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Abstract— Cardiac function deterioration of heart failure 

patients is frequently manifested by the occurrence of decom-

pensation events. One relevant step to adequately prevent car-

diovascular status degradation is to predict decompensation 

episodes in order to allow preventive medical interventions.  

In this paper we introduce a methodology with the goal of 

finding onsets of worsening progressions from multiple physio-

logical parameters which may have predictive value in decom-

pensation events. The best performance was obtained for the 

model composed by only two features using a telemonitoring 

dataset (myHeart) with 41 patients. Results were achieved by 

applying leave-one-subject-out validation and correspond to a 

geometric mean of 83.67%. The obtained performance suggests 

that the methodology has the potential to be used in decision 

support solutions and assist in the prevention of this public 

health burden.  

I. INTRODUCTION

Cardiovascular diseases (CVDs) were responsible for 
31% of all global deaths in 2015, still remaining the leading 
cause of morbidity and mortality worldwide [1]. Contrarily to 
the considerable decrease in mortality rates observed for 
many CVDs (including acute coronary syndromes, valvular 
and congenital heart disease, uncontrolled hypertension and 
several arrhythmias), congestive heart failure (HF) syndrome 
has been associated with an increasing mortality rate [2]. In 
fact, only 50% of HF patients get the chance to live more 
than five years after diagnosis [1]. Furthermore, as conse-
quence of gradual ageing of the population and improve-
ments in prognosis of acute cardiac events, projections indi-
cate an increase by 25% of the HF prevalence in the next 20 
years [1]. 

The progression of HF originates recurrent hospitaliza-
tions (acute decompensation events) and, even though the 
symptoms are reduced, the patient’s cardiac function contin-
ually deteriorates [3]. In consequence, each acute congestion 
event contributes to a decreased level of cardiac function, 
leading to further progression of the patient’s HF.  

Studies reporting HF predictors of morbidity, mortality, 
destabilizations (sudden alternating periods of apparent sta-
bility) and re-hospitalizations can be found in literature [4], 
[5]. The majority of these studies report the use of blood 
pressure (BP) as a predictor, which is expected due to the 
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characterization and pathophysiology of the cardiovascular 
diseases, as well as a cause of decompensation [5]–[14].  

Other characteristic widely used in these studies is the 
body weight (BW), as an increase in this parameter is nor-
mally related to fluid retention, being a potential measure of 
how much fluid is being retained. In this perspective several 
telemonitoring studies have observed an increase in body 
weight, associated with an increase in body fluids [14], [15]. 
Particularly, Koulaouzis and colleagues, report the use of 
body weight, as also heart rate (HR) and blood pressure for 
the prediction of HF re-hospitalizations using a telemonitor-
ing dataset. Inspecting the performance obtained with differ-
ent combinations of those parameters, it was found that the 
best performance obtained was with body weight and diastol-
ic blood pressure [12], achieving 82% of area under the ROC 
curve. Besides these two predictors, studies carried out by 
[6]–[8] also included other physiological data including HR, 
breathing rate (BR), body temperature and total body water. 
The results were obtained for clinical data acquired during 
cardiologists’ visits to the patients at home and therefore 
using a more controlled procedure compared to telemonitor-
ing collection of data. The best performance (sensitivity of 
100% and false positive rate of 2.78%) among the works 
reported in [6]–[8] was obtained in [7], where an independent 
testing dataset, strongly imbalanced (38 instances and 2 de-
compensation cases), was analyzed by using the methodolo-
gy in [7]. The second best performance (sensitivity of 91% 
and false positive rate of 16.21%) was obtained using a SVM 
hyper solution framework in a new dataset in [8]. 

Henriques et al. [11] also investigated the predictive pow-
er of four bio signals (BW, BP, HR and BR acquired during a 
telemonitoring study) for the anticipation of HF decompensa-
tion events. The progression of the time series was inspected 
(trend similarity analysis) and a nearest neighbor classifier 
was applied to data resulting in a Fmeasure of 78% and a Gmean 
of 80%. Furthermore, intracardiac impedance has also been 
recently reported to decrease as result of HF worsening being 
a strong candidate as HF decompensation predictor [16]. 

Based on the aforementioned, it is crucial the existence of 
approaches that predict and prevent HF decompensation 
events and consequently the worsening of HF patients. In the 
following sections a new method to detect high risk of a 
decompensation event is described, which is based on the 
fusion of latent states from different physiological parame-
ters.  

II. DATA

Before the introduction of the proposed methodology, the 
used data is described, as its characteristics are determinant 
for the methodology obtained. The data used is from 
MyHeart dataset [11], a heart failure telemonitoring study 
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with annotated heart failure episodes, which is a private da-
taset composed by daily physiological parameters such as 
body weight (BW), systolic blood pressure (BP), heart rate 
(HR), breathing rate (BR), external and internal thoracic 
impedance, (RE) and (RI), respectively, and finally the daily 
average QRS duration (QRSm). 

This study enrolled 148 patients from six clinical centers 
in Germany and Spain that agreed with data acquisition and 
processing under anonymous conditions. During the study the 
patients were requested to measure the physiological meas-
urements referred above, with the exception of the QRSm 
parameter, which was calculated from the acquired ECG 
recurring to an automatic algorithm. As a consequence of the 
ambulatory nature of the study, the data produced is com-
posed by missing values and noise. Consequently, only 41 
patients were considered analyzable. Additionally, six cardi-
ologists have analyzed the data, identifying which patients 
had experienced a decompensation event (16 patients) and 
which patients had not (25 patients). The data used for the 
construction and validation of the methodology presented in 
the next sections, corresponds only to a 40-day snapshot of 
the physiological parameters for each patient, random in the 
control case, while in the decompensated patients, the 40 
days prior the decompensation event. 

III. METHODS

The proposed methodology aims to obtain an instantane-
ous fused risk score of a decompensation to occur. Instanta-
neous in this context refers to the fact that the features from 
the time-series do not require a windowing process, as they 
are extracted instantaneously as a new sample of the raw 
signal is available, and this way, the features present the same 
scale as the original time-series and the risk score is obtained 
instantaneously through a linear combination of those fea-
tures. This methodology is achieved recurring to a Kalman 
Filter formulation for the feature extraction phase, and a 
logistic regressor for the fusion step and risk score calcula-
tion.  

The main steps of the proposed methodology are listed in 
the following bullets: 

 Feature extraction: a Kalman Filter formulation;

 Feature Selection: using lasso regularization

 Risk score calculation and validation: fusion of

multiparametric latent states

A. Feature extraction: a Kalman Filter formulation

Due to the ambulatory nature of the database, the physio-
logical parameters present a high degree of noise and missing 
value presence. This characteristic is a challenge in the fea-
ture extraction procedure once the calculation of the features 
may be corrupted by artifacts that do not represent the reality, 
or even impossible due to the nonexistence of measurements. 
Conveniently, the Kalman Filter framework tackles these two 
challenges by relying both on measurements and on a given 
dynamical system formulation, in order to obtain the optimal 
state estimation. Using this approach is not only possible to 
infer about missing observations, but to also extract filtered 
latent states depending on the system definition. Assuming 
that the time-series follow a given progression/trend and are 
subject to some error, both in the system and in the measure-

ments, it is possible to model the physiological parameters by 
a local linear trend model, i.e., the next filtered value 𝜇𝑡 of a
given raw signal 𝑦 will be equal to the previous value 𝜇𝑡−1

plus a trend term 𝛽𝑡−1 and an error term, allowing the term
trend to also vary over time. 

𝜇𝑡 = 𝜇𝑡−1 + 𝛽𝑡−1 + 𝜀𝑡,     𝜀𝑡~𝑁(0, 𝜎𝜇) (1) 

𝛽𝑡 = 𝛽𝑡−1 + 𝜏𝑡 ,     𝜏𝑡~𝑁(0, 𝜎𝛽) (2) 

𝑦𝑡 = 𝜇𝑡 + 𝜔𝑡 ,     𝜔𝑡~𝑁(0, 𝜎𝑦) (3) 

The formulation present in the Equation (1-3) allows the 
decomposition of the physiological parameter into two dif-
ferent components, the filtered state of the time series (𝜇), 
and a component of the instantaneous slope values (𝛽), as can 
be seen in Figure 1. The parameters and latent states are 
determined by Maximum Likelihood Estimation (MLE). 
Inspecting the residuals of the filtered process is observed 
that the majority follow a gaussian distribution, as assumed 
by the Kalman Filter definition. Although the residuals on 
some cases do not follow the gaussian distribution, the filter-
ing process still manages to provide a reasonable estimation 
of the latent states, i.e., the centrality and trend extraction. 

In the HF context, the physiological parameters normally 
present a given trend anteceding a decompensation event, 
which are respective to the worsening of symptoms and to the 
increasing difficulty to fulfil the body needs, which eventual-
ly may lead to a decompensation event. In Figure 1 is illus-
trated the onset of an increasing trend around the 30th day, 
which can be an indicator of worsening of the cardiac status 
and may have predictive value in the detection of a possible 
event to occur. Both instantaneous slopes and values are 
computed for each parameter, as the values of the physiologi-
cal parameters (aside its trends) may also indicate to some 
extent the risk of a decompensation event. Aside these two 
features, the absolute value of the slope is also taken into 
consideration for each parameter, as an increasing or decreas-
ing trend may have predictive value against a null trend, 
which represents a steadied condition. In conclusion, for each 
existing bio-signal are extracted three features with the same 
scale of the raw signal: the filtered parameter, the instantane-
ous slope and the absolute value of the slope. 

Figure 1 – Extraction of the latent state (used as features) on a raw BR 

signal. 



B. Feature selection: using lasso regularization

Given that only 41 patients are available and a total of 21 
features (three per bio-signal) are present, a feature selection 
procedure is crucial in order to prevent high degrees of free-
dom and overfitting effects. The chosen feature selection 
procedure was the logistic regression with lasso regulariza-
tion. A embedded method was chosen in favor of filter and 
wrapper methods once the filter methods do not take into 
account the relations between the different features, while the 
wrapper methods are not suitable for low sample sized da-
tasets once the results obtained are highly biased [17]. By 
following this procedure, the most relevant features can be 
identified by the magnitude of the regression weights 𝜃, 
while the redundant and correlated ones are eliminated due to 
the regularization factor (−λ ∑|𝜃𝑖|) added to the log likeli-
hood function of the logistic regression. The regularization 
weight λ was set by default to λ1.10-4, being λ1 the largest 
lambda that provides a nonnull model. 

In order to compute the regression weights, the data must 
be manipulated to obtain a classification task. Each sample 
may be one of two classes, control or prior decompensation. 
The control dataset is composed by all the feature samples in 
the 40 days window from all the control cases. While in the 
prior decompensation case, only the feature values that corre-
spond to the day anteceding the decompensation are fed to 
the classifier. This is done to impose the behavior that in the 
day anteceding a decompensation, the risk must be maxi-
mum. Moreover, using this approach, it is not assumed the 
starting point of high risk decompensation, which may vary 
given the patient from 1 to 40 days anteceding the event. 
However, this selection causes a high degree of imbalance in 
the training procedure, once all 40 days are used in the con-
trol patients, while only one day is used in the decompen-
sated patients. To tackle this problem, different error weights 
are given for each class during the training procedure in order 
to uniform the prior probabilities of each class.    

Another problem lies in the possibility that a given test 
case do not present all the parameters taken into account in 
the feature selection procedure, this due to the ambulatory 
acquisition nature of the physiological parameters, where 
some parameters may not be acquired possibly due to system 
failure. This situation is observed in three patients, two of 
them do not present measures of RI and RE (or at least not 
the sufficient ones to extract the latent states be Kalman Fil-
tering), and the other only presents measures of BW, HR and 
BP. In order to prevent the mismatch of the most relevant 
features, and the ones present in a given test case, the search 
for the relevant features in the training set is limited to the 
ones which are present in the test case, this way, the method 
can adapt itself depending on the situation and not assuming 
that a given set of features will be present in a real case sce-
nario.  

C. Risk score calculation and validation: fusion of mul-

tiparametric latent states

Once the most relevant features are identified and the ir-
relevant ones are discarded based on the magnitude of the 
regression weights with lasso regularization, a risk score is 
pursued. This risk score is obtained once again by a logistic 
regression on the encountered features with uniform prior 
probabilities, but this time without regularization. At the time 

of computing the risk scores for unseen cases, the previous 
trained model can be employed, and an alarm of an incoming 
decompensation event can be emitted if the risk score sur-
passes a given threshold, in this case set to 0.5, which is the 
central value in the possible range of 0 and 1.  

The methodology is validated in a Leave-One-Subject-
Out (LOSO) manner. Before the results are presented, it is 
important to define what is considered a true positive (TP), a 
true negative (TN), a false positive (FP) and a false negative 
(FN). For validation purposes, a TN is considered when the 
risk score of a control subject never surpasses the alarm 
threshold in all 40 days, if it does, it is considered a FP, even 
if the risk score only surpasses the threshold for just one day. 
A TP is considered when the risk score of a subject with an 
incoming decompensation surpasses the given threshold and 
stays in the alarm region until the decompensation occurs, if 
the risk score by any chance, returns to normal values (below 
the threshold) before the decompensation it is considered a 
FN, once this is not a desired behavior. Using these defini-
tions, the geometric mean (Gmean) is calculated as metric of 
model evaluation. 

𝑆𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4) 

𝑆𝑃 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (5) 

𝐺𝑚𝑒𝑎𝑛 = √𝑆𝐸 × 𝑆𝑃 (6) 

In Equation (4), SE corresponds to the sensitivity and in 
Equation (5), SP corresponds to the specificity. The geomet-
ric mean is calculated as in Equation (6). 

IV. RESULTS & DISCUSSION

In this section the results of the model are presented as al-
so the relative importance and frequency of each feature in 
the LOSO validation. In Figure 2 is illustrated the variation 
of the LOSO Gmean as the maximum number of features al-
lowed in the final model increase. As can be seen, the per-
formance reaches a Gmean plateau of 81,24% at 14 maximum 
features allowed, this indicates that however more features 
can be introduced, the regularization factor always clips at 
this number of maximum features, which can be confirmed 
by the analysis of the weights obtained in LOSO for each of 
these runs. However, is using the two most relevant features 
that the model reaches its maximum performance, a Gmean of 
83.67%, while a valley of performance can be encountered in 
between these two conditions. Before discussing this behav-
ior, it is pertinent to inspect the relative weight of each 

Figure 2 – Variation of the Gmean respective to the maximum number of 
features allowed in the model 



feature, or importance, in the plateau region. If the average 
weight for each feature is calculated across all folds, there are 
three features that stand out from the rest: the BP filtered 
value, the BR slope and finally, the QRSm absolute slope, as 
can be seen in TABLE I. Regarding the physiological validity 
of the features present in the TABLE I, the negative weight 
of the feature BR slope suggests that a negative trend on this 
parameter reflects the worsening of the cardiac status. In 
patients with HF, a change in respiratory rate can warn of 
impending pulmonary edema, or fluid in the lungs, which is a 
common symptom of HF. Additionally, variations in the 
QRSm duration and in the BP also reflect an increasing diffi-
culty on the heart to satisfy the body needs. Moreover, by 
analyzing the features that are present in the model with two 
maximum features, the combination of two features is always 
the BR slope with the QRSm absolute slope or with the BP 
filtered value, except for two cases where some physiological 
parameters are missing, in these two cases the pair of features 
is the BP filtered value coupled with the BP absolute slope. 
Given this, one can question why the models with greater 
performance are the one with two maximum features and the 
one with no limit of number of features. This behavior is 
mainly due to the stability of the feature space encountered, 
i.e., the feature combinations obtained in LOSO are less
prone to change in each fold, and in this way the influence of
artifacts is reduced.

V. CONCLUSION

The methodology manages to obtain comparable results 
in respect with the literature and demonstrate the potential of 
such approach. The characteristic of the obtained features 
being interpretable and expected in the HF context, a Gmean of 
83.67%, and finally the capability of capturing the trends 
onsets of the physiological parameters, makes this a suitable 
method in the usage of telemonitoring and decision support 
solutions. For future work is intended to validate the devel-
oped strategy in other case studies, such as the prediction of 
hypertensive crises, and to study how the methodology man-
ages to extract interpretable and meaningful variables for new 
problems, maintaining the robustness and performance. 
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TABLE I - The top 5 features with highest absolute weights. The 

column ‘Mean’ corresponds to the average weight of all folds, ‘StD’ 
its standard deviation and ‘Relative Weight’ correspond to the relative 

absolute weight respective to the total absolute weights of all features. 

Feature Mean StD 
Relative 

 Weight 

BR slope -18,49 4,14 0,37 

QRSm abs(slope) 6,42 2,3 0,13 

BP value -6,01 1,19 0,12 

QRS slope -4,7 1,43 0,09 

BP abs(slope) 2,72 0,73 0,05 


