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Abstract 13 

Agriculture and forestry crop residues represent more than half of the world's residual 14 

biomass; these residues turn into synthesis gas (syngas) and are used for power 15 

generation. Including Syngas Gensets into hybrid renewable microgrids for electricity 16 

generation is an interesting alternative, especially for rural communities where forest 17 

and agricultural waste are abundant. However, energy demand is not constant 18 

throughout the day. The variations in the energy demand provoke changes in both 19 

gasification plant efficiency and biomass consumption. This paper presents an Artificial 20 

Neural Network (ANN) based model hybridized with a Particle Swarm Optimization 21 

(PSO) algorithm for a Biomass Gasification Plant (BGP) that allows estimating the 22 

amount of biomass needed to produce the required syngas to meet the energy demand. 23 

The proposed model is compared with two traditional models of ANNs: Feed Forward 24 

Back Propagation (FF-BP) and Cascade Forward Propagation (CF-P). ANNs are 25 

trained in MATLAB software using a set of historical real data from a BGP located in 26 

the Distributed Energy Resources Laboratory of the Universitat Politècnica de València 27 

in Spain. The model performance is validated using the Mean Squared Error (MSE) and 28 

linear regression analysis. The results show that the proposed model performs 23.2% 29 



better in terms of MSE than de other models. The tunning parameters of the optimal PSO 30 

algorithm for this application were found. Finally, the model was validated to predict the 31 

necessary biomass and syngas to cover the energy demand. 32 

 33 

Keywords: Artificial Neural Network Model; Particle Swarm Optimization; AC Microgrid; 34 

Syngas Genset. 35 

Nomenclature 36 

ANN Artificial Neural Network 

BGP Biomass Gasification Plant  

BGP Biomass Gasification Plant plus Genset 

BP Back Propagation  

𝑐1 PSO particle personal acceleration coefficient 

𝑐2 PSO particle social acceleration coefficient 

CF-P Cascade Forward Propagation  

𝐶𝐻4[%] Methane Percentage 

𝐶𝑂2 Carbon Dioxide 

𝐶𝑂2[%] Carbon Dioxide Percentage 

CONACYT Consejo Nacional de Ciencia y Tecnología 

E Error 

EBPGS Energy Backup Power Generation Systems  

EMS Energy Management System 

ESS Energy Storage Systems  

𝐹 Frequency 

𝐹𝑎𝑐𝑡𝑖
 ANN Activation Function 

FF-BP Feed Forward Back Propagation 



FIS Fuzzy Inference System 

𝑓𝑚𝑖𝑛 Objective Function to be minimized 

𝐹𝑝𝑟𝑜𝑛
 ANN Propagation Function 

GA Genetic Algorithm 

Genset Internal combustion engine plus synchronous generator 

𝐻2[%] Hydrogen Percentage 

HRES Hybrid Renewable Energy Systems 

ICE Internal Combustion Engine 

LabDER-UPV Distributed Energy Resources Laboratory of the 

Universitat Politècnica de València 

𝐿𝐻𝑉 Lower Heating Value 

𝑀 Biomass flow 

MG Microgrids  

MLP Multilayer-Perceptron 

MSE Mean Squared Error  

𝑁  Number of samples 

𝑁2 [%] Nitrogen Percentage 

𝑜𝑖𝑗
 ANN weighted output 

𝑜𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 Predicted Output 

𝑜𝑡𝑎𝑟𝑔𝑒𝑡 Target Output 

𝑃 Active Power 

𝑃𝐹 Power Factor 

PSO Particle Swarm Optimization 

PV Photovoltaic  



𝑄𝑎𝑖𝑟𝑔𝑎𝑠𝑖𝑓𝑖𝑒𝑟
 Airflow to the reactor 

𝑄𝑎𝑖𝑟𝐼𝐶𝐸
 Airflow to the ICE 

𝑄𝑠𝑦𝑛𝑔𝑎𝑠 Syngas flow 

RBF Radial Basis Function 

RES Renewable Energy Source 

𝑇𝑒𝑛𝑣 Environmental Temperature 

𝑇1 Temperature of the reactor 

TEG Hybrid Thermoelectric Generator 

𝑣𝑛 PSO particle velocity function 

𝑤𝑖1,𝑗 Neuron weight 

WTG Wind Turbine Generator  

𝑋𝑖 Optimization variables vector 

𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ANN output prediction 

𝑌𝑡𝑎𝑟𝑔𝑒𝑡 ANN target training value 

𝛥𝑃𝑏𝑒𝑑 Fluidized bed pressure drop 

 37 

1. Introduction  38 

Today, society highly depends on fossil fuels such as petroleum and derivates, 39 

mineral coal, and natural gas, with 76% of the global primary energy consumed coming 40 

from these sources [1]. Thanks to their high energy density, fossil fuels have been a 41 

powerful driver of social transformation and technological development of the last 42 

century, and the continued increase in global energy demand [2]. However, extensive use 43 

of these fuels has led the world to an unprecedented increase in environmental problems 44 

such as global warming [3], [4], and health-related issues derived from pollution and 45 

toxicity [5].  46 



Researchers have proposed many renewable energy systems to solve this situation [6], 47 

[7]. Included are the Hybrid Renewable Energy Systems (HRES) as Microgrids (MG), 48 

integrating wind and solar technologies [8]–[10]. Since MG are complex and nonlinear 49 

systems, metaheuristic algorithms are an alternative to solve optimal sizing [11] and to 50 

improve power generation and energy demand-supply. Bio-inspired optimization 51 

algorithms play an important role in the power exchange problem between MG and utility 52 

grid, leading to an increment of the power system resilience. In [12], an Energy 53 

Management System (EMS) presents a combination of Fuzzy Inference System (FIS) 54 

with Genetic Algorithm (GA) to maximize the profit of power exchange; in  [13] power 55 

exchange problem studied in a multi MG environment combining a game theory 56 

Stackelberg game with a Quasi-oppositional Symbiotic Organism Search Algorithm to 57 

improve power exchange.  58 

An essential part of an MG is the Energy Storage Systems (ESS), which could be 59 

a battery bank or and Energy Backup Power Generation Systems (EBPGS) fed by fossil 60 

fuels to provide power when renewable sources are not available. An efficient alternative 61 

to fossil fuels for energy backup systems is biomass-derived fuels to supply power in MG 62 

[14].   63 

Biomass is neglected despite being a widespread abundant and a Renewable 64 

Energy Source (RES) [15]. Some biomass research is focused on finding biomass-derived 65 

gas fuels, as Syngas, for power generation applications [16] combined with other RES in 66 

MG systems applications [17], [18]. Typical compounds of Syngas are carbon monoxide 67 

(𝐶𝑂), hydrogen (𝐻2) and Methane (𝐶𝐻4) as energy carriers [19], and because of the 68 

partial combustion of biomass in the gasifier, it may also contain appreciable amounts of 69 

carbon dioxide (𝐶𝑂2), nitrogen (𝑁2) and water (𝐻2𝑂) [15]. Authors in [20] reviewed on 70 

how microgrids integrating syngas generation units improve system resilience to natural 71 



disasters and other situations.  The Department of Mechanical and Aerospace Engineering 72 

at the University of Rome [21] developed an innovative integrated microgrid based on 73 

urban waste treatment that enables syngas production intended for small towns where the 74 

utility grid may fail, and there is enough urban waste to produce the required syngas. In 75 

[22], authors present a method to design an HRES in isolated rural communities in 76 

Honduras, considering a syngas power generation unit. They found that adding a syngas 77 

gasifier increases the dispatchable power rate when needed.  78 

Beyond experimentation with Syngas gasification plants, researchers need to have 79 

models that allow them to understand the dynamics of these systems and the variables 80 

involved, and make output predictions to variable inputs [23]. However, mathematical 81 

modeling of a Syngas gasification plant is a very complicated and time-consuming task, 82 

since it comprises multiple thermal processes and many variables that may affect the 83 

mathematical model accuracy [24].  84 

Under this context, bio-inspired algorithms, and specifically Artificial Neural Networks 85 

(ANNs), are a powerful tool. ANNs had been widely applied to MG for primary control  86 

[25], [26], for prediction [27]–[30], for RES forecast [31] and, for creating black-box 87 

models of complex dynamic systems [32]. The tracking of the optimal operating point of 88 

a solar photovoltaic (PV) source [33] is achieved by modeling with an ANN part of the 89 

controller. Wind Turbine Generator (WTG) maximum power point tracking is achieved 90 

using an Adaptative Linear Neuron ANN in [34] by modeling the WTG stator's speed 91 

controller. In [35], the authors present a NN model approximation of a DC-DC buck-92 

boost converter to interface a lead-acid battery to a DC-bus. As for the application of 93 

ANNs to biomass systems in MG, few works talk about BGP and syngas for power 94 

generation. Authors in [36] present a model of a 200 kWth using a dynamic ANN; the 95 

presented model estimates the overall behavior of the biomass gasification process and 96 



can estimate output variables bases on new measured data with a maximum 15% 97 

estimation error. A Multilayer-Perceptron (MLP) and a Radial Basis Function (RBF) 98 

ANNs were used and compared to model hydrogen-rich syngas produced from methane 99 

dry [37]; results showed that the MLP-based ANN had a better performance in predicting 100 

𝐻2 yield, 𝐶𝑂 yield, and 𝐶𝐻4 and 𝐶𝑂2 conversions. In [38], authors revealed Syngas for 101 

power generation using a Hybrid Thermoelectric Generator (TEG),, a Back Propagation 102 

(BP) ANN is used to estimate the open-circuit voltage and maximum power output at the 103 

hot-side of the TEG. ANN model is applied to investigate the production of methanol 104 

from syngas [39]. A two-inputs seven-hidden layer one-output BP ANN is used in [28] 105 

to predict Syngas composition product of palm oil waste gasification showing a suitable 106 

approach between experimental and predicted values. In [40], the authors proposed a 107 

model for the Prediction of pyrolysis products using eight inputs, one hidden layer, and 108 

three outputs ANN. As shown in the literature review, ANNs are applied in various MG, 109 

but few in biomass for power generation, with most of the research, focused on the 110 

characterization of Syngas or the process itself. We have found no work-related to the 111 

coverage of energy demand using syngas and its related biomass gasification process. 112 

This paper aims to provide a reliable ANN-based model of a Biomass Gasification 113 

Plant (BGP) for covering the energy demand in an MG using syngas. To accomplish this, 114 

a cascade hybrid Feed Forward PSO (FF-PSO) ANN-based model is proposed for 115 

predicting syngas and biomass required for a specific energy demand curve. An in-depth 116 

analysis of the proposed model compared to a Feed-Forward Back Propagation (FF-BP) 117 

ANN and a Cascade-Forward Propagation (CF-P) ANN algorithm is carried out. The 118 

validation of the results uses the BGP experimental data at the Renewable Energies 119 

Laboratory at the Universitat Politènica de València (LabDER-UPV), Spain. 120 



The organization of this paper is as follows. Section 2 deals with the method, 121 

explaining the experimental setup, the presentation of the proposed ANN model, and the 122 

training scenarios; Section 3 shows the simulation and experimental results and 123 

validation; and, finally, Section 4 summarizes the conclusions of the presented work. 124 

2. Methodology 125 

The methodology followed to create and validate the proposed ANN-based model for the 126 

BGP system comprised experimental data gathering, modeling, simulation, and 127 

validation. The overall methodology is divided into three crucial stages, as Figure 1 128 

shows. 129 

 

Figure 1 Overall methodology stages for the ANN model design and validation. 

 130 

As depicted in Figure 1, Stage 1 runs the BGP using empirical input parameters 131 

to meet a specific energy demand curve; then, data collection is performed, filtered, and 132 

analyzed to select an adequate input parameter for the ANN model. 133 



In Stage 2, three ANN models are trained using input parameters from Stage 1. 134 

The proposed ANN-based model is designed to combine a PSO algorithm with a Feed-135 

Forward (FF) ANN to find optimum ANN weights during its training, reducing the Mean 136 

Squared Error (MSE) between predicted and real experimentation data. The second model 137 

is an FF-BP ANN model designed using MATLAB NNTool, and the third model is a CF-138 

P ANN model also designed using MATLAB NNTool. The number of simulations 139 

required for each model depends on both the system dynamics and performing each 140 

algorithm for error reduction based on training criteria and parameters for each ANN. An 141 

initial scan for each model is required to determine the best adjustment parameters for 142 

training the ANN models. After predicted outputs of the ANN models are obtained and 143 

evaluated in terms of MSE, the best model is chosen. 144 

Stage 3 is model validation using non-training data. For this purpose, an energy demand 145 

curve is fed to the ANN model; then, the model predicts the syngas, biomass, and airflow 146 

required by the generator to meet the energy demand. Validation is carried out using the 147 

suggested biomass and airflow into the experimental BGP, allowing a real-time approach 148 

for biomass required to produce enough syngas for energy demand covering inside an 149 

MG. The tests were conducted on an experimental MG located at Universitat Politècnica 150 

de València. 151 

2.1. Biomass gasification plant  152 

The BGP system is located at the Distributed Energy Resources Laboratory of the 153 

Universitat Politècnica de València, in Spain. (see Figure 2 ). The entire system comprises 154 

a reactor, a gas cleaning system, a gas cooling system, a vacuum pump, the auxiliary 155 

elements and the control system. The plant can process from 5 to 13 kg/h of biomass to 156 

produce 10 to 28 Nm3/h at rated power. The gasification system is composed of a 40 kWth 157 

gasifier and a 8-10 kWe. The flow of syngas goes from. The biomass gasification 158 



technology selected is based on the bubbling fluidized bed. Table 1 shows the 159 

fundamental characteristics of the BGP. Table 2 shows the major feature of the Genset. 160 

 

(a) 

 

(b) 

Figure 2 BGP at the LabDER-UPV (a) front and (b) back view. 

Table 1 Main features of the biomass gasification plant. 161 

Description Feature 

Biomass gasification type Bubbling fluidized bed 

Fuel type Wood chips (10-15 mm) 

Pellets (6 mm diameter, 15-25 mm length) 

Biomass input @ 10% 5 – 13 kg 

Biomass flow at power rating  10,5 kg/h 

Syngas Low Heating Value (LHV) 5 – 5.8 MJ/m3 

Efficiency at the power rating 70 - 85 % 

Syngas production 13 – 33 Nm3/h 

*Adapted from [9], [17], [41]–[43] 162 

 163 

Table 2 Main features of the Genset. 164 

Description Feature 

Brand FG Wilson Generator Set 

Model UG14P1 

Power rating 10 kW (Natural gas), 8,7 (syngas) 

Velocity 1,500 rpm 

Compression ratio 8.5:1 

Voltage and Frequency 230 V AC, 50Hz 

*Adapted from [9], [17], [41]–[43]. 165 

 166 



Table 3 describes the principal components of the BGP control system. Figure 3 167 

shows the working process of the BGP. The selected inputs for training the ANN, showed 168 

in Figure 3, depending on the power generation's performance during the syngas 169 

production process from the biomass according to the experimental tests carried out. 170 

Table 3 Main components of the control panel system. 171 

Description Device 

Two power meters Siemens Sentron PAC3200 

Power supply @ 240 VAC Omron CJ1W-PA202 

Programmable Logic Device (PLC) Omron CJ2M-CPU11 

Communication module Omron CJ1W-SCU31 

Six-input thermocouple module  Omron CJ1W-TS561 

Sixteen digital outputs module Omron CJ1M-OD212 

Variable frequency drive Omron V1000 

HMI touch screen Omron NS5-SQ10B-V2 

Two modules with eight analog inputs MAC 35080 

*Adapted from [9], [43], [44]. 172 

 173 

 174 

 

 

Figure 3 Biomass Gasification Plant and overall diagram. 

 175 



2.2. Proposed Artificial Neural Network Model 176 

An ANN is a computational bioinspired algorithm based on imitating learning and 177 

memorizing a biological brain's capabilities and neural network synapsis. Thanks to the 178 

increase of computation power, ANN algorithms are currently an interesting alternative 179 

for predictive modeling and control because of their robustness and handling capability 180 

for complex nonlinear relationships on dynamic systems. 181 

ANNs must be trained, for this purpose, a set of input training data feeds the Neural 182 

Network. The information is processed to get the target data set [45]. When the dispersion 183 

between the target data and the real data is small, the ANN is said to be trained and ready 184 

to use. An ANN's performance depends on the training procedure and the resulting neuron 185 

weights and bias inside its layers [46]. This paper proposes a novel Biogas Gasification 186 

(BGP) model using a cascade set of ANNs, each one combined with a PSO algorithm to 187 

find optimal neuron weights for each ANN of the model. Figure 4 indicates the input and 188 

output of every ANN, in the cascade set of ANN-based model for the BGP. 189 



 

 

Figure 4 Proposed cascade ANNs PSO tunned model for the BGP. 

The proposed ANN-based architecture allows the model to be flexible enough to 190 

know just one set of predicted values and intermediate values related to BGP subsystems. 191 

The proposed ANN training algorithm uses the PSO algorithm to find optimal neuron 192 

weights values, so the MSE between the target and predicted data is minimized. PSO is a 193 

bio-inspired optimization algorithm based on animal species' collective intelligence to 194 

search, find, and exploit resources [47]. Since neuron weight adjusts during ANN training 195 

is a combinatorial problem, PSO can be integrated. Figure 5 illustrates the integration of 196 

PSO to an FF ANN. 197 



 

Figure 5 PSO Feed-Forward ANN hybridized model 

 198 

The input layer of each ANN of the cascade model comprises one neuron for each 199 

variable at the input layer. Once the ANN is configured, the PSO is initialized with a 200 

random particle population, and then the optimization begins. Optimization variables are 201 

ANN weights, represented by the PSO particles, then the performance of the 202 

configuration is evaluated using the fitness function whose objective function is to 203 

minimize MSE between target and predicted values of the ANN, MSE minimizing is set 204 

to an Error (E) stop criteria for the optimization algorithm, the value of this stop criteria 205 

depend on the nature of the training and target values of the ANN. The proposed FF ANN 206 

is suitable for complex dynamic system modeling and prediction. Layer inside ANN are 207 

interconnected via links, and the strength of this link between neuron 𝑖 and 𝑗 is defined 208 

as weight 𝑤(𝑖, 𝑗), that must be optimized by the PSO during training. The weighted sum 209 

of propagation functions (1-3), determined by inputs in the neurons, is transformed into 210 



an activation function (4-6) for the next layer. In that sense, the propagation function of 211 

the ANN can be modeled as: 212 

 213 

𝐴𝑁𝑁1 = 𝐹𝑝𝑟𝑜1
(𝑜𝑖1

, 𝑜𝑖2
, … , 𝑜𝑖𝑛

, 𝑤𝑖1,𝑗, 𝑤𝑖2,𝑗, … , 𝑤𝑖𝑛,𝑗) (1) 

𝐴𝑁𝑁2 = 𝐹𝑝𝑟𝑜2
(𝑜𝑖1

, 𝑜𝑖2
, … , 𝑜𝑖𝑛

, 𝑤𝑖1,𝑗, 𝑤𝑖2,𝑗, … , 𝑤𝑖𝑛,𝑗) (2) 

𝐴𝑁𝑁3 = 𝐹𝑝𝑟𝑜3
(𝑜𝑖1

, 𝑜𝑖2
, … , 𝑜𝑖𝑛

, 𝑤𝑖1,𝑗, 𝑤𝑖2,𝑗, … , 𝑤𝑖𝑛,𝑗) (3) 

 214 

Where (𝑜𝑖1
, 𝑜𝑖2

, … , 𝑜𝑖𝑛
) are the weighted output values of the related propagation 215 

function 𝐹𝑝𝑟𝑜𝑛
. The activation function of the ANN is defined by: 216 

 217 

𝐴1(𝑡) = 𝐹𝑎𝑐𝑡1
(𝐴𝑁𝑁1(𝑡), 𝐴1(𝑡 − 1), Φ1 ) (4) 

𝐴2(𝑡) = 𝐹𝑎𝑐𝑡2
(𝐴𝑁𝑁2(𝑡), 𝐴2(𝑡 − 1), Φ2 ) (5) 

𝐴3(𝑡) = 𝐹𝑎𝑐𝑡3
(𝐴𝑁𝑁3(𝑡), 𝐴3(𝑡 − 1), Φ3 ) (6) 

 218 

Where 𝐹𝑎𝑐𝑡𝑛
 is the activation function for each ANN of the proposed model, the 219 

network input is 𝐴𝑁𝑁1(𝑡) and the previous activation status is 𝐴1(𝑡 − 1). The dispersion 220 

between target and predicted data depends on the assigned neuron weights inside de 221 

ANN. For this purpose, the PSO algorithm is integrated into the proposed model. 222 

Each of the particles of the PSO algorithm represents a neuron weight inside the 223 

ANN; these particles have their position, velocity, and acceleration during the search of 224 

the optimal solution, the best ANN weights combination so MSE between target and 225 

predicted values measured in terms of the MSE. Optimization variables are defined by 226 

the vector 𝑋𝑖 in (7). 227 

𝑋𝑖 = [𝑤𝑖1,𝑗, 𝑤𝑖2,𝑗, … , 𝑤𝑖𝑛,𝑗] (7) 



 228 

Where 𝑤𝑖𝑛,𝑗 are the ANN weights to be optimized for each ANN, and the 229 

objective function (8) of the PSO algorithm is: 230 

𝑓𝑚𝑖𝑛  →
∑ (𝑜𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)𝑁

𝑛=0

𝑁
 

 (8) 

 231 

Where 𝑜𝑡𝑎𝑟𝑔𝑒𝑡 is the target output value for the ANN training and 𝑜𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 is the 232 

predicted output value by the ANN model. 233 

  The particle for each variable with the best fitness function of all algorithm 234 

iterations is called to be the best global 𝑔𝑏𝑒𝑠𝑡, and the best result of fitness function 235 

evaluated over each particle is called personal best 𝑝𝑏𝑒𝑠𝑡. As algorithm iterations progress 236 

position will vary, their velocity will be accelerated, pointing to the best solution (9). 237 

𝑣𝑛 = 𝑤 ∗ 𝑣𝑛 + 𝑐1𝑟𝑎𝑛𝑑(𝑥) ∗ (𝑔𝑏𝑒𝑠𝑡,𝑛 − 𝑥𝑛) (9) 

Being 𝑣𝑛 the updating of particle speed, 𝑤 is the inertia factor and 𝑐1 and 𝑐2 are 238 

acceleration constants. 239 

2.3. Simulation and Training  240 

All three ANN models were trained with the same data set. The training data set was 241 

obtained from experimental measurements on the described BGP. In total, 3,408 records 242 

were used for each variable. For an ANN training process, the correct choice of input 243 

variables, considering their interrelationship and affectation to the system's output, 244 

wanted to be predicted for plant modeling. The details of the ANNs models simulated are 245 

presented in Table 4. 246 

Table 4 Parameters used for the ANNs models. 247 

Details FF-PSO FF-BP CF-P 



Type of ANN Feed Forward Neural 

Network 

Feed Forward Neural 

Network 

Cascade Forward 

Neural Network 

Training Algorithm Particle Swarm 

Optimization 

Back Propagation Propagation 

Particle Population 10 – 1000 - - 

C1 1.5 – 2.5 - - 

C2 1.5 – 2.5 - - 

Function for 

performance  

MSE MSE MSE 

Number of Input Layer 4 – 9  4 – 9 4 – 9 

Number of Hidden 

Layer 

1 1 1 

Number of Hidden 

Neurons 

1 – 100 1 – 100 1 – 100 

Learning Iterations 1000 1000 1000 

 248 

As shown in Table 4, each ANN model was simulated and tested under different 249 

parameters to find the best configuration for each one of them.  The training algorithm 250 

for each model aims to reduce the error of prediction, adjusting ANN weight, and bias. 251 

The performance of the ANN models is measured by the MSE (10), given as, 252 

𝑀𝑆𝐸 =  
1

𝑁
∑(𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑌𝑡𝑎𝑟𝑔𝑒𝑡)

2
𝑁

𝑖=1

 

(10) 

 253 

Where 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 is the output from the ANN, 𝑌𝑡𝑎𝑟𝑔𝑒𝑡 is the experimental data, 254 

and 𝑁 is the number of samples. 255 

Since this work aims to get a model of a BGP using a cascade architecture of a set 256 

of ANNs to cover energy demand in an MG, the ANNs inside the model must be trained 257 

considering the energy demand curve from the experimental MG. Figure 6 shows the 258 

energy demand profile for input data used for training the three different ANN algorithms 259 

(FF-BP ANN, CF-P ANN, and the proposed PSO-FF ANN) for evaluation and 260 

subsequent choice of best for use. 261 



 

Figure 6 Energy demand curve used for training the cascade ANN-based model of the 

BGP. 

The expected outputs of the model are the best 𝑀 required to produce a  𝑄𝑠𝑦𝑛𝑔𝑎𝑠 262 

to be fed into the Internal Combustion Engine (ICE) combined with both airflows of the 263 

gasifier and the ICE to generate enough power for energy demand in an AC Microgrid. 264 

3. Results 265 

An ANN-based model for a BGP was developed to estimate biomass required, syngas 266 

production, and power generation to cover the energy demand in an AC microgrid. The 267 

proposed model comprises a set of three ANNs in a cascade configuration. Prediction of 268 

biomass flow (M) is carried out for the first ANN inside the model; the second ANN 269 

predicts the flow of syngas (𝑄𝑠𝑦𝑛𝑔𝑎𝑠), the flow of air required by the Genset (𝑄𝑎𝑖𝑟𝐼𝐶𝐸
), and 270 

the lower heating value of the syngas (LHV);  and finally, the temperature inside the 271 

reactor (T1), the bed reactor pressure drop (𝛥𝑃𝑏𝑒𝑑), and the airflow required by the 272 

gasification plant (𝑄𝑎𝑖𝑟𝑔𝑎𝑠𝑖𝑓𝑖𝑒𝑟
) are estimated by the third ANN. The proposed model's 273 

performance is tested using the MSE for three different training algorithms: FF-PSO, FF-274 

BP, and CF-BP, for each ANN inside the model. With the FF-PSO training algorithm, 275 
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different values of particle populations, social 𝑐2 and personal 𝑐1 factors were evaluated. 276 

215 simulations were performed to find the optimal ANN configuration of each training 277 

algorithm compared in this work. The comparison between the best ANN of each training 278 

algorithm is presented in Table 5. For all predicted variables, the lowest MSE values are 279 

obtained using the proposed FF-PSO ANN algorithm and the closest to the unitary R-280 

value results. 281 

Table 5 Comparison of MSE and linear regression analysis for best training algorithm 282 

results simulated for the ANN-based model. 283 

 FF-PSO FF-BP CF-P 

 MSE R MSE R MSE R 

𝑀 (𝑘𝑔/ℎ) 0.8198 

 

0.8278 0.9258 

 

0.8105 

 

0.9277 

 

0.8219 

 

𝑄𝑠𝑦𝑛𝑔𝑎𝑠 0.3464 

 

0.9865 0.5463 0.9710 0.5466 0.9798 

𝑄𝑎𝑖𝑟𝐼𝐶𝐸
 45.1225 

 

0.6503 

 

50.6902 

 

0.6430 50.9046 

 

0.6426 

𝐿𝐻𝑉 26705 

 

0.7280 

 

29439 

 

0.6757 

 

29491 

 

0.7124 

 

𝑇1 342.5776 

 

0.6417 

 

497.3452 

 

0.5595 

 

497.1061 

 

0.5536 

 

𝛥𝑃𝑏𝑒𝑑 1.5659 

 

0.7728 

 

1.9691 

 

0.7210 

 

1.9789 

 

0.7240 

 

𝑄𝑎𝑖𝑟𝑔𝑎𝑠𝑖𝑓𝑖𝑒𝑟
 0.4495 

 

0.9531 

 

0.6442 

 

0.9504 

 

0.6451 

 

0.9367 

 

 284 

An exploration of various setting up parameters for each ANN training algorithm 285 

was done. The number of neurons inside the hidden layer was varied in values from 3, 286 

10, and 100 for the FF-PSO, FF-BP, and CF-P ANNs training algorithms. For the FF-287 

PSO ANN algorithm, besides the number of neurons, it was also tested under different 288 

PSO algorithm configurations varying particle population with values of three to four 289 

times the dimension of the problem as suggested in other works about PSO algorithm 290 

performance using small populations [48]–[50]. However, little attention has been paid 291 

to optimal PSO configuration for real-world problems [51], and therefore, for biomass-292 

related problems. An exploration of the PSO performance as an ANN training algorithm 293 



is carried out using particle populations of 10, 100, 600, and 1000. The best FF-PSO ANN 294 

results were obtained for coefficients 𝑐1 and 𝑐2 values of 1.5 and 2.5 respectively being 295 

consistent with other authors findings in different fields of PSO applications [49].  The 296 

Table 6 presents a summary of the configurations with best performance for each ANN 297 

training algorithm tested. 298 

Table 6 Best ANN training algorithm configurations. 299 

 MSE R Input Neurons Hidden Layer 

Neurons 

Population 

(only for PSO) 

FF-PSO      

𝑀 (𝑘𝑔/ℎ) 0.8198 

 

0.8278 9 3 600 

𝑄𝑠𝑦𝑛𝑔𝑎𝑠 0.3464 

 

0.9865 4 3 100 

𝑄𝑎𝑖𝑟𝐼𝐶𝐸
 45.1225 

 

0.6503 

 

4 10 1,000 

𝐿𝐻𝑉 26705 

 

0.7280 

 

4 10 1,000 

𝑇1 342.5776 

 

0.6417 

 

3 10 600 

𝛥𝑃𝑏𝑒𝑑 1.5659 

 

0.7728 

 

3 10 600 

𝑄𝑎𝑖𝑟𝑔𝑎𝑠𝑖𝑓𝑖𝑒𝑟
 0.4495 

 

0.9531 

 

3 3 1,000 

FF-BP      

𝑀 (𝑘𝑔/ℎ) 0.9258 

 

0.8105 

 

9 100 - 

𝑄𝑠𝑦𝑛𝑔𝑎𝑠 0.5463 0.9800 4 100 - 

𝑄𝑎𝑖𝑟𝐼𝐶𝐸
 50.6902 

 

0.6430 4 100 - 

𝐿𝐻𝑉 29439 

 

0.6757 

 

4 100 - 

𝑇1 497.3452 

 

0.5595 

 

3 10 - 

𝛥𝑃𝑏𝑒𝑑 1.9691 

 

0.7210 

 

3 3 - 

𝑄𝑎𝑖𝑟𝑔𝑎𝑠𝑖𝑓𝑖𝑒𝑟
 0.6442 

 

0.9504 

 

3 10 - 

CF-P      

𝑀 (𝑘𝑔/ℎ) 0.9277 

 

0.8219 

 

9 100 - 

𝑄𝑠𝑦𝑛𝑔𝑎𝑠 0.5466 0.9797 4 10 - 

𝑄𝑎𝑖𝑟𝐼𝐶𝐸
 50.9046 

 

0.6426 4 100 - 

𝐿𝐻𝑉 29491 

 

0.7124 

 

4 100 - 

𝑇1 497.0100 

 

0.5536 

 

3 3 - 

𝛥𝑃𝑏𝑒𝑑 1.9789 

 

0.7240 

 

3 100 - 



𝑄𝑎𝑖𝑟𝑔𝑎𝑠𝑖𝑓𝑖𝑒𝑟
 0.6451 

 

0.9367 

 

3 100 - 

 300 

As observed in Table 6, the best FF-PSO algorithm performances are obtained for 301 

the particle population between 600 and 1000 and three to ten hidden layer neurons; while 302 

both for the FF-BP and CF-P best results are achieved for 100 hidden layer neurons in 303 

most of the cases, but always with a more significant MSE value compared to the 304 

proposed FF-PSO training algorithm. The R value evolution for different ANNs 305 

configurations training tests and the best R plot for biomass flow, syngas flow, ICE inlet 306 

airflow, LHV, gasifier temperature, fluidized bed pressure drop, and gasifier airflow are 307 

shown from Figure 7 to Figure 13. 308 

 309 

 
 

(a) (b) 

Figure 7 (a) Linear regression R value evolution of Biomass flow for best ANN training 310 

algorithm results and (b) best ANN linear regression plot. 311 

 312 
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(a) (b) 

Figure 8 (a) Linear regression R value of Syngas flow for best ANN training algorithm 313 

results and (b) best ANN linear regression plot. 314 

 315 

 
 

(a) (b) 

Figure 9 (a) Linear regression R value evolution of ICE inlet airflow for best ANN 316 

training algorithm results and (b) best ANN linear regression plot. 317 
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(a) (b) 

Figure 10 (a) Linear regression R value evolution of LHV for best ANN training 319 

algorithm results and (b) best ANN linear regression plot. 320 

 321 

 
 

(a) (b) 

Figure 11 (a) Linear regression R value evolution of Gasifier Inlet Temperature for best 322 

ANN training algorithm results and (b) best ANN linear regression plot. 323 
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(a) (b) 

Figure 12 (a) Linear regression R value evolution of Fluidized-Bed Pressure for best 325 

ANN training algorithm results and (b) best ANN linear regression plot. 326 

 327 

 
 

(a) (b) 

Figure 13 (a) Linear regression R value evolution of Gasifier airflow for best ANN 328 

training algorithm results and (b) best ANN linear regression plot. 329 

 330 

High rates of dispersion on linear regression observed in variables (Figure 9 to 331 

Figure 12) are caused because of different variable scales used during the process for the 332 

individual analysis. The best predictions for each of the variables analyzed are 333 

summarized in Table 7. 334 

Table 7 Best predictions for the variables analyzed using the FF-PSO model 335 
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 Best MSE,  FF-

PSO 

MSE improvement (FF-PSO 

respect to FF-BP) 

MSE improvement (FF-PSO 

respect to CF-P) 

𝑀 (𝑘𝑔/ℎ) 0.8198 11% 12% 

𝑄𝑠𝑦𝑛𝑔𝑎𝑠 0.3465 37% 37% 

𝑄𝑎𝑖𝑟𝐼𝐶𝐸
 26705 11% 11% 

𝑇1 342.5776 31% 31% 

𝛥𝑃𝑏𝑒𝑑 1.5659 20% 21% 

𝑄𝑎𝑖𝑟𝑔𝑎𝑠𝑖𝑓𝑖𝑒𝑟
 0.4495 30% 30% 

 336 

A comparison between the biomass flow and Syngas flow predicted by the best 337 

ANN of each type of training algorithm is shown in Figure 14 and Figure 14, respectively. 338 

It can be seen how ANN trained with the proposed FF-PSO algorithm performs better 339 

than ANN trained with FF-BP and CF-P. 340 

 

Figure 14 Comparison between best training ANN algorithms and measured data for 

Biomass flow. 

 341 
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Figure 15 Comparison between best training ANN algorithms and measured data for 

Syngas flow. 

 342 

Because of the followed methodology, after tunning and comparing three different 343 

training algorithms for the BGP ANN-based model, the ANN-PSO algorithm is chosen, 344 

and its best configuration. Figure 16 presents the predicted biomass and syngas' predicted 345 

values, using the best algorithm configuration, for the corresponding energy demand 346 

curve. 347 
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Figure 16 Biomass and Syngas flow required for Energy Demand Covering obtained 

for the best FF-PSO ANN Training Algorithm. 

 348 

After the evaluation of the three ANN-based models for the BGP system, the 349 

ANN-PSO algorithm was selected as the best training algorithm for this application.  The 350 

ANN-PSO algorithm got the lowest MSE values (See Figure 16). The results obtained 351 

employing the ANN-based model through the proposed FF-PSO were also satisfactory. 352 

The ANN-PSO model was validated to predict biomass and syngas flows required 353 

to cover energy demand from an experimental MG. Figure 17 presents the power 354 

generation plots, and consumption obtained during experimentation. 355 
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Figure 17 Energy Demand, required biomass, and produced Syngas and Power Plots 

of MG Experimentation Scenario. 

 356 

The power produced by the BGP can be predicted and decomposed in the required 357 

biomass flow and the produced syngas flow used to feed the ICE ( Figure 17).  The ANN-358 

based model proposed by this methodology allows a real-time estimation of both the 359 

syngas required by the ICE and the biomass required for the BGP to cover the energy 360 

demand of the MG.  361 

4. Conclusions  362 

In this article, a novel ANN-based model applied to a BGP system has been 363 

presented and validated. Since ANNs inside the model need to be trained, three different 364 

ANN training algorithms were evaluated: FF-PSO, FF-BP, and CF-P. Training 365 

algorithms performance has been measured using MSE, under different ANN 366 
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configurations: varying number of hidden layers neurons; and different PSO 367 

configuration parameters for the FF-PSO, varying population size from 9 to 1000, and 368 

𝑐1and 𝑐2 coefficients were varied from 1.5 to 2.5 values.  369 

An experimental MG provided the energy demand curve to be supplied into the 370 

proposed ANN-based model to predict, as the main model outputs, the required biomass 371 

flow, and syngas flow to cover the energy demand. The cascade architecture of the model 372 

also allows the prediction of the airflow required by the ICE, the LHV, the temperature, 373 

the pressure drop in the bed, and the airflow required for the gasification process. The 374 

results showed that the FF-PSO proposed for the ANN-based model has the best 375 

performance, obtaining, on average for all variables analyzed, an MSE of 23.3% lower 376 

compared to the FF-BP and CF-P models. Also, better linear regressions values were 377 

obtained. The reached ANN-based model can be applied in a real-time approach to 378 

control and manage the BGP.  379 

As a general conclusion, the presented ANN-model applied to a BGP and the 380 

proposed FF-PSO algorithm showed to solve model dynamic Power Generation systems. 381 

The PSO is an efficient algorithm to train the ANN. The best results were obtained for a 382 

few hidden layer neurons (1 to 3), a high number of particle populations (600 to 1000), 383 

and standard 𝑐1 and 𝑐2 coefficients (1.5 to 2.5). 384 

 In future work is planned to extend the ANN-model to other MG subsystems, 385 

allowing effective control for the energy management of the MG. 386 
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