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Abstract: A new parametric family of iterative schemes for solving nonlinear systems is presented.
Fourth-order convergence is demonstrated and its stability is analyzed as a function of the parameter
values. This study allows us to detect the most stable elements of the class, to find the fractals in the
boundary of the basins of attraction and to reject those with chaotic behavior. Some numerical tests
show the performance of the new methods, confirm the theoretical results and allow to compare the
proposed schemes with other known ones.

Keywords: nonlinear systems; iterative methods; convergence; stability; discrete dynamics

1. Introduction

To find the solutions Z of systems of nonlinear equations F(z) = 0, where F : D C R" — R”
is a real vectorial function of several variables, is a classical and important problem in
Science and Engineering. There are no analytical methods to find the solutions to these
problems, so we must use iterative schemes that approximate them.

The most known algorithm in this context is classical Newton’s scheme, expressed as

200D = 200 _ [Pz 1Rz, i =0,1,...,
where F’ represents the Jacobian matrix associated to function F. This scheme has quadratic
convergence under some conditions of F, F’ and the initial estimation z(%).

Different techniques can be used in order to design Newton-like iterative schemes,
as direct composition, weight functions, estimations of F’(z) by means of the divided
difference operator, etc. So, some high-order methods for computing the solutions of
F(z) = 0 have been proposed in the literature. These new schemes are proposed with
the aim of accelerating the convergence or improving the computational efficiency. For
example, recently the authors proposed in [1-3] new parametric families of iterative
methods and a fast algorithm for solving nonlinear systems. Other researchers have
published iterative methods that avoid the Jacobian matrix with interesting orders of
convergence, see, for instance [4-6]. In these manuscripts the Jacobian matrix is replaced
by [, -; F], the divided difference operator.

The procedure of weight functions (in this case, matrix functions) plays also an
important role for designing schemes for solving systems F(z) = 0, as we can see in [7,8].
Iterative processes with memory for systems are also beginning to appear in the literature.
These are methods in which the new iteration is obtained from at least the previous two. In
general, the convergence order is increased without adding functional evaluations [9-11].
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In [12] the authors presented a class of iterative schemes depending on a parameter,
whose iterative expression is

y(i) = 20— [F)]1F(=D),

) = 0 PO F), <1>

200 = 20— [F0) 21/ - BFGD) + pFD)], i=0,1,...,

where § # 0 is a real parameter. Let us observe that, for each iteration, we only need an
inverse operator, so the three linear systems that we need to solve in each iteration have the
same matrix of coefficient and therefore the number of operations (products and quotients)
is reduced. For any value of the parameter, these schemes have order of convergence four
and, in particular, for B = 1/5 we reach order five. This particular case was used in [13] for
determining preliminary orbits of artificial satellites. Family (1) is denoted by M4(p).

Now, we are going to recall some concepts used to prove the order of convergence,
some of them firstly introduced in [14].

Let us consider a sequence {z(!)};5¢ in R”, converging to z. Then, it has order of
convergence p, p > 1, if there exists K > 0, (0 < K < 1if p = 1), and iy such that

120D — 2| < K|z —2||P, Vi > i,

or
eV < Kl )P, Vi > o,
being el =z() —z,i=0,1,2,...
To present a rigorous proof of the order of convergence of a vectorial iterative method,
we introduced in [14] the following notation which we now recall for completeness.
Let F: D C R" — R" be a sufficiently Fréchet differentiable function in set D, that
must be open and convex. The gth derivative of F at v € R"”, g > 1, is the g-linear function

F(p) : R" x --- x R" — R", such that F (v) (uy, . .., ug) € R™
For g = 1, F/(v) is the Jacobian matrix evaluated in v, that is, a linear operator

F'(v) : R" — R", such that F/(v)(u) = F/(v)u. Let us remark that

1) F9D)(uy,..., ug-1,-) € L(R"), where L(IR") is the set of linear operators in R".

2) F@(v) (Ug(1)r -+ s U (q) = F9 () (uy,..., uy), being o any permutation of {1,2,...,q}.
From (1) and (2), we recall the notation:

() FD(v)(uy,.. L lg) = FD(0)uy ... ug,

(i) F®) (v)up—lp(q)uq — p(r))(v)p(q) (0)ud=1+7,

Moreover, let Z + h € R" lie in a neighborhood of z, F(z) = 0. By applying Taylor
expansion around Z and assuming that F’(z) is nonsingular,

Ci

h+Y

=2

F(z+h) =F(2)

p—1
+0O), 2
k

being C; — %[F’(Z)]*F(k) (2) €RM k> 2.
In addition, we can describe the Taylor expansion of F" around z as
F'(z4h) =F'(2)

p—1
I+ Y qCohi~t| + O, (3)
=2

q=
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where [ is the identity matrix of size n x n. Therefore, C,h7~! € L(R"). From (3),
we conjecture

[F(z+ )™ = [T+ A+ As I+ Akt + - | [F(2)] ' + O 7Y, @)

where Aj, j = 2,3,..., are obtained by forcing that [F'(z + h)][F'(z+ )] ! = I, which gives

Ay = 20,
A3 = 4C3-3C;,
Ay = —8C3+6CC3+6C3C, —4Cy,

The equation
) = L0 L 0 (e(i)p+l),

where p is the order of convergence and L is a p-linear operator, is called the error equation
and we consider ()’ = (e(i), eld), .. .,e(i)).

We summarize the contents of this manuscript: the new class of iterative methods
for solving nonlinear systems is presented in Section 2, and its convergence is analyzed.
As all the methods of the class have the same order, their qualitative properties are under
study in Section 3. Section 4 is devoted to numerical tests for confirming the theoreti-
cal results and also show how the new schemes perform. This manuscript ends with
some conclusions.

2. Construction and Analysis of the Methods

From damped Newton’s method and following the ideas presented by Sharma and
Arora in [15], we propose the following parametric class of multipoint schemes for approx-
imating the solutions of nonlinear systems, whose iterative expression is

Y = 200 _ o [F'(20)] ),
2000 =20 — (B[P (s )] TP OO+ PO e FED)T @)
+8[F' ()] PO F )] )EED), i=01,...,

where «, B,, 1, 6 are real parameters to be chosen to obtain the highest order of conver-
gence. In what follows, we fix the conditions for this convergence.

Theorem 1. Let F : D C R" — R" be sufficiently differentiable at its open convex domain D.
Let also z € R be a solution of F(z) = 0 and let us assume that z(%) is close enough to z. Supposing

F'(z) to be nonsingular and continuous at z, sequence {z\!) };>( obtained from (5) converges to z

2 3 5
with fourth-order for o = 3 B = 3~ %, p=g— 0= %, being <y a free disposable parameter.
In this case, the error equation is

; 117 + 64y 1 9 -8y 9+ 8y 4 5
(1) — (222203 2 4 (@) (@)
e ( 81 C2 9C4+ 18 C2C3+ 18 C3C2 e +O(€ ),

where Cy = ;'[F’(Z)]lF(Q) (2),g=2,3,...and el) = z()) — z,
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Proof. Let us consider the Taylor expansion of F(z()), and its derivative around z. Then,
we have

[F'(z0)) 1 = (1+ Ape + 45 e 4 Ay e 1 A5e<i)4) F(2)] 1 +0 (e(i>5),

where
Ay = =20y,
A3 = —3C3+4C3,
Ay = —4Cy+6CyC3+6C3C, —8C5,
and ) ) ;
[F@wﬂ F(z0) = e — Cyed” +2(C2 — C3) el
4 (4CyCs +3C3Cr —3Cs —4C3) et 4 0D,
So,
vy —z=(1—a)e® +a Cze(i)2 —2a(—C3+ C%)e(")3 + O(e(i)4),
D —2)2 = (1 —a)2e® 120 (1—a)Cre®® + O,
(1 = 2)° = (1 - 2 + 0",
and
Fu') = F@E(1+200"0 -2)+3G0" - 22 +4Gu0 -2)°) + 0(y") - 2)) (©)
= F)(1+2(1-a)Coel? + (3(1- )2 Cs + 20 C2)e(®’? @)
+(A(1-a)Cy—4aCE +6a(1—a)C3Cp +4a C2C3)e(i)3) + O(e(i>4). ®)
Therefore,
[F' ()]t = (1 +Yoed 4 1; e<i>2) F )] +0 (e<f>4), )
where

Yz = —2(1—0&)(:2,
Y3=-3(1-a)?C3+2(2a*>—5a+2)Cs.

Then, by replacing the development of F(z(!)) and (9) in the second step of the iterative
expression, we get the error equation

) = (1—Bp—y—pu—0)eld - (40{,8—,8—74—20(’)/—;4—20¢(5)C2e(i)2
- ((12042/3716a[3+2ﬂ+4zx27780<’y+2’y+2y+25+180c5)C%
+(—6042/34—121x,8—2/3—31x2'y+6¢x'y—27—2y+30¢25—6(x5—25)C3)e(i>3+0(6(i)4>.
So, in order to get the desired order four, the following equations must be satisfied,
O0=1—-Bf—7—p—9
0=—p—7—p+2a(y+2p-9),

0=2(B+y+u+d)+12a>B—16apf+4a’*y—8ay+18ay,
0=-2(B+y+u+d)—6a’*p+12aB—-3a’>y+6ay+3a>6—6ad.
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4

8y + 87z}3 + 153z;.3 - 32ryz]6 + 819z]6 + 4877.;* + 279z;.1 - 3272]2 + 4522

The solutions of this system are & =

B = y:g—'y,ézg,where’yisa

| W

T
3/

WIN

disposable parameter. Then,

€(i+1> _ . 117 + 64’)’
81

98 948 ANy .5
G+ YoCs 4 2 7C3C24>e(’) +0(e),

8 18 9

and the fourth-order of convergence is proven. [

We denote this uniparametric class of iterative methods by PM4(y). Some particular
values of  can yield to simpler iterative expressions, as in case of ¥ = % that coincides
with Sharma et al. scheme, that was proposed in [8]. In the following section we discuss, by
using discrete dynamics, which elements of this family have better qualitative properties.

3. Stability Analysis of Class PM4(y)

The qualitative performance of the vectorial rational operator related to an iterative
method applied to a low-degree polynomial system has demonstrated to be a useful and
efficient tool for the study of the stability of the methods, see for example [16-19] and the
references therein.

Now, our aim is to determine which elements of class of iterative methods PM4(y)
present low dependence of the convergence regarding the starting guess used. To get this
aim, let us recall some basic definitions of the real multidimensional discrete
dynamics tools.

Let us consider R(z) as the rational fixed-point vectorial function associated to a family
of methods acting on a polynomial system p(z) = 0 with n variables, p : R” — R". Many
of the following concepts are direct extension of their partners in complex dynamics [16,20].

The orbit of z(0) € R" is defined as {Z(O), R(zO),..., Rm(z(o)), .. } A point z* € R"
is a fixed point of R if R(z*) = z*, and it is called strange fixed point when it is not a root of
p(z) = 0. The stability of the fixed points is characterized by Robinson [20]. He states the
character of a k-periodic point z* depending on the eigenvalues of R'(z*), A1, A, ..., Ay
It is repelling if all |A]-| >1,j=1,2,...,n, unstable or saddle if at least one jy exists such
that |)\j0| > 1 and attracting if all |)Lj| <1,j=1,2,...,n Inaddition, a fixed point is called
hyperbolic if A; satisfies [A;] # 1, for all j.

In the following, we denote by Op4(z,v) = (0}(z,7),03(z,7),...,04(z,7)), the fixed
point function associated to (5) class, applied on n-dimensional quadratic polynomial
system p(z) = 0, where:

pi(z) =22 —-1,i=1,2,...,n. (10)

Coordinate functions o;-l(z, 7) differ only in the sub-index j = 1,2, ..., n. These coordi-
nate functions of Op4(z, y) are expressed as

L forj=1,2,...,n. (11)

0; (z,7) =

2
3(n,2
14427 (222 4 1)
The stability analysis of the fixed points of Op4(z, v) is presented in the following result.

Theorem 2. Rational operator Op4(z,y) corresponding to PM4(vy) has 2" fixed points, that are
superattracting, whose components are zeros of polynomial system p(z). This operator also has a
different number of real strange fixed points whose components are combination of the real roots of

q(t) = t5(8y — 423) + t*(—24 — 180) + t*(24y — 45) — 87,

depending on vy, denoted by q1(vy) and qa(vy) (being the only ones that are real, if any), and the
roots of p(z):
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(@) Ify <Oorq > %, the roots q;(7y), i = 1,2, are real. Then, the strange fixed points

expressed as (4o, (77), 4oy (7)) - - - 4o, (7)) being o7 € {1,2}, are repelling. Moreover, if at
least one (but not all) component of an strange fixed point is equal to 1, then it is saddle.

(b)) Ifo<y< 48@’ then the roots of q(t) are not real. So, do not exist strange fixed points.

Proof. In order to calculate the fixed points of Op4(z,y), we solve o;-l(z, 7) = zj,

- - 6_ 4 —15)z2
2 8y + (87 — 423)z% —12(27 + 152)7.] +3(8y — 15)23 0
14423 (222 + 1)

forj=1,2,...,n. Then, zj = %1 are components of the fixed points and also are (g;(1y),
i=1,2,...,6),being t # 0.

Depending on 1y, at most two roots of g(t) are real. The, the eigenvalues of Op4’(z, 7)
can be expressed as

3
' (z]2 — 1) (247 + 1672}L + 3062;1 + 152')/2]2- + 45212)
Elgj(zl(’Y)l"'rZﬂ('Y)) = . 5 3 ’
1442 (2z]. + 1)

for j = 1,2,...,n. By evaluating these eigenvalues in each fixed point, its stability is
deduced. Then, it is clear that the roots of p(z) are superattracting, as all the eigenvalues
are null at these fixed points. Moreover, when we analyze the absolute value of the
eigenvalue Eig; evaluated in a strange fixed point whose jth component coincides with

q1(y) or g2(7), we find out that they are greater than one when ¢ < 0 or ¢y > %

Therefore, combinations among g;(vy) give rise to strange fixed points, that are re-
pelling. Moreover, all points whose components are g;(7y) combined with +1, are saddle
(see Figure 1). Let us remark that all the strange fixed points hold the same behavior in
each interval, so we have plotted only the performance of |Eig;(q1(7),--.,q1(7)]- O

55 60 65 70 75 80
@ [Eigj(q1(7), -, 41(7),7)| for v <0 () |Eigi(q1(7), -, q1(7),7)| for v > %

Figure 1. Stability of the fixed points through their related eigenvalues.
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Now, we need to study if it is possible the existence of attracting orbits or strange
attractors. This is made by analyzing the asymptotic behavior of the free critical points,
when they exist.

Bifurcation Diagrams and Critical Points
Firstly, we analyze the critical points of Op4(z,y). A critical point is a values of z that

makes zero all the eigenvalues of Op4’(z,y). When it is not also a solution of p(z) = 0,
then it is named free critical point.

Theorem 3. Let c;(7y), i = 1,2, be the roots of polynomial c(s) = s*(167y + 306) + s*(1527y +
45) + 24 that can be real, for some values of vy, being different from zero. Then, the components of
the free critical points of Op4(z, ), are either c;(y) or £1 (but not all +£1),i € {1,2}. Specifically,

153 177
(a) Ify< — Y=g Y > 0, then there not exist free critical points. That is, the only
critical points are those corresponding to the roots of the polynomial system p(z).
153 177 177 iy .
(b) If—? SY<—gr g <7< 0, then there are 4" free critical points.

Proof. The proof is straightforward as critical points are, by definition, those satisfying

3
2 4 4 2 2
(zj 1) (247 + 1624 + 3062} + 152727 + 452j) )

1442} (22]2- + 1) °
0

Let us remark that there are wide sets of values of 7y where there is no free critical
point. The relevance of this information yields in (see [21]) the existence of a critical point
in the basin of attraction of each attracting point. So, the absence of free critical points
proofs that the only possible behavior is convergence to the roots. We plot the dynamical
planes of Op*(z, ) for different values of -y where this situation happens, see Figure 2.

Plots appearing in Figure 2 have been obtained by using the programs appearing
in [22] as follows: a maximum number of 80 iterations, a mesh of 400 x 400 points and
the vicinity of the roots is used as an stopping criterium with tolerance of 10~3. We have
painted each point with a color depending on the root it tends to. The color is darker when
the amount of iterations needed is higher; finally, it is black when it reaches 80 iterations
without satisfying the stopping criterium.

In Figure 2a,b we see only one connected component for each basin of attraction
without divergent behavior; they correspond to v > 0, being v = 0 a bifurcation value,
where the performance of the rational function changes. They have the same stable
behavior as Newton's scheme, doubling its order of convergence (see [16]). On the contrary,

177
Figure 2¢,d correspond to values of y in ¢ < ~5 and ¢y = ~ respectively; let us

notice that the basins of the roots have not a finite amount of connected components.
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(@r=0 (b)y=10

-2 -1.5 -1 -0.5 0 0.5 1 15 2
X X

(c)y=-20 d)y = 177

Figure 2. Stable dynamical planes of Op(z, 7).

On the other hand, the orbits of critical points give us qualitative information about
the iterative method involved. In Figure 3 we present two real parametric lines constructed

from these orbits (see Theorem 3) for n = 2. We use a free critical point cp as seed, where

1 177 177
—% <Y< -—ggor ~e < 7 < 0 and a mesh of 500 x 500 points is made. For better

visualization, we also fatten the interval where 7 is defined. Finally, each value of vy is
colored following this pattern: red if cp converges to one of the roots of the system, blue
if cp diverges and black otherwise. Moreover, 200 is the maximum number of iterations
considered and the tolerance in the convergence to the roots is 1073.

Figure 3. Parameter lines of Op*(z, 7).
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In each interval, all the free critical points have the same performance, so we present
only cp = (¢1(y),c1(7),...,c1(7y)) in Figure 3 (for the bidimensional case). The parameter
7 177

and

64 T 6
free critical points have complex components. Let us remark that there is convergence to

the roots elsewhere, except a black small region around y = —18.75 and a narrower one
around ¢y = —16.9.

At this stage, bifurcation diagrams are employed to analyze the changes of perfor-
mance for different ranges of . When Op*(z,v) acts on a critical point, different per-
formances are found after 500 iterations of the method, for each « divided in a mesh of
3000 points. It results in convergence to periodic orbits or to chaotic attractors.

In Figure 4 we see the bifurcation diagrams corresponding to the black region of

1
line is plotted for —— < 7 < < 7 < 0 as outside these intervals the

15
the parameter line if ——— < 7y < ——— (Figure 3a). In Figure 4a, convergence to one

root is seen, but also some period-doubling cascades appear in a small interval around

v = —18.75, including chaotic behavior (blue regions). There, strange attractors can be found.
-0.2
1 b= o=
-0.22 7
08 1
06 i 0.24 J
04 ] 026 | |
0.2 V B -0.28 4
or 1 03 1
02 h il -0.32 .
04r 1 -0.34 1 ]
e i 036 1
08 1
-0.38 1
) ,
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 04 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
18 16 -4 12 -0 -8 -6 -4 -18.8 -18.75 -18.7 -18.65 -18.6 -18.55 -18.5 -18.45 -18.4 -18.35 -18.3
v Y
(b) (c1(7),c1(7),--.,c1(7)), a detail
0.346 3
89 |
88+ q 0.344 B
87} 1
0.342
86 1
85+ g 0.34 1
84 1
0.338
83| 1
82} 1 0.336 |
8.1 4
0.334 1
8 L L L L L L L ] L L L L L L L
-16.914 -16.913 -16.912 -16.911 -16.91 -16.9136 -16.9134 -16.9132 -16.913 -16.9128 -16.9126 -16.9124
v v
(@) (e1(7),e1(7), - c1(7)), a detail (d) (c1(7),c1(7), .-, c1(7)), a detail
. . . 153 177
Figure 4. Feigenbaum diagrams of Op*(z, ) for ~ 5 <7y< e

To represent these strange attractors, we plot in the (x1,x;)-space the orbit of
z(0) = (0.29,0.29) by Op*((x1,x2),7), for several close values of 7 laying in the blue
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area of Figure 4b. For each v, 2500 different starting guesses have been used and, their first
400 iterates are not plotted, the following 500 appear in blue color and the last ones are
magenta. In Figure 5 it is observed as a parabolic strange fixed point, that bifurcates into
periodic orbits of doubling periods, becomes chaotic while its orbits are dense in small
regions of (z1,z,)-space.

50 : 60
a0}
a0t
3o}
20}
20
10}
g 0 g o
X >

-10

20F e
-30 ‘
40F oo
-50 L 1 . .
-50 0 50 0 20 40 60
x(1) x(1)
(a)y=—-187 (b) vy = —18.75
06 F 9 80
B0 i) . o : 7
04 r 1 o
z
021 ] 20l
% or § 0 =
-20 - : AT
o2r ' e K
04r 1 80 | P :‘
‘ ‘ ‘ 80 ‘ ‘ ‘ ‘ ‘ . .
-05 0 0.5 -80 -60 -40 -20 0 20 40 60 80
x(1) x(1)
(c) ¥ = —18.75, a detail (d) v = —18.7618

Figure 5. Strange attractors of Op*(z, ) for 7 in a blue doubling-period cascade.

This can be checked in the associated dynamical planes. Unstable performance is
limited to values of <y in the black regions of Figure 3. In Figure 6b an strange attractor is
found for v = —18.75, that was plotted in Figure 5b,c. Finally, in Figure 6¢,d, the phase
space for v = —18.45 and v = —16.911 respectively are represented. In them, 4-period
orbits appear in yellow (the elements of the orbit are linked by yellow lines). In all cases,
there exist more attracting orbits with symmetric coordinates.

We conclude that members of PM4(y) class are very stable. There not exist attractive
strange fixed points and only in very narrow intervals of -y there exists unstable performance.
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(a)y = —18.75 (b) v = —18.45

(c)y = —1845 d) y = —16911

Figure 6. Unstable dynamical planes of Op*(z,y) on p(z).

4. Numerical Performance

We begin this section checking the applicability of our proposed methods PM4(vy)
by analyzing its behavior on some academic nonlinear systems. To get this aim, we
select some members of the class with good qualitative properties and other with stability
problems. This information is deduced from the results obtained in the previous section.
Afterwards, we compare its behavior with that of other known methods on the same
problems. The maximum number of iterates considered is 1000 and the stopping criterium
is |20+ — 20 || < 10710 or || F(z)|| < 107130, All the calculations have been made using
Matlab R2019b with variable precision arithmetic with 1000 digits of mantissa, to minimize
round-off errors.
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We use in each example the Approximated Computational Order of Convergence,
(ACOCQ), defined as

and introduced in [23], that estimates numerically the theoretical order of convergence p.

We compare the proposed family, for different values of parameter 7, with class
M4(B) [12] for different values of B, with the extension of Jarratt’s scheme for nonlinear
systems [24], whose iterative expression is

20 _ %[F’(Z(i))]—lp(z(i)),

3

20 — [6F (y) — 2F' (/)] 1 BF (D) 4+ F' N [F' ()] 'F(z?), i = 0,1,2...

and with the recent scheme HM4 of order four [1]

200 = 20 HEOY[F (D) 1FED), i=0,1,2...,

with H(z()) = I+ B! — By(2I — By), being By = [F'(z))]7'[z(),y?); F] and I the iden-
tity matrix.

In order to check the efficiency of the proposed methods, we compare the execution
time (in seconds) only in Example 1, as in Example 2 there is no critical difference among
the methods, in the third example there are many divergent results and in the fourth
example, the execution time are qualitatively equal to those of Example 1.

Example 1. The first nonlinear system is defined by

z%—zz—19:0,
253/6 — 2%+ 20 —17 = 0.

In this example, we use the initial estimation z(©) = (1,2)7.

In Table 1, we show the values of the last error estimations calculated, |20 — 2(=1))|
and ||F(z)|, as well as the last value of the ACOC.

Table 1. Numerical results for some vy in PM4(y) in Example 1.

0% Iterations ( 7) [|z() — z(=1)| |F(z®)]] ACOC Cpu-Time
0 6 8.2499 x 104 41678 x 107214 3.9983 0.9038
10 19 3.365 x 107104 9.3749 x 10415 4.0 2.7157
—-10 53 1.5747 x 10~%° 3.3897 x 10~276 4.0001 7.0803
—185 21 2.1718 x 10~ 72 41447 x 10~288 4.0 2.9821
—18.75 13 6.3187 x 10748 1.773 x 107187 4.0 1.8758
—16.9 11 5.9643 x 10100 2.1312 x 10738 4.0 1.5963

We observe in Table 1 that depending on the value of the parameter 7y, method PM4(y)
converges to (5,6) or (—5,6), meanwhile M4(B) (for p =1/5, =1, and g = 5), Jarratt’s
and HM4 there is convergence only to (5,6) (Table 2). The values ||z() — z(=1)|| are in
general better or similar of that of M4(p = 1/5), method of order 5.
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Table 2. Numerical results by using known methods for Example 1.

Method z Iterations (i) |z() — zG=D)| |F(z®)]] ACOC Cpu-Time
M4 = 1) (5,6)T 22 3.647 x 10773 6.888 x 10291 4.0 3.7779
M4(B = 1) (5,6)T 27 1.368 x 10761 1.136 x 10724 4.0 4.6386
M4(B = 5) (5,6)T 30 2,67 x 1074 1.442 x 107194 4.3227 5.2072

Jarratt (5,6)T 6 24762 x 10786 2.0268 x 10734 3.9982 0.6515
HM4 (5,6)T 17 4.476 x 1072 9.287 x 10286 4.0 4.6644
Example 2.

cos(zz) —sin(z1) =0,
zZ1 — 1/22 =0.

The numerical results for this test system are displayed in Tables 3 and 4, where we
show the same information than in the previous example. The initial estimation used is

z(0) = (1,4)7, being the solution obtained z ~ (0.203,4.915)7 in all the cases shown.

Table 3. Numerical results with different y in PM4(+y) for Example 2.

0% Iterations (i) |z() — zG=D)| |F(z®)]] ACOC
0 5 6.2248 x 10105 2.7218 x 10419 4.0
10 5 4.2537 x 10~ 8.966 x 10264 4.0
—-10 5 3.4263 x 10121 1.1685 x 10484 4.0006
—185 5 3.6569 x 1098 3.4494 x 10739 4.0035
—18.75 5 8.4703 x 10~%8 8.8311 x 10392 4.011
-16.9 5 59213 x 10101 3.7153 x 10404 4.0272

We observe in Tables 3 and 4 that the PM4(y) get on a better ACOC that M4 (B = 5)

with the same number of iterations, being the results similar to those of M4 (8 = 1/5,
B = 1), Jarratt’s scheme and HM4.

Table 4. Numerical results by using known methods for Example 2.

Method Iterations (i) |z — zG=1)| |F(z®)]] ACOC
M4 (B = 1) 5 2.085 x 107145 1.048 x 107581 4.0
M4 (B =1) 5 5.123 x 10~1% 3.184 x 1075% 4.0
M4 (8 = 5) 5 1.541 x 10131 2.011 x 107526 3.9536

Jarratt 5 22611 x 107107 4.6011 x 10~4% 4.0

HM4 5 1.973 x 1086 3.34 x 1073% 4.0

Example 3. The third example is given by the system:

=1

20
zi—1.551n< ) zj> =0,i=1,...,20.

We show the numerical results of the initial estimation z(©) = (1.25,...,1.25)7 in
Tables 5 and 6. We note that in this case there are different behaviors depending on the
value of 7. This is consistent with the results predicted in the dynamical study. It should
be noticed that the method also diverges for M4 (B = 5). In general, the method with best
performance for this example is HM4.
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Table 5. Numerical results for some vy in PM4(7y) for Example 3.
v z Iterations (i) |z() — zG=D)| |E(z®)]] ACOC
0 (1.032,---,1.032)T 8 1.7477 x 10~# 3.6777 x 10718 3.9997
10 (1.134,---,1.134)T 10 1.0923 x 10~ 3.1607 x 1023 4.0
—10 - diverge - -

—18.5 - diverge - -

—18.75 - diverge - -

-16.9 - diverge - -

Table 6. Numerical results by using known methods for Example 3.

Method z Iterations (i) |z) — z(=1)| [lE(zO)|| ACOC
M4 (B=1) (0.6864, - - - ,0.6864)T 5 228 x 10793 4.655 x 10724 4.0
M4 (B =1) (0.4789, - - - ,0.4789)T 46 1.323 x 10788 1.128 x 107350 4.0
M4 (8 =5) - diverge - - -

Jarratt (1.4224, - - ,1.4224)7 6 1.9644 x 10752 3.01 x 10720 3.9999
HM4 (—1.1134,--- ,—1.1134)T 5 8.326 x 10754 4.93 x 107210 3.9999

We also observe that the stability of the method depends on the initial condition,
for example, in the case of using the initial condition z(0) = a,..., 1)T all the analyzed
methods converge to z(?) = (1.032, ...,1.032)" with acceptable errors and a low number of
iterations (4 or 5 in general), showing also an adequate ACOC. However, if we consider as
initial condition the point z(®) = (0.25,...,0.25)7 all methods diverge.

Example 4. The fourth example is:

zizip1—1 =
21299 —1 =

In this case we consider two initial estimations. The numerical results for z(0) =
(0.1,...,0.1)T are displayed in Tables 7 and 8. The method converges to both different

solutions, (1,..., 1)T and (—1,..., —1)T, depending on the value of the parameter.

Table 7. Numerical results with different o in PM4(+y) for Example 4.

¥ z Iteracions (i) ||z() — z(i=1)|| |F(z®)]] ACOC
0 1,...,nH)T 6 23769 x 107%*  1.1701 x 10728 4.0
10 1,...,nH)T 12 2.7217 x 107 1.3016 x 1071 3.9999
-10  (-1,...,-1D)T 8 1.5339 x 107%  9.0707 x 10~183  4.0003
-185 (—1,...,—1)T 12 7.3866 x 107137 9.953 x 107548 4.0
—18.75 - diverge - - -
-169 (—1,...,—1DT 7 32074 x 10761 3.1986 x 10724 4.0

As we can observe in Table 8 we get similar o better values for |z() — z(=D|| and
I|F(z")|| getting an ACOC equal to 4 or very close to 4.
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Table 8. Numerical results by using known methods for Example 4.

Method z Iterations (i) ||z() — z(i=1)| IF(z®)||  AcOC
MaB=1) (—1,...,-1)T 13 8.741 x 1078 7112 x 10722 4.0
Me(B=1) (-1,...,—1)T 15 2.887 x 107107 7,05 x 10~430 4.0
M4(B=5) (-1,...,—1)T 15 3.404 x 107%  8.165 x 10742 50
Jarratt 1,...,n)T 6 1.1404 x 10788 4293 x 10736 40
HM4 1,...,n)T 12 3.4 x 107% 4.95 x 10276 4.0

For the initial estimation z(?) = (=20,...,-20) T a very far value from the solution,
the numerical results are displayed in Tables 9 and 10 where we can see that for the
convergent values of the dynamical plane, the method is stable, showing similar or better
behavior to that of Jarratt and M4(B) for p = 1/5, = 1and p = 5 (see ||z} — z(=1)|)
and ||F(z')||, with 4 for the ACOC value.

Table 9. Numerical results with different v in PM4(+y) for Example 4.

z Iterations (i) ||z() — z(=D)|| |F(z®)]] ACOC
0 (-1,...,—1)T 7 8.946 x 107147 2.348 x 10588 4.0
10 (-1,...,—1)T 8 41718 x 10710 71844 x 107#1 40
-10  (-1,...,-1DT 6 3.0908 x 10~7%  1.4956 x 10727 4.0
—185 - diverge - - -
—18.75 - diverge - - -
-169 (-1,...,-1T 6 3.7482 x 107190 59656 x 10741 4.0

Table 10. Numerical results by using known methods for Example 4.

Method z Iterations (i)  ||zf — 21| IlE(z) || ACOC
MdB=1) (-1,---,-1)7 7 2.347 x 10789 3,694 x 107322 4.0
MeB=1) (-1,---,-1)T 7 8.187 x 10788 4.56 x 107352 4.0
M4 (B=5) (-1,---,-1)T 6 1.447 x 10748 1.133 x 10724 5.0

Jarratt 1,---,1)7 6 6.165 x 107%  3.6677 x 107177 3.9997

HM4 (-1,---, -7 7 1.03x 1070 4.165x 107362 4.0

5. Conclusions

A parametric family of two-steps iterative methods for solving nonlinear systems
has been designed. This class contains other known schemes, for particular values of
the parameter, and has fourth order of convergence for any value of the parameter. We
have studied the stability of this family on quadratic polynomial systems, in terms of the
values of the parameter. This analysis allows us to detect the most stable elements of the
class and those with chaotical behavior. Some numerical test confirm the dynamical and
theoretical results.
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