a second order accuracy 

in the time derivative. All the boundaries correspond to walls so there are no inlets or outlets 

and the velocity was fixed at 0 using the No Slip Wall model. Table 5 also shows the maximum 

and average y+ value for each of the simulations. It is important to mention that CFX includes 

a special wall treatment that automatically switches between wall functions and low-Re 

approach depending on the spacing in the wall zone. A homogeneous model has been adjusted 

for both phases and for the temperature transfer (at 22.5 ºC). 

 

In many scenarios the Large Eddy Simulation (LES) turbulence model is the most realistic 

and most reliable model for simulating turbulence (Simoneau et al., 2010). However, the high 

cost in terms of computational time limits the application capabilities of many uncertainty 

quantification techniques that require performing many simulations. For this reason, before 

selecting the turbulence model to be used, several tests were performed with different models 

including: Laminar, Shear Stress Transport (SST), Detached Eddy Simulation (DES) and Large 

Eddy Simulation (LES) among others. It should be mentioned that the model that best 

reproduced the behavior of the experiment was the LES model in its three variations of sub-

grid eddy models Smagorinsky, WALE and Dynamic Model. Further information about the 

results of each turbulence model is shown in section 5. 

 

Between the two options of buoyancy model that CFX has implemented, density difference 

and Boussinesq, the first one usually offers slightly better results than the second one. The 

savings in computational time are practically negligible in this second option so the Density 

Difference model was used for most of the simulations. Central difference scheme was used for 

the LES simulations. 
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The final mesh size decision was made according to a sensitivity study and the available 

computational capacity. Table 6 shows some of the most important parameters of the meshes 

used in the sensitivity analysis. The study was performed with the LES Smagorinsky turbulence 

model during 20s and the only parameter that was modified was the number of nodes. Thus, 

three grids were defined (coarse, medium and fine) with approximately 1, 4 and 8 million nodes 

respectively. 

Table 6. Mesh sensibility study parameters. 

Parameter  Coarse Medium Fine 

Total number of nodes 1 million 4 million 8 million 

Turbulence model LES Smagorinsky 

Max/mean y+ 
35 (max) 30 (max) 28 (max) 

3.3 (average) 1.3 (average) 1.1 (average) 

Max/mean Courant 

Number 

3 (max) 14 (max) 10 (max) 

0.1 (average) 0.34 (average) 0.1 (average) 

Max Mesh Expansion 

Factor and percentaje of 

elements from 20 to 

max 

53 30 26 

0.5% from 20 to 

53 

0.2% from 20 to 

30 
0.07% from 20 to 26 

Max Aspect Ratio and 

percentaje of elements 

from 30 to max 

64 50 55 

4.7% from 30 to 

64 
4.4% from 30-50 0.1% from 30 to 55 

Min equiangle 

skewness and percentaje 

from min to 0.5 

0.17 0.2 0.25 

3.9% from 0.17 to 

0.5 

3.5% from 0.2 to 

0.5 

4.2% from 0.25 to 

0.5 

Timestep 5 ms 

Type of mesh Unstruc. hexa 

 

 

The difference between the meshes was evaluated in two areas (cold-leg and downcomer), 

following the measurement zones of the experiment. Table 7 shows the values of maximum 

velocity, average velocity and maximum density obtained for these reference zones. 

Additionally, two columns are included with the percentage variation of these variables 

between grids. It can be seen that in the case of velocities and densities in the cold leg, the 

values are much tighter. However, in the downcomer the difference is much more appreciable. 

Although the behavior of these variables was analyzed for the different meshes, the high 

computational cost greatly limited the possibilities of performing the simulations with a fine 

mesh. Since the main objective was to develop and test the uncertainty quantification 

methodology using polynomial chaos, it was necessary not only to carry out the different initial 

studies but also the different simulations for the calculation of the error bands. Consequently, 
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the 4 million mesh was selected. The mesh behaved quite well in the cold-leg although larger 

discrepancies were expected in the downcomer. 

Table 7. Sensibility study results for coarse, medium and fine meshes. 

  Coarse Medium Fine 

Percentage of difference 

  

From Coarse to 

Medium 

From Medium 

to Fine 

Cold-Leg 

Max 

velocity 
0.039 0.105 0.099 63% 6% 

Mean 

Velocity 
0.0051 0.0106 0.0091 52% 16% 

Max 

density 
1008 1048 1047 4% 1% 

Downcomer 

Max 

velocity 
0.19 0.256 0.33 26% 22% 

Mean 

Velocity 
0.182 0.235 0.278 23% 15% 

Max 

density 
981 988 993 1% 1% 

 

 

 

4 UNCERTAINTY QUANTIFICATION 

Two models of uncertainty quantification have been considered for this benchmark. Firstly, 

Wilks method is reliable and easy to implement but has the important drawback of requiring 

almost 100 simulations to meet the usual safety requirements of coverage and confidence. This 

methodology can become very expensive in terms of computational cost if the simulations are 

time-consuming. On the other hand, Polynomial Chaos Expansion method (also known as PCE) 

is a more efficient alternative when the number of uncertain variables is small. For this reason, 

Polynomial Chaos Expansion method has been selected for the uncertainty quantification. In 

this benchmark there is a variable whose uncertainty is very relevant in the simulation results: 

the density. To avoid a very pronounced increase in simulations, the less relevant uncertain 

variables have been discarded because of their low impact on the results, for example, viscosity. 

Future analyses will also take into account subscale constants as they may affect the results 

depending on the importance of small scales in this type of simulations (Lucor et al., 2007). 

∆𝜌 = 𝜌𝐻 − 𝜌𝐿 (1) 
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𝜎∆𝜌 = √𝜎𝐻2 + 𝜎𝑙2 (2) 

Being ∆𝜌 the density difference between heavy (𝜌𝐻) and light (𝜌𝐿) fluids and 𝜎∆𝜌 its standard 

deviation. The uncertainty of the density difference between fluids follows a Gaussian 

probability distribution so Hermite polynomials were used (Wiener, 1938). 

 

In PCE the response of a system 𝑅(𝑥), which depends on a set of uncertain parameters 𝑥, is 

expressed as a linear combination of a certain orthogonal basis of orthogonal polynomials 
{𝜙𝑖}𝑖=0

∞  known as Askey polynomials. The type of these polynomials depends on the probability 

distribution functions (PDF) of the uncertain parameters (Xiu and Karniadakis, 2003a): 

𝑅(𝑥) = ∑𝑛=0
∞ 𝛼𝑛𝜙𝑛(𝑥) (3) 

The parameters 𝑥 (𝑥1, 𝑥2, … , 𝑥𝑛𝑢) are usually assumed to be statistically independent, and 

therefore the PDF is written as 𝑝(𝑥) = 𝛱𝑖=0
𝑛𝑢 𝑝𝑖(𝑥𝑖). Then, based on the orthogonal property of 

these polynomials the expansion coefficients 𝛼𝑖 in eq. (3) are given by: 

𝛼𝑛 =
1

〈𝜙𝑛
2〉
∫ 𝑝(𝑥) 𝑅(𝑥)𝜙𝑛(𝑥) 𝑑𝑥
𝑋

 (4) 

Being 

〈𝜙𝑛
2〉 = ∫ 𝑝(𝑥) 𝜙𝑛

2(𝑥)𝑑𝑥
𝑋

 (5) 

The mean 𝜇𝑅 and the variance 𝜎𝑅
2 of the system response 𝑅(𝑥), can be obtained easily from 

(3) using the orthogonality condition of the base functions and choosing without loss of 

generality 𝜙0 = 1. Then, the mean is obtained computing the expected value of eq. (3), which 

yields: 

𝜇 = 〈𝑅(𝑥)〉 = 𝛼0 (6) 

While the variance is obtained from the variance definition on account of eq. (6), and the 

orthogonality condition of the base functions: 

𝜎𝑅
2 = 〈𝑅(𝑥) − 𝜇2〉 = ∑𝑛=1

∞ 𝛼𝑛
2〈𝜙𝑛

2〉 ≅ ∑𝑛=1
𝑁 𝛼𝑛

2〈𝜙𝑛
2〉 (7) 

The first simplification used to compute the variance was to reduce the number of terms in 

the expansion to a finite number N as displayed in equation (7), the value chosen for N is 

discussed later. It is important to highlight that the number of terms in the PCE of the system 

response is 𝑁 + 1, because there is a term that contains 𝛼0. First, we notice that because of the 

PDFs of the uncertain parameter is the fluid density and this density follows according to the 

test specifications a Gaussian distribution function, then it follows that the orthogonal 

polynomials must be the Hermite ones denoted by 𝐻𝑛(𝑥), being 𝑛 the order of the polynomial. 

Then, the Gauss-Hermite quadrature method with 5-th order Hermite polynomials is applied, 

which is valid for any function 𝑓(𝑥), to compute the integrals of equations (4) and (5): 

∫ 𝑒−𝑥
2
 𝑓(𝑥) 𝑑𝑥

∞

−∞

= ∑𝑗=1
𝑚=5 𝑤𝑗 𝑓(𝑥𝑗) (8) 
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Being 𝑤𝑗 the quadrature weights and 𝑥𝑗 the zeros of the Hermite polynomials used in 

defining the quadrature order 𝑛𝑞in this case 5. We remind that the Gauss-Hermite quadrature 

method of integration it is exact when 𝑓(𝑥) is a polynomial of degree 2𝑛𝑞 − 1 = 9. 

 

Because of the PDF of the input uncertain variable of this benchmark (density difference 

between fluids) 𝑥𝑖𝑛 follows a Gaussian distribution with mean 𝜇 and standard deviation 𝜎, then 

the integrals that are necessary to compute the coefficients 𝛼𝑛 of the expansion can be written 

as follows. Note that eq. 9 and 10 are calculated in Appendix A, where we show the reasoning 

followed to obtain the integrals whose polynomials are orthogonal after the variable change (to 

fit the mean and variance of our uncertain variable). 

〈𝑅𝜙𝑛〉 = ∫
1

√2𝜋𝜎
𝑒
−(
𝑥𝑖𝑛−𝜇

√2 𝜎
)

2

𝑅(𝑥𝑖𝑛) 𝐻𝑒𝑛
(𝜎2,𝜇)

(𝑥𝑖𝑛) 𝑑𝑥
∞

−∞

=
𝜎𝑛 

√𝜋 2
𝑛
2⁄
∑𝑤𝑗  𝑅(𝜇 + √2 𝜎 𝑥𝑗) 𝐻𝑛(𝑥𝑗)

5

𝑗=1

 

(9) 

And  

〈𝜙𝑛
2〉 = 〈(𝐻𝑒𝑛

(𝜎2,𝜇)
)
2
〉 = ∫

1

√2𝜋𝜎
𝑒
−(
𝑥−𝜇

√2 𝜎
)
2

 (𝐻𝑒𝑛
(𝜎2,𝜇)(𝑥))

2

 𝑑𝑥
∞

−∞

= 𝜎2𝑛 𝑛! (10) 

Being 𝐻𝑒𝑛
(𝜎2,𝜇)

(𝑥𝑖𝑛) the Hermite polynomial, which are orthogonal with the weight function 

𝑁(𝜇, 𝜎). 𝑇he variable change of equation (11) was performed in the input uncertain variable, in 

order to use the standard Hermite quadrature method (Abramovitz and Stegun, 1972). Notice 

that to perform the calculations with the CFD code we must input to the code the set of input 

values{𝑥𝑗
𝑖𝑛}

𝑗=1

5
, given by the expression:  

𝑥𝑗
𝑖𝑛 = 𝜇 + √2 · 𝜎 · 𝑥𝑗     (11) 

Being 𝑥𝑗 the roots of the Hermite polynomials of 5-th order and 𝑥𝑗
𝑖𝑛, the input values of the 

uncertain parameter that must be supplied to the CFD code in order to obtain the code response.  

 

A polynomial expansion of order 4 has been selected to quantify the uncertainty by means 

of Polynomial Chaos in the Cold-Leg Mixing benchmark, although other authors claim that 

using polynomials of order 2 achieves a fairly good precision (Safta et al., 2017). The number 

of terms of the expansion 𝑁 + 1 and the minimum number of simulations points 𝑛𝑠𝑖𝑚 needed 

to achieve a good accuracy when we have 𝑛𝑢 uncertain input parameters, and we perform the 

Hermite-Gauss quadrature integration with 𝑛𝑞 weights and the PCE up to order 𝑞, is given by 

equation (12) and (13) as reported in (Xiu and Karniadakis, 2003b), (Richard. Askey and 

Wilson, 1985) and (Crestaux et al., 2009). 

𝑁 + 1 =
(𝑛𝑢 + 𝑞)!

𝑛𝑢! 𝑞!
 (12) 
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𝑛𝑠𝑖𝑚 = 𝑛𝑞
𝑛𝑢 (13) 

Therefore, for this benchmark we have performed the integrals in (9) by means of Gauss-

Hermite quadrature of 5th order (five zeros and weights per dimension). In this case, the number 

of uncertain parameters is only one, so the number of simulations needed is five and the number 

of terms of the Polynomial chaos expansion is also five. Table 8 displays the weights and the 

roots when using Gauss-Hermite quadrature. 

Table 8. Roots of the 5th order Hermite Polynomials and its correspondent density value. 

Roots 𝑥𝑗 -2.0202 -0.9586 0 0.9586 2.0202 

Weights 𝑤𝑗 0.001993 0.393619 0.945308 0.393619 0.001993 

OPEN TEST 

∆𝜌 𝑥𝑗
𝑖𝑛  

80.2 94.9 108.2 121.4 136.1 

BLIND TEST 

∆𝜌 𝑥𝑗
𝑖𝑛 

167.7 182.4 195.7 208.9 223.6 

 

To achieve a better understanding on the procedure performed to calculate the uncertainty 

of the results, the steps carried out are shown below: 

1. The Matlab® script first loads all the vectors 𝑅, obtained for each output variable. This 𝑅 

vector corresponds to each variable for which we wish to know the uncertainty. Therefore, 

the number of components of each vector 𝑅 is 𝑛𝑠𝑖𝑚, being 𝑛𝑠𝑖𝑚 = 𝑞
𝑛𝑢 and 𝑛𝑢 the number 

of uncertain variables. 

𝑅 = (

𝑅1
𝑅2
⋮

𝑅𝑛𝑠𝑖𝑚

)  (14) 

2. Then it loads the data vectors of the uncertain variable values that are input to the code, 

which in this case is only one 𝑉1 containing 𝑛𝑞 values. In general, we will have 𝑛𝑢 × 𝑛𝑞 

data. For this case it simplifies to: 

𝑉1 =

(

 

𝑉11
𝑉12
⋮

𝑉1𝑛𝑠𝑖𝑚)

  (15) 

3. Because there is only one uncertain variable, then the calculation of the polynomial base 

is very simple and reduces when the PCE is truncated at order 4 to:  

𝐵𝑎𝑠𝑒 =

(

  
 

𝐻0 = 1
𝐻1 = 2𝑥

𝐻2 = 4𝑥
2 − 2

𝐻3 = 8𝑥
3 − 12𝑥

 𝐻4 = 16𝑥
4 − 48𝑥2 + 12 )

  
 

  (16) 
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4. There are five weights 𝑤𝑗 and five roots 𝑥𝑗 because we use Gaussian-Hermite quadrature 

of order 5 that make the calculation of the integrals of the quadrature by Gauss-Hermite 

procedure exact for integrations of polynomials up to order 9. The weights are: 

𝑤 =

(

 
 

𝑤1 = 0.019932
𝑤2 = 0.393619
𝑤3 = 0.945308
𝑤4 = 0.393619
𝑤5 = 0.019932)

 
 

 (17) 

5. Calculation of the alpha coefficients 𝛼𝑛 of the Polynomial Chaos Expansion. 

a. The objective is to calculate the alpha coefficients in the following way: 

𝛼𝑛 =
〈𝑅𝜙𝑛〉

〈𝜙𝑛
2〉

 (18) 

b. The first step is to calculate the denominator 〈𝜙𝑛
2〉. This result is direct and does not 

require values obtained from the simulations because 𝜙𝑛 are the Hermite 

polynomials. 

〈𝜙𝑛
2〉 = 𝜎2𝑛 𝑛! (19) 

c. Next, we will calculate the numerator 〈𝑅𝜙𝑛〉. This is done by solving the integral 

using Gaussian-Hermite quadrature obtaining the equation explained in Appendix A. 

〈𝑅𝜙𝑛〉 =
𝜎𝑛 

√𝜋 2
𝑛
2⁄
∑𝑤𝑗  𝑅(𝜇 + √2 𝜎 𝑥𝑗) 𝐻𝑛(𝑥𝑗)

5

𝑗=1

 (20) 

6. Using the alpha coefficients 𝛼𝑛 it is possible to obtain the mean and standard deviation 

values of each of the variables resulting from the R arrays. 

𝜇 = 𝛼0 

𝜎2 = ∑𝛼𝑛
2 · 〈𝜙𝑛

2〉

5

𝑛=1

 

(21) 

(22) 

 

5 RESULTS AND DISCUSSION 

The first thing that was observed was the great dependence of the results on the turbulence 

model. Simulations of the open test showed that models based on the RANS equations tended 

to attenuate the velocities at the interface while those carried out using the LES turbulence 

model offered much higher accuracy (Figure 5). In addition, the results obtained for the GEMIX 

experiment revealed the possibility of using high-cost computational models (such as LES) for 

the CFD simulations if the uncertainty quantification is supported by an efficient method, such 

as the Polynomial Chaos by means of Gaussian quadrature. 
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(a) (b) 

Figure 5: Cold-leg velocity comparison of the open test for different turbulence models (a) Laminar, SST, LES vs 

experiment, and (b) LES Smagorinsky, Dynamic and WALE vs experiment. 

Different models were tested removing transfer characteristics at the interface, modifying 

the surface tension, refining the mesh at the interface, etc. However, none of these modifications 

managed to avoid the disparity between results and experimental measurements of RANS-

based models. Despite not having ample computational power, the LES turbulence model was 

essential for a correct performance of the simulation under these conditions (Figure 5a). The 

case of the DES turbulence model is decisive since it is located between the RANS and LES 

models. A clear improvement can be observed with respect to RANS, but the medium and small 

scales of turbulence are overestimated. This leads to the appearance of a much more diffuse 

interface in which the phases are mixed more than expected. In the research carried out by 

Hassan et al. (2021) a similar behavior is observed when 𝑘 − 𝜔 SST (RANS model) is used in 

the simulations. However, the authors obtain much better results when using the RKE 

(Realizable 𝑘 − 𝜖) or SKE (Standard 𝑘 − 𝜖) turbulence models. The laminar model gives good 

results for the cold-leg. However, in the downcomer the motion is influenced by the turbulent 

mixing of both fluids so the use of a laminar model was discarded. 

 

The resolution capability of the three LES models implemented in Ansys (Smagorinsky, 

WALE and Dynamic LES) was evaluated in the cold leg test section (see Section 2 for more 

information about the measurement zones). The results, as shown in the Figure 5b, are very 

close to each other, so it could be said that all three are valid for this simulation. The Euclidean 

distance (O’Neill, 2006) and the Mahalanobis distance (Mahalanobis, 1936) between 

experiment and each simulation were used as a method to estimate how close the results to the 

experimental measurements are. The model which results are closer for the velocities at the 

cold leg measurement zone was the Smagorinsky. 

 

Finally, tests of the open test ended after the successful realization of the Polynomial Chaos 

by means of Gaussian quadrature for the quantification of the uncertainty. Figure 6 shows the 

comparison between the velocity obtained in the simulation and the experimental measurement 

for the cold leg and the downcomer. The shaded areas depicted in Figures 6 and 7 represent the 
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uncertainty band of the simulation results. Predicted velocities are quite close to the 

experimental measurements, although the simulation does not capture all the points. As 

mentioned previously, the LES turbulence model is very effective in this type of situation, but 

it requires a very fine mesh and a very small timestep. There are no data for the concentration 

in the open test, so this variable is studied only in the blind test. 

 

  
(a) (b) 

 
(c) (d) 

Figure 6: Velocities of the open test obtained after the application of Polynomial Chaos Expansion by Gauss-

Hermite quadrature. Experiment represented in black and the simulations in red. a) longitudinal velocity in the 

cold-leg, b) transversal velocity in the cold-leg, c) downward velocity in the downcomer and d) transversal 

velocity in the downcomer. 

As summary for the open test, the experimental measurements obtained by PIV in the TAMU 

installation are predicted quite well by Ansys CFX code. The domain of the fluid must be 

generated in such a way that the meshing does not have problems of cell quality. All those 

conflicting areas must either be treated carefully during the discretization or eliminated. The 

selected turbulence model has a great influence on the result obtained. RANS models are not 

capable of simulating the wavy interface of the cold-leg. The deviation between the simulations 

using these turbulence models and the experiment is amplified over time and tend to 

overestimate the mixing and turbulence between the two fluids. Turbulence models based on 
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Large Eddy Simulation can reproduce the behavior more accurately in exchange for a 

considerably higher computational cost. In the case of the UPV the cold-leg zone is predicted 

quite accurately as the motion is produced by gravity and buoyancy forces. For the downcomer, 

the turbulent mixing between the high-density current and the low-density current mainly 

influence the flow. This phenomenon is predicted with less accuracy, although the orders of 

magnitude are correctly maintained. The cell size therefore plays an important role in this zone 

improving the results as its value is reduced. At the WGAMA group, meeting in Paris in 2019 

several organizations recognized the enormous difficulties they had encountered in predicting 

the vertical downward velocity of the mixture in the downcomer. The uncertainty analysis has 

been carried out by Polynomial Chaos Expansion and the results are satisfactory despite 

considering only the difference in density as an input uncertain variable. 

 

For the blind test, a change in geometry and meshing was carried out to adjust the new liquid 

level of the high-density tank. To carry out the new uncertainty quantification, five new 

simulations by means of a 4 million cells mesh have been run.  

 

The shape of the velocity profile is correct as shown in Figure 7 (a) and (b). However, the 

inflexion point, which is correctly predicted in the first time average (5-10s) is slightly shifted 

downwards for the following time intervals (10-15s) and (15-22s). The velocity of the low-

density fluid is predicted accurately, but the high-density fluid is above the experimental 

measurements for the latest time averages. Similar behavior is observed by Lai et al. (2020) and 

Hassan et al. (2021) where the velocities difference between experiment and simulation 

increases over time. 

 

There is an important scattering in the shape of the velocity profile in the downcomer, Figure 

7 (c) and (d). In general, the jet of our simulations seems to be concentrated on the right side of 

the downcomer where its velocity is higher than on the left side. This behavior seems to be 

recurrent for those participants that have used RANS, URANS or LES with a low number of 

cells in the grid. 

 

Figure 7 (e) and (f) shows that the vertical position of the stratification of concentrations 

(where concentrations change from low-density fluid to high-density fluid) is displaced 

downwards. This gap remains for the following intervals. For the initial time average (5-10s) 

the concentration values of the high-density fluid are below the experimental values, but they 

hit the experiment ones in the following intervals. This is probably due to the diffusion that 

appears at the interface or the possible offset of the high-density flow front in the measurement 

zone. 

 

It should be noted that it is strange that fairly good inflexion points are obtained for the 

velocity profile (v = 0 m/s) but the concentration profile does not match in any of the cases. In 

general, for our case, it is observed that the deviations that occur in the concentration of the 

high-density fluid are recovered over time. This is indicative that our results are slightly shifted 

presumably due to the mesh resolution requirements of the LES model. Further research is 

needed to identify the problem. Looking at the velocities, the accuracy for the low-density fluid 
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is very good, but for the high-density fluid the values are above the experimental one. This 

situation seems to be recurrent in most of the participants and it should be studied in detail.  

 

 
(a) Velocity CL 5-10s average (b) Velocity CL 10-15s average 

 
(c) Velocity DC 10.5-15.5s average (d) Velocity DC 25.5-30.5s average 

 

 
(e) Concentration CL 5-10s average (f) Concentration CL 25.5-30.5s average 

 

Figure 7: Velocities of the blind test obtained after the application of Polynomial Chaos Expansion by Gauss 

Square. (a) longitudinal velocity in the cold-leg (CL) for the time average 5-10s, (b) longitudinal velocity in the 

cold-leg (CL) for the time average 10-15s, (c) downward velocity in the downcomer (DC) for the time average 



Y. Rivera, J.L. Muñoz-Cobo, C. Berna, A. Escrivá, E. Vela 

 22 

10.5-15.5s, (d) downward velocity in the downcomer (DC) for the time average 25.5-30.5s, (e) concentration in 

the cold-leg (CL) for the time average 5-10s and (f) concentration in the cold-leg (CL) for the time average 15-

22.24s 

6 CONCLUSIONS 

The Institute for Energy Engineering of the Polytechnic University of Valencia has 

participated in the OECD Cold-Leg Mixing Benchmark by providing data from both the 

simulations and the uncertainty quantification. Our work is included within a project with the 

Spanish Nuclear Safety Council, aimed at seeking a set of good practices in the use of CFD 

codes to increase know-how in this field of knowledge. 

 

Firstly, the most important characteristics of the experimental facility developed by Texas 

A&M University have been described. The properties of the fluids, the boundary conditions of 

the experiments and the measurements have been detailed. From the geometry provided by the 

developers of the experiment, a 4 million node mesh has been created using ICEM CFD and 

imported to Ansys CFX to generate the model. The turbulence model has been decisive for the 

accuracy of the results, so it was decided to use Large Eddy Simulations that filters the small 

scales of the turbulence and substitute them by an average effect. Other RANS based models 

tended to increase the mixing of the fluids resulting in a reduction of the velocities. 

 

The steps followed to apply the Polynomial Chaos Expansion as a method of uncertainty 

quantification are explained and an appendix has been included with the procedure to ensure 

the orthogonality of the polynomials. The Gauss-Hermite Quadrature PCE is more efficient 

when the number of uncertain variables is small, so density was selected as the most relevant 

uncertain input variable. Therefore, selecting four as the order of the polynomial chaos 

expansion and five the quadrature order, the resulting number of simulations required was five. 

The uncertainty in the density difference between fluids follows a normal probability 

distribution thus Hermite polynomials were used. 

 

For both the open and the blind test, the velocities obtained in the cold-leg are quite accurate, 

slightly overestimating the maximum value. However, in the downcomer the shape of the 

velocity profile is not correctly predicted, although, the order of magnitude is correct. In this 

area, simulation results show an increase in velocity on the inside of the downcomer which 

reduces its value as it approaches the outside. The profile of the concentrations is correct but 

there is a gap in the transition zone that is maintained for different time intervals. This difference 

leaves room for doubt because in the velocity profile this gap is not observed so further 

investigation is needed. 
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APPENDIX A. ORTHOGONALITY OF HERMITE POLYNOMIALS TO APPLY 

POLYNOMIAL CHAOS EXPANSION WITH AN UNCERTAIN VARIABLE OF ANY 

MEAN AND VARIANCE 

This appendix addresses the issue of Hermite polynomials orthogonality when it is necessary 

to perform a variable change. To apply the Polynomial Chaos Expansion in the case of an 

uncertain variable with Gaussian distribution function it is necessary to use Hermite 

polynomials. However, it is most likely that our uncertain variable will have a mean and 

variance different from 0 and 1. Therefore, it is necessary to obtain Hermite polynomials that 

are orthogonal to the new variable characteristics. 

 

It is easy to find in the literature the Hermite polynomials that satisfy the following relation: 

〈𝐻𝑛
2〉 = ∫ 𝑒−𝑥

2
 𝐻𝑛
2(𝑥) 𝑑𝑥

∞

−∞

= ℎ𝑛 = √𝜋 2
𝑛 𝑛! (A1) 

Note that the polynomials 𝐻𝑛 are orthogonal on (−∞,∞) for the weight function 𝑤(𝑥) =

𝑒−𝑥
2
. Hermite polynomials can also be found as 𝐻𝑒𝑛, but the relationship is similar as shown 

in eq. A2. 

〈𝐻𝑒𝑛
2〉 = ∫ 𝑒−

𝑥2

2  𝐻𝑒𝑛
2(𝑥) 𝑑𝑥

∞

−∞

= √2𝜋 𝑛! (A2) 

Some authors move the constant √2𝜋 into the integral so the expression can be arranged 

according to the eq. A2. 
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〈𝐻𝑒𝑛
2〉 = ∫ 𝑝(𝑥) 𝐻𝑒𝑛

2(𝑥) 𝑑𝑥
∞

−∞

= ∫
1

√2𝜋
𝑒−
𝑥2

2  𝐻𝑒𝑛
2(𝑥) 𝑑𝑥

∞

−∞

=   𝑛! (A3) 

Being 𝑝(𝑥) the probability density function for a normal distribution with 𝜇 = 0 and 𝜎 = 1. 

The relation between both 𝐻𝑛 and 𝐻𝑒𝑛 correspond to the equations A4 and A5. 

𝐻𝑛(𝑥) = 2
𝑛
2⁄  𝐻𝑒𝑛(√2𝑥)  (A4) 

𝐻𝑒𝑛(𝑥) = 2
−(𝑛 2⁄ ) 𝐻𝑛 (

𝑥

√2
) (A5) 

Then, the same reasoning is followed, but starting from the probability density function 

shown in eq. A6 and then calculating the orthogonal Hermite polynomials. 

𝑝(𝑥) =
1

√2𝜋𝜎
𝑒
−
𝑥2

2𝜎2 (A6) 

〈(𝐻𝑒𝑛
𝜎2)

2
〉 = ∫ 𝑝(𝑥) (𝐻𝑒𝑛

𝜎2(𝑥))
2

 𝑑𝑥
∞

−∞

= ∫
1

√2𝜋𝜎
𝑒
−
𝑥2

2𝜎2  (𝐻𝑒𝑛
𝜎2(𝑥))

2

 𝑑𝑥
∞

−∞

 (A7) 

For this scenario the new polynomials are denoted as 𝐻𝑒𝑛
𝜎2 and the relation with 𝐻𝑛 and 𝐻𝑒𝑛 

is the next one. 

𝐻𝑒𝑛
𝜎2(𝑥) = 𝜎𝑛 𝐻𝑒𝑛 (

𝑥

𝜎
) =

𝜎𝑛 

2
𝑛
2⁄
𝐻𝑛 (

𝑥

√2𝜎
) (A8) 

Then, it is possible to follow the reasoning started in eq. A7: 

〈(𝐻𝑒𝑛
𝜎2)

2
〉 = ∫

1

√2𝜋𝜎
𝑒
−
𝑥2

2𝜎2  (𝐻𝑒𝑛
𝜎2(𝑥))

2

 𝑑𝑥
∞

−∞

= (
𝜎2

2
)

𝑛

∫
1

√2𝜋𝜎
𝑒
−
𝑥2

2𝜎2  ( 𝐻𝑛 (
𝑥

√2𝜎
))

2

 𝑑𝑥
∞

−∞

 

(A9) 

Finally, applying the variable change  𝑡 =
𝑥

√2𝜎
 and 𝑑𝑡 =

𝑑𝑥

√2𝜎
. 

〈(𝐻𝑒𝑛
𝜎2)

2
〉 = (

𝜎2

2
)

𝑛
1

√𝜋
∫ 𝑒−𝑡

2
 𝐻𝑛

2(𝑡) 𝑑𝑡
∞

−∞

 (A10) 

The result for 
1

√𝜋
∫ 𝑒−𝑡

2
 𝐻𝑛

2(𝑡) 𝑑𝑡
∞

−∞
 is given by eq. A1, so the result for the new Hermite 

polynomials 〈(𝐻𝑒𝑛
𝜎2)

2
〉 is also known. 

〈(𝐻𝑒𝑛
𝜎2)

2
〉 = (

𝜎2

2
)

𝑛
1

√𝜋
√𝜋 2𝑛 𝑛! = 𝜎2𝑛 𝑛! (A11) 

There is one more step needed before obtaining the last expression for the calculation of the 

Polynomial Chaos Expansion. As a quick reminder, our simulations will be performed after 

changing the variable. Following the relation 𝑥𝑖𝑛 = 𝜇 + √2 𝜎 𝑡 it is possible to obtain the input 

values that we will have to introduce in our code. Then, it is necessary to repeat the process for 

the probability density function of eq. A12. 
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𝑝(𝑥) =
1

√2𝜋𝜎
𝑒
−(
𝑥−𝜇

√2 𝜎
)
2

 (A12) 

After performing an intermediate variable change 𝑥 = 𝑡 − 𝜇 and 𝑑𝑡 = 𝑑𝑥 and starting from 

the eq. A8 

𝐻𝑒𝑛
𝜎2(𝑡 − 𝜇) =

𝜎𝑛 

2
𝑛
2⁄
𝐻𝑛 (

𝑡 − 𝜇

√2 𝜎
) (A13) 

Therefore the new orthogonal polynomials are defined as follows: 

𝐻𝑒𝑛
(𝜎2,𝜇)(𝑥) =

𝜎𝑛 

2
𝑛
2⁄
𝐻𝑛 (

𝑥 − 𝜇

√2 𝜎
) (A14) 

Then, 

〈(𝐻𝑒𝑛
(𝜎2 ,𝜇)

)
2
〉 = 〈𝜙𝑛

2〉 = ∫
1

√2𝜋𝜎
𝑒
−(
𝑥−𝜇

√2 𝜎
)
2

 (𝐻𝑒𝑛
(𝜎2,𝜇)(𝑥))

2

 𝑑𝑥
∞

−∞

= 𝜎2𝑛 𝑛! (A15) 

The definition of 𝐻𝑒𝑛
(𝜎2,𝜇)

 is shown in eq. A14, his module 〈(𝐻𝑒𝑛
(𝜎2,𝜇)

)
2
〉 in eq. A15 so the 

only missing term to calculate the alpha coefficients 𝛼 =
〈𝑅𝜙𝑛〉

𝜙𝑛
2  of the Polynomial Chaos 

Expansion by Gauss-Quadrature is displayed in eq. A16.  

〈𝑅𝜙𝑛〉 = ∫
1

√2𝜋𝜎
𝑒
−(
𝑥−𝜇

√2 𝜎
)
2

𝑅(𝑥) 𝐻𝑒𝑛
(𝜎2,𝜇)(𝑥) 𝑑𝑥

∞

−∞

 (A16) 

The last variable change is 𝑥𝑖𝑛 = 𝜇 + √2 𝜎 𝑡 and 𝑑𝑥𝑖𝑛 = 𝑑𝑡 √2 𝜎. Note that we have 

included the superscript 𝑖𝑛 referring to the fact that this variable 𝑥 corresponds to the uncertain 

variable of our simulation input. 

〈𝑅𝜙𝑛〉 =
1

√𝜋
∫ 𝑒−𝑡

2
𝑅(𝜇 + √2 𝜎 𝑡) 𝐻𝑒𝑛

(𝜎2,𝜇)
(𝜇 + √2 𝜎 𝑡) 𝑑𝑡

∞

−∞

 (A17) 

Substituting orthogonal polynomials 𝐻𝑒𝑛
𝜎2𝜇

 by eq. A14. 

〈𝑅𝜙𝑛〉 =
1

√𝜋
∫ 𝑒−𝑡

2
 𝑅(𝜇 + √2 𝜎 𝑡) 

𝜎𝑛 

2
𝑛
2⁄
 𝐻𝑛 (

𝜇 + √2 𝜎 𝑡 − 𝜇

√2 𝜎
)  𝑑𝑡

∞

−∞

=  
𝜎𝑛 

√𝜋 2
𝑛
2⁄
∫ 𝑒−𝑡

2
 𝑅(𝜇 + √2 𝜎 𝑡)  𝐻𝑛(𝑡) 𝑑𝑡

∞

−∞

 

(A18) 

Finally, as it has been exposed in this article, the integral has been solved by means of Gauss 

quadrature following the eq. A19. 

〈𝑅𝜙𝑛〉 =
𝜎𝑛 

√𝜋 2
𝑛
2⁄
∑𝑤𝑗 𝑅(𝜇 + √2 𝜎 𝑡𝑗) 𝐻𝑛(𝑡𝑗)

5

𝑗=1

 (A19) 

 


