ECCOMAS MSF 2019

4™ International Conference on
Multi-scale Computational Methods
for Solids and Fluids

PROCEEDINGS

September 18-20, 2019
Sarajevo, Bosnia and Herzegovina

s

Editors:

A. Ibrahimbegovic, S. Dolarevi¢, E. Dzaferovi¢,
M. Hrasnica, |. Bjelonja, M. Zlatar, K. Hanjali¢



(© Faculty of Civil Engineering, University of Sarajevo

Organized by:
Faculty of Civil Engineering, University of Sarajevo,

Faculty of Mechanical Engineering, University of Sarajevo,

University of Technology of Compiegne, Alliance Sorbonne University, Paris

Supported by:
Academy of Sciences and Arts of Bosnia and Herzegovina, ANU BIH

Editors:

Adnan Ibrahimbegovic, Samir Dolarevié¢, Ejub Dzaferovié,

Mustafa Hrasnica, Izet Bjelonja, Muhamed Zlatar, Kemal Hanjali¢

Publisher: Faculty of Civil Engineering, University of Sarajevo,

Patriotske lige 30, 71000 Sarajevo, Bosnia and Herzegovina
Printed by: Stamparija Fojnica d.o.o.
Number of printed copies: 160
Date: September, 2019

ISBN: 978-9958-638-57-2

CIP - Katalogizacija u publikaciji
Nacionalna i univerzitetska biblioteka
Bosne i Hercegovine, Sarajevo

624:004(063)(082)

INTERNATIONAL Conference on Multi-scale Computational Methods for
Solids and Fluids (4 ; 2019 ; Sarajevo)

Proceedings / 4th International Conference on Multi-scale Computational
Methods for Solids and Fluids, Sarajevo, September 18-20, 2019 ; editors Adnan
Ibrahimbegovic ... [et al.]. - Sarajevo : Faculty of Civil Engineering = Gradevinski
fakultet, 2019. - 417 str. : ilustr. ; 30 cm

Bibliografija uz svaki rad. - Registar.
ISBN 978-9958-638-57-2

COBISS.BH-ID 27453702



2.46

247

248

2.49

COMBINING DETERMINISTIC AND STOCHASTIC PARAMETER ESTIMATION FOR FIBER
REINFORCED CONCRETE MODELLING

Ivica KoZar, Neira Tori¢ Malié, Silvija Mrakovci¢ and Danijel Simonetti . . . . . . . . . .. ... 188
CYCLIC MODEL FOR CONCRETE IN DISCRETE LATTICE MODEL

Jadran Carija, Mijo Nikolié, Zeljana Nikoli¢ and Adnan Ibrahimbegovic . . . . . . . ... ... 189
INVESTIGATION OF TURBULENT FLOW CHARACTERISTICS WITHIN A SCREW COM-
PRESSOR

Jamshid M. Nouri, Nikola Stosic and Diego Guerrato . . . . . . . . . . . . . ... 193
MOLECULE - TO - BEAM HOMOGENIZATION, APPLIED TO DNA

Johannes Kalliauer, Gerhard Kahl, Stefan Scheiner and Christian Hellmich . . . . . . . . .. .. 197

2.50

NUMERICAL IMPLEMENTATION OF DEBYE MEMORY FOR PIEZOELECTRIC MATERI-
ALS
José L. Pérez-Aparicio, Roberto Palma and Robert L. Taylor . . . . . . . .. .. .. ... .... 201

2.51

2.52

2.53

2.54

2.55

2.56

2.57

2.58

2.59

MACROMODELLING OF COMBINED AND CONFINED MASONRY WALLS CONSIDER-

ING A DAMAGE MODEL

Juan Edmundo Mayorga, Arturo Tena-Colunga, Norberto Dominguez and Hans 1. Archundia-Aranda205
THE TOWERING EARLY SCIENTIFIC WORK OF K. HANJALIC

Juliana B. R. Loureiro and Atila P. Silva Freire . . . . . . . .. . . ... ... ... .... 211
ADVANCE IN SOLUTION OF NON-UNIFORM TORSION OF THE FGM BEAMS

Justin Murin, Mehdi Aminbaghai, Vladimir Kutis, Juraj Hrabovsky and Juraj Paulech . . . . . . . 217
RESEARCH ON T-STUB NONLINEAR BEHAVIOR AS PART OF STRUCTURAL STEEL
END-PLATE CONNECTION

Kenan BaZdar, Ismar Imamovic and Esad Mesic . . . . . . . .. .. ... ... .. .. ...... 219
EULERIAN FINITE VOLUME FORMULATION USING PARTICLE-IN-CELL METHOD FOR
LARGE-SCALE PARALLEL SIMULATION OF COMPLEX STRUCTURES

Koji Nishiguchi, Tokimasa Shimada, Masafumi Otaka, Shigenobu Okazawa and Makoto Tsubokura 223
ZONAL DETACHED EDDY SIMULATION COUPLED WITH STEADY RANS IN THE WALL
REGION

Lars Davidson . . . . . . . ... e e e 227
REAL-TIME BAYESIAN DATA ASSIMILATION WITH ON-THE-FLY CORRECTION OF MODEL
BIAS

Ludovic Chamoin, Paul-Baptiste Rubio and Francois Louf . . . . . . . . ... ... .. ..... 231
POST-BUCKLING OF SHELLS AND DEPLOYABLE RINGS

Marko Lavrencic and Bostjan Brank . . . . . . . . . . ... o oo 235
AN OPTIMAL HYBRID-MIXED LOW-ORDER SHELL FINITE ELEMENT FOR NONLIN-

EAR SHELL APPLICATIONS

Marko Lavrencic and Bostjan Brank . . . . . . . . . . . .. e 237

ix



Pau


ECCOMAS MSF 2019 THEMATIC CONFERENCE
18-20 SEPTEMBER 2019, SARAJEVO, BOSNIA-HERZEGOVINA

NUMERICAL IMPLEMENTATION OF DEBYE MEMORY FOR PIEZOELECTRIC MA-
TERIALS

José L. Pérez-Aparicio !, Roberto Palma ? and Robert L. Taylor 3

! Universitat Politécnica de Valéncia, Camino Vera, s/n, 46005 Valéncia (Spain), jopeap@mes.upv.es
2 Universitat Jaume I, Avda. Sos Baynat, s/n, 12071 Castellén (Spain), rpalma@uji.es
3 University of California at Berkeley, CA (USA), rlt@ce.berkeley.edu

1. Introduction

Piezoelectric materials are used in a wide range of applications such as sensors/actuators in civil and
aeronautic engineering, medical devices, energy harvesters, and many other operations. In the last
decades, there exist a tendency to miniaturize electro-mechanic devices, for instance for the Micro-
Electro-Mechanics (MEMs) technology. These materials are characterized by a set of two coupled con-
stitutive equations including mechanical, electrical variables and also thermal. The continuous reduction
of scale in many applications results in the significance of second-order effects such as the Debye mem-
ory, that can be understood as an electric viscosity-like interaction due to the momentary delay in the
spontaneous orientation of the electric dipoles. The classical constitutive equations must then be en-
riched with time-dependent electrical variables and with an additional empirical relaxation time to take
into account the delay.

The main aim of the present work is to develop a numerical formulation based on the Finite Ele-
ment Method (FEM) to study the no-linear piezoelectric behavior with Debye memory. Despite the fact
that small strains and rotations are assumed, the complexity of the present work emerges from: i) non-
linearities due to the Maxwell stress tensor, which quadratically depends on the electric field [1], and ii)
time-dependent constitutive equations due to this Debye memory.

To undertake these objectives, a thermodynamical formulation based on the Extended Non-Equilibrium
Thermodynamic [1], [2] is conducted to obtain a set of two time-dependent constitutive equations. Nu-
merically, the non-linearities are solved by the Newton-Raphson algorithm and the time integration by
the Newmark—p} technique; as a new contribution, also by convolution integrals for the time-dependent
constitutive equations, as typically done in the classical theory of visco-elasticity for uncoupled materi-
als.

Finally, the numerical formulation is implemented in the research FEM code FEAP [3] and several
tests are executed to validate this implementation and to extract conclusions on the importance of the
Debye effect on the piezoelectric response.

2. Outline of governing equations

The piezoelectric governing equations are composed of linear and angular momentum balances, Gauss
law, constitutive equations and boundary conditions. The first is stated by:

P ii =V (T +T")+f. (1)

where u, T, T" and f denote displacement field, Cauchy stress tensor, Maxwell tensor and body force vec-
tor, respectively. The symbols (-) and () represent inner product and double time derivative. According
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to [1], T™ is symmetric and given by:

1
TM:§<D®E—|—E®D—80E-EI), @)
where D, E and €) denote electric displacement, electric field and vacuum permitivity, respectively.
Furthermore, 7 is the identity second order tensor and (®) the outer product. Assuming that 7% is
symmetric, the angular momentum balance is automatically stated since:

T+T"=(T+T")", 3)

where () denotes transposition.
The electric Gauss law states the electric field equilibrium, in the absence of free electric charge this
equation is extracted from the Maxwell laws:

V-D=0. 4

In addition, assuming small strain and rotations, with S the small strain tensor, the compatibility equations
are given by:

1
S:E(V®u+u®V); E=-VV, &)

Classically, the piezoelectric constitutive equations are a set of two coupled relationships that relate
electric and mechanical fields:
T=C:S—(e")" -E,
(6)
D=e":S+¢-E,

where C, ¢” and € denote elastic, piezoelectric and permitivity tensors, respectively.

As commented, due to the presence of momentary delay in the spontaneous polarization of the elec-
tric dipoles, the Debye memory appears. This effect is mathematically represented by rewriting the
second equation (6) as:

D+t,D=¢":S+¢-E, (7)

where 7, is the relaxation time, also called equilibration time in Extended Non-equilibrium Thermody-
namics terminology and ( *) first derivative with respect to time.
Finally, the set of governing equations is completed with the boundary conditions:

Dirichlet type Neumann type
u=1i (T+T") -n=t, ®)
V=V D-n=q,,

where i1, V, t and q, denote prescribed displacements, prescribed voltage, traction vector, and electric
charges on the boundary I, respectively. The initial conditions for u(0), i(0), D(0) are all taken to zero.

3. Finite element formulation

The piezoelectric equations including Debye memory are now expressed in a weak form on the volume
Q and boundary:

/Q[Su-(t—pmu)—SS:T} dg+ﬁ8u-idr —0, N
/Q [(vav)-p| a0 - 75 8V g, dI —0.

Standard three-dimensional shape functions of Lagrangian type are used to discretize the spacial
coordinates and the degrees of freedom: displacements a* and voltage a". In addition, a formulation
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based on residuals (mechanical R" and electrical KV) is developed since the Maxwell stress tensor
introduces non-linearities.
Assuming constant coefficients, the time-dependent constitutive (7) is rewritten in convolution inte-

gral form:
1

t
D(t) = — /0 [e" () +eE@W)| e /% ar (10)
P
This Ordinary Deferential Equation has exact solution (see [4]) if the constitutive coefficients are con-
stant, a reasonable hypothesis in the functioning range of the piezoelectric of following section. In the
previous equation, the time evolution of the strains S(z') and electric field E(#') can be approximated at
each time increment with the finite-difference 0-method and 6; = 6, = 0.5 (Crank-Nicholson).
The tangent matrices are calculated and the final system of algebraical equations is given by:

k k

aK e M ek (dat R
_ , (11)
Cl KVM C] KVV daV .{]{V

where K, M denote stiffness and mass matrices, k is the number of iteration of the Newron-Raphson
algorithm and ¢; denote the order of the time derivative. The residuals are directly derived by derivation
from the weak forms (9) and the and tangent submatrices from derivations of these residuals with respect
to the degrees of freedom.

As commented, this numerical formulation is implemented in an user element of the the research
code FEAP, [3].

4. Results

Two tests are presented to verify the model and its implementation, in particular, the influence of the
relaxation time in the piezoelectric response for two different signals.

The geometry corresponds to a piezoelectric plate 7R-34-23-2500 of dimensions 33.3 x 22.8 x 0.8
[mm] and material properties listed in [4]. This piezoelectric is designed in actuator mode (as in the
following examples) but can also be used as a sensor. It is clamped and electrically grounded on its
base, while the upper surface is free to vibrate, for which it is connected to an electric source of variable
voltage.
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Figure 1: Polarization vs. electric field applied for classical and Debye memory models.

Figure 1 left shows the polarization (direct effect) P = D —ggE (g is the vacuum permittivity)
through the thickness versus an spike with maximum E = -4.7x10° [V/m] (cause); this spike is a
frequency-dependent function exp(—t). The distributions are for the classical T, = 0 (no dissipation,
thermodynamically reversible process) and Debye T, # 0 (medium and high dissipations). As observed,
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the relaxation time produces a hysteresis-like response that must be considered for fast applications such
as ultrasounds. The area of the loop increases with T,, which implies that a frequency-dependency ap-
pears. Although the values of T, have not been directly measured for this material, 10 and 80 have been
taken from those of similar ones.

The loops’ inclination reduces with the value of t,; the explanation can be found in the following
equation, used among others for the calculation of the FE tangent matrices. The higher the relaxation
time the closer the exponential value to 1 and the derivative of D (proportional to P,) with respect to the
electrical field tends to zero.

J Dn+1

aVbn-H

In the right figure, the two generated P, and S, are related. Both magnitudes are fully coupled through

the piezoelectric effect and loops appear, but now due to the product of e” with the exponential of (10).
Because of this loop, a given polarization causes two strain states depending on the time history. This

“memory”” behavior should be taken into account for the design of actuators, particularly in sophisticated
applications that require the monitoring of precise deformations.

— (1 _e—m/rp) £ B, (12)
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Figure 2: Polarization vs. electric field applied for classical and Debye memory models.

The figure 2 plots the same distributions but for a sinusoidal electric signal of £F = 4.5 [V/m]
repeated eight times during approximately 400 [s] (low frequency).

The trends are similar to those of the previous figure, but now it can be observed that when the first
sine signal is repeated the paths superimpose themselves, meaning that with this model no energy is
dissipated (for instance into heat).
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