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Preface

This report contains the joint proceedings of the 10th Workshop on Higher-
Order Rewriting (HOR) and 7th International Workshop on Confluence (IWC),
held in Dortmund, Germany on June 28th, 2019. In addition, the proceedings
include the system descriptions of the 8th Confluence Competition (CoCo 2019).
The workshops were part of the International Conference on Formal Structures
for Computation and Deduction (FSCD 2019).

HOR is a forum to present work concerning all aspects of higher-order rewrit-
ing. The aim is to provide an informal and friendly setting to discuss recent
work and work in progress concerning higher-order rewriting, broadly construed.
This includes various topics of interest that range from foundations (pattern
matching, unification, strategies, narrowing, termination, syntactic properties,
type theory), frameworks (term rewriting, conditional rewriting, graph rewrit-
ing, net rewriting), semantics (operational semantics, denotational semantics,
separability, higher-order abstract syntax) to implementation (graphs, nets, ab-
stract machines, explicit substitution, rewriting tools, compilation techniques)
and application (proof checking, theorem proving, generic programming, declar-
ative programming, program transformation, certification).

Confluence provides a general notion of determinism and has been conceived
as one of the central properties of rewriting. Confluence relates to the many
topics of rewriting (completion, termination, commutation, coherence, etc.) and
has been investigated in many formalisms of rewriting such as first-order rewrit-
ing, lambda-calculi, higher-order rewriting, higher-dimensional rewriting, con-
strained rewriting, conditional rewriting, etc. Recently, there is a renewed in-
terest in confluence research, resulting in new techniques, tool support, certi-
fication, as well as applications. IWC promotes and stimulates research and
collaboration on confluence and related properties.

The joint program contains 5 contributed talks as well as invited talks by
Martin Avanzini, Fransico Duran, Jörg Endrullis, Cynthia Kop, and Giulio
Manzonetto. In addition, the program contains the system descriptions from
the 8th Confluence Competition (CoCo 2019) held in conjunction with the Inter-
national Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2019).

Many people contributed to the preparations of HOR and IWC. Hard work
by the program commitees, steering committees, and subreviewers made an
exciting program of contributed and invited talks possible. In addition, we are
greatful to the organizing committee and workshop chairs of FSCD for hosting
the workshops in Dortmund.

June 14, 2019 Brasilia/Novi Sad/Copenhagen
Mauricio Ayala-Rincón
Silvia Ghilezan
Jakob Grue Simonsen
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infChecker

A Tool for Checking Infeasibility∗

Raúl Gutiérrez1†and Salvador Lucas1

Valencian Research Institute for Artificial Intelligence, Universitat Politècnica de València
Camino de Vera s/n, E-46022 Valencia, Spain

{rgutierrez,slucas}@dsic.upv.es

Abstract

Given a Conditional Term Rewriting System (CTRS) R and terms s and t, we say that
the reachability condition s !⇤

t is feasible if there is a substitution � instantiating the
variables in s and t such that the reachability test �(s) !⇤

R �(t) succeeds; otherwise, we
call it infeasible. Checking infeasibility of such (sequences of) reachability conditions is
important in the analysis of computational properties of CTRSs, like confluence or opera-
tional termination. Recently, a logic-based approach to prove and disprove infeasibility has
been introduced. In this paper we present infChecker, a new tool for checking infeasibility
which is based on such an approach.

1 Introduction

When analyzing the computational behaviour of CTRSs R, consisting of rules ` ! r ( s1 ⇡
t1, . . . , sn ⇡ tn, we need to consider two kinds of computations: (1) the reduction of expressions
in the usual way, i.e., by replacing an instance �(`) of the left-hand side ` by the instance �(r)
of the right-hand side r using a matching substitution � and (2) the evaluation of the conditions
si ⇡ ti in the rules, which (for oriented CTRSs) are treated as reachability tests �(si) !⇤

�(ti).
In this setting, representing rewriting steps in CTRSs as proofs of goals in the logic of (oriented)
CTRSs with inference system in Figure 1 becomes a natural way to represent computations [6].
Given a CTRS R, an inference system I(R) is obtained from the inference rules in Figure 1
by specializing (C )f,i for each k-ary symbol f in the signature F and 1  i  k and (Rl)⇢ for
all conditional rules ⇢ : ` ! r ( c in R. We write s !R t (resp. s !⇤

R
t) i↵ there is a proof

tree for s ! t (resp. s !⇤
t) using the inference system I(R), whose rules are schematic in the

sense that each inference rule B1 ··· Bn
A can be used under any instance

�(B1) ··· �(Bn)

�(A)
of the

rule by a substitution �.

(R) x !⇤ x (T)
x ! y y !⇤ z

x !⇤ z

(C)f,i

xi ! yi
f(x1, . . . , xi, . . . , xk) ! f(x1, . . . , yi, . . . , xk) (Rl)⇢

s1 !⇤ t1 · · · sn !⇤ tn
` ! r

for all f 2 F(k) and 1  i  k for ⇢ : ` ! r ( s1 ⇡ t1, . . . , sn ⇡ tn 2 R

Figure 1: Inference rules for conditional rewriting with an oriented CTRS R with signature F

∗Partially supported by the EU (FEDER), and projects RTI2018-094403-B-C32, PROMETEO/2019/098,
and SP20180225.

†Raúl Gutiérrez was also supported by INCIBE program “Ayudas para la excelencia de los equipos de
investigación avanzada en ciberseguridad”.
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A first-order theory R associated to R, where ! and !⇤ are seen as predicates, is obtained
from I(R): the inference rules B1 ··· Bn

A in I(R) are considered as sentences (8x1, . . . , xm)B1^
· · · ^ Bn ) A, where {x1, . . . , xm} is the (possibly empty) set of variables occurring in the
atoms B1, . . . , Bn and A. If such a set is empty, we write B1 ^ · · · ^Bn ) A.

Example 1. Consider the following CTRS R (903.trs
1
):

le(0, s(y)) ! true

le(s(x), s(y)) ! le(x, y)
le(x, 0) ! false

min(cons(x, nil)) ! x

min(cons(x, xs)) ! x ( min(xs) ⇡ y, le(x, y) ⇡ true

min(cons(x, xs)) ! y ( min(xs) ⇡ y, le(x, y) ⇡ false

The first-order theory R for R is:

(8x) x !⇤
x (1)

(8x, y, z) x ! y ^ y !⇤
z ) x !⇤

z (2)

(8x, y) x ! y ) s(x) ! s(y) (3)

(8x, y, z) x ! y ) cons(x, z) ! cons(y, z) (4)

(8x, y, z) x ! y ) cons(z, x) ! cons(z, y) (5)

(8x, y, z) x ! y ) le(x, z) ! le(y, z) (6)

(8x, y, z) x ! y ) le(z, x) ! le(z, y) (7)

(8x, y) x ! y ) min(x) ! min(y) (8)

(8y) le(0, s(y)) ! true (9)

(8x, y) le(s(x), s(y)) ! le(x, y) (10)

(8x) le(x, 0) ! false (11)

(8x) min(cons(x, nil)) ! x (12)

(8x, y, xs) min(xs) !⇤
y ^ le(x, y) !⇤

true ) min(cons(x, xs)) ! x (13)

(8x, xs) min(xs) !⇤
y ^ le(x, y) !⇤

false ) min(cons(x, xs)) ! y (14)

2 Feasibility Sequences

Given a CTRS R and terms s and t, we say that the atom s !⇤
t is R-feasible (or just feasible

if no confusion arises) if there is a substitution � such that the reachability test �(s) !⇤

R
�(t)

succeeds. As in [5, Definition 2], sequences G = (si !⇤
ti)ni=1

, where n > 0, are called feasibility

sequences.2 We say that G is R-feasible if there is a substitution such that �(si) !⇤

R
�(ti)

holds for all 1  i  n; we call G infeasible otherwise. In [4, 5], we presented an approach to
deal with infeasibility using a satisfiability criterion: a sequence G as above is infeasible if the
first-order theory R together with the negation of the sentence

(9~x)
n̂

i=1

si !⇤
ti (15)

where ~x are the variables occurring in terms si and ti for 1  i  n, is satisfiable by any
interpretation A of the function and predicate symbols, i.e., A |= R[{¬(15)} holds [5, Theorem
6]. Actually, as showed in [3], if (15) is a logical consequence of R (i.e., R ` (15) holds), then
the feasibility of G is proved. Thus, this logical approach provides a sound and complete method
to (dis)prove feasibility.

Example 2. Continuing with Example 1, the sequence: min(nil) !⇤
x, le(y, x) !⇤

true

corresponds to the following first-order formula (15): (9x, y)min(nil) !⇤
x ^ le(y, x) !⇤

true

In this paper, we present infChecker, a tool for proving and disproving feasibility conditions
taking advantage of this logical approach:

http://zenon.dsic.upv.es/infChecker/

1This problem belongs to the database COPS of confluence problems in http://cops.uibk.ac.at/
2In [5, Definition 2] atoms s ! t are also considered in feasibility sequences.
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3 Feasibility Framework

In order to automatically analyze whether a sequence G is feasible or infeasible, we describe a
framework similar to the one presented in [1] for termination purposes. We define appropriate
notions of (feasibility) problem and processor and show how to apply processors in order to
prove or disprove feasibility.

Definition 3 (fProblem and fProcessor). An fProblem ⌧ is a pair ⌧ = (R,G), where R is

a CTRS and G is a sequence (si !⇤
ti)ni=1

. The fProblem ⌧ is feasible if G is R-feasible;

otherwise it is infeasible.
An fProcessor P is a partial function from fProblems into sets of fProblems. Alternatively,

it can return “yes”. Dom(P) represents the domain of P, i.e., the set of fProblems ⌧ that P is

defined for.

An fProcessor P is sound if for all ⌧ 2 Dom(P), ⌧ is feasible whenever either P(⌧) =“yes”
or 9⌧ 0 2 P(⌧), such that ⌧

0
is feasible.

An fProcessor P is complete if for all ⌧ 2 Dom(P), ⌧ is infeasible whenever 8⌧ 0 2 P(⌧), ⌧ 0

is infeasible.

Feasibility problems can be proved or disproved by using a proof tree as follows.

Theorem 4 (Feasibility Proof Tree). Let ⌧ be an fProblem. A feasibility proof tree T for ⌧

is a tree whose inner nodes are labeled with fProblems and the leaves may also be labeled with

either “yes” or “no”. The root of T is labeled with ⌧ and for every inner node n labeled with

⌧
0
, there is a processor P such that P 2 Dom(P) and: (1) if P(⌧ 0) = “yes” then n has just one

child, labeled with“yes”; (2) if P(⌧ 0) = ; then n has just one child, labeled with “no”; and (3) if

P(⌧ 0) = {⌧1, . . . , ⌧k} with k > 0, then n has k children labeled with the fProblems ⌧1, . . . , ⌧k.

Theorem 5 (Feasibility Framework). Let R be an oriented CTRS, G be a feasibility sequence,

and T be a feasibility proof tree for ⌧I = (R,G). Then: (1) if all leaves in T are labeled with

“no” and all involved fProcessors are complete for the fProblems they are applied to, then G is

R-infeasible; and (2) if T has a leaf labeled with “yes” and all fProcessors in the path from ⌧I

to the leaf are sound for the fProblems they are applied to, then G is R-feasible.

In the following subsections we describe a number of sound and complete fProcessors.

3.1 Satisfiability Processor

The following processor integrates the satisfiability approach described in [5] to prove infea-
sibility in our framework. When dealing with reachability, i.e., all the left-hand sides of the
feasibility conditions in G are ground, we can restrict our theory to the set of usable rules.
Given an fProblem (R,G), we let

U(R,G) =
⇢ S

si!⇤ti2G
U(R, si) if all si in G are ground

R otherwise

where, given a CTRS R and a term t, U(R, t) are the usable rules R regarding t [5, Section 2].

Theorem 6 (Satisfiability Processor). Let ⌧ = (R,G) be an fProblem with G = (si !⇤
ti)ni=1

.

Let A be a structure such that A 6= ; and A |= U(R,G) [ {¬(9~x)
Vn

i=1
si !⇤

ti}. The processor
PSat

given by PSat(⌧) = ; is sound and complete.

In infChecker, we use the model generators AGES [2] and Mace4 [8] to find suitable structures
A to be used in the implementation of PSat.

Example 7. For R in Example 1 and G in Example 2, we obtain PSat(⌧I) = ; using AGES.

3
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3.2 Provability Processor

The following processor integrates the logic-based approach to program analysis described in
[3] to prove feasibility by theorem proving.

Theorem 8 (Provability Processor). Let ⌧ = (R,G) be an fProblem with G = (si !⇤
ti)ni=1

such that R ` (9~x)
Vn

i=1
si !⇤

ti holds. The processor PProv
given by PProv(⌧) = “yes” is sound

and complete.

In infChecker, we use the theorem prover Prover9 [8] as a backend to implement PProv.

Example 9. For R in Example 1 and G = le(x,min(y)) !⇤
false,min(y) !⇤

x (836.trs)

with associated first-order formula (15) as follows:

(9x, y) le(x,min(y)) !⇤
false ^min(y) !⇤

x (16)

we have PProv(⌧I) = “yes” by using Prover9.

3.3 Narrowing on Feasibility Conditions Processor

In the context of the 2D DP framework [7], there are powerful processors that can be applied
to the conditions of the rules in order to simplify those conditions. We adapt the processor that
narrow conditions to be used on fProblems.

Let N1(S, s) = {(t, ✓#Var(s)) | s ;`!r(c,✓ t, ` ! r ( c 2 NRules(S, s)} represents the set
of one-step S-narrowings issued from s [7, Definition 79], where NRules(S, s) is the set of rules
↵ : ` ! r ( c 2 S such that a nonvariable subterm t of s is a narrex of ↵, and ✓#Var(s) is
a substitution defined by ✓#Var(s) (x) = ✓(x) if x 2 Var(s) and ✓#Var(s) (x) = x otherwise.
As discussed in [7, Section 7.5], the set N1(S, s) can be infinite if NRules(S, s) is not a TRS,
i.e., it contains ‘proper’ conditional rules. In [7, Proposition 87] some su�cient conditions for
finiteness of N1(S, s) are given. Accordingly, we define a narrowing processor on fProblems.
Given a feasibility sequence G = (si !⇤

ti)ni=1
we let

N (S,G, i) = {G[~✓, w !⇤
ti]i | si !⇤

ti 2 G, (w, ✓) 2 N1(S, si)}

where ~✓ consists of new conditions x1 !⇤
✓(x1), . . . , xm !⇤

✓(xm) obtained from the bindings
in ✓ for variables in Var(si) = {x1, . . . , xm}.

Definition 10 (Narrowing on Feasibility Conditions Processor). Let ⌧ = (R,G) be an fProblem,

si !⇤
ti 2 G, and N ✓ N (R,G, i) finite. PNC

is given by PNC(⌧) = {(R,N )}.

Theorem 11. PNC
is sound. If N = N (R,G, i) and si !⇤

ti 2 G is such that si and ti do not
unify and either si is ground or (1) NRules(R, si) is a TRS and (2) si is linear, then PNC

is

complete.

4 Experimental Evaluation

We participated in the Infeasibility (INF) category of the 2019 Confluence Competition (CoCo)3:

3http://project-coco.uibk.ac.at/2019/
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INF Tool Yes No Total
infChecker 40 32 72
nonreach 30 0 30
Moca 26 0 26

maedmax 15 0 15
CO3 12 0 12

Note that answers Yes/No in the table refer to infeasibility problems (which is the focus of the
competition). In our setting, given a CTRS R and an infeasibility problem given as a feasibility
sequence G, we just return Yes if ⌧I is proved infeasible, and No if ⌧I is proved feasible.

Apart from the 32 negative answers, there are 7 more examples that can be proved positively
using infChecker only. Furthermore, there are 10 examples that can be proved by other tools
and cannot be proved by infChecker.

5 Conclusions and Future Work

In this paper we present infChecker, a new tool for checking feasibility conditions of CTRSs that
takes advantage of the logic-based approach presented in [3, 4, 5]. We succesfully participated
in the 2019 Confluence Competition in the INF (infeasibility) category, being the most powerful
tool for checking both infeasibility and feasibility.

Currently, the tool has only three processors. As a subject for future work, we would like
to increase the power of the tool with new processors focused on feasibility conditions, analyze
the examples that cannot be proved by infChecker but can be proved by other tools and extend
the tool to deal with more involved rewrite systems (order-sorted, axioms. . . ).
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