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Abstract: Since it is not efficient to physically study many machine failures, models of faulty induction
machines (IMs) have attracted a rising interest. These models must be accurate enough to include
fault effects and must be computed with relatively low resources to reproduce different fault scenarios.
Moreover, they should run in real time to develop online condition-monitoring (CM) systems. Hybrid
finite element method (FEM)-analytical models have been recently proposed for fault diagnosis
purposes since they keep good accuracy, which is widely accepted, and they can run in real-time
simulators. However, these models still require the full simulation of the FEM model to compute the
parameters of the analytical model for each faulty scenario with its corresponding computing needs.
To address these drawbacks (large computing power and memory resources requirements) this
paper proposes sparse identification techniques in combination with the trigonometric interpolation
polynomial for the computation of IM model parameters. The proposed model keeps accuracy similar
to a FEM model at a much lower computational effort, which could contribute to the development
and to the testing of condition-monitoring systems. This approach has been applied to develop an
IM model under static eccentricity conditions, but this may extend to other fault types.

Keywords: fault diagnosis; sparse identification; model order reduction; induction machines

1. Introduction

One of the most common electrical machines in industry is induction machines (IMs).
These machines play an important role in the safe and efficient operation of various types
of industrial applications due to their numerous strengths, such as simplicity, ruggedness
and high reliability, at relatively low cost. However, they are not free from faults that
may lead to unexpected failures, causing large economic losses. For this reason, reducing
operation and maintenance costs as well as improving reliability have become crucial
issues in their maintenance [1]. Much has been proposed in the technical literature for
condition-monitoring (CM) systems, the stator current being one of the most widely used
due to its low requirements. Not much hardware (only a current clamp is needed) and low
software resources are required [2]. Therefore, motor current signature analysis (MCSA)
approach for IM fault diagnosis has become one of the most common and well-stablished
method presently.

Online CM systems and CM systems based on artificial intelligence (AI), as neural
networks (ANN) [3], principal component analysis [4] and more recently support vector
machines (SVM) [5], are becoming very important in IMs CM since they greatly improve
reliability and maintainability in a wide range of industrial applications. The development
of these systems would allow the detection of faults at an early stage and to evaluate
their evolution to define not only the maintenance operations but also the right time to
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implement them. As an example, knowing the right time to carry out maintenance tasks
would help keeping the profitability of a wind farm along its operational lifetime [6].

IMs in many applications scenarios work under non-stationary conditions or even
transient conditions, such as in wind farms, where the wind variability involves non-
stationary working conditions. Under these conditions, traditional fast Fourier transform
(FFT)-based techniques are no long effective to the fault diagnosis of the IM. Several
advanced signal processing techniques have already been investigated to overcome the
limitations of the conventional FFT-based techniques [7]. Nonetheless, the use of these
complex techniques results in a large volume of data and its analysis requires high skilled
maintenance professionals.

In an attempt to avoid these problems and to make diagnostic algorithms more
reliable, artificial intelligence (AI) tools are used for fault diagnosis of the electrical rotating
machines with the aim of detecting faults at very early stage and of reducing false alarms
rates. These techniques could also be used with online CM systems, which continuously
monitor the machine status. However, the development and training of these expert
systems to predict the upcoming failure from IMs is a challenge presently, since it requires
the obtaining of many current measurements from different types of machines and with
different severity degrees of a given fault or simultaneous faults under different working
conditions [8]. These requirements are difficult to replicate with actual IMs working in the
industry, since there is a limited number of IMs running under faulty conditions. On the
other hand, the use of IMs in laboratory test benches is costly; much destructive testing is
needed, and the artificial introduction of progressive failure degrees and varying working
conditions is challenging. Moreover, the condition-monitoring systems could be only tested
with the machines available in the test benches and with the working conditions the test
bench can reproduce. Therefore, test benches are a somehow limited source of data for the
development and training of CM based on AI.

Alternatively, the interest in accurate models of faulty IMs is increasing. Models would
allow the reduction of the number of destructive tests needed to develop new diagnostic
techniques and to develop and test CM based on embedded devices [9]. They would also
be very helpful to train expert systems [10], to develop vector classifiers [11], to obtain a
comprehensive understanding of the observed phenomena and to define and compare
different fault indexes [12]. These models, therefore, should consider the detailed structure
of the machine to obtain simulation results that faithfully reproduce the behavior of the
actual IM [13]. Moreover, they must allow the monitoring of the magnitude analyzed
for fault detection, as well as running in real time to develop and test online condition-
monitoring systems [14]. In the following subsection, the most recent advances in the
development of faulty IM models are reviewed.

Fault Modeling Methods

Several models of faulty IMs can be found in the technical literature, which can
be broadly categorized as models based on electrical circuits, models based on magnetic
circuits, models based on numerical methods and hybrid models. Models based on multiple
coupled circuit (MCC) comprise the stator and rotor in multiple inductive circuits, which
are coupled together [15]. Resistance parameters are usually estimated by analyzing the
dimensions of conducting paths. However, the calculation of the inductance parameters
of a faulty machine is far more complex. Several methods have been reported, winding
function approach (WFA) and modified winding function approach (MWFA) being some
of the most common methods to compute the inductance parameters [16,17].

Afterwards, with the aim of simplifying MCC models, d-q models were introduced.
They use orthogonal components of voltage and currents by Park and Clark transforms [18].
The same parameter estimation techniques are typically used as in MCC models. They
are very fast and, thus, can be implemented in hardware in the loop (HIL) simulation
systems [19]. However, the applicability of these kind of models for fault diagnosis pur-
poses is quite limited since they are not able to reproduce the effect of spatial harmonics or
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asymmetries, which directly affect variables such as speed, currents and other performance
IM parameters required for CM systems.

Contrary to MCC approach, which is based on coupled electrical circuits, magnetic
equivalent circuit (MEC) is based on detailed magnetic modeling of the machine by estima-
tion of reluctances and permeances [20]. These models have the advantage of moderate
computational complexity if compared to high-accuracy modeling such as finite element
method (FEM), but the accuracy during transient conditions is usually limited, since these
models do not usually include distributes circuit effects in the rotor conductor or the stator
ring leakage inductance [21].

Accurate simulations of faulty IMs requires taking into account the non-linearities
of the magnetic materials as well as avoiding the simplifying hypotheses regarding the
geometry and windings arrangement. Circuit-based models run fast but cannot provide
comprehensive modeling as numerical methods, as those based on FEM. FEM methods use
the exact magnetic and geometric characteristics of the machine to compute their magnetic
field distribution, thus, accurately reproduce the IM behavior under failure conditions.
However, they require a significant computational capacity and long simulation times,
which can vary from minutes to weeks or even months in cases of highly asymmetrical
faults such as eccentricity or rotor broken bars [22]. The effects of these type of faults in
electromagnetic parameters such as voltage, speed, torque, flux density and flux distribu-
tion for a faulty machine are accurately represented through time stepping finite element
method (TSFEM) [23,24]. However, even with modern processors, the computational effort
required to complete FEM evaluation is notable [25]. Differences of more than 3 h for a
FEM analysis versus 7.6 s via an analytical method have been reported in [26]. On the
other hand, fault conditions often imply that the simplifications commonly used to reduce
computational costs and increase simulation speed, such as machine symmetry, cannot be
used [27]. Thus, the study of several degrees of failure using FEM is a complex matter [28].
Moreover, running these models in hardware simulators, which allow reducing these times,
is problematic so far.

To overcome these drawbacks, hybrid FEM-analytical model simulations have been
recently proposed in the technical literature for fault diagnosis purposes [29]. FEM analysis
is used to identify the parameters of an analytical model of the machine. The high accuracy
of the model obtained can run in real time in HIL systems. However, the study of different
degrees of a given fault or combination of several types of fault could be unaffordable,
since it requires the full simulation of the FEM model for each scenario. To address
these drawbacks, ref. [30] proposes the sparse subspace learning (SSL) and hierarchical
Lagrange interpolation (HLI) polynomial from a selected number of FEM simulations to
compute the inductance matrix of the faulty IM model. This method reduces the number
of FEM simulations to obtain the coupling parameters of the faulty machine for each fault
and severity degree under study, resulting in large savings in memory resources when
compared with FEM. However, it still requires several GB in memory resources for every
degree of a given fault. Therefore, although it reduces computational costs compared to
traditional FEM methods, it still needs a large number of fully FEM simulations. Moreover,
its implementation for other kind of machines or the inclusion of different kind of faults
is challenging. In a similar way, ref. [31] presents an analytical model where FEM is used
to compute the coupling parameters of the faulty machine. In this case, FEM analysis run
on multiple processor cores working in parallel with each other to reduce the simulation
time needs. Despite the improvements these approaches present, they still require long
simulation times and large computational resources. Savings on these issues are essential
where many studies are required, such as fault diagnosis testing. In this context, this paper
proposes the use of the sparse identification and trigonometric interpolation polynomial to
minimize the number of FEM simulations required to develop a hybrid FEM-analytical
model of a faulty IM. A very reduced set of magneto-static FEM simulations is required
to build the trigonometric polynomial basis with which compute the inductance matrix
of a faulty machine. The proposed method is applied to develop an accurate model,
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valid to run in real time, that simulates various static eccentricity fault scenarios. The
resulting model keeps a good accuracy while drastically reducing computational effort and
simulation times.

The paper is structured as follows. In Section 2 the equations that define the analytical
model of an IM are described and the process to calculate the coupling parameters is
introduced. In addition, the characteristics of the case of study and the main drawbacks
of the approach are shown. Section 3 presents the methodology followed to calculate the
parametric basis. The main results are in Section 4, where the coupling parameters obtained
with the proposed method are compared to the those obtained using FEM simulations. In
Section 5 the fault diagnosis results are analyzed in detail. Finally, experimental results
and conclusions are presented in Sections 6 and 7 respectively.

2. System Equations

The behavior of an IM with m stator and n rotor phases can be defined by the following
equations system [32,33]:

[Us] = [Rs][Is] + d[Ψs]/dt (1)

[Ur] = [Rr][Ir] + d[Ψr]/dt (2)

Where subscripts s and r are used for the stator and rotor, respectively. [U] is the phase
voltage matrix, [I] is the phase current matrix, [Ψ] is the flux linkages matrix and [R] is the
resistances matrix. [Rs] is the submatrix of resistances for every stator phase and [Rr] is the
submatrix of resistances of every rotor phase in the case of wound rotor, or of every bar in
the case of squirrel-cage rotor. [U] and [Ψ] are composed of:

[Us] = [us1, us2, ..., Usm]
T (3)

[Ur] = [ur1, ur2, ..., Urn]
T (4)

[Ψs] = [Lss][Is] + [Lsr][Ir] (5)

[Ψr] = [Lsr]
T [Is] + [Lrr][Ir] (6)

On the other hand, the electromechanical torque generated by the machine, Te, is
given by:

[Te] =
1
2
[I]T

d[L]
dθ

[I] (7)

where θ is the mechanical or geometric angle between the main rotor axis and the stator
fixed reference and [L] is the inductance matrix, which is given by:

[L] =

[
Lss Lsr

LT
sr Lrr

]
(8)

where [Lss] contains the mutual inductances between the stator phases and their leakage
inductances, [Lrr] are the mutual rotor inductances between rotor phases and their leakage
inductances and [Lsr] contains the mutual inductances between stator and rotor phases.
Finally, the mechanical behavior is modeled by the following equation:

[Te]− [Tload] = J
d2θ

dt2 + B
dθ

dt
(9)

where Tload is the mechanical load torque, J is the inertia moment and B is the friction
coefficient.

In this work, the system of Equations (1)–(9) is solved using Matlab/Simulink. Thus,
a model in Simulink has been developed for obtaining its numerical solution in the time
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domain, as shown in Figure 1. To this end, stator and rotor items are grouped in terms of
differential equations as it shown in the following:[

Us
Ur

]
=

[
Rs 0
0 Rr

][
Is
Ir

]
+

d
dt

([
Lss Lsr
LT

sr Lrr

][
Is
Ir

])
(10)

Te =
1
2
[
Is Ir

] d
dθ

([
Lss Lsr
LT

sr Lrr

])[
Is
Ir

]
(11)

Te − Tload = J
d2θ

dt2 + B
dθ

dt
(12)

Due to the presence of the derivatives in the Expressions (1), (2) and (7), the inductance
matrix components [Lss], [Lrr] and [Lsr], also known as coupling parameters, must be
computed with high accuracy and for every rotor position, especially if different fault
conditions are to be detected and reliably diagnosed. This would require many FEM
simulations, with their corresponding long simulation times and memory requirements,
which this work tries to reduce using an approach based on the sparse identification and
trigonometric interpolation polynomial. The computed coupling parameters are used in
the analytical model, which can run in real time in a HIL system. Moreover, the user can
modify in real time different parameters, such as the stator voltages, the frequency and
the load torque. Thus, the model allows simulation of the machine under a wide range of
working conditions and degrees of fault severity, which is one of the main requirements
for the development of CM systems.

Figure 1. Analytical model of the induction machine using Equations (10)–(12) in Matlab/Simulink.
The characteristics of the machine are found in Table 1.
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Table 1. Data of the simulated machine.

Power 1.1 kW Pole pairs 2
Voltage 230/400 V Speed 1415 rpm
Current 4.4/2.55 A No of rotor bars 28
Frequency 50 Hz No of stator slots 36
Air-gap length 0.28 mm Type of fault Static Eccentricity

3. Proposed Method for Computing the Coupling Parameters of the Faulty IM via
Sparse Identification and Trigonometric Interpolation Polynomial

The main issue to address in this work is the accurate computation of the coupling
parameters to develop a faulty IM analytical model minimizing computational effort and
simulation times. These inductance or coupling parameters matrix should be calculated
depending on the rotor position and saved in a Simulink 3D look up table, where the third
dimension corresponds to the rotor position. This computation is performed offline using
FEM, whose accuracy is widely accepted. However, this method has several drawbacks
that the proposed method tries to overcome, as illustrated in the following subsections.

3.1. Computation of the Coupling Parameters Using FEM

The general process to compute the coupling parameters [L] using FEM can be fol-
lowed within the finite element analysis section of the diagram in Figure 2. First, the
FEM-based model is built according to the geometry of the machine and the characteristic
of the fault. For each rotor position, each stator phase is fed with 1A of direct current
and the magneto-static FEM simulation runs. The results obtained allows calculation of
the coupling parameters between stator phases [Lss] and between stator and rotor phases
[Lsr] for a given rotor position N. After that, each rotor phase is also fed with 1A of direct
current, the FEM magneto-static simulation runs again to obtain the parameters [Lrr] for
the corresponding rotor position M. As a result, a three dimension coupling parameters
matrix [L] is obtained, whose first and second dimension correspond to the inductance
related to the stator and rotor phases and the third to the rotor position. Therefore, the
higher the number of rotor positions, i.e., the smaller the movement of the rotor for each
step, the higher the accuracy and position resolution of the coupling parameters matrix
[L]. Likewise, greater accuracy involves longer running times, and higher requirements for
computing power and memory resources.

The process just described assumes linear conditions for the computation of the
coupling parameters of the faulty IM. Magnetic effects such as saturation have little effect
of fault harmonics and the main objective of this work is to present an efficient method for
computing the coupling parameters of an IM that reproduces accurately the effect of the
static eccentricity. Hence, considering only the linear, incremental problem, the results are
less computational intense and a reasonably accurate solution for fault diagnosis purposes.

In this paper, a different way of addressing the computation of the inductance matrix
is undertaken, presenting a new method based on FEM results but a much lower cost, while
keeping good accuracy. FEM is used to compute the coupling parameters for a few specific
rotor positions. Once these FEM coupling parameters are computed, they are used to build
a trigonometric interpolation polynomial basis from which the coupling parameters for the
other rotor positions are obtained.
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SSL

N points (stator)

FINITE ELEMENT ANALYSIS

Start
Rotor position k=1

Stator phase i=1

Feed stator phase i

FEM simulation

Feed rotor phase 1

FEM simulation

[Lss]
FEM
3x3xN
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[Lsr]k
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No
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STATOR EVALUATION

ROTOR EVALUATION

[Lsr]
FEM
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[Lrr]
FEM
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Trigonometric Interpolation polynomial

Figure 2. Diagram of the proposed method to obtain the inductance matrix of an IM model using FEM-
based software and sparse subspace combined to trigonometric interpolation polynomial techniques.
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3.2. Case of Study

The proposed method is applied to an IM whose characteristics are shown in Table 1,
focusing on static eccentricity fault case, which is one of the most common mechanical
faults in IMs [34]. Static eccentricity fault occurs when the axis of rotation coincides with
the axis of rotor, but it displaces from axis of stator [35]. The positions for the minimum
and maximum air-gap widths are fixed regarding the stator for any rotor orientation.

The severity of the fault is usually defined by degrees, between 0% for healthy machine
(axis of rotation coincides with the axis of rotor and the axis of stator) and 100% for
the maximum rotor rotation center displacement, which corresponds to the maximum
displacement of the rotor rotation, 0.28 mm in the case of study.

On the other hand, to exemplify the cost savings in running times, computer power
and memory resources, the inductance matrix for each degree of fault severity was obtained
using FEM software open source femm 4.2 running on a computer with intel processor (R)
Core (TM) i5-6400 CPU@2.70 GHz and 16 GB of RAM memory. To build the FEM model,
as aforementioned in the previous subsection, it is necessary to feed sequentially the stator
phases (i in Figure 2), a rotor phase, perform the magneto-static analysis and compute the in-
ductances for each rotor position. Regarding the rotor positions (k in Figure 2), a total num-
ber of 28× 36 = 1008 positions have been considered, which is the result of multiplying the
number of stator slots by the number of rotor bars, K = RotorBars · StatorSlots. Therefore,
for each rotor position, the rotor moves in increments of rd = 2π/k = 2π/1008 = 0.00632
rads. Each FEM simulation lasts about 1 min and takes up 22.5 MB of disk. For a generic
scenario, considering 1008 rotor positions, a rotor phase is the loop (44) of two adjacent
rotor bars (28), and the stator phases (3), each fault severity needs a total of (14 + 3)× 1008
= 17,136 FEM simulations, which means approximately 12 days and more than 370 GB of
memory space for saving the results.

Specifically in the case of static eccentricity fault, it is possible to reduce the number
of simulations taking into account the symmetry of the machine. When a stator phase is
fed, each rotor bar has the same flux linkage but with a specific geometry offset. According
to this, the rotor positions can be reduced to a rotor bar travelling through a stator slot
(N = 36 in Figure 2) to calculate the coupling parameters between stator and stator phases
[Lss] and between stator and rotor phases or bars [Lsr]. On the other hand, only the feeding
of one rotor phase along a half of the rotor positions (M = 504 in Figure 2) is required
to obtain the coupling parameters between rotor bars [Lrr]. Therefore, to identify the
coupling parameters of one machine working under a certain static eccentricity degree
it needs 3× 36 + 504 = 612 FEM simulations, which implies a computing time of 10.2 h
and 13.45 GB of memory. It represents a significant reduction of both simulation times
and computing effort, but these values are for machine and with a single severity degree
of a given fault. Testing fault diagnosis techniques to be implemented in embedded
devices, as well as the training of expert systems to classify faults, involve a considerable
number of machines and fault scenarios. As a result, time and computing requirements
continue to be excessive, whereby there is a rising interest in approaches that try to reduce
these requirements.

3.3. Proposed Method Based on Sparse Identification and Trigonometric Interpolation Polynomial
to Compute the Coupling Parameters under Static Eccentricity Conditions

Alternatively, ref. [30] apply the SSL to compute the inductance matrix for each desired
degree of failure, based on the values obtained from FEM simulations. However, it still
requires many FEM simulations, since the parameterization of a new faulty IM as well
as every fault and every severity degree of the same fault involve the input of several
inductance matrices fully FEM computed with their corresponding long simulation times
and memory requirements. In fact, in [30] the polynomial basis is obtained with the data of
9 models fully computed with FEM which means more than 90 h of simulation time and
more than 120 GB needed to save the results.
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In a try to address these drawbacks, this paper proposes the use of the sparse identifi-
cation and trigonometric interpolation polynomial to compute the coupling parameters
matrix [L] of an IM under static eccentricity conditions. From a small number of FEM
simulations set via the sparse identification, a trigonometric polynomial basis is built to
obtain the coupling parameters matrix. Following the same reasoning this method could
be extended to other types of faults or even simultaneous faults, since the algorithm for
computing the inductance matrix of the IM will compute the suitable terms to faithfully
reproduce each type of fault. In the case of end ring-related faults can be simulated with
the proposed model using simple tensor transformations from the starting resistance and
inductance matrix, following the procedure proposed in [36].

Hence, the process will reduce computing time and memory requirements while
keeping a similar accuracy to FEM with the interpolated solution using the trigonometric
approximation.

As the coupling parameters or inductance matrix of the IM model under a specific
degree of eccentricity fault change with the rotor stepping, this paper proposes the SSL
to select the rotor positions θ in the parametric space [θmin, θmax] in which perform the
FEM simulations. Once the coupling parameters for these specific rotor positions have
been computed via FEM, they are used to build the trigonometric polynomial basis [37].
This basis allows reliable calculation of the parameters of the inductance matrix [L] for
the remaining rotor positions. To determine the parametric space, it must be underlined
the geometry characteristics of the IMs under static eccentricity fault. To illustrate these
characteristics, Figure 3 shows the coupling parameters between the stator phase 1 and
itself [Ls1s1], between stator phase 1 and rotor bar 1 [Ls1r1] and between rotor bar 1 and
itself [Lr1r1] for a static eccentricity of 30.87% depending on the rotor position using FEM
simulations. As can be noted from the graphs, they are periodic functions. Therefore, a
trigonometric polynomial approach can improve the interpolation performance to com-
pute the coupling parameters when compared to other approaches based on algebraic
polynomials such as Lagrange interpolation [38].

The bottom graph of the Figure 3 presents additionally the characteristics of the
coupling parameters between rotor bar 1 and itself [Lr1r1] for a static eccentricity of 14.65%
and 69.13%. This graph illustrates that according to the degree of failure, the coupling
parameters between rotor bars approximates to a 2π period function, and the higher the
degree of eccentricity, the greater the amplitude of the function. Furthermore, the slot effect
causes a ripple, which is associated with the movement of a rotor bar through a stator
slot. Apart from this, the trigonometric polynomial basis should include the same space
harmonics contents of the inductance matrix as the space harmonics of the inductance
matrix obtained using FEM, as will be discussed in the next section.

For the case of trigonometric interpolation polynomial, the recommendations are
to select equally spaced points in the parametric space [38]. Thus, Table 2 presents the
selected rotor positions θ for [Lss] and [Lsr] in the parametric space [0, π/14] where the
FEM simulations are performed. The parametric space of the coupling parameters [Lss]
and [Lsr], only requires the bar travelling a stator slot, 36 rotor positions for computing
their values in the complete parametric space, in other words, it is only necessary the rotor
movement from 0 to π/14 rad. A new rotor position of the parametric space interval is
added to the set of points as long as the results of this FEM simulation significantly improve
the accuracy of the computed new interpolation basis. It will notably reduce the number
of FEM simulations and therefore, the computing requirements, while keeping a good
accuracy of the coupling parameters of the faulty machine model.
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Figure 3. Coupling parameters between stator phase 1 and itself (top), between stator phase 1 and
rotor bar 1 (middle) and between rotor bar 1 and itself (bottom) for static eccentricity of 30.87%
depending of the rotor position using FEM simulations. The bottom graph also shows the coupling
parameters between rotor bar 1 and itself for static eccentricity of 14.65% and 69.13%.

Table 2. Set of points in the parametric space [0, π/14] to compute [Lss] and [Lsr].

Point Rotor Position θ (rad)

1 0
2 0.0374
3 0.0748
4 0.1122
5 0.1495
6 0.1867
7 0.2244

On the other hand, the mutual inductance between rotor bars, due to their geometric
complexity, requires a detailed explanation of their parametric space to interpolate as
well as the selected points to perform FEM simulations. To reproduce accurately both the
eccentricity and slot effect characteristic of [Lrr], 5 points of each parametric subspace for a
rotor slot (every 36 rotor positions from 0 to π) are selected to perform the FEM simulations.
Thus, the subsequent trigonometric interpolation polynomial only have 5 space harmonics
and moreover the amplitude is readjusted to the [Lrr] function, reducing the fully FEM
simulations to on ninth.

Once the set FEM simulations are performed, the parametric basis is developed using
the trigonometric interpolation polynomial with separated cases for odd and even number
of data [39]. For an odd number of nodes (p(k) = 2m + 1), traditional trigonometric
interpolation polynomial has the form:

L2m+1
ab (θ) =

c0

2
+

m

∑
i=1

(ci cos (iθ) + di sin (iθ)) (13)

For an even number of data (p(k) = 2m) traditional trigonometric interpolation poly-
nomial has the form:

L2m
ab (θ) =

c0

2
+

m−1

∑
i=1

(ci cos (iθ) + di sin (iθ)) +
am

2
cos (mθ) (14)

The space harmonics of the coupling parameters computed could introduce cross
terms that would have a major impact in the fault diagnosis results [40]. Specifically, these
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cross terms would greatly affect the current simulated results and their harmonic content.
For this reason, this work proposes a small modification of the Expressions (13) and (14),
considering the space harmonics in the computation of the coupling parameters. For that
purpose, the exponent i of the expressions does not vary from 1 to m in 1 to 1, but it does
according to the harmonic content of [Lss], [Lsr] and [Lrr], respectively. Thus, in the case
of stator self-inductance, the space harmonics take values from 28 in 28, because of the
influence of the 28 rotor slots. This number 28 corresponds to the rotor bars of the machine
simulated, as can be seen in Table 1. Likewise, in the case of rotor self-inductance the space
harmonics take values from 36 in 36, because of the influence of the 36 stator slots.

Therefore, the trigonometric interpolation is applied to obtain the polynomial basis
with which computes the inductance matrix. The base is generated for the whole range of
rotor positions, obtaining a 2D matrix for every rotor position. Therefore, only the coeffi-
cients of the polynomial are saved, which reduces the memory requirements compared to
other approaches where all the positions must be preset, directly obtaining a 3D inductance
matrix instead.

The proposed method can be summarized in the following steps, which are illustrated
in Figure 2:

1. Define the parametric space of the fault (Section 3.3).
2. Create the set of equally spaced points (Section 3.3).
3. Calculate the inductance matrix for the set of points obtained in step 2 using FEM

simulations and following the process described in Section 3.1.
4. Develop the trigonometric polynomial basis from the results of step 3 using

Equations (13) and (14).
5. Calculate the inductance matrix for the desired degree of severity of the fault

using the polynomial base obtained in the step 4. It must be highlighted that contrary
to analytical approaches as modified winding function approach (MWFA)-based models
where the trigonometric interpolation is used to model the air gap and simplifications as
radial magnetic field B in which the magnetic permeability is infinite and smooth air gap
are assumed [41], in this work the full motor geometry and material are modeled through
FEM, which considers the actual geometry of the air gap and the tangential component of
the magnetic induction.

4. Results

To illustrate the accuracy of the proposed method, the inductance matrix for three
different levels of static eccentricity (14.64%, 30.87% and 69.13%) are computed and com-
pared with those obtained with a full FEM analysis as shown in Figure 4, for the coupling
parameters between the stator phase 3 and itself, [Ls3s3], between the stator phase 3 and
rotor bar 28, [Ls3r28], and between the rotor bar 1 and itself, [Lr1r1] respectively. As can be
seen, the coupling parameters obtained with the proposed method are essentially the same
as those computed using only FEM, but minimizing the computational effort as shown in
Table 3. This table illustrates the resulting computational savings for the proposed method,
which computes the coupling parameters almost 10 times faster and only needs a 11% of
the memory resources required when compared to the generic case particularized for a
static eccentricity fault.
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Figure 4. Coupling parameters between stator phase 3 and itself, between stator phase 3 and rotor
bar 28 and between rotor bar 1 and itself depending on the rotor position using FEM simulations
(FEM) and the proposed method (INT), for three different degrees of static eccentricity fault. The
proposed method obtains mostly the same values as FEM.

Table 3. Computational costs, computational time and memory resources to obtain the coupling pa-
rameters of a faulty IM for a generic case, a case of static eccentricity and using the proposed method.

FEM Computation Memory
Simulations Time Resources

Generic case 17,136 11 days 21 h 36 min 376.52 GB
Static eccentricity 612 10 h 12 min 13.45 GB
Proposed method 70 1 h 10 min 1.54 GB
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5. Fault Diagnosis Analysis

The inductance matrix obtained using FEM, sparse identification and trigonometric
polynomial interpolation,

[
LINT], as well as the obtained inductance matrix using fully

FEM simulations,
[
LFEM] are implemented in the analytical model shown in Figure 1. This

model runs in real time in the HIL OP4500 from OPAL-RT, whose characteristics can be
found in Appendix A. The eccentricity fault is detected using the motor current signature
analysis (MCSA) method so that the different centers of rotor and stator axes result in
current harmonic components induced in the stator winding at frequencies calculated
through the expression [42]:

fh =

[
(k · Rd ± nd)

1− s
p
± ν

]
· f1 (15)

where k is any positive integer, nd is 0 for static eccentricity case, s is the slip, p is the
number of pole pairs, Rd is the number of rotor slots, f is the main frequency and ν is the
order of the stator time harmonics. According to specific machine parameters defined in
Table 1, Rd = 28 and p = 2.

The stator current signals are acquired using the analog outputs of the HIL device, as
shown in Figure 5. These current samples can be used for fault diagnosis and classification
under different working conditions, the development and training of expert fault diagnosis
systems, the creation of data bases, etc.

REAL TIME SIMULATOR

DIGITAL OSCILLOSCOPE

WORKSTATION

Figure 5. Faulty hybrid FEM-Analytical model implemented in HIL System OP4500. Stator currents
are acquired using a digital oscilloscope properly connected to the HIL. HIL characteristics are found
in Appendix A.

5.1. Detection of the Fault Harmonics under Transient Conditions

It is very common for IMs to work under transient conditions, such as the start-up
transient, varying load conditions or supplying frequency changes. In these cases, the
Expression (15) indicates that the frequency of the fault harmonics is no longer constant,
but changes with the motor slip.

Under these conditions, traditional fast Fourier transform (FFT)-based diagnostic
techniques cannot be used for fault diagnosis purposes. The current analysis of the start-up
transient of the IM and time–frequency distributions as the spectrogram [10], can cor-
rectly detect and generate the evolution of the fault harmonics in the joint time–frequency
domain [43].

This approach has attracted a rising interest in the technical literature in recent years.
It provides advantages such as greater accuracy, since various operating points are an-
alyzed. On the other hand, the slip evolution is well known, from 1 to '0 in start-up
transient conditions, which allow identification of the patterns in the fault harmonic com-
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ponents. Moreover, IMs such as wind turbines usually work under non-stationary working
conditions, so developing diagnosis techniques and systems that can work under these
conditions is reasonable. Thus, the amplitude evolution of the upper side harmonic (USH)
is used to validate the proposed model in transient regime, using the start transient of the
IM. The fault analysis is based on Gabor analysis of the current to capture the characteristic
pattern from the start-up machine current generating an image of the trajectory of the
USHst in the time–frequency plane. The procedure followed is detailed in [44]. The method
is mainly based on the development of Gaussian window to capture the transient of the
fault harmonic USH, which is computed as:

g(t) = (2β)1/4 exp−βπt2 (16)

where β is theoretical slope in hertz per second of the fault harmonics in the time–frequency
plane, defined as β = ∆ f /tstartup, ∆ f being the variation of the fault harmonic frequency
and tstartup the duration of the transient.

Figures 6–8 show the spectrogram of the start-up stator current of the simulated
machine using the coupling parameters computed via full FEM analysis (FEM in the
figures) and with the proposed method (INT in the figures) for the three different levels of
static eccentricity 14.64%, 30.87% and 69.13% respectively. As can be seen, the proposed
model is able to display the characteristic signature of the static eccentricity fault. Moreover,
these figures illustrate that the amplitude of the USH signature is greater as the fault severity
degree increases when using both FEM and the proposed method. Therefore, the proposed
method could be a very good approximation for fault diagnosis purposes.
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Static eccentricity 14.64% (INT)
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Figure 6. Stator current spectrogram for static eccentricity level 14.64% using FEM software (FEM)
and the proposed method (INT) to calculate the coupling parameters of the hybrid FEM-Analytical
model. The hybrid model obtains a good approximation of the amplitude for detecting the presence
of the fault.
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Static eccentricity 30.87% (FEM)

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

100

200

300

400

500

600

700

800

900

1000

F
re
q
u
en
cy

(H
z)

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

A
m
p
li
tu
d
e
(d
B
)

Static eccentricity 30.87% (INT)
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Figure 7. Stator current spectrogram for static eccentricity level 30.87% using FEM software (FEM)
and the proposed method (INT) to calculate the coupling parameters of the hybrid FEM-Analytical
model. The hybrid model obtains a good approximation of the amplitude for detecting the presence
of the fault.
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Static eccentricity 69.13% (FEM)
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Static eccentricity 69.13% (INT)
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Figure 8. Stator current spectrogram for static eccentricity level 69.13% using FEM software (FEM)
and the proposed method (INT) to calculate the coupling parameters of the hybrid FEM-analytical
model. The hybrid model obtains a good approximation of the amplitude for detecting the presence
of the fault.

5.2. Effect of Space Harmonics into the Fault Analysis under Transient Conditions

The effect of the spaces harmonics when applied the trigonometric interpolation
polynomial to build the basis to obtain the coupling parameters is analyzed as follows. The
inductance matrix for a level of static eccentricity of 30.87% is computed using trigonometric
interpolation and compared with the inductance matrix obtained with a full FEM analysis,
as shown in Figure 9, for the coupling parameters between the stator phase 1 and itself,
[Ls1s1], between the stator phase 1 and rotor bar 1, [Ls1r1], and between the rotor bar 1 and
itself, [Lr1r1] respectively.

As can be seen, the coupling parameters obtained with the trigonometric interpolation
are essentially the same as those computed using only FEM, and therefore very similar to
the results obtained using the approach considering the space harmonic content.

Regarding the space harmonics, Figure 10 on the left shows the space harmonic con-
tent of the coupling parameters between stator phase 1 and itself, stator phase 1 and rotor
bar 1 and between the rotor bar 1 and itself in the case of 30.87% of static eccentricity, using
the trigonometric interpolation polynomial and trigonometric interpolation polynomial
considering the space harmonics. The space harmonics obtained with trigonometric inter-
polation are considerably different to those obtained with FEM. Nonetheless, Figure 10
on the right shows the space harmonic content of the coupling parameters between stator
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phase 1 and itself, stator phase 1 and rotor bar 1 and between the rotor bar 1 and itself
in the case of 30.87% of static eccentricity using trigonometric interpolation polynomial
considering the space harmonics and compared to the obtained using FEM. It can be seen
that the proposed method obtains good results in terms of space harmonic contents not
only in order but also in amplitude compared with those computed with full FEM analysis.
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Figure 9. Coupling parameters between rotor bar 1 and itself (top), between stator phase 1 and
itself (middle) and between stator phase 1 and rotor bar 1 (bottom), depending on the rotor position
using FEM simulations and traditional trigonometric interpolation polynomial for 30.87% of static
eccentricity. Both methods obtain essentially the same values as FEM.

Therefore, the ideal is that the parameters computed with the proposed method have
not only the same distribution along the rotor position as shown in Figure 4 but also have
the same content of space harmonics as shown on the right of Figure 10, as the coupling
parameters computed with full analysis. The space harmonics of the coupling parameters
based on trigonometric interpolation could introduce cross terms that would interfere
in the fault diagnosis results [40]. These cross terms would greatly affect the current
simulated results and their harmonic content, making the post-processing results difficult
to interpret and not very accurate to the actual machine. Figure 11 illustrates the effect of
considering the space harmonics to build the trigonometric polynomial basis. This figure
shows the spectrogram of the start-up stator current of the simulated machine using the
coupling parameters computed via FEM (top) and traditional trigonometric interpolation
polynomial (Equations (13) and (14)) (bottom). As can be seen, the traditional method
could make fault analysis difficult to interpret and lead to misdiagnoses.
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Figure 10. Space harmonics content of the coupling parameters between stator phase 1 and itself
(top), between stator phase 1 and rotor bar 1 (middle) and between stator phase 1 itself (bottom),
in the case of 30.87% of static eccentricity using FEM simulations and traditional trigonometric
interpolation polynomial (left) and using FEM and trigonometric interpolation considering space
harmonics (right). The traditional trigonometric interpolation obtains values of space harmonics
other than FEM while both the order and the amplitude of the space harmonics contents using the
proposed method are the same as using FEM with a very small error.

Cross terms may even overlap with the desired harmonic signals. Thus, if the graphs
of this figure are compared, it can be seen that the USH amplitude resulting using the
traditional trigonometric interpolation polynomial is far from the USH amplitude obtained
using FEM for the degree of severity simulated. The results obtained using the traditional
trigonometric interpolation correspond to a higher degree of fault, which would imply a
misdiagnosis.

Attending to the results, as can be seen in Figures 6–8 when compared to Figure 11, the
proposed method, which considers the space harmonic content, greatly reduces the cross
terms that could interfere in the fault diagnosis analysis and obtains essentially the same
results than FEM. Moreover, Figures 6–8 also illustrates how the USH amplitude evolves
according to the degree of eccentricity. The proposed method provides more accurate
results than the traditional method, reproducing a very good approximation of the USH
characteristic amplitude for the specific degree of eccentricity if compared to FEM method.
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Therefore, the proposed method, by obtaining more accurate results, could be used both
for detecting the presence of the fault and establishing fault thresholds.
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Static eccentricity 30.87% (FEM)
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Figure 11. Stator current spectrogram for static eccentricity level 30.87% using FEM (top) and
traditional trigonometric interpolation polynomial (bottom). Traditional trigonometric interpolation
polynomial introduces cross terms in the post-processing that could lead to misdiagnosis.

6. Experimental Validation

To validate the proposed method, an experimental setup has been arranged with a
commercial 1.1 kW, 50 Hz IM, in healthy state and with eccentricity to compare the presence
of the fault harmonics to the obtained results using the hybrid model. The characteristics
of the machines used are given in Table 1. To achieve longer startup transients the IM has
been feed to reduced voltage using an autotransformer and no external load.

Secondly, to reproduce the eccentricity conditions, the hood fastening holes have been
enlarged to introduce a small tolerance in the rotor axis place, as detailed in the zoom
in Figure 12. This figure shows the experimental setup performed for the validation of
the proposed method. The stator currents have been acquired using the current clamps
connected to a Yokogawa DL750 Oscilloscope at a sampling rate of 10 kHz during 10 s.
The stator current spectrogram of the actual machine in healthy or initial conditions (top)
and in faulty conditions (bottom) is shown in Figure 13. As can be seen, the machine
shows the same characteristic signature of the fault harmonic as the simulated machine. In
addition, it should be noted that as well as using the proposed model, the amplitude of the
USH increases when the fault degree does (Faulty), which confirm the simulation results.
Magnetic saturation as well as other magnetic effects could affect to the space harmonics.
However, these harmonics have little influence on the evolution and amplitude of the fault
harmonics as can be seen if compared the results in Figures 7 and 13. Therefore, this kind of
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analysis could be a very useful tool for condition-monitoring and fault diagnosis purposes
in IMs.

CLAMP AMPMETERS

VOLTAGE MEASUREMENT PROBES

1.1 kW IM
YOKOGAWA DL750

AUTOTRANSFORMER

Figure 12. Experimental setup used for validation of the methodology. The zoom shows the IM hood
fastener holes drilled to allow for static eccentricity faults.
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Figure 13. Stator current spectrogram of the experimental machine, in healthy (top) and in faulty
(bottom) conditions. It can be seen the characteristic trajectory in the time–frequency plane of the
USH, generated in the case of a start-up transient of 5 s, as well as the evolution of the USH amplitude,
which increases as the degree of the severity fault does.
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7. Conclusions

Hybrid FEM-Analytical modeling has become a powerful tool for rotating electrical
machine analysis, since it can provide very accurate modeling for various faulty IM condi-
tions, offering insight and the needed signals for further analysis using signal processing
and/or machine learning. By exploiting the benefits of this hybrid approach and advanced
numeric techniques for computation, in this paper the SSL and the trigonometric interpo-
lation polynomial are proposed to reduce the computation requirements to calculate an
accurate hybrid FEM-Analytical model of a faulty IM. FEM is used to compute a reduced
set of coupling parameters along the rotor positions. These FEM coupling parameters
are used to build a trigonometric interpolation polynomial through which the full set
of coupling parameters of the machine are computed. The proposed method has been
illustrated for various degrees of static eccentricity fault, from an incipient level to more
severe, to associate the amplitude of the fault harmonic components with the fault severity
degree. Following the same reasoning the method could be extended to other types of faults
or even to simultaneous faults since the proposed algorithm will compute the suitable
coefficients to faithfully reproduce each type of fault.

Coupling parameters are calculated in Section 3, and the results are saved in 3D matri-
ces as a function of rotor position. Using the SSL and taking into account the symmetry
characteristics of the fault, the parametric space and the simulation points for FEM are
defined. Thus, the trigonometric polynomial basis is developed and the inductance matrix
for the desired degree of severity computed. As shown in the paper the proposed method
obtains a similar accuracy to fully FEM analysis to compute the coupling parameters of
a faulty machine; however, the computing requirements are significantly smaller. Once
the coupling parameters are calculated, they can be used in the analytical dynamic model
where the currents can be investigated. The fault diagnosis results, i.e., fault harmonic com-
ponents, have been compared to those obtained using fully FEM simulations to compute
the coupling parameters. The method has been illustrated for the static eccentricity fault,
but the same approach can be applied to other types of faults and/or different degrees
of severity. For the validation of the results, the frequency spectrum of the stator current
measured in a laboratory set up under healthy and eccentricity case is analyzed. Thus,
the approach proposed can contribute to the development of the testing of fault diagnosis
techniques to be implemented in embedded devices, as well as to train expert systems to
assess the machine condition.
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Appendix A. HIL OP4500 Main Features

Real-time target: 4 INTEL processor cores 3.3 GHz (only 1 activated).
Solid state disk: 125 Gb.
Memory RAM: 4 Gb.
Real-time operating system: Linux RedHat.
Xilinx Kintex 7 FPGA (326.000 Logic cells and 840 DSP slice).
Sampling rate: 200 MHz.
96 user inputs/outputs (I/O): 16 analog inouts and 16 analog outputs, 24 digital

inputs and 24 digital outputs, 8 RS422 digital inputs and 8 RS422 digital outputs.
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