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Abstract

An important class of non-homogeneous first-order linear random differential equations subject to an infinite sequence
of square impulses with random intensity is studied. In applications, these equations are useful to model the dynamics
of a population with periodic harvesting and migration under uncertainties. The solution is explicitly obtained via the
first probability density function assuming an arbitrary joint density for all model parameters. Probabilistic stability
analysis is carried out through the densities of the random sequences of minima and maxima. All the theoretical
results are fully illustrated through two numerical examples.

Keywords: Random differential equations; Probability density function; Stochastic periodic jumps; Probabilistic
stability.

1. Introduction

The study of differential equations whose right-hand side is discontinuous has theoretical interest by itself, but
also plays a main role in applications, particularly, in control theory to account for punctual or periodic changes [1].
In the setting of differential equations with uncertainties, one mainly distinguishes two classes of equations, namely,
stochastic differential equations (SDEs) and random differential equations (RDEs) [2, Sec. 4.7]. The former are
driven by stochastic processes whose trajectories are highly irregular (e.g., nowhere differentiability, as the Wiener
process), and in their formulation uncertainty is set via specific patterns (Gaussian in the case of Wiener process).
This may limit their applicability in real-world scenarios as recently reported [3, 4]. Complementary, RDEs assume
more regularity in the model inputs (which are assumed to be random variables and/or stochastic processes), but
permitting more flexibility when assigning them probability distributions, which in turns results they can be better
accommodated to describe uncertainties in a wider range of applications [2]. In the setting of SDEs with discontinuous
right-hand side, numerous interesting contributions have been made, mainly, in the case of the so called impulsive
functional SDEs including the analysis of their stability [5, 6, 7, 8]. In contrast, the corresponding study for RDEs is
scarcer or it has been made limiting the type of probabilistic distributions for the model inputs. For instance, in [9]
one performs an interesting analysis for a new class of linear random impulsive differential equations involving the
Bernoulli distribution. The aim of this paper is to advance in the realm of RDEs whose right-hand side is discontinuous
without restricting the probability distributions assigned to model inputs which, in fact, as it shall be seen down
below, can be arbitrary, even considering the most complex case that all model inputs can have a joint distribution (so,
probabilistic independence is not assumed). Specifically, we will tackle the study of non-homogeneous linear RDEs
of exponential growth/decay controlled (or driven) by an infinite sequence of square pulses of time duration, τ,
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ẋ(t) = αx(t) + β − γx(t)
∞∑

n=1

(H(t − (nT − τ)) − H(t − nT )) , x(0) = x0, (1)

{
0, t < 0,

∞

−∞

where H(t) is the Heaviside function: H(t) = 1, t ≥ 0. For the sake of generality, we will assume that all model 

inputs (the initial condition, x0, the growth/decay  
rate,

  α ,  
the migration rate, β, and the intensity of the infinite square 

wave train, γ) are absolutely continuous random variables defined in a common complete probability space (Ω, F , P) 
and having a joint probability density function (p.d.f.), fx0,α,β,γ := fx0,α,β,γ(x0, α, β, γ). Additionally, the parameters 
T > 0 and τ > 0, stand for the period and duration of the square wave, respectively. Initial value problem (IVP) 
formulated in (1) is useful to model the random dynamics of a population subject to periodic harvesting (whose 
intensity of jump randomly changes according to γ) and fluctuating migration (described by β). For instance, this 
model has been applied to describe population dynamics of the diamondback moth in a broccoli crop with periodic 
applications of a biological pesticide, in the deterministic context [10]. Let us remark, that models whose right-hand-
side is discontinuous or that periodically changes, appear vastly in classic applications related to electronic 
engineering, but usually as second order differential equations. To the best of our knowledge, the study of (1) is a first 
attempt to deal with this class of RDEs.

As a main difference with respect to what happens in the deterministic context, solving a RDE consists not only in 
obtaining its solution, which is a stochastic process, but also its main probabilistic properties, mainly the mean and the 
variance. However, a more ambitious goal is to determine the so called the finite distributions (fidis) of the solution 
[11]. Let us recall that, given a stochastic process {X(t) : t ∈ T ⊂ R}, for every finite set {t1, t2, . . . , tn} ⊂ T , the fidis 
associated to X(t) are the n-th joint probability distribution functions, denoted by Fn := Fn(x1, t1; x2, t2; . . . ; xn, tn), 
corresponding to the random vector X = (X1 = X(t1), X2 = X(t2), . . . , Xn = X(tn)). In the case that X is also absolutely 
continuous, the fidis of X(t) can be equivalently given via the n-th probability density functions, fn, which can be 
obtained by differentiating Fn, fn(x1, t1; x2, t2; . . . ; xn, tn) = ∂nFn(x1, t1; x2, t2; . . . ; xn, tn)/∂x1 · · · ∂xn. It is particularly

∫important
k
 the first p.d.f. (1-p.d.f.), f1(x, t), since from it one can calculate any one-dimensional moment, E[(x(t))k] =

x f1(x, t) dx, k = 1, 2, . . . , (including the mean and the variance), but also any higher moment as well as the

probability that the solution lies within any specific interval of interest, P [{ω ∈ Ω : x(t; ω) ∈ [x̂1, x̂2]}] =
∫ x̂2x̂1

f1(x, t) dx,
for t arbitrary but fixed. This latter is particularly relevant in real-world applications [2, 11]. Therefore, the widest 
meaning of solving a RDE stands for computing its 1-p.d.f. Some recent contributions dealing with the computation 
of the 1-p.d.f. in theoretical and practical settings for different classes of RDEs include ordinary RDEs [12], partial 
RDEs [13], delay RDEs [14], among others. We have already mentioned the advantages of applying RDEs in dealing 
with real-world problems, however, as it shall see later, some challenges appear when applying the RVT technique to 
determine the 1-p.d.f. of the random solution, particularly, defining an appropriate mapping whose Jacobian is 
different from zero, and also, computing multidimensional integrals.

In this paper, we address this important goal including the analysis of the probabilistic stability of the solution. 
To conduct our study we will extensively apply the Random Variable Transformation (RVT) technique [11] taking 
advantage of some recent results established, by some of the authors, for the deterministic formulation of IVP (1).

The deterministic solution of model (1) is given by [10],

x(t) =


(
x0 + φ(α, β, γ; T, τ)

)
etα−nτγ −

β

α
, nT ≤ t < (n + 1)T − τ,(

x0 + ψ(α, βγ; T, τ)
)

et(α−γ)+(n+1)(T−τ)γ −
β

α − γ
, (n + 1)T − τ ≤ t < (n + 1)T,

(2)

where we have introduced the following variables to shorten the notation,

φ := φ(α, β, γ; T, τ) =
β

α
+

βγ

α(α − γ)
e−Tα(eτα − eτγ)

e−n(Tα−τγ) − 1
e−(Tα−τγ) − 1

, (3)

ψ := ψ(α, β, γ; T, τ)) =
β

α
+

βγ

α(α − γ)

(
e−Tα(eτα − eτγ)

e−n(Tα−τγ) − 1
e−(Tα−τγ) − 1

+ e−α(T−τ)−n(Tα−τγ)
)
. (4)
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It can be checked that x(t), given by (2), is continuous at (n + 1)T − τ. These expressions will be useful to later
determine an explicit expressions of the 1-p.d.f. of the random solution. Now, we introduce further results obtained in
[10] that will be applied later to carry out the probabilistic stability analysis. To this end, we compute the sequences
of points at the times, nT and (n + 1)T − τ,

An := x(nT ) = −
β

α
+

(
x0 +

β

α

)
en(Tα−τγ) +

βγ

α(α − γ)
(eτ(α−γ) − 1)

1 − en(Tα−τγ)

1 − eTα−τγ , (5)

Bn := x((n + 1)T − τ) = −
β

α
+ e(T−τ)α

(
x0 +

β

α

)
en(Tα−τγ) +

βγe(T−τ)α

α(α − γ)
(eτ(α−γ) − 1)

1 − en(Tα−τγ)

1 − eTα−τγ . (6)

These sequences are important because they will allow us to study the stochastic process from the discrete point
of view. Observe, that these sequences are convergent, as n→ ∞, when Tα − τγ < 0 holds, i.e.

A∞ := lim
n→∞

An = −
β

α
+

βγ

α(α − γ)

(
e(α−γ)τ − 1
1 − eαT−γτ

)
, B∞ := lim

n→∞
Bn = −

β

α
+
βγeα(T−τ)

α(α − γ)

(
e(α−γ)τ − 1
1 − eαT−γτ

)
. (7)

Let us remark, that in this case, An and Bn become sequences of local minima and maxima, and the solution (2)
presents an oscillatory behavior that is bounded by A∞ and B∞, in the long term.

2. Random solution for the model

In this section, we present our main results: the computation of the 1-p.d.f. of the random solution of the ran-
domized version of IVP (1), the p.d.f.’s for the stochastic sequences of minima and maxima, and a formula for the
probability of convergence. All these results are stated via explicit expressions and under the general hypothesis that
model inputs have a joint p.d.f., fx0,α,β,γ. As previously advanced, our study will be based on the RVT method.

2.1. 1-p.d.f. for the random solution

Theorem 1. Let (x0, α, β, γ) be an absolutely continuous random vector defined in a complete probability space
(Ω,F ,P) with p.d.f. fx0,α,β,γ. Then, the 1-p.d.f. of the random solution of IVP (1) is given by

f1(x, t) =


∫
R3

fx0,α,β,γ

((
x +

β

α

)
e−αt+nτγ − φ, α, β, γ

)
e−αt+nτγ dα dβ d γ, nT ≤ t < (n + 1)T − τ,∫

R3
fx0,α,β,γ

((
x +

β

α − γ

)
e−t(α−γ)−(n+1)(T−τ)γ − ψ, α, β, γ

)
e−t(α−γ)−(n+1)(T−τ)γ dα dβ dγ, (n + 1)T − τ ≤ t < (n + 1)T,

(8)
where x ∈ R, φ := φ(α, β, γ; T, τ) and ψ := ψ(α, β, γ; T, τ) are defined in (3) and (4), respectively. Furthermore,
f1(x, t) is continuous at t = (n + 1)T − τ.

Proof. To determine the 1-p.d.f. of the solution, x(t), to IVP (1), we will apply the RVT technique choosing an
adequate transformation based on the piecewise function (2), [11, Ch. 2]. For both pieces, let us consider that
g : R4 → R4, v = g(u), v := (v1, v2, v3, v4), u =: (x0, α, β, γ), where u and v will be defined, down below, in each piece.

Case 1: Consider a fixed t such as nT ≤ t < (n + 1)T − τ and denote x := x(t). Define

v1 := (x0 + φ(α, β, γ; T, τ)) eαt−nτγ −
β

α
, v2 := α, v3 := β, v4 := γ.

The inverse transformation, h, of g, is obtained solving for x0, α, β and γ: h(v1, v2, v3, v4) = (h1(v1, v2, v3, v4), v2, v3, v4),
where h1(v1, v2, v3, v4) = (v1 +

v3
v2

) e−v2t+nτv3 − φ(v2, v3, v4; T, τ), and its Jacobian is Jh = ∂h1
∂v1

= e−v2t+nτv3 , 0.
Then, according to the RVT theorem, the joint p.d.f. of (v1, v2, v3, v4) = (x, α, β, γ) is

fx,α,β,γ(x,α, β, γ) = fx0,α,β,γ

((
x +

β

α

)
e−αt+nτγ − φ(α, βγ; T, τ), α, β, γ

)
e−αt+nτγ.

By marginalizing with respect to α, β, and γ, we obtain the first part of the 1-p.d.f., f1(x, t), given in (8).
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Case 2. Let us consider t fixed, such as, (n + 1)T − τ ≤ t < (n + 1)T and denote x := x(t). In this case, let us define

v1 := (x0 + ψ(α, β, γ; T, τ)) et(α−γ)+(n+1)(T−τ)γ −
β

α − γ
, v2 := α, v3 := β, v4 := γ.

As in Case 1, we compute the inverse transformation of g, h, by solving for x0, α, β and γ, which in terms of
(v1, v2, v3, v4) leads to h(v1, v2, v3, v4) = (h1(v1, v2, v3, v4), v2, v3, v4), where

h1(v1, v2, v3, v4) =

(
v1 +

v3

v2 − v4

)
et(v2−v4)+(n+1)(T−τ)v4 − ψ(v2, v3, v4; T, τ),

and its Jacobian is Jh = ∂h1
∂v1

= et(v2−v4)+(n+1)(T−τ)v4 , 0. Then, according to the RVT method, the p.d.f. of the random
vector (v1, v2, v3, v4) = (x, α, β, γ) is given by

fx,α,β,γ(x, α, β, γ) = fx0,α,β,γ

((
x +

β

α − γ

)
e−t(α−γ)−(n+1)(T−τ)γ − ψ(α, β, γ; T, τ), α, β, γ

)
e−t(α−γ)−(n+1)(T−τ)γ.

Again, marginalizing with respect to α, β, and γ one directly obtains the second piece of the 1-p.d.f., f1(x, t), given
in (8). Finally, the continuity of f1(x, t) at t = (n + 1)T − τ is an evident consequence of the continuity of x(t) at that
point. This completes the proof.

Since minima and maxima sequences are computed by evaluating the random solution at t = nT and t = (n+1)T−τ
for n fixed (see (5)), then the p.d.f. of such sequences are straightforwardly deduced from Theorem 1 taking into
account the continuity of f1(x, t) at t = (n + 1)T − τ.

Corollary 1.1. Assume the hypotheses of Theorem 1. Then, the p.d.f.’s for the random sequences of local minima
and maxima, given in (5) and (6), are given by

fAn (x) = f1(x, nT ) =
∫
R3

fx0,α,β,γ

((
x +

β

α

)
e−n(αT+γτ) − φ(α, β, γ; T, τ), α, β, γ

)
e−n(αT+γτ) dα dβ d γ, (9)

fBn (x) = f1(x, (n + 1)T − τ) =
∫
R3

fx0,α,β,γ

((
x +

β

α

)
e−α(T−τ)−n(αT−γτ) − φ(α, β, γ; T, τ), α, β, γ

)
e−α(T−τ)−n(αT−γτ) dα dβ d γ.

(10)

In the same way, it is easily derived the 1-p.d.f.’s for the homogeneous case by substituting β = 0 in equations (8) 
of Theorem 1, (9) and (10) of Corollary 1.1, but now in terms of the p.d.f., fx0,α,γ, which is obtained by marginalizing 
the data fx0,α,β,γ, with respect to random variable β.

Corollary 1.2. For the homogeneous case, β(ω) = 0, ω ∈ Ω with probability one (w.p. 1), the 1-p.d.f. (8) becomes

f1(x, t) =


∫
R2

fx0,α,γ

(
xe−αt+nτγ, α, γ

)
e−αt+nτγ dα d γ, nT ≤ t < (n + 1)T − τ,∫

R2
fx0,α,γ

(
xe−t(α−γ)−(n+1)(T−τ)γ, α, γ

)
e−t(α−γ)−(n+1)(T−τ)γ dα dγ, (n + 1)T − τ ≤ t < (n + 1)T.

(11)

Also, the p.d.f.’s of the maximum and minimum sequences of Corollary 1.1 can be straightforwardly determined from 
the above p.d.f., f1(x, t),

fAn (x) = f1(x, nT ) =
∫
R2

fx0,α,γ

(
xe−n(αT+γτ), α, γ

)
e−n(αT+γτ) dα dγ, (12)

fBn (x) = f1(x, (n + 1)T − τ) =
∫
R2

fx0,α,γ

(
xe−α(T−τ)−n(αT−γτ), α, γ

)
e−α(T−τ)−n(αT−γτ) dα dγ. (13)
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2.2. P.d.f. of the limits of the sequences of minima and maxima

Let us recall that sequences of minima and maxima, given in (5) and (6), converge to random variables A∞ and
B∞, equations (7), when Tα − γτ < 0, as n→ ∞. Next, we determine the p.d.f. of those random variables.

Theorem 2. Let T and τ be fixed times such as 0 < τ < T. Then, under the hypotheses of Theorem 1 the p.d.f.’s of the
steady states, A∞ and B∞, given in (7), are

fA∞ (a) =

∫
R2

fα,β,γ

(
α, a

−α(α − γ)(1 − eαT−γτ)
α(1 − eαT−γτ) + γe−γτ(eαT − eατ)

, γ

) ∣∣∣∣∣∣ −α(α − γ)(1 − eαT−γτ)
α(1 − eαT−γτ) + γe−γτ(eαT − eατ)

∣∣∣∣∣∣ dα dβ dγ, a ∈ R,

(14)

fB∞ (b) =

∫
R2

fα,β,γ

(
α,

−bα(α − γ)(1 − eαT−γτ)
α(1 − eαT−γτ) + γ(e(T−τ)α − 1)

, γ

) ∣∣∣∣∣∣ −α(α − γ)(1 − eαT−γτ)
α(1 − eαT−γτ) + γ(e(T−τ)α − 1)

∣∣∣∣∣∣ dα dβ dγ, b ∈ R. (15)

Proof. For fA∞ . Define the transformation g : R3 → R3, such as, u = g(v), u := (α, β, γ), v := (v1, v2, v3), and
v1 := A∞ = −

β
α

+
βγ

α(α−γ)

(
e(α−γ)τ−1
1−eαT−γτ

)
, v2 := α and v3 := γ. In order to apply the RVT, we determine the inverse of g by

solving for α, β and γ:

β = v1

(
−

1
α

+
γ

α(α − γ)
e(α−γ)τ − 1
1 − eαT−γτ

)−1

, α = v2, γ = v3.

The Jacobian of h = g−1, Jh =
−α(α−γ)(1−eαT−γτ)

α(1−eαT−γτ)+γe−γτ(eαT−eατ) . Applying the RVT technique, we find that the p.d.f. is

fα,β,γ

(
α, a

−α(α − γ)(1 − eαT−γτ)
α(1 − eαT−γτ) + γe−γτ(eαT − eατ)

, γ

) ∣∣∣∣∣∣ −α(α − γ)(1 − eαT−γτ)
α(1 − eαT−γτ) + γe−γτ(eαT − eατ)

∣∣∣∣∣∣ .
Marginalizing with respect to α, β, and γ, we obtain (14). For fB∞ , an analogous reasoning using B∞ yields (15).

2.3. Probabilistic stability analysis

Before expression (7), we have already pointed out that convergence of random sequences An and Bn to A∞ and
B∞ as n→ ∞ happens when Tα − γτ < 0. Since α and γ are random variable the foregoing condition of convergence
holds with certain probability that is determined in the following result.

Theorem 3. Let T and τ be fixed such as 0 < τ < T and define ξ := Tα − γτ being α and γ absolutely continuous
random variables with a joint p.d.f., fα,γ. Then, the probability that ξ < 0 is given by

P[ξ < 0] =
1
T

∫ 0

−∞

∫ ∞

−∞

fα,γ
(
ξ + γτ

T
, γ

)
dγ dξ. (16)

Proof. Define g : R2 → R2, u = g(v), where u := (α, γ) and v := (v1, v2) with v1 := ξ = Tα− γτ, v2 := γ. To compute
the inverse function of g, h, we solve for α and β, α = v1+v2τ

T , γ = v2. Then, h(v1, v2) =
(

v1+v2τ
T , v2

)
, and its Jacobian is

Jh = 1
T , 0. According to RVT theorem the p.d.f. for (v1, v2) = (ξ, γ) is fξ,γ = fα,γ

(
ξ+γτ

T , γ
)

1
T . To obtain the p.d.f. for

ξ, we marginalize with respect to γ, fξ(ξ) = 1
T

∫
R fα,γ

(
ξ+γτ

T , γ
)

dγ. From this p.d.f., we easily obtain (16).

Remark 1. In the homogeneous case, corresponding to β(ω) = 0, ω ∈ Ω with probability one (w.p. 1), Theorem 2 does 
not longer apply since A∞ and B∞ are zero w.p. 1. If P[ξ < 0] = 1, minima and maxima sequences, An and Bn, tend to 
zero (w.p. 1) as n → ∞. It means that fAn (x) and fBn (x) will tend to a Dirac delta function, δ(x), as n → ∞. Notice that 
the probability in Theorem 3 is still valid by suppressing the dependence on β in the p.d.f.
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Figure 1: Homogeneous case. Left panel: 3D graphical representation of the 1-p.d.f., f1(x, t), obtained from expression (8), with three impulse
applications with period T = 1/2 and impulse duration τ = T/2. Central panel: Mean plus/minus two standard deviations. Right panel: P.d.f. of
the random minima and maxima sequences (9) and (10). Example 3.1.

3. Numerical examples

In this section we illustrate the results previously established for the random IVP (1), in both, homogeneous 
(Example 3.1) and non-homogeneous (Example 3.2) cases. It is important to point out that the computation of 1-p.d.f., 
f1(x, t), requires multidimensional integration, which may fail to converge when applying quadrature rules. 
Alternatively, f1(x, t) can be represented via the expectation operator E[·] and then Monte Carlo simulations can be 
applied. This strategy works when x0, α and β are independent random variables. In our case, we assume that this 
assumption holds. In particular,

f1(x, t) =
∫
R3

fx0 (w(x; α, β, γ; t, T, τ)) fα(α) fβ(β) fγ(γ) | z(α, γ; t, T, τ) | dα dβ dγ = E
[
fx0 (w(x; α, β, γ; t, T, τ)) | z(α, γ; t, T, τ) |] ,

being w := w(x; α, β, γ; t, T, τ) and z := z(α, γ; t, T, τ) given functions that can easily identified from (8). For example, 
in the first piece, nT ≤ t < (n + 1)T , w = (x0 + β/α) e−αt+nτγ − φ and z = e−αt+nτγ.

Example 3.1. Homogeneous case. Let us consider IVP (1) with β = 0 w.p. 1. We assume three complete cycles of
period T = 1/2 and duration τ = 1/4 of the square wave train. We consider that the random variables x0, α, and γ
are independent and normally distributed, x0 ∼ N(0.1;

√
0.0001), α ∼ N(0.35;

√
0.030625) and γ ∼ N(1;

√
0.0025).

For this set of distributions, equation (5) and (6), correspond to sequences of minima and maxima, respectively. In
Figure 1, we show the 3D graphical representation of f1(x, t) given in Theorem 1 (left panel), the mean and confidence
intervals (central panel) using the so called 2σ−rule, and the 2D evolution of the p.d.f. for the sequences of minima and
maxima according to Corollary 1.1 (right panel). They have been computed by expressions (8), E[x(t)] ± 2

√
V[x(t)],

and (9) and (10), respectively. On the left panel, we can observe the 1-p.d.f. evolution over the time. Note that the
1-p.d.f. shifts to the right when the impulse is off, and to left when the impulse is on. This is in full agreement with
the oscillatory behaviour of the expectation and the confidence intervals of the random solution showed on the central
panel. On the right panel, we show p.d.f.’s for the sequences of minima (dotted line) and maxima (solid line). Each
cycle has a minimum and a maximum p.d.f., which are close together. They are moving to the left and will converge
to a Dirac delta in the long term. On the other hand, the probability of convergence computed by (16) is 0.9999,
truncated to four figures.

Example 3.2. Non-homogeneous case. Let us consider IVP (1) with β an absolutely continuous random vari-
able. We keep the same conditions and distributions as in Example 3.1. For the random variable β, we take
β ∼ N(0.1;

√
0.0001). In the same manner as in Figure 1, we show the 1-p.d.f., mean and confidence intervals,

and the p.d.f. for the random sequences of minima and maxima, on left, central and right panels, respectively. How-
ever, we have also depicted the p.d.f.’s of the limits of the minima and maxima sequences, (14) and (15), solid and
dashed black lines. In general, the behavior of the 1-p.d.f. is similar to Example 3.1. However, the expectation of
random solution and their confidence intervals increase (central panel). Note that the 1-p.d.f. of the random solution
will oscillate between the p.d.f.’s of the minima and maxima limits, in the long term. It goes from one p.d.f. to the
other in a time equal to T/2. Finally, the probability of convergence computed using (16) is 0.9999.
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Figure 2: Non-homogeneous case. Left panel: 3D Graphical representation of the 1-p.d.f., f1(x, t), obtained from (8), with three impulse appli-
cations with period T = 1/2 and impulse duration τ = T/2. Central panel: Mean plus/minus two standard deviations. Right panel: P.d.f. of the 
random sequences of minima and maxima (9) and (10). Example 3.2.
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