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Abstract—This work introduces a multisensor road surface 
identification system that considers features from four different 
kind of sensors: microphones, accelerometers, speed signals, 
and handwheel signals. Features are extracted separately from 
each sensor, joined together, and then filtered using feature 
selection before classification. The proposed system was tested 
on a set of signals extracted from a specially-converted 
passenger car driving on a closed course. Three types of road 
surfaces were considered: smooth flat asphalt, cobblestones, and 
stripes. Three classifiers were considered: linear discriminant 
analysis, support vector machines, and random forests. All the 
considered classifiers reached over 90% accuracy, with a 
maximum accuracy of 96.52% for RDF. These results show the 
potential of the proposed system for road surface identification.  
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I. INTRODUCTION 

The development of autonomous or semi-autonomous car 
technology is a promising area that is attracting considerable 
research effort in recent years. Such technologies could 
improve traffic flow, assist the driver, and reduce the potential 
for traffic accidents. One of the key parts in this technology is 
surface identification. Depending on the type of terrain, 
adjustments could be made to the car to improve the safety 
and comfort of the driver and passengers. 

Existing works on road surface identification can be 
broadly classified into three partially-overlapping groups: 
estimation of road roughness profiles, detection of weather 
conditions hazardous for driving, and road type detection. 
These three groups typically have diverging goals. Road 
roughness profiles are typically studied to obtain cost-

effective solutions for supervising and planning road 
maintenance, such as estimating road profiles from 
multisensor data [1] and detecting road damage [2]. Weather 
conditions are typically studied to increase the safety of the 
driver and passengers, such as detecting wet asphalt [3] or 
classifying between five different weather conditions [4]. 
Road type detection studies have goals that depend on the 
considered classes, such as detecting road traffic [5] or 
autonomous car technology [6-8]. Our work is comprised in 
this last category. 

Previous works have considered one or more sensors for 
road type detection. Masino et al. classify five types of 
pavement using the sound in the tire cavity  [5]. They reached 
85.3% accuracy using SVM, which they increased to 91.8% 
by post-processing the outputs of the classifier to consider that 
road types are usually constant for several meters at least. 
Bystrov et al. ([6-8]) have considered sonar, ultrasound, and 
radar to perform classification of the road surface in front of 
the car, reaching over 90% accuracy in multiple classes 
(typically, asphalt, gravel, grass and sand). 

This work presents a combination of four different sensors 
for road surface identification: (i)  an accelerometer on the 
intermediate shaft; (ii) three microphones, two directional 
microphones (left/right) on the driver’s head, pointing 
forward, and one microphone pointing to the upper side of the 
electric power steering (EPS) system column; (iii) the speed 
of the left and right wheels of the vehicle; and (iv) the torque 
and position of the handwheel. The last two sensors are 
already included in the vehicle’s EPS system, while the former 
were fitted in an specially-converted passenger car. 

II. ROAD SURFACE IDENTIFICATION SYSTEM 

The proposed surface identification system is shown in 
Fig. 1. Features are extracted separately from the four 
considered sensors, joined together, and filtered using feature 
selection before classification. The output of this classifier 
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Fig. 1. Diagram of the proposed system. 



 

 

could then be used as feedback for the car, controlling the 
suspension and other car systems in order to improve the 
safety of the driver. 

A. Feature extraction and selection 

Given that most of the channels are audio channels or 
vibration channels, we considered the following features that 
are commonly used for audio classification [9]:  

 Average power across all frequency bands 

 Centroid frequency 

 Maximum frequency 

 Spectral contrast: ratio between the minimum and 
maximum spectral values in each octave.  

 Spectral slope: first-order polynomial trend of the 
power spectrum, assuming that the spectrum follows a 
power law of the frequency.  

 Spectral flatness: ratio of the geometric and arithmetic 
means of the power spectrum. 

We also considered the following high order statistics:  

 third-order autocorrelation 

 time reversibility  

This resulted in a total of 56 features extracted from each 
of the 10 available channels, i.e., a total of 560 features for 
classification.  

B. Feature selection 

Given the high dimensionality of the data, feature 
selection was performed before classification. For this task, a 
feature ranking [10] method was chosen. Feature ranking 
methods do not transform the original features but assign a 
score or importance to each feature and then rank the features 
by score. This ranked list can then used to perform feature 
selection, e.g., by choosing the Q best-ranked features. The 
rest of the features are never used and, in a trained system, 
could be omitted from the feature extraction stage. 

In the feature ranking method used in this work, the score 
of the 𝑖th feature was computed as the average sub-score of 
the feature for each class 𝑗 , 𝑗 ൌ 1…𝐾 , with 𝐾  being the 
number of classes of the problem. This sub-score was 
computed as the informedness [11] of a simple classifier fit to 
the 1-vs-all binary problem (class 𝑗 versus every other class) 
using only feature 𝑖, where 

𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠 ൌ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ൅ 𝑟𝑒𝑐𝑎𝑙𝑙 െ 1

This indicator is very fast to compute and is robust with 
respect to differently-scaled variables, outliers, and 
mislabeling errors. 

C. Classifiers 

Although the road surface identification could be modeled 
as a change detection problem [12] followed by classification, 
in this work, we only considered classification. The following 
classifiers were selected: linear discriminant analysis (LDA), 
support vector machines with linear kernel (SVM), and 
random forests with 50 trees (RDF). These classifiers were 
chosen because of their widespread application in machine 
learning problems. Furthermore, while SVM and RDF might 

be computationally expensive to train, the trained models are 
fast to evaluate, making them appropriate for the task. 

D. Post-processing 

In an actual setting, the system will not be required to 
classify epochs in isolation; more likely, the road surface type 
will be classified continuously and the type of surface will 
change, at most, once every few seconds. Thus, the results of 
the classification were post-processed to consider time 
dependencies in the result. Thus, any change in road surface 
that was sustained for less than 1 full second was removed and 
replaced with the previous road surface. This post-processing 
produced more stable outputs that considered the temporal 
dependencies in the data. 

III. EXPERIMENT 

The data analyzed in this work were obtained using a 
specially-converted passenger car, driving on a closed course 
over three different types of surfaces: smooth flat asphalt, 
cobblestones, and stripes. A total of 63 files were taken, with 
an average length of 14.59 seconds. Each file corresponded to 
a different configuration of vehicle speed (within 0 to 30 kph) 
and road surface. The vehicle drove in a straight line during 
the capture of the data. All four sensors were sampled at a rate 
of 48 kHz. Features were extracted for each window of size 
1.5 seconds, with an overlap of 1.4 seconds between each pair 
of consecutive windows, resulting in a total of 8309 samples. 
One of the captured files is shown in Fig. 2. Around 6.50 
seconds, there was a transition from cobblestones to smooth 
flat asphalt. This transition was noticeable in the microphone 
channels and the handwheel channels, which are much noisier 
for cobblestones than they are for smooth flat asphalt. 

 
Fig. 2. Example of the captured signals from four sensors: three 

accelerometers (Acc.), three microphones (Mic.), two speed channels 
(Speed), and two handwheel signals (Wheel). 

The proposed system was tested through a series of Monte 
Carlo experiments. For each iteration of the experiment, the 
samples were randomly split 50/50 into training and testing. 
During these splits, it was ensured that the proportion of 
samples of each type of road surface was approximately the 
same for the training and testing sets. To avoid overfitting, 
samples from the same file could only appear in the training 
set or in the testing set, but not both. Feature ranking was 
estimated using the training set, and the number of chosen 
features was optimized separately for each method using 
cross-validation: 9 features for LDA, 4 features for SVM, and 
all features for RDF. An example of the results of the feature 
ranking process is shown in Fig. 3, which shows the four best-
ranking features extracted from the data displayed in Fig. 2.  
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Fig. 3. Four best-ranking features extracted from the data shown in Fig. 2. 

The transition at 6.50 seconds is marked in all four features. 

Finally, after feature selection, the considered classifiers 
were trained using the training set and tested on the testing set. 
Performance was estimated as the average of 250 iterations of 
the Monte Carlo experiment. The average performance of 
each of the considered classifiers is shown in Table I. These 
result exceed those of previous works in the literature [5-8]. 
Out of the considered classifiers, RDF was the method that 
yielded the best accuracy and stability, reaching over 96% 
accuracy with the smallest deviation. The improvement of 
RDF over the other classfiers might have owed to the fact that 
RDF is essentially a fusion of multiple decision trees, thus 
allowing for better stability and performance. 

TABLE I.  AVERAGE ACCURACY OF THE PROPOSED SYSTEM. 

Classifier LDA SVM RDF 

Average accuracy (%) 93.87 92.46 96.52 

Standard error (%) 0.25 0.31 0.14 

 

An example of the results yielded by the proposed system 
are shown in Fig. 4. Regardless of the considered 
classification method, the proposed system yielded a very 
accurate classification. As seen in Fig. 4, most of the 
differences between the actual road surface and the estimation 
took place during the transitions between road surfaces, where 
the proposed system experienced a slight delay in response. 

 
Fig. 4. Classification of two files with transitions between two types of road 

surface: a) stripes to asphalt; b) cobblestones to asphalt. 

IV. CONCLUSIONS AND FUTURE WORK 

This work has introduced a multisensor system to perform 
road surface identification. Four sensors were considered: 
accelerometers, audio signals, and the speed and handwheel 
channels of the EPS system. The proposed system extracts 
features from the four sensors, performs feature selection, and 
considers three possible classifiers: LDA, SVM, and RDF. 

The proposed system was tested on a set of real data 
captured using a specially-converted passenger car on a closed 
course over three road surfaces: smooth flat asphalt, 
cobblestones, and stripes. Over this dataset, the proposed 
system reached 96.52% accuracy and yielded very stable 
results. Most of the identification errors were produced by 
small delays in the transitions between surfaces. These initial 
results show the potential of the proposed system for road 
surface identification. 

From here, two possible lines of work remain open for 
future work. Firstly, it would be interesting to consider the 
dependence of the results on each type of sensor. In this work, 
four types sensors have been considered, two of which had to 
be specially fitted in the car. If the contribution of any given 
sensor is not too high or it can be compensated for with the 
contribution of the other sensors, it could be removed to 
reduce the expected cost of the system in view of a future 
implementation. Knowledge discovery and hierarchical 
methods could be used to determine these dependences 
[13-15]. Furthermore, this work has combined the 
contribution from each sensor by concatenation of their 
extracted features. In future works, the combination between 
sensors will be explored as a fusion problem through the use 
of advanced fusion techniques, such as alpha integration 
[16,17]. 

The second line of work consists in the testing of the 
proposed system on more realistic scenarios. The system has 
been tested with a set of short and well-behaved files. In order 
to adapt the system for performance in more realistic settings, 
field tests of longer duration would be required. Such files will 
probably be very noisy, resulting in a need to reconstruct 
missing or noisy samples [18] or remove particular sources of 
noise using blind source separation [19]. Furthermore, it is 
likely than such a thorough experimental campaign would 
result in hours or days of signals that should be carefully 
labeled by hand. In order to reduce the amount of work, future 
developments of the system will consider the possibility of 
semi-supervised learning [20,21]. To the best of our 
knowledge, semi-supervision has not been used yet on road 
surface identification, although it has been used in related 
topics such as road segmentation for image vision [22]. 
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