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Abstract: Over the years, induction machines (IMs) have become key components in industry
applications as mechanical power sources (working as motors) as well as electrical power sources
(working as generators). Unexpected breakdowns in these components can lead to unscheduled
down time and consequently to large economic losses. As breakdown of IMs for failure study is not
economically feasible, several IM computer models under faulty conditions have been developed
to investigate the characteristics of faulty machines and have allowed reducing the number of
destructive tests. This paper provides a review of the available techniques for faulty IMs modelling.
These models can be categorised as models based on electrical circuits, on magnetic circuits, models
based on numerical methods and the recently proposed in the technical literature hybrid models or
models based on finite element method (FEM) analytical techniques. A general description of each
type of model is given with its main benefits and drawbacks in terms of accuracy, running times and
ability to reproduce a given fault.

Keywords: analytical models; fault diagnosis; induction machines; numerical method based models

1. Introduction

Induction machines (IMs) are widely used in industry applications because of their
reduced cost, robustness and reliability. However, induction machines (IMs) are not free
from failure. The main sources of faults in IMs can be internal, external or due to environ-
mental conditions. Various perspectives can be found in the literature to categorise the
IMs faults. For example, internal faults are usually classified according to their origin, i.e.,
electrical and mechanical, or to their outbreak location, i.e., stator and rotor [1]. Figure 1
shows a fault tree where faults in IMs are categorised according to their origin (mechanical
or electrical) and location (stator or rotor). Some of these failures cause downtimes of the
machines which could cause unexpected stoppages leading to important economical loses.
Figure 2 illustrates the common reasons for downtimes of IMs. As can be seen, bearing
related failures are responsible for 51% of the downtime of IMs. They are followed by those
related to stator winding and external conditions damages, which each account for 16% of
faults. Rotor-related failures represent 5% and other damages 12% [2,3]. Bearing- and stator-
related faults are the most common type of faults, which together account for over 60%
of the downtime of electrical machines. Moreover, defective bearings can increase power
consumption of IMs whereas efficiency decreases [4]. As such, the literature focuses on the
conditioning monitoring systems and the development of fault diagnosis techniques with
the aim to detect these faults at an early stage and to track their evolution. Therefore, the
maintenance tasks can be scheduled and the outage time imposed by sudden breakdown
can be reduced [5]. With this purpose, there are many published condition monitoring
techniques based on the analysis of different magnitudes such as thermal [6], chemical,
acoustic [7], torque analysis, induced voltage analysis, partial discharge analysis [8], vibra-
tion analysis [9], or motor 35 current signature analysis (MCSA) [10,11]. The reliability of
condition monitoring systems is based on understanding the behaviour of the machine
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in healthy and faulty status working under different conditions. The development of the
techniques usually involves the analysis of data coming from simulated models and the
identification of fault signatures. However, as IMs are key components, it is not only
necessary to identify the presence or absence of a given fault, but it must also be quantified.
The severity degree of the fault must be indicated in order to plan maintenance tasks. For
this purpose, the use of artificial intelligence applied to the fault diagnosis of IMs has been
proposed in the recent years.

Bearing/race de fect

Faulty IMs

Mechanic al

Electr ical

Rotor

Stator

Stator

Rotor
Broken rotor bar

Corroded rotorbar

Mechanic al or Thermal Unbalanced

Frame Vibration

Stator ope n circuit

Stator short circuit

Damage of insulation

Displaceme nt of Conductor

Failure of Electi cal Connecti ons

Broken end ring

Static ecc en tricity

Dynamic ecc en tricity

Mixed ecc en tricity

Figure 1. Summary of different types of faults in induction machines [12].

16%

16%

51%

5%

12%

External conditions Stator Winding Failures Bearing Damages

RotorBar Damages Other Failures

Figure 2. Pie chart for common reasons for downtimes of IMs.

There is a rising interest in developing condition monitoring systems based on artificial
intelligence techniques such as as support vector machine (SVM) [13], artificial neural
networks (ANN) [14], Naïve Bayes classifier, Ensemble, k-nearest neighbours (KNN) or
decision trees as they can determine not only the presence or absence but also the severity
degree of given fault, which improves the reliability. In fact, they have been used to develop
condition monitoring systems able to detect different types of faults such as broken rotor
bar [15,16], stator short circuit [17,18] or bearing faults [14,16,19], among others.

Contrary to conventional fault diagnosis techniques, condition monitoring systems
based on artificial intelligence do not work as an execution of a sequence of commands that
finally generate a solution, but they develop a previous training stage to learn the problem
and provide a suitable solution [20], that is, determine the machine status. For this training,
these expert systems analyse and interpret a failure representative database to evaluate the
machine status.
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Therefore, these expert systems need to be trained with a large number of cases,
with different fault types, severity degrees and combination of faults, with signals in real-
time [17]. These requirements imply the need to access many machines, which is only
possible at a limited scale with wide industrial cooperation and, anyway, the number of
faulty machines is limited. On the other hand, the IMs installed in laboratory test benches
have the same problems: the limitation of machines available, the costs associated with
a large number of destructive tests and the difficulty to modify the working conditions
and to set the different failures. Numerical method-based approaches allow replicating
faulty conditions that cannot be tested in the field or test bench laboratories, providing
fault data for machine learning algorithms [15,16]. IM faulty models should consider the
detailed structure of the machine to obtain simulations results that accurately reproduce the
behaviour of the actual IM. These models must allow monitoring the magnitude required
to detect the fault and besides, run in real-time.

In summary, the modelling of faulty IMs would be very useful for examining the
operational characteristics of faulty machines, minimising destructive testing as well as
validating new fault diagnostic techniques or training and testing condition monitoring
systems based on artificial intelligence [20]. Thus, high costs associated with machines and
destructive testing would be greatly reduced. These savings will be more pronounced in
industry and power generation, where the largest machines are found.

This paper presents a review of the most recent advances in the development of IM
faulty models, breaking down into four broad categories, as illustrated in Figure 3. The
categories can be further classified as models based on electrical circuits, models based
on magnetic circuits, models based on numerical methods and hybrid models. For each
type of model, various fault diagnosis methods are covered and a number of summary
tables are presented at the end of the subsections dealing with some of the approaches to
summarise the references to pertinent works.

The paper is structured as follows. In Section 2, faulty models based on coupled
circuits, mainly those based on multiple coupled circuit and d-q transform are reviewed.
In Section 3, faulty IM modelling based on magnetic circuits is presented. In Section 4,
various models of faulty IMs using numerical techniques and, specifically, those based
on finite element method are presented. In Section 5, hybrid numerical-analytical-based
techniques for faulty IMs modelling are described. Finally, in Section 6 the main conclusions
are presented.

Faulty IMs

Models based on coupled circuits

Models based on magnetic circuits

Models based on mathematical methods

Hybrid models

MCC

d-q

MEC

FEM

FEM-Analytical

Figure 3. Breakdown of induction motor fault models.

2. Models Based on Coupled Circuits

One of the most widely used models based on coupling circuits are those based on
the vector space decomposition technique or d-q model. These models assume some
assumptions such as fully symmetrical motors, linear iron permeability, air-gap uniformity
or the absence of the tangential induction component in the air-gap. All these assumptions
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allow simplifying the resulting mathematical model. Therefore, it is computed quickly
and has enough accuracy for developing control systems. However, in case of the faulty
models, these simplifications can be no longer applied as they affect the performance of
the faulty machines. The following subsections include a review of the main advances of
models based on coupling circuits and on the d-q decomposition.

2.1. Multiple Coupled Circuit Models

The detailed modelling procedure as well as the simulation results of models based
on coupled circuits are included in [21,22]. The multiple coupled circuit (MCC) models
are developed considering that both the stator and rotor are multiple inductive circuits
coupled together, with the current in each circuit being an independent variable. Figure 4
shows the rotor cage described as a mesh, where Re and Le are the resistance and leakage
inductance of the end ring segment, respectively; Rb and Lb are the rotor bar resistance and
leakage inductance, respectively; Ie is the end ring current; and I1 and I2 are the currents
of the first and second rotor loop, respectively. It can be observed that the rotor loop
comprises two adjacent rotor bars together with the corresponding end ring segments [23].
Besides, the n rotor loop currents are coupled to each other and to the stator windings
through mutual inductances. The end-ring loop does not couple with the stator windings;
it, however, couples the rotor currents only through the end leakage inductance and the
end-ring resistance [24]. Thus, the MCC method can be used to represent a wide variety
of fault modes without modification of the model structure shown in Figure 4. In some
cases, it only requires the modification of the values of the elements of the circuit in order
to introduce the new fault. As an example, a rotor broken bar implies a large value of
resistance associated to the broken bar.

However, estimating the parameters of the machine is one of the critical steps in
the modelling of faulty IMs. Resistance is usually estimated through the examination of
the dimensions of conducting paths. On the contrary, the computation of the coupling
elements of a faulty machine is very challenging. There are several methods proposed
in the technical literature, with the winding function approach (WFA) being one of the
most commonly method used to evaluate the self- and mutual inductances of the stator
and rotor circuits [23]. This approach integrates the winding functions to obtain the phase
inductances, solving complex integrals in the process, specially in the case of arbitrary
winding distributions, which results in a time-consuming task. In an attempt to reduce
the computation time, the work in [25] proposes a method based on a single discrete
circular convolution, instead of the integrals of the windings functions for every rotor
position, in order to obtain the winding inductances. With the proposed approach, the
mutual inductances of two phases are calculated for every relative angular position using
a single equation which is solved with the fast Fourier transform (FFT). Asymmetrical
winding distributions, and the linear rise of the air gap MMF across skewed slots, are
easily modelled without increasing the computation time. In fact, the computation of the
inductance matrix for the IM given takes just 0.26 s using the proposed method versus
more than 7 s with WFA. Therefore, the calculation time is drastically reduced, by a factor
approximately 30, while keeping similar accuracy to WFA approach.

On the other hand, although WFA includes the effect of space harmonics, it usually
assumes the symmetry of the main magnetic circuit, which makes it unsuitable for the
analysis of eccentricities, as shown in [26]. In an attempt to overcome this drawback, the
technical literature proposes the modified winding function approach (MWFA). This ap-
proach considers air-gap eccentricity for the inductance calculation, allowing to reproduce
the effects of static, dynamic or mixed eccentricity in IMs [27]. This approach is not only
considered to perform eccentricity faults, authors, such as those in [28], use MWFA to repro-
duce accurately the air-gap variation according to the bearing fault. In [29], a method based
on scaling techniques to compute the parameters for a machine with complex dynamic
eccentricity from the inductance curves for healthy, symmetric IM previously computed
with the WFA is proposed. These values can then be organised in look-up tables and
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easily “pulled out” in an iterative procedure of solution of system equations of the model
(Equations (5)–(10)). Moreover, in the technical literature, an extension of the MWFA is
proposed to include the influence of the rotor skew and the broken rotor bar fault which
allows for all harmonics of magneto-motive forces to be taken into account [30].

Once the parameters of the model are known, the expressions (electrical axis attached
to the rotor conductors) that define the behaviour of an IM and which have to be solved,
for the stator, are

[Us] = [Rs][Is] +
d
dt
[φs] (1)

and
[φs] = [Lss][Is] + [Lsr][Ir] (2)

where [Us] is the stator voltage vector, [Is] is the stator currents vector, [Ir] is the rotor loop
current vector, [φs] is the stator flux linkage vector, [Rs] is a diagonal matrix with the stator
phase resistances, [Lss] is the stator windings inductance matrix and [Lsr] is the stator to
rotor mutual inductance matrix.

[Lss] =

Lss11 Lss12 Lss13
Lss21 Lss22 Lss23
Lss31 Lss32 Lss33

 (3)

where Lssij is the mutual inductance between the stator phase i (i = 1, 2 or 3) and the stator
phase j (j = 1, 2 or 3). The mutual inductance Lsr matrix is an 3 by n, where n is the total
sum of stator phases and rotor loops, matrix comprised of the mutual inductances between
stator and the rotor loops:

[Lsr] =

Lsr11 Lsr12 · · · Lsr1n Lsr1e
Lsr21 Lsr22 · · · Lsr2n Lsr2e
Lsr31 Lsr32 · · · Lsr3n Lsr3e

 (4)

where Lsrij is the mutual inductance between the stator phase i (i = 1, 2 or 3) and the rotor
loop j (j = 1,2 . . . n) and Lsrie the mutual inductance between the stator phase i (i = 1, 2 or
3) and the end ring.

On the other hand, any rotor loop is mutually coupled with the other rotor loops
and with the stator windings. From Figure 4, the voltage equations for the loops can be
written as

[Ur] = [Rr][Ir] +
d
dt
[φr] (5)

where:
[φr] = [Lrs][Is] + [Lrr][Ir] (6)

where [Ur] is the rotor voltages vector, [Ir] is the rotor currents vector, [Ir] is the rotor loops
currents vector, [φr] is the rotor flux linkages vector, [Rr] is the rotor resistance matrix and
[Lrr] is the rotor inductance matrix. The resistance matrix [Rr] is given by

[Rr] =



2(Rb + Re) −Rb 0
... 0 −Rb −Re

−Rb 2(Rb + Re) −Rb
... 0 0 −Re

...
...

...
...

...
...

...
...

...
...

...
...

...
...

... 0 0
... 2(Rb + Re) −Rb −Re

−Rb 0 0
... −Rb 2(Rb + Re) −Re

−Re −Re −Re
... −Re −Re nRe


(7)
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The inductance between rotor phases matrix can be written by

[Lrr] =



L11 + Lbe L12 − Lb L13 · · · L1(n−1) L1n − Lb −Le

L21 − Lb L22 + Lbe L23 − Lb · · · L2(n−1) L2(n−1) −Le
...

...
... · · ·

...
...

...
...

...
... · · ·

...
...

...
L(n−1)1 L(n−1)2 L(n−1)3 · · · L(n−1)(n−1) + Lbe L(n−1)n − Lb −Le

Ln1 − Lb Ln2 Ln3 · · · Ln(n−1) − Lb Lnn + Lbe −Le

−Le −Le −Le · · · −Le −Le nLe


(8)

where Rb, Lb are the rotor bar resistance and inductance, Re, Le are the end ring segment
leakage resistance and inductance, Lkk is the self inductance of the kth rotor loop, Lb is the
rotor bar leakage inductance and Lik is the mutual inductance between rotor loops i and k,
and Lbe = 2(Lb + Le).

The electromagnetic torque generated by the machine, Te, is given by

Te = I′s

(
d

dθr
[Lsr]

)
Ir (9)

Finally, the mechanical behaviour is modelled by the following equation:

Te − TL = J
d2θr

dt2 + B
dθr

dt
(10)

where TL is the mechanical load torque, J is the inertia moment, B is the friction coefficient
and θr is the rotor angular position.

The MCC method has been used to developed different types of stator and rotor
faults. Moreover, it allows reproducing unrelated faults without the modification of
the model structure. Table 1 provides a list of references for commonly reported faults
where the procedure to include the given fault in the model based on coupling circuits is
detailed. As an example, the authors of [27] develop a general winding machine with this
approach, taking into account all space harmonics without any restriction concerning the
the symmetry of the stator or rotor windings. Therefore, the model proposed can be applied
to analyse a complex dynamic problem such as dynamic eccentricity. Furthermore, the
authors [31] focus their attention on MWFA to study the effects of simultaneous presence
of static eccentricity and broken rotor bars on the stator current spectrum. Other authors,
such as those in [23], propose fault and healthy MCC-based models to reproduce stator
and rotor faults. However, this approach considers some assumptions that can affect the
accuracy of the results, such as that the air gap is uniform, the machine has no eccentricity,
rotor bars are insulated to each other or there are not inter-bar currents.

On the other hand, with the purpose of modelling the progression of the fault, the
work in [32] presents a corrosion model of a faulty rotor bar progress. This model considers
the changes of the leakage inductance and resistance of the rotor during the progression
of the fault, which affect the harmonic components of stator currents. Moreover, the
simulations take a reasonably amount of time, about 30 min to perform.

In summary, MCC modelling and their variants, such as WFA/MWFA, take into
account the geometry and winding layout of the machine without any restriction con-
cerning either the symmetry of the stator windings or rotor bars. Moreover, the effect
of space harmonics is considered. For these reasons, these models are specially suitable
for the analysis of IMs with arbitrarily connected windings and unbalanced operating
conditions [33]. On the other hand, although it is usual to disregard some phenomena
such as saturation, skin effect, proximity effect and capacitance between windings, due to
their complexity, there are some variants that also consider some of these phenomena [34].
Regarding time requirements, especially when compared to numerical-based methods,
the work in [25] reports differences of 3 h using finite element method (FEM) versus 7.6 s
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for the same analysis using WFA. Furthermore, the work in [35] compares the results for
eccentric cage IM using FEM and MWFA, showing differences of 50 h versus 4 min for 1.5 s
of actual machine run time. Thus, although these analytical models are not as accurate as
numerical based models, their lower calculation time becomes them remarkable for fault
diagnosis purposes, especially in hardware in the loop (HIL) systems [36]. The greater
accuracy that these models provide is achieved at the cost of greater model complexity
and higher requirements in both time and computing power [37], limiting its application
for on-line fault diagnosis systems and condition monitoring systems based on artificial
intelligence (AI).

Table 1. MCC reference for different types of faults.

Fault References

Broken rotor bar [23,24,30–32,38,39]
Broken end ring [21,40]

Stator open circuit [41]
Stator short circuit [23,24,41]
Static eccentricity [27,35,42]

Dynamic eccentricity [27,27,29,42]
Mixed eccentricity [27,43]
Corroded rotor bar [32]
Bearing/race defect [28,44–46]

Re Le Re Le

Re Le Re Le

Re Le Re Le

Re Le Re Le

Rb

Lb

Rb

Lb

Rb

Lb

Rb

Lb

Rb

Lb

Rb

Lb

Re
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Re

Le

Re

Le

Re

Le

Re

Le

Re

Le

Lb Rb

Lb Rb

Lb Rb

Lb Rb

Lb Rb

Lb Rb

...

......

...

Ie
I1

I2

Re

Le

Re

Le

Figure 4. Multiple coupled circuit topology. Equivalent circuit of a rotor cage with multiple-coupled
loops for healthy IM.

2.2. d-q Models

One of the most commonly used modelling approaches for IMs is d-q modelling,
which arose with the aim of simplifying MCC models. These models were developed using
orthogonal components of voltages and currents by the Clark and Park transforms. Thus,
the expressions of the voltage equations of the IM as well as the torque equation can be
transformed from the abc frame to the reference frame dq, where the machine equations
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are therefore expressed in complex d-q variables [47]. Traditionally, the technical literature
has proposed parameter estimation techniques to identify the main parameters of d-q
models based on the analysis of data coming from the machine [48,49]. They analyse data
such as voltages or currents, under specific working conditions: steady-state or start-up
transients [50,51]. These models are commonly used for control drive purposes, which
requires testing to obtain signals of the machine. Nevertheless, this procedure could not be
the most suitable for fault diagnosis purposes as for each faulty model a faulty machine test
is required [50,52]. This means that it requires a large number of destructive tests with its
associated costs to obtain the required wide variety of faulty models for the development
of fault diagnosis techniques and condition monitoring systems. Therefore, with the aim of
reproducing faults with this kind of models, the same parameter estimation techniques
are typically used as in the case of the MCC models. The main advantage of this type of
models is that the number of equations required for simulation is reduced, as the use of
the space vector transformation allows to represent any induction machine with structural
symmetry using only four coupled differential equations [53].

Thus, the stator voltage equations are defined by

[vds] =
1

wbase

dφds
dt
−ωφqs + Rsids′ (11)

[vqs] =
1

wbase

dφqs

dt
−ωφqs + Rsiqs′ (12)

[v0s] =
1

wbase

dφ0s

dt
+ Rsi0s′ (13)

where wbase is the per-unit base electrical speed; φds, φqs and φ0s, are the d-axis, q-axis and
zero-sequence stator flux linkages, respectively; Rs is the stator resistance; and ids, iqs, and
i0s are the d-axis, q-axis, and zero-sequence stator currents, respectively.

The rotor voltage equations are obtained from the expressions:

[vdr] =
1

wbase

dφdr
dt
− (ω−ωr)φqr + Rrdidr (14)

[vqr] =
1

wbase

dφqr

dt
− (ω−ωr)φdr + Rrdiqr (15)

where vdr and vqr are the d-axis and q-axis rotor voltages, φdr and φqr are the d-axis and q-
axis rotor flux linkages, ω is the per-unit synchronous speed, ωr is the per-unit mechanical
rotational speed, Rrd is the rotor resistance referred to the stator, and idr and iqr are the
d-axis and q-axis rotor currents. The rotor torque, T, is defined by

[T] = [φds][iqs]− [φqs][ids] (16)

A more detailed description can be found in [52]. Therefore, these models can be run
very fast and, furthermore, they can be easily implemented in real-time hardware simulator
systems (HIL) [54]. Regarding the development of faulty IM models, d-q models are widely
used to simulate transient and steady-state phenomena, as well as to reproduce phase
unbalances or oscillatory torque during start-up [55]. However, each fault case requires
a modification in the model structure [33]. Besides, the faults considered are external
and not from the machine itself, and, thus, they are almost unsuitable for fault diagnosis
purposes. With the aim of including internal faults, the authors of [56] propose the use
of the multiple reference frames theory for the diagnosis of stator faults. This approach
allows the extraction and manipulation of the information contained in the motor supply
in a way that the effects of faults can be measured and isolated.

Typically d-q models are used to study rotor bar faults. Nevertheless, the technical
literature proposes this approach to study stator shorts circuits as well as eccentricity and
bearing faults. In Table 2 can be found a reference list for the various types of faults studied
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using d-q modelling. As an example, the authors of [57] propose the development of
a comprehensive set of d-q based algorithms with fault simulation and fault diagnosis
purposes. This approach is used to study eccentricities and to compare a single broken
bar with other breakages such as broken bars and broken connectors, reporting simulation
times of 36 min for an average of 4 s. However, although d-q modelling reduces the number
of equations required for simulation, it does not use nor provide any information about
individual rotor bars or end rings currents.

In general terms, these models assume both uniformity in the air gap and that the
electromotive force is sinusoidally distributed along the air gap. Besides, they do not
include the effect of spatial harmonics making these models poorly suited to be used
in diagnostic algorithms. The time and space harmonics have impact on speed, torque,
currents and other performance parameters of electrical machines, whereby it is a very
limited option for developing on-line condition monitoring systems.

Table 2. d-q reference for different types of faults.

Fault References

Broken rotor bar [53,58–61]
Broken end ring [57,62]

Stator open circuit [63]
Stator short circuit [52,53,56]
Static eccentricity [59,64]

Dynamic eccentricity [57,59]
Mixed eccentricity [65]

Bearing/race defect [66]

3. Models Based on Magnetic Circuits

Contrary to MCC approach, based on coupled electrical circuits, magnetic equivalent
circuit (MEC) models are based on detailed magnetic modelling obtaining the machine’s
model by approximations of a network of reluctances and permanences.

Figure 5 illustrates a simplified MEC model of the induction machine. The MEC model
is assembled such that every tooth on the stator is coupled to every tooth on the rotor,
and vice versa. Air-gap reluctances depend on the relative position of the corresponding
stator and rotor teeth [67]. The magnetic equivalent circuit includes closed loop paths
containing rotor and stator teeth fluxes, φr and φs, respectively. Furthermore, Rr and Rs are
the stator and rotor teeth reluctances, respectively. The index, m, identifies a stator tooth
and the index, n, identifies a rotor tooth. F1, F2, F3 and F4 correspond to the magneto-motive
nodal forces, and Fs, Fr correspond to the stator and rotor tooth magneto-motive forces.
Contrary to MCC, where resistances and inductances must be estimated, in the case of MEC
models, reluctances, R, or permeances must be obtained, usually via geometry calculations.
The magneto-motive forces can be approximated through FEM-based simulations or the
phase currents [68]. These permeances are expressed as functions of the machine geometry
and the instantaneous fluxes. Thus, this approach allows to incorporate space-harmonics
associated to discrete winding distributions, stator and rotor slotting and saliency effects
caused by saturation of the magnetic materials [33]. The rotor and stator fluxes [φ] are
related to the nodal magneto-motive forces [F] by the reluctances [R], from the equation

[φ] = [R][F] (17)

On the other hand, the stator and rotor tooth magneto-motive forces are computed
through the following expressions:

[Fs] = [F2]− [F1] + [Rs][φ
s] (18)

[Fr] = [F3]− [F4]
T − [Rr][φ

r] (19)
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The expression for the electromagnetic torque, Tem, can be derived from the equation

[Tem] =
1
2

Ns

∑
m=1

Nr

∑
n=1

(F2m − F3n)
2

dPAG(m,n)

dθr
(20)

where, θr is the rotor position in rads and PAG(m,n) is the air-gap permeance between the m
stator tooth and the n rotor tooth.

The main difficulty of this type of modelling is to include the air gap permeance
between a stator and a rotor tooth, sd it is influenced by fringing. To overcome this,
some authors propose to divide the permeance in four parts: a non-interaction part, two
partially overlapping parts and a constant part [69]. On the other hand, other authors,
such as those in [70], just exclude the fringing effect in the air gap permeance to reduce
computation complexity obtaining a model able to run in a real-time simulation while
keeping reasonable accuracy. Usually, due to the models characteristics, they require long
simulation times. However, in [71], a MEC model suitable for real-time simulation of IMs is
proposed. To do this, the permeances are defined as a nonlinear function of magnetic scalar
potentials due to iron saturation effect. Thus, the resulting model reduces the traditionally
long simulation times and can be employed in the HIL test setup.

Regarding faulty IM’s modelling, various IM faults have been modelled by the MEC
approach, as shown in Table 3. However, very few works have been reported in the recent
years for the case of bearings and eccentricity faults. As an example, the work in [72] uses
the MEC for the study of defective rolling bearings. For this purpose, the MEC model of
the IM is developed by dividing the uniform distribution parts into a certain number of
flux tubes. A magnetic equivalent network is formed by connecting these flux tubes with
nodes. The defects in outer/inner raceways and rolling balls are, respectively, simulated
by half-wave sinusoidal functions.

In the case of eccentricity, the authors of [3] propose the implementation of a modified
expression for the air gap permeance and includes the effects related to eccentric rotor
positions in the development of their MEC model. These air-gap permeances represent
a continuously changing permeance as a function of the rotor position. Alternatively,
the authors of [73] develop a MEC model for real-time study of various faulted IMs.
A discretisation method in time-domain is utilised to keep the MEC coefficient matrix
unchanged during nonlinear iterations, in order to overcome the timing constraints of
real-time simulation due to the nonlinearity and rotation of electric machines.

According to the literature, the MEC approach has the advantage of moderate compu-
tational complexity, especially when it is compared to the high accuracy modelling, but
the accuracy during transient conditions is limited because it does not usually include
distributed circuit effects in the rotor conductor or the stator ring leakage inductance [74,75].
For example,in [74] the computing complexity is reduced by a single set of equations which
includes magnetic and electric equations. Thus, this model can simulate the healthy and
faulty machine under various kinds of faults by a single model, reducing the complexity
of equations and the simulation time of the the conventional MEC approach. Similarly,
the work in [76] compares the the processing time for the same analysis for the proposed
method and conventional MEC. This work reports processing times of more than 100 min
for conventional MEC approach versus 64 min for the proposed method, which means a
computation time improvement of about 39%. Furthermore, if compared to FEM based, the
resulting computation time is much shorter, about 5%. More recently, the work in [75] re-
ports differences of 70 h for a FEM analysis versus 18 min for the same analysis carried out
via MEC approach. The MEC model achieves savings in computational costs of more than
97% when compared with the FEM-based model while keeping good accuracy. To conclude,
the MEC-based approach can be reasonably accurate in predicting machine performances
over a range of operating points and load conditions as well as unbalanced excitation and
faulty conditions, being considered a good compromise between the standard lumped
parameter models and FEM based in terms of computation time and accuracy [70].
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Table 3. MEC references for common faults.

Fault References

Broken rotor bar [67,73,74]
Stator short circuit [68,74,76,77]
Static eccentricity [75,78]

Dynamic eccentricity [75]
Mixed eccentricity [3]

Bearing/race defect [72]
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Figure 5. Simplified magnetic equivalent topology for healthy IM with closed rotor slot [67].

4. Models Based on FEM

Circuit-based models run fast but cannot provide comprehensive modelling as the
field models. Techniques that can take into account the nonlinearities of the magnetic
materials, as well as to avoid simplified assumptions about the geometry and arrangement
of the windings, have been proposed. Numerical techniques based on FEM or boundary
elements method, BEM, consider the above and can be used to accurately reproduce the
performance of the induction machine [79]. Among them, FEM is the numerical method
most reported in the technical literature, which can serve as a feasible approach in fault
diagnosis of IMs.

This method uses the exact magnetic and geometric characteristics of the machine
to compute their magnetic field distribution. This magnetic field distribution within the
IM contains accurate information on the stator, rotor and the mechanical parts of the
machine [80]. Moreover, it allows to calculate the machine parameters such as the magnetic
flux density, inductances and electromagnetic torque including spacial harmonic effects and
split winding pattern. Therefore, mostly IM faults can be reproduced by the monitoring
the magnetic fields [81,82]. Faulty IM models are usually developed in 2D, which has
the advantage of being very accurate in terms of magnetic phenomena. However, these
models do not include the skewing effect of the rotor, the end rings are disregarded and
interconnection of the rotor bars is usually accounted for through the electrical circuit,
considering the current source ideal [83].
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The magneto-dynamic field problem for a general IM in 2D is expressed by the
expression [84,85]

d
dx

(
1
ν

dAz

dx

)
+

d
dy

(
1
ν

dAz

dy

)
= −J0 + σ

dAz

dt
− σ~vx

(
∇x~A

)
(21)

where ~A is the magnetic vector potential, Az is the z-component of the magnetic vector po-
tential, J0 is the applied density current source,~v is the velocity, σ is the electric conductivity
and ν the permeability.

The magnetic flux density field, ~B, is obtained from the expression

~B = ∇x~A (22)

Subsequently, the forces are computed via the Maxwell stress tensor. It can be applied
of in the modelling of IMs with fault and unbalanced cases. In recent years, the technical
literature has provided a wide variety of faulty IM models based on FEM. Table 4 gives
references for some typical faults. As an example, in [86] a fluxgate sensor is used to detect
broken rotor bar fault pattern via the radial leakage flux using a 2D-time stepping finite
element method (2D-TSFEM).

The proposed method and the traditionally used motor MCSA are compared to each
other, stating that the proposed method is more accurate than the classical motor stator
current analysis of the IMs [87]. However, the fluxgate sensor is challenging to use at the
practical level. On the other hand, recently in [88] the effects of static eccentricity in electro-
magnetic parameters such as voltage, speed, torque, flux density and flux distribution for a
faulty motor are accurately represented through TSFEM.

Although these models often produce better results in terms of accuracy, they require
a significant computational capacity. Differences of 8 h for a FEM analysis versus 1 min for
the same analysis using WFA have been reported in [89]. Even with modern processors,
the computational effort required to complete FEM evaluation is notable [90]. Besides, they
take long simulation times (from days to even weeks depending on the type of fault) for
short time simulated periods [79]. On the other hand, the use of the machine symmetry,
which would reduce meshing and computing time, cannot be applied in the case of faulty
models. These constraints are even worse when a 3D analysis is performed, where the
mesh increases in several orders of magnitude and therefore, simulation times increase
exponentially [82]. These drawbacks of the use of the FEM approach are limited in some
fault diagnosis fields, such as the development of on-line CM systems or AI-based fault
diagnosis systems, which require a wide range of scenarios for different degrees of fault
and combination of several types of fault. The evaluation of each scenario requires the full
simulation of the new FEM model, with their corresponding long simulation times and
high computational costs. Running these models in hardware simulators, which would
allow reducing simulation times, is still challenging.

Table 4. FEM references for different types of faults.

Fault References

Broken rotor bar [81–83,86,87,91–94]
Broken end ring [57]

Stator short circuit [82,95–97]
Static eccentricity [81,82,88,98,99]

Dynamic eccentricity [81,100]
Mixed eccentricity [80,101,102]

Bearing/race defect [103–105]



Sensors 2021, 21, 4855 13 of 18

5. Hybrid Models

As mentioned above, the modelling based on FEM is very accurate but requires much
computing power and long running times, especially as compared with analytical models.
However, analytical models assume some simplifications which affect their accuracy often
render them unsuitable for fault diagnosis purposes. In an attempt to overcome this,
the technical literature proposes the combination of FEM-analytical approaches to obtain
models which can be run in real-time simulators with FEM level accuracy [106].

These models use FEM to preset the analytical model parameters accurately, allowing
them to be run in real-time simulators, which is a need for fault diagnosis purposes [107,108].
For example, in [82] a hybrid model based on d-q approach, through Equations (11)–(16),
and finite element analysis is developed for looking into short circuit faults in IM drives. It
proposes the integration of the model with real-time simulators. On the other hand, in [109]
an analytical model with the accuracy of FEM is proposed. The sparse identification tech-
nique is used to reduce the number of FEM simulations required for the computing of the
IM coupling parameters. The coupling parameters obtained are the ones used in the analyt-
ical model developed from MCC expressions (5)–(10), which is implemented in a real-time
simulator for testing different severity degrees of static eccentricity. Thereby, simulation
times and memory resources are significantly reduced. Similarly, the authors of [110] solve
through FEM the complete geometry of the IM to compute the coupling parameters and
then, importing these parameters in the analytical model of the machine. In this case, FEM
analysis run on multiple processor cores working in parallel with each other in order to
speed up the simulations. Despite the improvements, these approaches still requires a
large number of simulations and memory resources to obtain the coupling parameters.

In an attempt to overcome these issues, the authors of [111] propose the sparse
identification to obtain a faulty IM model, reducing the FEM simulations required while
keeping good accuracy. Savings, in terms of computational capacity, from more than 13 GB
using FEM analysis to 5 MB with the proposed method are reported. This represents a
reduction in computational costs of more than 99.9%. However, it still require the full
FEM analysis for every fault scenario, with their corresponding long simulation times and
high computational costs. Differences of more than 10 h for a FEM analysis versus 25 min
for the same analysis carried out via a method based on computational mathematics is
reported in [112]. This method allows to avoid the need of a FEM simulation for every
new sampling point in the case of static eccentricity fault, reporting time savings of 95.83%
when compared to fully FEM simulations. These savings could be larger still in the case
of TSFEM-based models compared to the hybrid models. As mentioned in the previous
section, TSFEM-based models take long simulation times for short simulated spans, from
days to even weeks depending on the type of fault. By contrast, the development of hybrid
models to be run in real time platforms and implemented using computational reduction
techniques can take about 25 min. Even adding the time to run one simulation (the same as
the simulation time span being real time models) the time savings are over 98%.

6. Conclusions

Accurate representation of faulty IMs is crucial for research and development in the
area of condition monitoring to reduce the limitations of test benches. In this article, four
research strategies for IM fault modelling in the literature are reviewed: models based on
electrical circuits, models based on magnetic circuits, models based on numerical methods
and hybrid models. Nonlinearities and non-idealities of the IMs cannot be properly
modelled using circuit-based models. On the other hand, although models based on
numerical methods are more comprehensive, they require a significant computational
capacity and long simulation times. Factors such as the size or the information available
of the machine can influence in the modelling technique applied. Nevertheless, for fault
diagnosis purposes, accuracy is one of the factors that can affect the most. There is a real
need to establish a model which offer a good balance between accuracy and computation
time. Thus, both models based on circuits and models based on numerical methods
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have limitations that the technical literature tries to overcome with the hybrid approach,
obtaining promising results. Although the hybrid approach is more advanced, still few
contributions have been reported in the technical literature so far. The combination of
techniques for modelling faulty IMs can help in the development of methods, techniques
and diagnosis systems with a substantial cost reduction when compared to the use of
physical test benches. However, a cost comparison between both alternatives will lack
significance due to two main facts: first, the cost associated with physical test benches
largely depends on the rated power of the IM and auxiliary equipment, while for virtual
ones it depends mainly on the required model complexity, and second, in real hardware the
testing is often limited to a set of fault types and severity degrees and destructive testing
results in additional equipment replacement costs, whereas virtual test benches are more
flexible and can yield new simulations results at small additional cost.
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60. Nemec, M.; Drobnič, K.; Fišer, R.; Ambrožič, V. Simplified model of induction machine with broken rotor bars. In Proceedings of
the 2016 IEEE International Power Electronics and Motion Control Conference (PEMC), Varna, Bulgaria, 25–28 September 2016;
pp. 1085–1090.

61. Magagula, G.S.; Nnachi, A.F.; Akumu, A.O. Broken Rotor Bar Fault Simulation And Analysis In D-q Reference Frame. In
Proceedings of the 2020 IEEE PES/IAS PowerAfrica, Nairobi, Kenya, 25–28 August 2020; pp. 1–4.

62. Kang, M.; Huang, J. Simulation and analysis of squirrel cage induction machines under rotor internal faults. In Proceedings
of the 2005 International Conference on Electrical Machines and Systems, Nanjing, China, 27–29 September 2005; Volume 3,
pp. 2023–2027.

63. Jannati, M.; Idris, N.R.N.; Salam, Z. A new method for modeling and vector control of unbalanced induction motors. In
Proceedings of the 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, 15–20 September 2012;
pp. 3625–3632.

64. Bindu, S.; Thomas, V.V. Detection of Static Air-Gap Eccentricity in Three-Phase Squirrel Cage Induction Motor Through Stator
Current and Vibration Analysis. In Advances in Power Systems and Energy Management; Springer: Berlin/Heidelberg, Germany,
2018; pp. 511–518.

http://dx.doi.org/10.1016/S0378-4754(03)00083-1
http://dx.doi.org/10.1049/iet-epa.2008.0206
http://dx.doi.org/10.1109/TIE.2020.2987274
http://dx.doi.org/10.1109/TEC.2017.2758382
http://dx.doi.org/10.1016/j.matcom.2013.04.005
http://dx.doi.org/10.3390/math8061024
http://dx.doi.org/10.1109/TEC.2003.811719
http://dx.doi.org/10.1109/TIE.2011.2148674
http://dx.doi.org/10.1109/TIE.2017.2677349
http://dx.doi.org/10.1016/j.matcom.2018.04.012
http://dx.doi.org/10.1016/j.simpat.2009.11.002
http://dx.doi.org/10.1007/s40313-017-0314-2
http://dx.doi.org/10.1109/TIA.2003.814582
http://dx.doi.org/10.2298/SJEE0801155S
http://dx.doi.org/10.1016/j.ymssp.2009.06.014


Sensors 2021, 21, 4855 17 of 18

65. Bindu, S.; Thomas, V.V. A modified direct-quadrature axis model for characterization of air-gap mixed eccentricity faults in
three-phase induction motor. Int. Rev. Model. Simul. 2018, 11, 359–365. [CrossRef]

66. Zhang, S.; Wang, B.; Kanemaru, M.; Lin, C.; Liu, D.; Miyoshi, M.; Teo, K.H.; Habetler, T.G. Model-Based Analysis and
Quantification of Bearing Faults in Induction Machines. IEEE Trans. Ind. Appl. 2020, 56, 2158–2170. [CrossRef]

67. Sizov, G.Y.; Yeh, C.C.; Demerdash, N.A. Magnetic equivalent circuit modeling of induction machines under stator and rotor fault
conditions. In Proceedings of the 2009 IEEE International Electric Machines and Drives Conference, Miami, FL, USA, 3–6 May
2009; pp. 119–124.

68. Naderi, P.; Rostami, M.; Ramezannezhad, A. Phase-to-phase fault detection method for synchronous reluctance machine using
MEC method. Electr. Eng. 2019, 101, 575–586. [CrossRef]

69. Nazarzadeh, J.; Naeini, V. Magnetic reluctance method for dynamical modeling of squirrel cage induction machines. In Electric
Machines and Drives; IntechOpen: Rijeka, Croatia; 2011; p. 262.

70. Sudhoff, S.D.; Kuhn, B.T.; Corzine, K.A.; Branecky, B.T. Magnetic Equivalent Circuit Modeling of Induction Motors. IEEE Trans.
Energy Convers. 2007, 22, 259–270. [CrossRef]

71. Tavana, N.R.; Dinavahi, V. Real-time nonlinear magnetic equivalent circuit model of induction machine on FPGA for hardware-
in-the-loop simulation. IEEE Trans. Energy Convers. 2016, 31, 520–530. [CrossRef]

72. Han, Q.; Ding, Z.; Xu, X.; Wang, T.; Chu, F. Stator current model for detecting rolling bearing faults in induction motors using
magnetic equivalent circuits. Mech. Syst. Signal Process. 2019, 131, 554–575. [CrossRef]

73. Jandaghi, B.; Dinavahi, V. Real-time HIL emulation of faulted electric machines based on nonlinear MEC model. IEEE Trans.
Energy Convers. 2019, 34, 1190–1199. [CrossRef]

74. Naderi, P. Modified magnetic-equivalent-circuit approach for various faults studying in saturable double-cage-induction
machines. IET Electr. Power Appl. 2017, 11, 1224–1234. [CrossRef]

75. Alipour-Sarabi, R.; Nasiri-Gheidari, Z.; Oraee, H. Development of a Three-Dimensional Magnetic Equivalent Circuit Model for
Axial Flux Machines. IEEE Trans. Ind. Electron. 2019, 67, 5758–5767. [CrossRef]

76. Naderi, P.; Shiri, A. Rotor/stator inter-turn short circuit fault detection for saturable wound-rotor induction machine by modified
magnetic equivalent circuit approach. IEEE Trans. Magn. 2017, 53, 1–13. [CrossRef]

77. Faiz, J.; Moosavi, S.M.; Abadi, M.B.; Cruz, S.M. Magnetic equivalent circuit modelling of doubly-fed induction generator with
assessment of rotor inter-turn short-circuit fault indices. IET Renew. Power Gener. 2016, 10, 1431–1440. [CrossRef]

78. Faiz, J.; Ghasemi-Bijan, M.; Mahdi Ebrahimi, B. Modeling and diagnosing eccentricity fault using three-dimensional magnetic
equivalent circuit model of three-phase squirrel-cage induction motor. Electr. Power Compon. Syst. 2015, 43, 1246–1256. [CrossRef]

79. Naderi, P.; Fallahi, F. Eccentricity fault diagnosis in three-phase-wound-rotor induction machine using numerical discrete
modeling method. Int. J. Numer. Model. Electron. Netw. Devices Fields 2016, 29, 982–997. [CrossRef]

80. Faiz, J.; Ebrahimi, B.M.; Toliyat, H.A. Effect of Magnetic Saturation on Static and Mixed Eccentricity Fault Diagnosis in Induction
Motor. IEEE Trans. Magn. 2009, 45, 3137–3144. [CrossRef]

81. Sobczyk, T.J.; Tulicki, J.; Weinreb, K.; Mielnik, R.; Sułowicz, M. Characteristic Features of Rotor Bar Current Frequency Spectrum
in Cage Induction Machine with Inner Faults. In Proceedings of the 2019 IEEE 12th International Symposium on Diagnostics for
Electrical Machines, Power Electronics and Drives (SDEMPED), Toulouse, France, 27–30 August 2019; pp. 115–120.

82. Constantin, A. Detection Based on Stator Current Signature of the Single and Combined Short-Circuit, Broken Bar and
Eccentricity Faults in Induction Motors. In Proceedings of the 2019 11th International Symposium on Advanced Topics in
Electrical Engineering (ATEE), Bucharest, Romania, 28–30 March 2019; pp. 1–6.

83. Asad, B.; Eensalu, L.; Vaimann, T.; Kallaste, A.; Rassõlkin, A.; Belahcen, A. The FEM Based Modeling and Corresponding Test Rig
Preparation for Broken Rotor Bars Analysis. In Proceedings of the 2019 IEEE 60th International Scientific Conference on Power
and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 7–9 October 2019; pp. 1–9.

84. Bianchi, N. Electrical Machine Analysis Using Finite Elements; CRC Press: Boca Raton, FL, USA, 2005.
85. Salon, S.J. Finite Element Analysis of Electrical Machines; Kluwer Academic Publishers Boston: Boston, MA, USA: 1995; Volume 101.
86. Goktas, T.; Arkan, M.; Mamis, M.S.; Akin, B. Broken rotor bar fault monitoring based on fluxgate sensor measurement of leakage

flux. In Proceedings of the 2017 IEEE International Electric Machines and Drives Conference (IEMDC), Miami, FL, USA, 21–24
May 2017; pp. 1–6.

87. Sittisrijan, N.; Ruangsinchaiwanich, S. Analysis of stator current waveforms of induction motor with broken bar conditions. In
Proceedings of the 2011 International Conference on Electrical Machines and Systems, Beijing, China, 20–23 August 2011; pp. 1–6.

88. Viswanath, S.; Kumar, N.P.; Isha, T. Static Eccentricity Fault in Induction Motor Drive Using Finite Element Method. In Advances
in Electrical and Computer Technologies; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1291–1302.

89. Lubin, T.; Hamiti, T.; Razik, H.; Rezzoug, A. Comparison between finite-element analysis and winding function theory for
inductances and torque calculation of a synchronous reluctance machine. IEEE Trans. Magn. 2007, 43, 3406–3410. [CrossRef]

90. Gu, B.G. Offline interturn fault diagnosis method for induction motors by impedance analysis. IEEE Trans. Ind. Electron. 2017,
65, 5913–5920. [CrossRef]

91. Makhetha, E.; Muteba, M.; Nicolae, D.V. Effect of Rotor bar Shape and Stator Slot Opening on the Performance of Three Phase
Squirrel Cage Induction Motors with Broken Rotor Bars. In Proceedings of the 2019 Southern African Universities Power Engi-
neering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA),
Bloemfontein, South Africa, 28–30 January 2019; pp. 463–468.

http://dx.doi.org/10.15866/iremos.v11i6.15513
http://dx.doi.org/10.1109/TIA.2020.2979383
http://dx.doi.org/10.1007/s00202-019-00806-9
http://dx.doi.org/10.1109/TEC.2006.875471
http://dx.doi.org/10.1109/TEC.2015.2514099
http://dx.doi.org/10.1016/j.ymssp.2019.06.010
http://dx.doi.org/10.1109/TEC.2019.2891560
http://dx.doi.org/10.1049/iet-epa.2016.0782
http://dx.doi.org/10.1109/TIE.2019.2934065
http://dx.doi.org/10.1109/TMAG.2017.2672924
http://dx.doi.org/10.1049/iet-rpg.2016.0189
http://dx.doi.org/10.1080/15325008.2015.1029651
http://dx.doi.org/10.1002/jnm.2157
http://dx.doi.org/10.1109/TMAG.2009.2016416
http://dx.doi.org/10.1109/TMAG.2007.900404
http://dx.doi.org/10.1109/TIE.2017.2782200


Sensors 2021, 21, 4855 18 of 18

92. Spyropoulos, D.V.; Gyftakis, K.N.; Kappatou, J.; Mitronikas, E.D. The influence of the broken bar fault on the magnetic field and
electromagnetic torque in 3-phase induction motors. In Proceedings of the 2012 XXth International Conference on Electrical
Machines, Marseille, France, 2–5 September 2012; pp. 1868–1874.

93. Edomwandekhoe, K.; Liang, X. Current Spectral Analysis of Broken Rotor Bar Faults for Induction Motors. In Proceedings of the
2018 IEEE Canadian Conference on Electrical Computer Engineering (CCECE), Quebec, QC, Canada, 13–16 May 2018; pp. 1–5.

94. Malekpour, M.; Phung, B.T.; Ambikairajah, E. Stator current envelope extraction for analysis of broken rotor bar in induction
motors. In Proceedings of the 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics
and Drives (SDEMPED), Tinos, Greece, 29 August–1 September 2017; pp. 240–246.

95. Eldeeb, H.H.; Berzoy, A.; Mohammed, O. Stator Fault Detection on DTC-Driven IM via Magnetic Signatures Aided by 2-D FEA
Co-Simulation. IEEE Trans. Magn. 2019, 55, 1–5. [CrossRef]

96. Fireteanu, V.; Leconte, V.; Constantin, A. Finite element analysis on early detection of the short-circuit faults in induction
machines through harmonics of the stator currents or of the neighboring magnetic field. In Proceedings of the 2017 International
Conference on Optimization of Electrical and Electronic Equipment (OPTIM) 2017 Intl Aegean Conference on Electrical Machines
and Power Electronics (ACEMP), Brasov, Romania, 25–27 May 2017; pp. 420–427.

97. Prasob, K.; Kumar, N.P.; Isha, T.B. Inter-turn short circuit fault analysis of PWM inverter fed three-phase induction motor using
Finite Element Method. In Proceedings of the 2017 International Conference on Circuit ,Power and Computing Technologies
(ICCPCT), Kollam, India, 20–21 April 2017; pp. 1–6.

98. Mafruddin, M.M.; Suwarno, S.; Abu-Siada, A. Finite Element Simulation of a 126 MW Salient Pole Synchronous Generator with
Rotor Eccentricity. In Proceedings of the 2019 2nd International Conference on High Voltage Engineering and Power Systems
(ICHVEPS), Denpasar, Indonesia, 1–4 October 2019; pp. 1–96.

99. Sobra, J.; Kavalir, T.; Krizek, M.; Skala, B. Experimental Verification of the Finite Element Analysis of an Induction Machine with
Implemented Static Eccentricity Fault. In Proceedings of the 2018 18th International Conference on Mechatronics-Mechatronika
(ME), Brno, Czech Republic, 5–7 December 2018; pp. 1–5.

100. Bouzida, A.; Abdelli, R.; Touhami, O.; Aibeche, A. Dynamic eccentricity fault diagnosis in induction motors using finite element
method and experimental tests. Int. J. Ind. Electron. Drives 2017, 3, 199–209. [CrossRef]

101. Torkaman, H.; Afjei, E.; Yadegari, P. Static, Dynamic, and Mixed Eccentricity Faults Diagnosis in Switched Reluctance Motors
Using Transient Finite Element Method and Experiments. IEEE Trans. Magn. 2012, 48, 2254–2264. [CrossRef]

102. Faiz, J.; Moosavi, S.M.M. Detection of mixed eccentricity fault in doubly-fed induction generator based on reactive power
spectrum. IET Electr. Power Appl. 2017, 11, 1076–1084. [CrossRef]

103. Gao, Y.; Liu, X.; Xiang, J. FEM Simulation-Based Generative Adversarial Networks to Detect Bearing Faults. IEEE Trans. Ind.
Inform. 2020, 16, 4961–4971. [CrossRef]

104. Immovilli, F.; Bianchini, C.; Cocconcelli, M.; Bellini, A.; Rubini, R. Bearing Fault Model for Induction Motor With Externally
Induced Vibration. IEEE Trans. Ind. Electron. 2013, 60, 3408–3418. [CrossRef]

105. Vinothraj, C.; Kumar, N.P.; Isha, T. Bearing fault analysis in induction motor drives using finite element method. Int. J. Eng.
Technol. 2018, 7, 30–34. [CrossRef]

106. Ling, Z.; Zhou, L.; Guo, S.; Zhang, Y. Equivalent circuit parameters calculation of induction motor by finite element analysis.
IEEE Trans. Magn. 2014, 50, 833–836. [CrossRef]

107. Bachir, S.; Tnani, S.; Trigeassou, J.; Champenois, G. Diagnosis by parameter estimation of stator and rotor faults occurring in
induction machines. IEEE Trans. Ind. Electron. 2006, 53, 963–973. [CrossRef]

108. Martinez, J.; Belahcen, A.; Detoni, J. A 2D magnetic and 3D mechanical coupled finite element model for the study of the dynamic
vibrations in the stator of induction motors. Mech. Syst. Signal Process. 2016, 66, 640–656. [CrossRef]

109. Sapena-Bano, A.; Riera-Guasp, M.; Martinez-Roman, J.; Pineda-Sanchez, M.; Puche-Panadero, R.; Perez-Cruz, J. FEM-Analytical
Hybrid Model for Real Time Simulation of IMs Under Static Eccentricity Fault. In Proceedings of the 2019 IEEE 12th International
Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Toulouse, France, 27–30 August
2019; pp. 108–114.

110. Asad, B.; Vaimann, T.; Belahcen, A.; Kallaste, A.; Rassõlkin, A.; Iqbal, M.N. The cluster computation-based hybrid FEM–analytical
model of induction motor for fault diagnostics. Appl. Sci. 2020, 10, 7572. [CrossRef]

111. Sapena-Bano, A.; Chinesta, F.; Pineda-Sanchez, M.; Aguado, J.; Borzacchiello, D.; Puche-Panadero, R. Induction machine model
with finite element accuracy for condition monitoring running in real time using hardware in the loop system. Int. J. Electr. Power
Energy Syst. 2019, 111, 315–324. [CrossRef]

112. Sapena-Bano, A.; Chinesta, F.; Puche-Panadero, R.; Martinez-Roman, J.; Pineda-Sanchez, M. Model reduction based on sparse
identification techniques for induction machines: Towards the real time and accuracy-guaranteed simulation of faulty induction
machines. Int. J. Electr. Power Energy Syst. 2021, 125, 106417. [CrossRef]

http://dx.doi.org/10.1109/TMAG.2019.2892707
http://dx.doi.org/10.1504/IJIED.2017.087610
http://dx.doi.org/10.1109/TMAG.2012.2191619
http://dx.doi.org/10.1049/iet-epa.2016.0449
http://dx.doi.org/10.1109/TII.2020.2968370
http://dx.doi.org/10.1109/TIE.2012.2213566
http://dx.doi.org/10.14419/ijet.v7i3.6.14928
http://dx.doi.org/10.1109/TMAG.2013.2282185
http://dx.doi.org/10.1109/TIE.2006.874258
http://dx.doi.org/10.1016/j.ymssp.2015.06.014
http://dx.doi.org/10.3390/app10217572
http://dx.doi.org/10.1016/j.ijepes.2019.03.020
http://dx.doi.org/10.1016/j.ijepes.2020.106417

	Introduction
	Models Based on Coupled Circuits
	Multiple Coupled Circuit Models
	d-q Models

	Models Based on Magnetic Circuits
	Models Based on FEM
	Hybrid Models
	Conclusions
	References

