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Characterizations and perturbation analysis of a class of matrices
related to core-EP inverses

Mengmeng Zhou,∗ Jianlong Chen,† Néstor Thome‡

Abstract

Let A,B ∈ Cn×n with ind(A) = k and ind(B) = s and let LB = B2B †©. A
new condition (Cs,∗): R(Ak) ∩ N((Bs)∗) = {0} and R(Bs) ∩ N((Ak)∗) = {0}, is
defined. Some new characterizations related to core-EP inverses are obtained when
B satisfies condition (Cs,∗). Explicit expressions of B †© and BB †© are also given. In
addition, equivalent conditions, which guarantee that B satisfies condition (Cs,∗), are
investigated. We proved that B satisfies condition (Cs,∗) if and only if LB has a fixed
matrix form. As an application, upper bounds for the errors ‖ B †© −A †© ‖ / ‖ A †© ‖
and ‖ BB †© −AA †© ‖ are studied.

Key words: Core inverse; Core-EP inverse; Eigenprojection; Perturbation.
AMS subject classifications: 15A09; 15A23; 65F35.

1 Introduction

Let Cm×n denote the set of all m×n complex matrices. For A ∈ Cm×n, the notations
A∗, rk(A), R(A) and N(A) stand for the conjugate transpose, the rank, the range space and
the null space of matrix A, respectively. The symbols I and ‖ · ‖ denote the identity matrix
of an appropriate order and spectral norm, respectively. The unique matrix X ∈ Cn×m
satisfying the following equations:

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA,

is called the Moore-Penrose inverse of A ∈ Cm×n [25] and denoted by A†. It is well known
that the Moore-Penrose inverse of a matrix solves the optimization problem of computing
least-squares minimum-norm and it has important applications in real situations [1].

Let A ∈ Cn×n. The unique matrix X ∈ Cn×n is called the Drazin inverse of A and
denoted by AD [7] if there exist X ∈ Cn×n and positive integer k such that the following
equations hold:

XAk+1 = Ak, XAX = X, XA = AX.

If k is the smallest positive integer such that rk(Ak) = rk(Ak+1), then k is called the index
of A and denoted by ind(A). When k = 1, the Drazin inverse of A is the group inverse of A
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and denoted by A#. It is well known that the Drazin inverse is useful to solve differential
linear equations and difference linear equations [3] because of its eigenstructure properties.

In 2010, the core inverse of a complex matrix was introduced by Baksalary et al. [2].
In 2017, Xu et al. [34] characterized the core inverse by three equations. Let A ∈ Cn×n.
The unique matrix X ∈ Cn×n is the core inverse of A and denoted by A#© if and only if
X satisfies the following three equations:

(AX)∗ = AX, AX2 = X, XA2 = A.

In 2014, Manjunatha Prasad et al. [19] generalized the core inverse of a complex matrix
to the core-EP inverse of a complex matrix. In 2018, Gao et al. [9] extended the core-EP
inverse of a complex matrix to a ring. In rings, the core-EP inverse was characterized as
the unique solution of a system of three equations. Let A ∈ Cn×n with ind(A) = k. The
unique matrix X ∈ Cn×n such that the following three equations hold:

XAk+1 = Ak, AX2 = X, (AX)∗ = AX,

is called the core-EP inverse of A and denoted by A †©. The core-EP inverse of A is the
core inverse of A when k = 1. More details of the core-EP inverse can be found in [8, 20–
22, 30]. Recently, Wang et al. [32] solved the constrained matrix approximation problem
by using core inverses. Later, Mosić et al. [24] generalized this result and obtained the
unique solution to the constrained matrix minimization problem in the Euclidean norm
by applying the core-EP inverse. Let A ∈ Cn×n with ind(A) = k and any b ∈ Cn. Ji
et al. [11] proved that the constrained problem min

x∈R(Ak)
‖ b − Ax ‖2 has a unique least

squares solution A †©b, where ‖ · ‖2 is the 2-norm in Cn. The previous discussion highlights
the crucial role that the core-EP inverse plays in solving the constrained system of linear
equations.

The core inverse arises as an inverse having some common properties satisfied by the
Moore-Penrose and the Drazin inverse. Roughly speaking, it can be seen as an intermediate
inverse between both of them. In consequence, for instance, it is useful when optimization
properties and eigenstructure of matrices must be combined. However, the core inverse
was defined only on the class of index one matrices. In order to exploit this kind of
properties for matrices of arbitrary index (not necessarily at most one index), it arises the
core-EP inverse for offering the corresponding advantages and further applications. Some
numerical methods for computing the core-EP inverse and to analyze perturbations can
be found in [17, 18]. Some extensions to Minkowski spaces appear in [31] and to tensors
in [27]. Weighted core-EP inverses were analyzed, for example, in [28] and determinantal
applications can be seen in [14].

From a numerical point of view, a study of perturbation bounds for the Drazin inverse
was published in [4, 6, 12, 13, 15, 26, 33]. Let A ∈ Cn×n with ind(A) = k, and let B ∈ Cn×n
with ind(B) = s. Castro-González et al. [5] characterized the Drazin inverse of a class of
singular matrices, which satisfy conditions:

R(Ak) ∩N(Bs) = {0} and R(Bs) ∩N(Ak) = {0}.

They also considered the perturbation of the Drazin inverse under these conditions. In
[16], the author studied the closed form and perturbation bounds for the core inverse under
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certain assumptions. Later, Ma et al. [17] generalized the perturbation results for the core
inverse in [16] to the core-EP inverse. Gao et al. [10] investigated the continuity of the
core-EP inverse by two methods. Moreover, they considered perturbation bounds for the
core-EP inverse under prescribed conditions. Mosić [23] investigated the perturbation for
the weighted core-EP inverse.

Let A ∈ Cn×n with ind(A) = k. Motivated by above discussion, we will consider
matrices B ∈ Cn×n, which satisfy the following condition for some positive integer s:

(Cs,∗) R(Ak) ∩N((Bs)∗) = {0} and R(Bs) ∩N((Ak)∗) = {0}.

Then, we investigate necessary and sufficient conditions which ensure that matrices B ∈
Cn×n satisfy the condition (Cs,∗). Furthermore, we consider the perturbation bounds for
the core-EP inverse. It is worth noting that this perturbation result for the core-EP inverse
is different from the perturbation results given in [10, 17].

The rest of this paper is organized as follows. In Section 2, some auxiliary lemmas are
presented. In Section 3, we present expressions of Bπ under the condition (Cs,∗), Moreover,
we prove that Bπ is similar to Aπ, that is, there exists a nonsingular matrix P ∈ Cn×n
such that Bπ = PAπP−1. In Section 4, we present new equivalent characterizations for a
class of matrices which satisfy the condition (Cs,∗). Then we investigate representations of
a class of matrices satisfying condition (Cs,∗). In Section 5, we give the explicit expression
of B †© and obtain the perturbation bounds for the core-EP inverse, where B ∈ Cn×n with
ind(B) = s satisfies the condition (Cs,∗). In addition, a numerical example is presented to
show that the perturbation bounds is efficient.

2 Preliminaries

Let A ∈ Cn×n with ind(A) = k. It is well known that the orthogonal projector
I − AA †© corresponding to the zero eigenvalue of A is called the eigenprojection at zero
of A, and we will denote by Aπ. That is, Aπ = I − AA †© satisfies (Aπ)2 = Aπ = (Aπ)∗.
Moreover, by [8], R(Aπ) = N((Ak)∗) and N(Aπ) = R(Ak). Let B ∈ Cn×n with ind(B) = s,
we denote LB = B2B †©. We observe that R(LB) = R(Bs) and N(LB) = N((Bs)∗).

Lemma 2.1. [30] (Core-EP decomposition) Let A ∈ Cn×n with ind(A) = k. Then A can
be uniquely written as A = A1 + A2, where

(i) ind(A1) ≤ 1;

(ii) Ak2 = 0;

(iii) A∗1A2 = A2A1 = 0.

Moreover, there exists a unitary matrix U ∈ Cn×n such that

A1 = U

(
T S
0 0

)
U∗, A2 = U

(
0 0
0 N

)
U∗,

where T ∈ Cr×r is nonsingular, N is nilpotent with index k and rk(Ak) = r.
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For A ∈ Cn×n being as in Lemma 2.1, it is known [30] that

A †© = U

(
T−1 0

0 0

)
U∗, Aπ = U

(
0 0
0 I

)
U∗.

Lemma 2.2. [9] Let A ∈ Cn×n with ind(A) = k. Then the following statements hold:

(i) AA †© = Am(A †©)m, for arbitrary positive integer m;

(ii) A †© = ADAk(Ak)†;

(iii) (A †©) †© = (A †©)#© = A2A †©;

(iv) ((A †©) †©) †© = A †©.

Lemma 2.3. [3] Let M =

(
A B
C D

)
be a complex square matrix with A ∈ Cr×r nonsingular

and denote Z = I + A−1BCA−1. Then

(i) rk(M) = rk(A) if and only if D = CA−1B;

(ii) If rk(M) = rk(A), then ind(M) = 1 if and only if Z is nonsingular.

Lemma 2.4. Let B1 ∈ Cm×m be nonsingular and let P ∈ Cm×n and Q ∈ Cn×m be

arbitrary matrices. Define W =

(
B1 B1P
QB1 QB1P

)
∈ C(m+n)×(m+n). Then W is core

invertible if and only if I + PQ is nonsingular. In this case,

W #© =

(
((I + Q∗Q)B1(I + PQ))−1 ((I + Q∗Q)B1(I + PQ))−1Q∗

Q((I + Q∗Q)B1(I + PQ))−1 Q((I + Q∗Q)B1(I + PQ))−1Q∗

)
. (2.1)

Proof. We observe that rk(W ) = rk(B1). By Lemma 2.3 (ii), we have W is core invertible
if and only if I + PQ is nonsingular. By setting X as the matrix on the right-hand side
of the equality (2.1), it is easy to check that (WX)∗ = WX, WX2 = X and XW 2 = W .
That is, X = W #©.

Lemma 2.5. [29, 35] Let A,B,C ∈ Cn×n. Then

(i) rk(AB) = rk(B)− dim(R(B) ∩N(A));

(ii) rk(ABC) ≥ rk(AB) + rk(BC)− rk(B).

A slight modification in Lemma 2.1 in [5] yields the following result.

Lemma 2.6. [5] Let A,U ∈ Cn×n with ind(A) = k and U is a unitary matrix. Then

I −Aπ + UAπU∗Aπ is nonsingular if and only if I −Aπ + U∗AπUAπ is nonsingular.
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3 An expression for the eigenprojection at zero of B

In this section, we give expressions of Bπ when B ∈ Cn×n satisfies (Cs,∗).
Firstly, we give an auxiliary lemma.

Lemma 3.1. Let A ∈ Cn×n with ind(A) = k. If B ∈ Cn×n with ind(B) = s satisfies
condition (Cs,∗), then the following statements hold:

(i) I + (L∗B −A)A †© is nonsingular;

(ii) I + (LB −A)A †© is nonsingular;

(iii) I + (A †©)∗(LB −A∗) is nonsingular;

(iv) I − (I + (A †©)∗(L∗B −A∗))−1Aπ −Aπ(I + (LB −A)A †©)−1 is nonsingular.

Proof. (i) : Suppose that (I + (L∗B − A)A †©)x = 0, for x ∈ Cn. Then Aπx = −L∗BA †©x.
From LB = B2B †© = Bs+1(Bs)†, we obtain R(L∗B) = R(Bs(Bs)†B∗) ⊆ R(Bs) and

rk(Bs) = rk(B2B †©B †©) ≤ rk(LB) = rk(L∗B) ≤ rk(Bs),

from which R(L∗B) = R(Bs). Then, we have Aπx ∈ R(Aπ) ∩ R(L∗B) = N((Ak)∗) ∩
R(Bs) = {0}. So, Aπx = 0, we get that x ∈ N(Aπ) = R(Ak). From L∗BA

†©x = 0, we
get A †©x ∈ N(L∗B) ∩ R(Ak) = N((Bs)∗) ∩ R(Ak) = {0}. Thus, we obtain A †©x = 0.
Since x ∈ N(A †©) ∩ R(Ak) = N((Ak)∗) ∩ R(Ak) = {0}, we know that x = 0. Hence,
I + (L∗B −A)A †© is nonsingular.

(ii) and (iii) : Similar to the proof of (i).
(iv) : Let x ∈ Cn such that (I−(I+(A †©)∗(L∗B−A∗))−1Aπ−Aπ(I+(LB−A)A †©)−1)x =

0. Since
(I − (I + (A †©)∗(L∗B −A∗))−1Aπ)x = Aπ(I + (LB −A)A †©)−1x,

after doing some algebraic computations, we have

(I + (A †©)∗(L∗B −A∗))−1(A †©)∗L∗Bx = Aπ(I + (LB −A)A †©)−1x.

Since, by definition of A †© and (A †©)∗(I+(L∗B−A)A †©) = (I+(A †©)∗(L∗B−A∗))A †© holds,
we obtain that

(I + (A †©)∗(L∗B −A∗))−1(A †©)∗ = A †©(I + (L∗B −A)A †©)−1.

Then

(I + (A †©)∗(L∗B −A∗))−1(A †©)∗L∗Bx ∈ R(A †©) ∩R(Aπ) = R(Ak) ∩N((Ak)∗) = {0}.

So,
(A †©)∗L∗Bx = 0 = Aπ(I + (LB −A)A †©)−1x.

Then L∗Bx = (B2B †©)∗x ∈ N((A †©)∗) ∩ R(Bs) = N((Ak)∗) ∩ R(Bs) = {0}. Thus, x ∈
N(L∗B) = N((Bs)∗). Since (I + (LB −A)A †©)−1x ∈ N(Aπ) = R(Ak), we have (I + (LB −
A)A †©)−1x = Aky for some y ∈ Cn. Since AA †© is an orthogonal projector onto R(Ak)
[8], we have x = LBA

†©Aky = B2B †©A †©Aky. Hence, x ∈ N((Bs)∗) ∩ R(Bs) = {0}. This
completes the proof.
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Now, we present an expression for Bπ by using Lemma 3.1.

Theorem 3.2. Let A ∈ Cn×n with ind(A) = k. If B ∈ Cn×n with ind(B) = s satisfies
condition (Cs,∗), then Bπ is similar to Aπ. Moreover,

Bπ = −(I + (A †©)∗(L∗B −A∗))−1AπX−1 = −X−1Aπ(I + (LB −A)A †©)−1

= XAπX−1 = X−1AπX,

where X = I − (I + (A †©)∗(L∗B −A∗))−1Aπ −Aπ(I + (LB −A)A †©)−1. As a consequence,
BB †© is similar to AA †©.

Proof. By Lemma 3.1, we know that the expressions I+(A †©)∗(L∗B−A∗), I+(LB−A)A †©

and X are nonsingular. Set H = (I + (A †©)∗(L∗B −A∗))−1 and W = (I + (LB −A)A †©)−1.
Then X = I −HAπ −AπW . Since

Aπ(I + (A †©)∗(L∗B −A∗)) = Aπ = (I + (LB −A)A †©)Aπ,

we have AπH = Aπ = WAπ. Since

XHAπ = (I −HAπ −AπW )HAπ = HAπ −HAπHAπ −AπWHAπ

= −AπWHAπ = AπW (I −HAπ −AπW ) = AπWX,

we have HAπX−1 = X−1AπW. Setting Q = −HAπX−1. It is easy to see that XAπ =
−HAπ and AπX = −AπW . So, we get XAπX−1 = X−1AπX. We have Q = XAπX−1,
which is obviously idempotent. Next, we will prove that R(Q) = N((Bs)∗) and N(Q) =
R(Bs). Let x ∈ N((Bs)∗), by Lemma 2.2, we have

Aπx + (A †©)∗L∗Bx = Aπx + (A †©)∗((Bs)†)∗(Bs+1)∗x = Aπx.

From the definition of H, we have x = HAπx. So, x ∈ R(Q). Suppose that x ∈ R(Q).
There exists y ∈ Cn such that x = HAπy. We have (Aπ + (A †©)∗L∗B)x = Aπy. We easily
see Aπx = (AπH)Aπy = Aπy. Then (A †©)∗L∗Bx = 0. We have L∗Bx ∈ N((A †©)∗)∩R(Bs) =
N((Ak)∗) ∩R(Bs) = {0}. Thus, x ∈ N(L∗B) = N((Bs)∗). Hence, R(Q) = N((Bs)∗).

Since X is nonsingular, N(Q) = N(AπW ). Let x ∈ N(Q). Then

AπWx = (W−1 − LBA
†©)Wx = (I − LBA

†©W )x = 0.

We obtain that x = LBA
†©Wx. So, x ∈ R(LB) = R(Bs). That is, N(Q) ⊆ R(Bs). Since

ind(B) = s and Cn = R(Q)⊕N(Q) = R(Bs)⊕N((Bs)∗), we have N(Q) = R(Bs). Thus,
Q = Bπ and Bπ is similar to Aπ. As a consequence, BB †© is similar to AA †©.

4 Characterizations of matrices satisfying condition (Cs,∗)

In this section, we characterize matrices B ∈ Cn×n satisfying the condition (Cs,∗)
with ind(B) = s. We prove that the matrix B ∈ Cn×n satisfies (Cs,∗) if and only if
I−Aπ−Bπ is nonsingular. Then we present the representation of matrix LB with respect
to the core-EP decomposition of matrix A ∈ Cn×n.
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Theorem 4.1. Let A ∈ Cn×n with ind(A) = k. Then the following statements on B ∈
Cn×n with ind(B) = s are equivalent:

(i) B satisfies condition (Cs,∗);

(ii) rk(Bs) = rk(Ak) = rk((Ak)∗LB) = rk(LBA
k);

(iii) rk(Bs) = rk(Ak) = rk((Ak)∗LBA
k);

(iv) rk(Bs) = rk(Ak) and I − (I −Bπ)Aπ is nonsingular;

(v) I − (Aπ −Bπ)2 is nonsingular;

(vi) I −Aπ −Bπ is nonsingular.

Proof. (i)⇒ (ii) : Since R(Bs)∩N((Ak)∗) = {0} and R(Ak)∩N((Bs)∗) = {0}, by Lemma
2.5 (i), we have

rk(BB †©AA †©) = rk(AA †©)− dim(R(AA †©) ∩N(BB †©))

= rk(Ak)− dim(R(Ak) ∩N((Bs)∗))

= rk(Ak)

and

rk(AA †©BB †©) = rk(BB †©)− dim(R(BB †©) ∩N(AA †©))

= rk(Bs)− dim(R(Bs) ∩N((Ak)∗))

= rk(Bs).

From rk(AA †©BB †©) = rk((AA †©BB †©)∗) = rk(BB †©AA †©), we obtain that rk(Bs) =
rk(Ak). Since LB = B2B †© and ind(B) = s, we obtain rk(LB) = rk(Bs). By Lemma 2.5
(i), we have

rk((Ak)∗LB) = rk(Bs)− dim(R(Bs) ∩N((Ak)∗) = rk(Bs)

and
rk(LBA

k) = rk(Ak)− dim(R(Ak) ∩N((Bs)∗) = rk(Ak).

(ii)⇒ (iii) : We observe that rk((Ak)∗LBA
k) ≤ rk(Ak) = rk(Bs). By Lemma 2.5 (ii),

rk((Ak)∗LBA
k) ≥ rk((Ak)∗LB) + rk(LBA

k)− rk(LB) = rk(Bs).
(iii) ⇒ (iv) : From (iii) and Lemma 2.5, we have R(Ak) ∩ N((Bs)∗) = {0} and

R(Bs)∩N((Ak)∗) = {0}. Let x ∈ Cn such that (I−Aπ +BπAπ)x = 0. Then (I−Aπ)x =
−BπAπx. We obtain that

(I −Aπ)x ∈ R(Ak) ∩R(Bπ) = R(Ak) ∩N((Bs)∗) = {0}.

So, x = Aπx and BπAπx = 0. Thus, Aπx ∈ R(Aπ) ∩N(Bπ) = N((Ak)∗) ∩ R(Bs) = {0}.
Hence, x = 0. That is, I −Aπ + BπAπ is nonsingular.

(iv)⇒ (v) : Since I − (Aπ −Bπ)2 = (I −Aπ +BπAπ)(I −Bπ +AπBπ), it is sufficient

to verify that I − Bπ + AπBπ is nonsingular. Taking A = U

(
TA SA
0 NA

)
U∗ and B =
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V

(
TB SB
0 NB

)
V ∗, where U and V are unitary matrices, TA and TB are nonsingular. Since

rk(Bs) = rk(Ak), TA and TB are of the same size. Since U∗AπU =

(
0 0
0 I

)
= V ∗BπV , we

get Bπ = V U∗AπUV ∗. Since I − Aπ + BπAπ = I − Aπ + V U∗AπUV ∗Aπ is nonsingular,
by Lemma 2.6, I −Aπ + UV ∗AπV U∗Aπ = UV ∗(I −Bπ + AπBπ)V U∗ is nonsingular. So,
I −Bπ + AπBπ is nonsingular. Thus, I − (Aπ −Bπ)2 is nonsingular.

(v)⇒ (vi) : Similar to [5, Theorem 2.1 (e)⇒ (f)].
(vi) ⇒ (i) : Suppose that I − Aπ − Bπ is nonsingular. Since I − Aπ and Bπ are

idempotent matrices, by [13, Theorem 1.2], we have R(I −Aπ)∩R(Bπ) = {0} and N(I −
Aπ)∩N(Bπ) = {0}. Since R(I−Aπ) = R(Ak), R(Bπ) = N((Bs)∗), N(I−Aπ) = N((Ak)∗)
and N(Bπ) = R(Bs), we obtain that R(Ak) ∩N((Bs)∗) = {0} and R(Bs) ∩N((Ak)∗) =
{0}.

Theorem 4.2. Let A ∈ Cn×n with ind(A) = k. Then the following conditions on B ∈
Cn×n with ind(B) = s are equivalent:

(i) B satisfies condition (Cs,∗);

(ii) I + (LB −A)A †© is nonsingular, Aπ(I + (LB −A)A †©)−1LB = 0;

(ii’) I + (LB − A)A †© is nonsingular, AπXLB = 0, where X = I − (I + (A †©)∗(L∗B −
A∗))−1Aπ −Aπ(I + (LB −A)A †©)−1;

(iii) If A is written as in Lemma 2.1, then LB has the following matrix form:

LB = U

(
B1 B1P
QB1 QB1P

)
U∗,

for any matrices B1 ∈ Cr×r, P and Q such that B1 and I + PQ are nonsingular;

(iv) rk(Bs) = rk(Ak), I + (LB −A)A †© is nonsingular.

Proof. (i) ⇒ (ii) : By Lemma 3.1, we know that I + (LB − A)A †© is nonsingular. By
Lemma 2.2 and Theorem 3.2, we have

0 = BπBs+1(B †©)s = BπB2B †© = BπLB = −X−1Aπ(I + (LB −A)A †©)−1LB,

where X = I − (I + (A †©)∗(L∗B −A∗))−1Aπ −Aπ(I + (LB −A)A †©)−1.
(ii) ⇔ (ii′) : From the proof of Theorem 3.2, we know that AπX = −AπW, where

W = (I + (LB −A)A †©)−1. By expression of Bπ, it is clear.

(ii)⇒ (iii) : Suppose that LB = U

(
B11 B12

B21 B22

)
U∗. Then we have

I + (LB −A)A †© = U

(
B11T

−1 0
B21T

−1 I

)
U∗.

Since I + (LB −A)A †© is nonsingular, we obtain that B11 is nonsingular. From

0 = Aπ(I + (LB −A)A †©)−1LB = U

(
0 0

0 B22 −B21B
−1
11 B12

)
U∗,
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we get B22 = B21B
−1
11 B12. By Lemma 2.3 (i), we know that rk(LB) = rk(B11). Since

L2
B = B3B †©, we have

rk(LB) = rk(B2B †©) = rk(B3B †©B †©) ≤ rk(B3B †©) = rk(L2
B) ≤ rk(LB).

So, rk(LB) = rk(L2
B). That is, ind(LB) = 1. By Lemma 2.3 (ii), we have I+B−111 B12B21B

−1
11

is nonsingular. Taking B11 := B1, P := B−11 B12 and Q := B21B
−1
1 . Then B22 = QB1P .

From the nonsingularity of I + B−111 B12B21B
−1
11 , we obtain that I + PQ is nonsingular.

(iii) ⇒ (i) : By Lemma 2.3, we have rk(LB) = rk(B1) = rk(Ak) and ind(LB) = 1.
Since

rk(Bs) = rk(BDB2B †©Bs) ≤ rk(LB) ≤ rk(Bs),

we have rk(Bs) = rk(LB) = rk(Ak). By a direct computation, we have

rk((Ak)∗LBA
k) = rk(U

(
I 0

(T−kM)∗ I

)(
(T k)∗B1T

k 0
0 0

)(
I T−kM
0 I

)
U∗)

= rk((T k)∗B1T
k) = rk(Ak),

where M =
k−1∑
i=0

T iSNk−1−i. So, rk(Bs) = rk(Ak) = rk((Ak)∗LBA
k). By Theorem 4.1 (iii),

we know that B satisfies condition (Cs,∗).
(iii)⇒ (iv) : According to the proof of (iii)⇒ (i), we have rk(Bs) = rk(Ak). The rest

is clear by a direct computation.

(iv) ⇒ (iii) : Taking LB = U

(
B11 B12

B21 B22

)
U∗, where B11 and T have the same size.

Since I + (LB − A)A †© is nonsingular, by the proof of (ii) ⇒ (iii), we know that B11 is
nonsingular. Since rk(LB) = rk(Bs) = rk(Ak), we get that rk(LB) = rk(B11). By Lemma
2.3 (i), we know that B22 = B21B

−1
11 B12. From ind(LB) = 1, by Lemma 2.3 (ii), we have

I +B−111 B12B21B
−1
11 is nonsingular. Denoting B1 := B11. Then there exist matrices P and

Q such that B12 = B1P , B21 = QB1 and B22 = QB1P . Thus I + PQ is nonsingular.

Analogously, we have the following result.

Corollary 4.3. Let A ∈ Cn×n with ind(A) = k. Then the following conditions on B ∈
Cn×n with ind(B) = s are equivalent:

(i) B satisfies condition (Cs,∗);

(ii) I + (A †©)∗(L∗B −A∗) is nonsingular, LB(I + (A †©)∗(L∗B −A∗))−1Aπ = 0;

(ii’) I + (A †©)∗(L∗B −A∗) is nonsingular, LBXAπ = 0, where X = I − (I + (A †©)∗(L∗B −
A∗))−1Aπ −Aπ(I + (LB −A)A †©)−1;

(iii) If A is written as in Lemma 2.1, then LB has the following matrix form:

LB = U

(
B1 B1P
QB1 QB1P

)
U∗,

for any matrices B1, P and Q such that B1 and I + PQ are nonsingular;

(iv) rk(Bs) = rk(Ak), I + (A †©)∗(L∗B −A∗) is nonsingular.
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5 Perturbation bounds

In this section, we give the perturbation bounds for the core-EP inverse under the
condition (Cs,∗). First, we obtain an explicit expression for B †©.

Theorem 5.1. Let A ∈ Cn×n with ind(A) = k and let B ∈ Cn×n with ind(B) = s
satisfying the condition (Cs,∗). Denote E = LB −A and F = LB −A∗, then

B †© = (A †© + (I −W )Y Ψ−1A †© + (I + Y )

× (A †© −A †©EA †©Φ−1 −Ψ−1(Ψ− I)A †©Φ−1)(I + Y ∗Y )−1Y ∗)Φ−1, (5.1)

where Φ = I + EA †©, Φ̃ = I + (A †©)∗F , W = (Φ̃)−1(A †©)∗FAπ, Y = AπEA †©Φ−1 and
Ψ = I + WY .

Proof. Let A ∈ Cn×n be as in Lemma 2.1. By Theorem 4.2, we have

LB = U

(
B1 B1P
QB1 QB1P

)
U∗,

where B1, P , and Q are any matrices such that B1 and I +PQ are nonsingular. It is easy
to check that ind(LB) = 1. From [2, Lemma 2.2] and [8, Theorem 2.9], we can deduce
that B †© = (B2B †©) †© = (B2B †©)#© = L

#©
B . Now, by Lemma 2.4, we get

B †© = L
#©
B

= U

(
((I + Q∗Q)B1(I + PQ))−1 ((I + Q∗Q)B1(I + PQ))−1Q∗

Q((I + Q∗Q)B1(I + PQ))−1 Q((I + Q∗Q)B1(I + PQ))−1Q∗

)
U∗.

By denoting E = LB −A, F = LB −A∗, Φ = I + EA †© and Φ̃ = I + (A †©)∗F , we have

E = U

(
B1 − T B1P − S
QB1 QB1P −N

)
U∗, F = U

(
B1 − T ∗ B1P
QB1 − S∗ QB1P −N∗

)
U∗,

Φ = U

(
B1T

−1 0
QB1T

−1 I

)
U∗ and Φ̃ = U

(
(T−1)∗B1 (T−1)∗B1P

0 I

)
U∗.

Since Φ and Φ̃ are nonsingular, we get that

Φ−1 = U

(
TB−11 0
−Q I

)
U∗ and Φ̃−1 = U

(
B−11 T ∗ −P

0 I

)
U∗.

Then

B †©Φ = U

(
(I + PQ)−1T−1 ((I + Q∗Q)B1(I + PQ))−1Q∗

Q(I + PQ)−1T−1 Q((I + Q∗Q)B1(I + PQ))−1Q∗

)
U∗.

Denote W = Φ̃−1(A †©)∗FAπ and Y = AπEA †©Φ−1. By a direct computation, we obtain
that

W = U

(
0 P
0 0

)
U∗ and Y = U

(
0 0
Q 0

)
U∗.
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Taking Ψ = I +WY . Then Ψ = U

(
I + PQ 0

0 I

)
U∗ and Ψ−1 = U

(
(I + PQ)−1 0

0 I

)
U∗.

By denoting

H1 = A †© + (I −W )Y Ψ−1A †©,

H2 = A †© −A †©EA †©Φ−1 −Ψ−1(Ψ− I)A †©Φ−1,

H3 = (I + Y )H2(I + Y ∗Y )−1Y ∗,

we compute that

H1 = U

(
(I + PQ)−1T−1 0
Q(I + PQ)−1T−1 0

)
U∗, H2 = U

(
(I + PQ)−1B−11 0

0 0

)
U∗

and

H3 = U

(
I 0
Q I

)(
(I + PQ)−1B−11 0

0 0

)(
(I + Q∗Q)−1 0

0 I

)(
0 Q∗

0 0

)
U∗

= U

(
0 ((I + Q∗Q)B1(I + PQ))−1Q∗

0 Q((I + Q∗Q)B1(I + PQ))−1Q∗

)
U∗.

We observe that B †©Φ = H1 + H3. Then

B †© = (H1 + H3)Φ
−1.

By substituting H1 and H3, we obtain the equality (5.1).

By using the same notations as in the proof of the Theorem 5.1, we have the following
results.

Theorem 5.2. Let A ∈ Cn×n with ind(A) = k and let B ∈ Cn×n with ind(B) = s
satisfying the condition (Cs,∗). Denote E = LB −A and F = LB −A∗. If max{‖ EA †© ‖
, ‖ (A †©)∗F ‖} < 1 and ‖ AπEA †© ‖< 1− ‖ EA †© ‖, then

‖ B †© −A †© ‖
‖ A †© ‖

≤ ‖ EA †© ‖
1− ‖ EA †© ‖

+
‖ Ψ−1 ‖‖ AπEA †© ‖

(1− ‖ EA †© ‖)2
(1 +

‖ (A †©)∗FAπ ‖
1− ‖ (A †©)∗F ‖

)

+
‖ AπEA †© ‖

(1− ‖ EA †© ‖)(1− ‖ EA †© ‖ − ‖ AπEA †© ‖)

× (1 +
‖ EA †© ‖

1− ‖ EA †© ‖
+
‖ Ψ−1 ‖‖ AπEA †© ‖‖ (A †©)∗FAπ ‖
(1− ‖ EA †© ‖)2(1− ‖ (A †©)∗F ‖)

). (5.2)

If max{‖ EA †© ‖, ‖ (A †©)∗F ‖} < 1

1+
√
‖Aπ‖

, then

‖ Ψ−1 ‖≤ (1− ‖ (A †©)∗F ‖)(1− ‖ EA †© ‖)
(1− ‖ (A †©)∗F ‖)(1− ‖ EA †© ‖)− ‖ (A †©)∗F ‖‖ AπEA †© ‖

, (5.3)

where Ψ = I + (I + (A †©)∗F )−1(A †©)∗FAπEA †©(I + EA †©)−1.
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Proof. Since B †©Φ−A †© = B †© −A †© + (B †© −A †© + A †©)EA †©, we have

B †© −A †© + (B †© −A †© + A †©)EA †© = H1 −A †© + H3,

where Φ = I + EA †©, Y = AπEA †©Φ−1, H1 = A †© + (I − W )Y Ψ−1A †© and H3 =
(I + Y )H2(I + Y ∗Y )−1Y ∗. Then

‖ B †© −A †© ‖≤‖ EA †© ‖‖ B †© −A †© ‖ + ‖ EA †© ‖‖ A †© ‖ + ‖ H1 −A †© ‖ + ‖ H3 ‖ .

Since max{‖ EA †© ‖, ‖ (A †©)∗F ‖} < 1 and ‖ AπEA †© ‖< 1− ‖ EA †© ‖, we compute that

‖ Φ−1 ‖≤ 1

1− ‖ EA †© ‖
and ‖ Φ̃−1 ‖≤ 1

1− ‖ (A †©)∗F ‖
,

‖ H1 −A †© ‖≤ ‖ A
†© ‖‖ Ψ−1 ‖‖ AπEA †© ‖

1− ‖ EA †© ‖
(1 +

‖ (A †©)∗FAπ ‖
1− ‖ (A †©)∗F ‖

),

‖ H3 ‖ ≤
‖ H2 ‖‖ Y ‖ (1+ ‖ Y ‖)

1− ‖ Y ‖2
=
‖ Y ‖‖ H2 ‖

1− ‖ Y ‖

≤ ‖ A †© ‖‖ AπEA †© ‖
1− ‖ EA †© ‖ − ‖ AπEA †© ‖

× (1 +
‖ EA †© ‖

1− ‖ EA †© ‖
+
‖ Ψ−1 ‖‖ AπEA †© ‖‖ (A †©)∗FAπ ‖
(1− ‖ EA †© ‖)2(1− ‖ (A †©)∗F ‖)

).

By substitution and simplification, we obtain inequality (5.2).
If max{‖ EA †© ‖, ‖ (A †©)∗F ‖} < 1

1+
√
‖Aπ‖

, then

‖ Ψ− I ‖≤ ‖ (A †©)∗F ‖‖ AπEA †© ‖
(1− ‖ EA †© ‖)(1− ‖ (A †©)∗F ‖)

<
‖ Aπ ‖ ( 1

1+
√
‖Aπ‖

)2

(1− 1

1+
√
‖Aπ‖

)2
= 1.

Thus,

‖ Ψ−1 ‖≤ (1− ‖ (A †©)∗F ‖)(1− ‖ EA †© ‖)
(1− ‖ (A †©)∗F ‖)(1− ‖ EA †© ‖)− ‖ (A †©)∗F ‖‖ AπEA †© ‖

.

Theorem 5.3. Let A ∈ Cn×n with ind(A) = k and let B ∈ Cn×n with ind(B) = s
satisfying the condition (Cs,∗). Denote E = LB − A. If ‖ EA †© ‖< 1 and ‖ AπEA †© ‖<
1− ‖ EA †© ‖, then

‖ Bπ −Aπ ‖≤ ‖ A
πEA †© ‖

1− ‖ EA †© ‖
+

‖ AπEA †© ‖
(1− ‖ EA †© ‖)(1− ‖ EA †© ‖ − ‖ AπEA †© ‖)

. (5.4)

Proof. Suppose that A is written as in Lemma 2.1. By Theorem 3.2, we have Bπ +
BπEA †© = −X−1Aπ, where X = I −Aπ(I +EA †©)−1− ((I +EA †©)−1)∗Aπ. By the proof
of Theorem 5.1, we obtain

X = U

(
I Q∗

Q −I

)
U∗ and X−1 = U

(
(I + Q∗Q)−1 (I + Q∗Q)−1Q∗

Q(I + Q∗Q)−1 Q(I + Q∗Q)−1Q∗ − I

)
U∗.
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So, −X−1Aπ = Aπ +U

(
0 −(I + Q∗Q)−1Q∗

0 −Q(I + Q∗Q)−1Q∗

)
U∗. Then −X−1Aπ = Aπ − (I + Y )(I +

Y ∗Y )−1Y ∗, where Y = AπEA †©Φ−1. Thus, we have

Bπ −Aπ = −X−1Aπ −Aπ − (Bπ −Aπ + Aπ)EA †©

= −(Bπ −Aπ + Aπ)EA †© − (I + AπEA †©Φ−1)

× (I + (AπEA †©Φ−1)∗AπEA †©Φ−1)−1(AπEA †©Φ−1)∗.

By substitution and simplification, we have inequality (5.4).

Remark 5.4. The upper bound of ‖ Bπ − Aπ ‖ is the upper bound of ‖ BB †© − AA †© ‖.
In fact, ‖ Bπ −Aπ ‖=‖ −(BB †© −AA †©) ‖=‖ BB †© −AA †© ‖ .

Finally, the following examples illustrate the above theorems.

Example 5.5. Let A =


1 2 1

10
1
10

2 1 0 0
0 0 0 1
0 0 0 0

 with ind(A) = 2. Then A †© =


−1

3
2
3 0 0

2
3 −1

3 0 0
0 0 0 0
0 0 0 0

.

Set B ∈ C4×4 with ind(B) = s, where 0 < s < 4. By the equivalence of condition

(i) and condition (iii) in Theorem 4.2, we set B1 =

(
1 2
2 1

)
, P =

(
1
10

1
10

0 0

)
and

Q =

(
1
5 0
1
10 0

)
. By using MATLAB, we obtain

LB =


1 2 1

10
1
10

2 1 1
5

1
5

1
5

2
5

1
50

1
50

1
10

1
5

1
100

1
100

 , B †© = L
#©
B =


− 409

1327
200
309 − 400

6489 − 200
6489

40
63 −1

3
8
63

4
63

− 400
6489

40
309 − 80

6489 − 40
6489

− 200
6489

20
309 − 40

6489 − 20
6489

 ,

Aπ =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 , Bπ =


1
21 0 − 4

21 − 2
21

0 0 0 0
− 4

21 0 101
105 − 2

105
− 2

21 0 − 2
105

104
105

 ,

E = LB −A =


0 0 0 0
0 0 1

5
1
5

1
5

2
5

1
50 −49

50
1
10

1
5

1
100

1
100

 , F = LB −A∗ =


0 0 1

10
1
10

0 0 1
5

1
5

1
10

2
5

1
50

1
50

0 1
5 − 99

100
1

100

 .

In this case, we have ‖ EA †© ‖= 646
2889 < 1, ‖ (A †©)∗F ‖= 197

1393 < 1 and ‖ EA †© ‖ + ‖
AπEA †© ‖= 1292

2889 < 1. Denoting by v, v1 and v2 the value of the right side of inequalities
(5.2), (5.3) and (5.4), respectively. By Theorem 5.2 and Theorem 5.3, we obtain v = 1450

1019

and v2 = 1292
1597 . By a direct computation, we have ‖B

†©−A †©‖
‖A †©‖ = 1973

11791 < v and ‖ Bπ−Aπ ‖=
769
3524 < v2. Since 1

1+
√
‖Aπ‖

= 985
1393 , we know that max{‖ EA †© ‖, ‖ (A †©)∗F ‖} < 1

1+
√
‖Aπ‖

.

By using the same notation as in the proof of Theorem 5.1, we obtain ‖ Ψ−1 ‖= 1. By a
direct computation, we get v1 = 1855

1769 . So, ‖ Ψ−1 ‖< v1.
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Example 5.6. Let A =


1
10 0 1

2 0 0
0 1

10 0 0 1
5

0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 with ind(A) = 3. It is easy to obtain

that A †© =


10 0 0 0 0
0 10 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

. Setting LB =


1
10 0 1

100 0 1
400

0 1
10 0 1

200 0
1

300
1

300
1

3000
1

6000
1

12000
1

500 0 1
5000 0 1

20000
0 1

600 0 1
12000 0

 with

ind(B) = s, where 0 < s < 5. Since rk(Bs) = rk(LB) = 2 = rk(Ak) = rk((Ak)∗LBA
k), by

Theorem 4.1, B satisfies consition (Cs,∗). By using MATLAB, it is easy to obtain

Aπ = diag(0, 0, 1, 1, 1), B †© =


5165
519 − 37

765
1744
5283

1033
5190 − 24

29773
− 71

3376
5063
507

286
861 − 15

35662
241
1448

287
867

373
1126

121
5481

221
33381

111
20105

1033
5190 − 14

14473
119

18024
119

29894 − 12
744325

− 24
68471

241
1448

116
20953 − 1

142648
229

82554

 ,

Bπ =


59

39135
18

16247 − 89
2677 − 53

2654
3

162470
18

16247
25

18041 − 40
1203

2
90261 − 1129

67834
− 89

2677 − 40
1203

450
451 − 15

22559 − 2
3609

− 53
2654

2
90261 − 15

22559
2503
2504 0

3
162470 − 1129

67834 − 2
3609 0 3604

3605

 ,

E = LB −A =


0 0 − 49

100 0 1
400

0 0 0 1
200 −1

5
1

300
1

300
1

3000 −5999
6000

1
12000

1
500 0 1

5000 0 −19999
20000

0 1
600 0 1

12000 0

 ,

F = LB −A∗ =


0 0 1

100 0 1
400

0 0 0 1
200 0

−149
300

1
300

1
3000

1
6000

1
12000

1
500 0 −4999

5000 0 1
20000

0 −119
600 0 −11999

12000 0

 .

In this case, we have ‖ EA †© ‖= 288
5689 < 1, ‖ (A †©)∗F ‖= 211

2047 < 1 and ‖ EA †© ‖ + ‖
AπEA †© ‖= 576

5689 < 1. Denoting by v, v1 and v2 the value of the right side of inequalities
(5.2), (5.3) and (5.4), respectively. By Theorem 5.2 and Theorem 5.3, we obtain v = 680

3801

and v2 = 576
5113 . By a direct computation, we have ‖B

†©−A †©‖
‖A †©‖ = 505

9601 < v and ‖ Bπ−Aπ ‖=
113
2235 < v2. Since 1

1+
√
‖Aπ‖

= 1
2 , we know that max{‖ EA †© ‖, ‖ (A †©)∗F ‖} < 1

1+
√
‖Aπ‖

.

By using the same notation as in the proof of Theorem 5.1, we obtain ‖ Ψ−1 ‖= 810
809 . By

a direct computation, we get v1 = 816
811 . So, ‖ Ψ−1 ‖< v1.

These two examples highlight the powerful of our theorems because they show that
we can compute the core-EP inverse of B without needing the explicit computation of
matrix B.
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