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According to different European Standards and several studies, it is necessary
to monitor and analyze the microclimatic conditions in museums and similar buil
dings, with the goal of preserving artworks. With the aim of offering tools to moni
tor the climatic conditions, a new statistical methodology for classifying time series
of different climatic parameters, such as relative humidity and temperature, is pro-
posed in this dissertation.

The methodology consists of applying a classification method using variables
that are computed from time series. The two first classification methods are ver-
sions of known sparse methods which have not been applied to time dependent
data. The third method is a new proposal that uses two known algorithms. These
classification methods are based on different versions of sparse partial least squares
discriminant analysis PLS (sPLS-DA, SPLSDA, and sPLS) and Linear Discriminant
Analysis (LDA). The variables that are computed from time series, correspond to
parameter estimates from functions, methods, or models commonly found in the
area of time series, e.g., seasonal ARIMA model, seasonal ARIMA-TGARCH model,
seasonal Holt-Winters method, spectral density function, autocorrelation function
(ACF), partial autocorrelation function (PACF), moving range (MR), among others
functions. Also, some variables employed in the field of astronomy (for classifying
stars) were proposed.

The methodology proposed consists of two parts. Firstly, different variables are
computed applying the methods, models or functions mentioned above, to time
series. Next, once the variables are calculated, they are used as input for a classi-
fication method like sPLS-DA, SPLSDA, or SPLS with LDA (new proposal). When
there was no information about the clusters of the different time series, the first two
components from principal component analysis (PCA) were used as input for k-
means method for identifying possible clusters of time series. In addition, results
from random forest algorithm were compared with results from sPLS-DA.

This study analyzed three sets of time series of relative humidity or tempe-
rate, recorded in different buildings (Valencia’s Cathedral, the archaeological site
of L’Almoina, and the baroque church of Saint Thomas and Saint Philip Neri) in
Valencia, Spain. The clusters of the time series were analyzed according to different
zones or different levels of the sensor heights, for monitoring the climatic conditions
in these buildings.

Random forest algorithm and different versions of sparse PLS helped identi-
fying the main variables for classifying the time series. When comparing the re
sults from sPLS-DA and random forest, they were very similar for variables from
seasonal Holt-Winters method and functions which were applied to the time se-
ries. The results from sPLS-DA were easier to interpret than results from random
forest. When the different versions of sparse PLS used variables from seasonal Holt-
Winters method as input, the clusters of the time series were identified effectively.



The variables from seasonal Holt-Winters helped to obtain the best, or the se-
cond best results, according to the classification error rate. Among the different
versions of sparse PLS proposed, sPLS with LDA helped to classify time series using
a fewer number of variables with the lowest classification error rate.

We propose using a version of sparse PLS (sPLS-DA, or sPLS with LDA) with
variables computed from time series for classifying time series. For the different
data sets studied, the methodology helped to produce parsimonious models with
few variables, it achieved satisfactory discrimination of the different clusters of the
time series which are easily interpreted. This methodology can be useful for charac-
terizing and monitoring microclimatic conditions in museums, or similar buildings,
for preventing problems with artwork.



De acuerdo con las regulaciones europeas y muchos estudios cientificos, es nece
sario monitorear y analizar las condiciones microclimaticas en museos o edificios,
para preservar las obras de arte que se exponen en ellos. Con el objetivo de ofrecer
herramientas para el monitoreo de las condiciones climéticas en este tipo de edifi-
cios, en esta tesis doctoral se propone una nueva metodologia estadistica para clasi
ficar series temporales de pardmetros climaticos como la temperatura y humedad
relativa.

La metodologia consiste en aplicar un método de clasificacién usando variables
que se computan a partir de las series de tiempos. Los dos primeros métodos de
clasificacién son versiones conocidas de métodos sparse PLS que no se habian apli-
cado a datos correlacionados en el tiempo. El tercer método es una nueva propuesta
que usa dos algoritmos conocidos. Los métodos de clasificacién se basan en dife-
rentes versiones de un método sparse de andlisis discriminante de minimos cuadra-
dos parciales PLS (sPLS-DA, SPLSDA y sPLS) y anélisis discriminante lineal (LDA).
Las variables que los métodos de clasificacién usan como input, corresponden a
pardmetros estimados a partir de distintos modelos, métodos y funciones del area
de las series de tiempo, por ejemplo, modelo ARIMA estacional, modelo ARIMA-
TGARCH estacional, método estacional Holt-Winters, funcién de densidad espec
tral, funcién de autocorrelacién (ACF), funcién de autocorrelacién parcial (PACF),
rango mévil (MR), entre otras funciones. También fueron utilizadas algunas varia
bles que se utilizan en el campo de la astronomia para clasificar estrellas.

La metodologia propuesta consta de dos partes. La primera consiste en calcular
variables a partir de las series de tiempos, usando los métodos, modelos y funciones
mencionadas anteriormente. La segunda parte consiste en usar las variables calcu
ladas en el primer paso para ajustar alguno de los siguientes modelos: sPLS-DA,
SPLSDA, o sPLS con LDA (nueva propuesta). En los casos que a priori no hubo in
formacién de los clusters de las series de tiempos, las dos primeras componentes de
un andlisis de componentes principales (PCA) fueron utilizadas por el algoritmo k-
means para identificar posibles clusters de las series de tiempo. Adicionalmente, los
resultados del método sPLS-DA fueron comparados con los del algoritmo random
forest.

Tres bases de datos de series de tiempos de humedad relativa o de temperatura
fueron analizadas. Estas series de tiempos se registraron en diferentes edificios (la
Catedral de Valencia, el yacimiento arqueoldgico de L’Almoina y la iglesia barroca
de Santo Tomads y San Felipe Neri) en Valencia, Espafia. Los clusters de las series de
tiempos se analizaron de acuerdo a diferentes zonas o diferentes niveles de alturas
donde fueron instalados sensores para el monitoreo de las condiciones climaticas
en los edificios.

El algoritmo random forest y las diferentes versiones del método sparse PLS

fueron dtiles para identificar las variables mas importantes en la clasificacion de
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las series de tiempos. Los resultados de sPLS-DA y random forest fueron muy simi-
lares cuando se usaron como variables de entrada las calculadas a partir del método
Holt-Winters o a partir de funciones aplicadas a las series de tiempo. Aunque los
resultados del método random forest fueron levemente mejores que los encontrados
por sPLS-DA en cuanto a las tasas de error de clasificacién, los resultados de sPLS-
DA fueron més faciles de interpretar.

Cuando las diferentes versiones del método sparse PLS utilizaron variables re
sultantes del método Holt-Winters, los clusters de las series de tiempo fueron mejor
discriminados. Entre las diferentes versiones del método sparse PLS, la versiéon
sPLS con LDA obtuvo la mejor discriminacién de las series de tiempo, con un menor
valor de la tasa de error de clasificacién, y utilizando el menor o segundo menor
numero de variables.

En esta tesis doctoral se propone usar una versién sparse de PLS (sPLS-DA, o
sPLS con LDA) con variables calculadas a partir de series de tiempo para la clasifi-
cacion de éstas. Al aplicar la metodologia a las distintas bases de datos estudiadas,
se encontraron modelos parsimoniosos, con pocas variables, y se obtuvo una dis-
criminacion satisfactoria de los diferentes clusters de las series de tiempo con facil
interpretacién. La metodologia propuesta puede ser ttil para caracterizar las distin-
tas zonas o alturas en museos o edificios histéricos de acuerdo con sus condiciones
climaticas, con el objetivo de prevenir problemas de conservacién con las obras de
arte.



D’acord amb les regulacions europees i molts estudis cientifics, és necessari moni-
torar i analitzar les condiciones microclimatiques en museus i en edificis similars,
per a preservar les obres d’art que s’exposen en ells. Amb l’objectiu d’oferir eines
per al monitoratge de les condicions climatiques en aquesta mena d’edificis, en
aquesta tesi es proposa una nova metodologia estadistica per a classificar séries
temporals de parametres climatics com la temperatura i humitat relativa.

La metodologia consisteix a aplicar un metode de classificaci6é usant variables
que es computen a partir de les séries de temps. Els dos primers metodes de clas-
sificaci6é sén versions conegudes de metodes sparse PLS que no s’havien aplicat a
dades correlacionades en el temps. El tercer metode és una nova proposta que usa
dos algorismes coneguts. Els metodes de classificacié es basen en diferents ver-
sions d'un meétode sparse d’analisi discriminant de minims quadrats parcials PLS
(sPLS-DA, SPLSDA i sPLS) i analisi discriminant lineal (LDA). Les variables que
els metodes de classificacié usen com a input, corresponen a parametres estimats
a partir de diferents models, metodes i funcions de 'area de les séries de temps,
per exemple, model ARIMA estacional, model ARIMA-TGARCH estacional, me-
tode estacional Holt-Winters, funcié de densitat espectral, funcié d’autocorrelacié
(ACF), funci6é d’autocorrelacié parcial (PACF), rang mobil (MR), entre altres fun-
cions. També van ser utilitzades algunes variables que s’utilitzen en el camp de
’astronomia per a classificar estreles.

La metodologia proposada consta de dues parts. La primera consisteix a calcu-
lar variables a partir de les séries de temps, usant els metodes, models i funcions
esmentades anteriorment. La segona part consisteix a usar les variables calculades
en el primer pas per a ajustar algun dels segiients models: sPLS-DA, SPLSDA, o
sPLS amb LDA (nova proposta). En els casos que a priori no va haverhi informa-
ci6 dels clusters de les series de temps, les dues primeres components d’una analisi
de components principals (PCA) van ser utilitzades per 1’algorisme k-means per a
identificar possibles clisters de les series de temps. Addicionalment, els resultats
del meétode sPLS-DA van ser comparats amb els de 1’algorisme random forest.

Tres bases de dades de series de temps d’humitat relativa o de temperatura
varen ser analitzades. Aquestes séries de temps es van registrar en diferents edificis
(la Catedral de Valéncia, el jaciment arqueologic de L’Almoina i l'església barroca
de Sant Tomas i Sant Felip Neri) a Valéncia, Espanya. Els cltsters de les series de
temps es van analitzar d’acord a diferents zones o diferents nivells d’altures on van
ser instal-lats sensors per al monitoratge de les condicions climatiques en els edificis.

L’algorisme random forest i les diferents versions del metode sparse PLS van
ser ttils per a identificar les variables més importants en la classificaci6 de les séries
de temps. Els resultats de sPLS-DA i random forest van ser molt similars quan es
van usar com a variables d’entrada les calculades a partir del metode Holt-winters
0 a partir de funcions aplicades a les series de temps. Encara que els resultats
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del métode random forest van ser lleument millors que els trobats per sPLS-DA
quant a les taxes d’error de classificacio, els resultats de sSPLS-DA van ser més facils
d’interpretar.

Quan les diferents versions del metode sparse PLS van utilitzar variables re-
sultants del metode Holt-Winters, els clasters de les series de temps van ser més
ben discriminats. Entre les diferents versions del metode sparse PLS, la versi6 sPLS
amb LDA va obtindre la millor discriminaci6 de les séries de temps, amb un menor
valor de la taxa d’error de classificacid, i utilitzant el menor o segon menor nombre
de variables.

En aquesta tesi proposem usar una versi6 sparse de PLS (sPLS-DA, o sPLS amb
LDA) amb variables calculades a partir de series de temps per a classificar series
de temps. En aplicar la metodologia a les diferents bases de dades estudiades,
es van trobar models parsimoniosos, amb poques variables, i varem obtindre una
discriminaci6 satisfactoria dels diferents clisters de les series de temps amb facil
interpretaci6. La metodologia proposada pot ser ttil per a caracteritzar les difer-
ents zones o altures en museus o edjificis similars d’acord amb les seues condicions

climatiques, amb l'objectiu de previndre problemes amb les obres d’art.
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Time series clustering is a current area of research with applications in several fields
such as astronomy, neuroscience, medicine, smart buildings, engineering, economics,
and finance, among others. In particular, in art conservation, clustering of times series
of climatic parameters (e.g., temperature, relative humidity, among others) is important
because this can help to characterize the microclimatic conditions in different zones or
heights in museums and similar buildings. In this field, two common problems are
moisture and dust concentration on the artworks. These problems could be caused by
high humidity and different changes of temperature among others. Classifying time
series of temperature (T) and relative humidity (RH) can help to monitor and analyze
microclimatic data, in order to preserve artworks.

Many dissimilarity measures have been proposed, using conventional clustering al-
gorithms to evaluate dissimilarity between two time series [1]. Results from different
studies have concluded that if the underlying clusters are very close to each other, the
time series clustering performance might diminish significantly [2]. One problem when
examining time series for art conservation is that time series of RH and T are very simi-
lar in distinct positions of the same building. Furthermore, in this area, in addition
to classifying time series it is necessary that the results can be easily interpreted. A
statistical methodology that uses both features that explain different aspects of time
series and a clustering algorithm that determines the optimal features is required. It
can help to improve the classification of time series with easy interpretation, for art

conservation.
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Artworks in Valencia’s Cathedral, the archaeological site of L’Almoina, and the baro
que church of Saint Thomas and Saint Philip Neri (Valencia, Spain) are being monitored
in order to help preserve artefacts. In these three sites, the design of the building genera-
tes microclimatic conditions that need to be evaluated at least every year. Time series
from sensors located in the mentioned sites can allow different statistical methodologies
with real scenarios to be assessed. Also, it can help to determine relevant zones or levels
for each site, in order to make a plan to preserve artworks, as well as to determine main
features to explain the classification of the series. Furthermore, it could help to propose
a set of steps for selecting relevant sensors in the buildings, in order to classify time
series.

The following sections present the main background of time series, clustering time
series, and cultural heritage related to clustering time series.

Cultural heritage is a source of wealth because it promotes tourism and native culture.
Artworks undergo certain degradation over time, caused for example by changes of cli
matic conditions. With the goal to avoid damages it is necessary to maintain stable and
control climatic scenarios [3]. Many studies have researched microclimate conditions
of historical buildings analyzing time series of temperature (T) or rela tive humidity
(RH) in order to improve indoor air conditions for preserving the cultural heritage, e.g.,
[4; 5; 6; 7; 8, 9; 10]. Among these, several studies have analyzed graphs of trajecto-
ries of time series to determine possible events that caused changes in the trajectories
of series as well as differences among series according to positions and heights in the
buildings. Another study also analyzed differences between series using analysis of
variance (ANOVA) [11]. In the same way, principal component analysis (PCA) was em-
ployed for classify ing sensors in order to characterize different zones in the buildings
[6;7].

A time series is a set of observations taken sequentially in time, which is denoted by
{y:} with t € Z, where t indicates the time at which the observation was taken [12]. In
this document, y = (y1,...,yn), with n € Z denotes an observed time series, namely, a

time series of a finite sequence of length n.

1. Basic concepts
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Strict Stationarity:
Strict stationarity of a time series {y;} is defined by the condition that {y;}
is invariant to a translation in & times, i.e., (y1,...,¥x) and (Y14, -- -, Yntn)
have the same joint distributions for all integers # and n > 0, as in Equation
1.1 [13].

F(Yrsn Yoins - Ynin) = F(Y1, Y2, - Yn) (1.1)

Weak Stationarity:
A stochastic process {y;} is weakly stationary if,

- It has a constant mean, i.e., E[y;] = y < oo Vt € 7.
— It has a finite and constant second moment, i.e., V[y;] = 02 < oo Vt € T.
— There is a function y(+) such that y(h) = Cov(ys, y,4n) Vt, h € T[12].
Autocovariance Function:
If a stochastic process {y;} is weakly stationary, the autocovariance function
of {y;} atlag h is given by y(h) = Cov(ys, ys11) [12].
Autocorrelation Function:

The autocorrelation function (ACF) is a standardized measure of the depen-
dence of observations y; and y;;. ACF at lag I is given by p(h) = % [12].

White Noise:
A weakly stationary process {¢;} is a white noise (WN) process if it is a se-
quence of uncorrelated random variables [12]. It can be denoted by {&;} ~
WN (u,0?).

2. ARMA Model
A time series {y;} follows an autoregressive moving average process with para-
meters p and q, ARMA(p, q), if {y:} can be written as in Equation 1.2, where B is
the backshift operator (i.e., By; = y;—1, fort > 1 and BPy; = y;—p, for t > p),
¢, (B) is the autoregressive polynomial on the backshift operator B and 6,(B) is
the moving average polynomial, with roots distinct from those of ¢, (B) [12].

¢p(B)yr = 04(B)es,
¢p(B)=1—¢B—---—¢pB?,

(1.2)
0,(B) =1+6,B+---+6,B1,
where {e;} ~ WN(0,0?).
If all the solutions of the equation 0 = 1 — ¢1x — ... — ¢,xP which is associated

with the autoregressive polynomial are outside the unit circle, then {y; } is a statio

3
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-nary process. In particular, an ARMA(p,0) model corresponds to an autoregres-
sive AR(p) process and an ARMA(0,q) model corresponds to a moving average
MA(g) process [12].

3. Wold Decomposition
Any stationary process {y;} can be written as a unique decomposition that con-
sists of the sum of a non-deterministic and deterministic process. Deterministic
processes are of interest in fields such as electrical engineering where signal can
be described by a random amplitude and a particular frequency [12]. A stationary
process can be decomposed as in Equation 1.3, where {7, } is the deterministic part
and ¢; is the limit of linear combinations of y;, where s < t.

Y = Z Yjes—j + 1, where,
j=0

- 2
{e+} ~ WN(0,07), 13

Yo=1,) 7 < oo,
j=1
E(nies) =0 Vs, t € Z.

If the time series is purely non-deterministic (17; = 0), then it can be written as
an MA() representation, i.e., yr = Y2 jé;—j, where ¢ = 1, }.224 1,0]2 < o0 and
er ~ WN(0,02).

4. SARIMA Model
A seasonal ARIMA model (p,d,q)(P,D,Q)s with period S has a non-seasonal
component (p,d,q) and a seasonal component (P, D, Q)s. A time series {y;} fo-
llows a SARIMA(p, d, q)(P, D, Q)s model with one seasonal component, if it can
be written as in Equation 1.4,

®p(B°)¢,(B)VEVly: = @g(B°)0,(B)e;, where,
4’10(3) =1-¢1B—--- _4’po/
0,(B) =1+61B+---+6,B,
®p(B°) =1— PB° — ®pB",
©q(B%) =1+ 0,B° +--- +©yB%,
{e;} ~ WN(0,0?),

(1.4)

where ¢,(B) is the regular auto regressive (AR) operator of order p, 6,(B) is
the regular moving average (MA) operator of order g, ®p(BS) is the seasonal AR

4
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(SAR) operator of order P, ®q(B®) is the seasonal AR (SMA) operator of order
Q and {e;} is a WN sequence with zero-mean and variance o2. Also, V2 = (1 —
B%)P represents the seasonal differences and V¥ = (1 — B)“ represents the regular
differences [12].

5. TGARCH-Student Model

An ARMA model is not able to capture volatility or variance clustering that can
be present in some time series. These patterns can be captured using GARCH
family models. The most important models are the ARCH and generalized ARCH
(GARCH) models developed by Engle [14] and later extended by Bollerslev [15].
The family of GARCH models includes models such as the asymmetric power
ARCH, the threshold GARCH (TGARCH) and GJR-GARCH, among other models
[16]. For GARCH models, error terms can be assumed from the Student distribu-
tion [17].

Different papers and books have proposed various specifications for ¢; for the
TGARCH process. This document will present the particular conditionally hete-

roskedastic processes employed in rugarch package of R software [16].

The innovations {¢;} follow a conditionally heteroskedastic process, if it can be
written as &; = o€, where the conditional mean (y) and the conditional variance
of the process ¢; are given by u; = E(e¢|e;_1,€1-2,...) and 07 = E(e3|e;_1,€1-2,...),
respectively. Errors {e;} are an independent and identically distributed (i.i.d.)

with mean 0 and variance 1.

The innovations {¢;} follow a process of the family GARCH model (fGARCH) if it
can be written as Equation 1.5, where the conditional mean and variance are used

to scale the residuals z; = g‘%f” [16].

& = U€y,
o = (W‘FZ]N:lGjVjt)

A (15)

+ 2007 (20 = o] = mj(ze-j —112)))°

PopoA
+ 2P0t

Equation 1.5 is a Box-Cox transformation for 0, where A determines shape, § trans-
forms the absolute value function, which subjects it to rotations and shifts through
the 771; and 775; respectively. Also, N refers to the number of external regressors V;,
which are passed pre-lagged [16]. The innovations {&;} follow a TGARCH pro-
cess with parameters s and m, the process is denoted by TGARCH(s, m), when

5
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A=0=1,1 =0, || <1[16]. In this study, €; follows a Student distribution
with parameter v and external regressors were not employed. Thus, the previous

equation can be written as equation 1.6.
& = 01€y,
0t = w + 000 (|2 ] — jze—j) + Eio1 Bior—js (1.6)
{et} ~ t — Student(v).

6. Spectral Density Function

The spectral approach to second-order properties helps to separate seasonal effects
and short term [18]. A description of spectral density according to Venables and
Ripley [18] is presented below.

Given a covariance-stationary process {y;} with mean u and j-th autocovariance
7j, the population spectrum of {y;} at frequency w € R is given by Equation
1.7. This function is well defined, on condition that the sequence {v;, : h € Z}
is absolutely summable. The population spectrum is symmetric around 0 and
periodic with period 7. Also, [” s(w)e™*dw = 7 and s(w) > 0 with w €
[—7t, ).

s(w) ==Y yje (1.7)

The population spectrum function and the autocovariance function contain the
same information about process {y;}. In particular, 7o = V[y;] can be calculated

as in Equation 1.8.

Yo = /n s(w)dw. (1.8)

-7t
According to the spectral representation theorem, any covariance-stationary pro-
cess {y:} with absolutely summable autocovariances can be represented as in

Equation 1.9.
Y=+ /0 " (& (w) cos(wt) + 5(w) sin(wt) Y, (1.9)

where «(.) and J(.) have zero means. With words, y; can be decomposed in terms

of frequencies.

An estimator of the population spectrum s(.) is the periodogram that is presented

in Equation 1.10.
1 T-1

S(w)=7= Y. Fe, (1.10)
2, S
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where T is the sample size and 7; is the jth sample autocovariance.

The estimator §(w) of s(w) is unbiased but noisy. However, if it is assumed that
s is smooth, the values of this naive estimator can be averaged over frequencies
near w to obtain a much more precise estimator of s(w) which is denoted by 3(w;)
and is presented in Equation 1.11.

!
S(wj) =Y, Wr(wm)s(wj — wm), (1.11)
m=—I
where w; = 271j/T, and | indicates how many different frequencies can be consi-
dered close to wj, and Wr(.) is a weighting function that must have the properties
presented in Equation 1.12.

lim WT((U]‘)Z = 0,

T—o0
I
Y Wr(wj) =1, (1.12)
j=—1I
WT(LU]‘) = WT(—CU]').

7. Holt-Winters Method

Holt’s method, Holt-Winters method, and seasonal Holt-Winters method (SH-W)
are extensions of simple exponential smoothing for computing the forecasting of
data [19; 20]. The SH-W method captures the level, trend, and seasonality of a data
set. The SH-W method employed a smoothing equation for the level component
at time ¢t (a;), a smoothing equation for the trend or slope component at time ¢ (b;),
and a smoothing equation for the seasonality components at time ¢ (s;). The addi-
tive SH-W prediction function for an observed time series y with period length
p is given by Equation 1.13, where k is the integer part of (I —1)/p, and ;. is
forecast of ;;, based on all the data up to time ¢ [21].

Genie = ar +1be + 811y p(ky1), Where
ar = a(ty—si—p) + (1 —a)(a_1 +bi_1)
by = Blar —ar-1) + (1= B)br1 (1.13)
st =yt — -1 — br—1) + (1 — 7)st—p,

where 0<a <1, 0<B<1 0<y<land t>s

When presenting outcomes from the algorithm, a, b and 51, S», .. ., Sp corresponds
to the last level of a4, by, and s; (t =1, ..., p), respectively.

7
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Time series clustering is useful because it can help to discover interesting patterns in
data sets and to understand their structure, anomalies, and other regularities in datasets,
among other things [22; 23].

A crucial point in cluster analysis is establishing a suitable dissimilarity measure
between two objects. In the context of time series, the dynamic character of the se-
ries makes it complex to determine a dissimilarity measure. The dissimilarities that are
usually used in conventional clustering could not work appropriately with time depen-
dent data, due to the fact that they pass over the interdependent relationship between
values [24]. The dissimilarity measures are often adapted according to characteristic of
the problem that it is of interest to solve, emphasizing properties of the time series that
are of interest for the specific situation. For example, there are contexts where the main
interest of the clustering is based on the properties of the predictions, others on profiles
of series and features of models, among other things [24]. Different approaches for es-
tablishing the dissimilarity between time series have been proposed. Some approaches
are presented below.

For comparing profiles of time series, some distances have been computed using raw
data, e.g., each pair of sequences of data have been evaluated using a one-to-one ma-
pping, in other cases, depending on the domain, the selection of dissimilarity measures
must comply with properties of invariance to specific distortions of the time series [1].
Batista et al. [25] present a review of dissimilarity measures which were created to be
invariant to features such as uniform scaling, amplitude scaling, phase and complexity,
among others.

For representing the dynamic structure of each time series by a feature vector of
lower dimension, dissimilarity measures can be determined by comparing sequences of
serial features, computed from the original time series as spectral features, autocorrela-
tions and wavelet coefficients, among other features [26; 27; 28; 29; 30].

For comparing levels of the complexity of time series algorithms based on data com-
pression have been used [31; 32; 33; 34] as well as differences between permutation
distributions [35].

For comparing future forecasts, Alonso et al. [36] and Vilar et al. [37] considered that
two time series are in the same cluster if their forecasts for a specific future time are
proximate.

Another approach consists of assuming specific underlying models and comparing
fitted models [38; 39; 40]. The most common criterion is to assume that the time series
are generated by ARIMA models. Piccolo [38] introduced the Euclidean distance be-

8
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tween the corresponding autoregressive expansions from time series as a dissimilarity
measure. The distance matrix between pairs of time series models was processed by a
complete linkage clustering algorithm in order to construct the dendogram. For ARMA
models, Maharaj [41] developed an agglomerative hierarchical clustering procedure
that is based on the p-value of a test of hypothesis applied to every pair of given sta-
tionary time series. Kalpakis et al. [42] proposed using k-medoids algorithm and the
Euclidean distance between the linear predictive coding cepstrum of two time series
when a time series follows an ARIMA process. Furthermore, other methods such as
PCA, DFT and DWT of the autocorrelation of time series were employed. Xiong and
Yeung [43] derived an expectation maximization algorithm for learning the mixing co-
efficients from mixtures of ARMA models, as well as the parameters of the component
models. One problem with the method was that its clustering performance can degrade
significantly if the underlying clusters were very close to each other. Researchers in
speech recognition and machine learning have also adopted alternative models such as
Markov chains [44] or hidden Markov models [45; 46]. Model-based approaches have
scalability problems [47], and performance reduces when the clusters are close to each
other [2].

For comparing distributions, Khaleghi et al. [48] formulated a metric to quantify the
distance between series, according to their distributions, and proved the consistency of
k-means for clustering processes.

Finally, in the field of astronomy, an automated procedure for classifying time se-
ries (stars) where it was necessary to capture the peaks of time series, was developed
[49; 50]. They proposed using certain features from the field of astronomy and two fea-
tures that they designed as input for different classification methods, such as logistic
regression, CART algorithm, boosting, random forest, support vector machine, artificial
neural network, and Lasso regression. Some features were extracted from raw data and

others after fitting a harmonic model.

When studying a classification problem like time series clustering, it is necessary to
establish if there is a prior knowledge of the cluster that will be predicted in the data,
or if there is not one. If the cluster is known, it is possible to carry out a supervised
classification. A short introduction of three sparse versions of PLS (supervised) and

random forest algorithm (supervised) are presented below.

1. Partial Least Squares
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Partial least squares (PLS) regression [51] has been used as an alternative approach
to ordinary least squares (OLS) regression in ill-conditioned linear regression mo-
dels [52]. This method maximizes the covariance between components which co-
rrespond to linear combinations of original variables from two data sets, a regre-
ssor matrix and a response matrix. PLS is computationally fast and its results can
be easily graphed and interpreted. For these reasons, PLS has acquired a lot of
importance in high dimensional classification problems of computational biology
[53].

Although PLS was not originally designed for classification, it has had an effec-
tive performance when it has been employed for that purpose [53]. In respect to
the adaption of PLS to classification for high dimensional data, some approaches
have been studied, e.g., PLS discriminant analysis (PLSDA) and generalized PLS
(GPLS). The first, PLSDA [54; 55; 56] consists of treating the response as a conti-
nuous variable and employing PLS to compute latent components. Next, an off-
the-shelf classification method such as logistic regression (LOG), linear discrimi-
nant analysis (LDA), and quadratic discriminant analysis (QDA) is employed. If
the response is multicategorical, it is necessary to substitute the original categori-
cal response into a numerical response matrix using dummy coding [53]. The se-
cond, GPLS [57; 58; 59; 60] incorporates PLS into a generalized linear model (GLM)
framework. This method generalizes the weighted least squares problem arising
within the Newton-Raphson algorithm to maximize the log-likelihood with PLS
[53]. Both PLSDA and GPLS often employ variable filtering [54; 55; 56] as a pre-
processing step before the PLS fit [53].

Even though in most cases PLS works very well when the number of predictors
is greater than sample sizes, PLSDA and GPLS, often use variable filtering as a
pre-processing step before fitting PLS. Although preselection approaches often
improve the performance of PLS classification, the selection of predictors is of-
ten arbitrary [53]. Furthermore, variable filtering approaches that are commonly
used are all univariate and ignore correlations among variables. Chung and Keles
[53] proved that the existence of a high number of irrelevant variables leads to the
inconsistency of estimates of parameters of the linear regression setting. As a so-
lution, they proposed sparse partial least squares (SPLS) regression, which selects
predictors, while reducing dimension. Thus, components depend only on a subset
of the original set of predictors. Penalties such as Lasso and Ridge are used in PLS
for variable selection. Also, Lé Cao et al. [61] and Waaijenborg et al. [62] proposed
computational approaches introducing sparsity in PLS.

10
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Chung and Keles [53] proposed two new methods extending SPLS [52] to classifi-
cation problems: SPLS discriminant analysis (SPLSDA:

SPLSDA-LDA and SPLSDA-LOG) and sparse generalized PLS (SGPLS). Lé Cao
et al. [63] proposed a natural extension to the sPLS [61; 64] by coding the res-
ponse matrix with dummy variables: sPLS-discriminant analysis (sSPLS-DA). The
variable selection and the classification for SPLSDA is performed in two stages,
whereas, for sSPLS-DA the results are directly obtained from the by products of the
sPLS. SGPLS is also performed in one stage. The three methods aim to improve
the PLS classification approaches by using dimension reduction and variable se-
lection simultaneously. The three different formulations of PLS are based on the

formulation in Equation 1.14.

PLS models regressor matrix X € RR"*? and response matrix Y € R"*7 as X =
EC+Ejand Y = ED + E; = XB + E», where € R"*F is the matrix of regression
coefficients, E; € R"*? and E, € R" 1 are random errors. & € R"™H ig the
latent component matrix, where & = XU, with U € RP*H as H direction vectors,
with 1 < H < min{n,p} and U = (uy,...,uy). The h-th direction vector uj, is
obtained by solving successive optimization problems according to Equation 1.14
forj=1,...h—1, subject to ||u|, = 1 and uTSXXLTj = 0, where Sxx is the sample
covariance matrix of the predictors.

max{u Mu}, where M=X"YY'X (1.14)
u

A description of three formulations of PLS are presented below.

SPLSDA

The optimization problem of SPLS corresponds to a new reformulation of the
objective function in the Equation 1.14 with Lasso penalty function, Ridge
penalty function and tuning parameter x. This formulation corresponds to a
convex problem and it is sufficiently sparse [52].

The following formulation corresponds to multicategory classification, be-
cause in the context of art conservation, this is more probable.

Consider the matrix Y* € R"*¢, whose elements are given by

YVigen) = 1yi=g)

fori =1,...,n,and g = 0,1,...,G — 1, where 0 is the "baseline’ class, 1 is
the number of time series and I(A) is an indicator function of event A. The
resulting matrix Y* is column centered before fitting SPLS.

11
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SPLSDA modeled regressor matrix X € R"*F and response matrix Y* €
R"™C as X = BC+Eyand Y = ED+E, = XB + E;, where g € R"™*7
is the matrix of regression coefficients, E; € R"*F and E, € R"*C are ran-
dom errors and & € R™*H is the latent component matrix, where & = XU,
with U € RP*H as H direction vectors, with 1 < H < min{n,p} and U =
(u1,...,up). The h-th direction vector #, is obtained by solving successive
optimization problems according to Equation 1.15 for j = 1,...h — 1, subject
to ||ull2 = 1.
ngll,icn{—KuTMu +(1—x)(c—u) "M(c—u)+ Py (c)+ Py(c)}, where
M=X"YY X,
Py, (c) = Aille]l1  (Lasso penalty), and
Py, (c) = Azllc|2  (Ridge penalty)
0 <5 <1 andjustify setting
0<x<05 and
Ay = o0.

(1.15)
This formulation has four tuning parameters (x, A1, A2, and H). Furthermore,
it promotes exact zero property by imposing Py, (c) onto ¢ while keeping u
and c close to each other. Also, P, (c) takes care of the potential singularity
of M when solving for ¢ [53].
The first direction vector of SPLS is computed by Equation 1.16 [53].

2

G Noll_o\ 2 p R R

¢ =argmax ) ( gn g) ( ci(fjg — y]-,_g)> — Py, (c), where
¢ g=0 j=1

Hjg is the sample mean of the j-th predictor in class g

ng is the sample size in class g
n=mn+ny+--+ng
n_g=mn-—rng
1ij—¢ is the sample mean of the j-th predictor across all but the class g
¢j isthe element j-th of the direction vector ¢

(1.16)

Chung and Keles [53] studied this solution and some conclusions were as fo-
llows: the contribution of each class to the construction of direction vectors
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is affected at the same time by both the class sample size <né‘z—’g> and the di-
fference between the out-of-class sample mean and within-class sample mean
across predictors. Thus, if the effect sizes of the predictors across the class are
comparable, it is probable that the first direction vector will be most affected
by the class with a larger sample size. They also studied the solution for the
binary classification case, this can be found in [53].

Once, the latent components were computed, a linear classifier, either LDA or
LOG, was used [53]. The estimates of parameters for the original predictors

(B) were computed using estimates of parameters for latent components

from a linear classifier (BLC) as B = UELC [53]. Chung and Keles [53] su-
ggests using a linear classifier due to the fact that it might be better, from an

interpretation point of view.

SGPLS

Consider X as a regressor matrix and Y as response vector. Also, the multi-

nomial model in Equation 1.17 and its log-likelihood in Equation 1.18

log <ng> = xl-Tﬁg, where

g=12,...,G (1.17)
pig = P (yi = glxi)

x; isthe i-throw vectorof X

n G G
1(B) = Z { Zlyigx?ﬁg —log (1 + Z exp(xiTﬁg)> } (1.18)
o=

i=1 g=1
Maximizing the log-likelihood in Equation 1.18 using the Newton-Raphson
algorithm, is equivalent to solving an iteratively re-weighted least squares in
Equation 1.19, for B, whilel # g, for g, I = 1,...,G, where B and g are the
current estimates and class, respectively.

n

2
r%inz Vig (zig - xiT,Bg) , Where
8 i=1

~ TR S TR

Pig = exp <xi ﬁg) / (1 + Z:lexp (xi ,Bg>> (1.19)
g:

vig = Pig(1 — Pig)

Zig = xz‘Tﬁg + (yig - ﬁig)/vig
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Based on the problem in Equation 1.19, with the goal of incorporating varia-
ble selection into the logistic regression model, the minimization problem in
Equation 1.15 with M = XTnggz;VgX, and V, as a diagonal matrix with
entries v;, and z¢ = (21g, . .., Zng), is solved.

In order to implement SGPLS, Chung and Keles [53] developed a computatio-
nally faster approximation to Firth’s procedure. The details of the algorithm
can be found in [53].

Computational experiments carried out by Chung and Keles [53] displayed
that SPLSDA and SGPLS had comparable performance in terms of variable
selection and classification accuracy, despite their structural differences. They
concluded that if the classes are highly unbalanced in terms of their sam-
ple sizes, SGPLS has higher sensitivity than SPLSDA, in variable selection.
However, the variable selection performance of SPLSDA improves when the
sample sizes increase. SPLSDA has two main advantages over SGPLS. Firstly,
it is computationally faster. Secondly, due to the fact SPLSDA treats dimen-
sion reduction and classification in two independent steps, there is a wide

choice of classifiers that can be used for its second stage.

sPLS-DA

Consider a regressor matrix X € R"*? with p variables and 7 sensors, re-
sponse vector Y € R"*! whose elements are the positions of the sensors. The

vector Y was converted into a dummy matrix Y* € R"*X given by

Yir = 1(yi = k),

where k = 1,...,K, K classes, and I(A) is an indicator function of event A.
sPLS-DA modeled X and Y* as a linear regression, where X = EC + E; and
Y* = ED + E; = XB + Ey, where B € R"*? is the matrix of regression
coefficients, E; € R™*? and E, € R"*K are random errors, & € R"™H is
the latent component matrix, where & = XU, with U € RP*H as H direc-
tion vectors, with 1 < H < min{n,p} and U = (uy,...,uy). Furthermore,
(up, vy) is the solution the optimization problem according to Equation 1.20
forj=1,...,h—1, subject to ||ul, = 1.

min{||M — uv"||2 + P (u)} (1.20)
u,0

The optimization problem minimizes the Frobenius norm [|[M — uv " ||2 which
is computed as Y 4 Zle(mi]- — u;v)?, where M = X'Y*, u and v are the
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loading vectors, where V. = (vy,...,vy). Furthermore, P)(u) is the Lasso
penalty function, where Py (1) = Aljul|; [63; 64].

This optimization problem is solved based on the PLS algorithm [65] and
Singular Value Decomposition (SVD) [66] of a matrix M, per dimension h.
The SVD decomposition of matrix M, is subsequently deflated per iteration
h. This matrix is computed as UAV', where U and V are orthonormal ma-
trices, and A is a diagonal matrix whose diagonal elements are called the
singular values. During the deflation step of PLS, M), # XY}, due to the
fact that X;, and Y} are calculated separately, and the new matrix is called
M;,. At each step, a new matrix M, = X]Y; is calculated and decomposed
by SVD. Furthermore, in the sPLS algorithm, the soft-thresholding function
g(u) = (lu] — A)ysign(u), with (x); = max(0,x), was used in penalizing
loading vectors u to perform variable selection in the regressor matrix, thus
Unew = A (thlvold) [61].

The mixOmics package [67] offers different functions for carrying out multi-
variate analysis of data sets [68]. It proposes different functions for sPLS-DA.
Rohart et al. [68] employs an algorithm for sPLS-DA that instead of using the
soft-thresholding function g(u) to perform variable selection, uses the func-
tion in Equation 1.21. Keep in mind that controlling 7 instead of the direction
vector specific sparsity parameters A, with h = 1, ..., H, evades combinato-
rial tuning of the set of sparsity parameters and supplies a bounded range
for the sparsity parameter,i.e.,, 0 < 7 < 1[53].

g(u) = (Ju| —nmaxi<j<p| uj |)+sign(u), where
0<n<1 (1.21)

(x)+ = max(0, x)
Lé Cao et al. [63] concluded that there are two parameters to tune in sPLS-
DA: the number of latent components and the number of variables to select
on each component. They displayed that, for most cases, the user could set
H = K — 1, while the number of variables to select is more challenging and is
still an open question. In their opinion, the number of variables can be orien-
tated through the estimation of the generalisation classification error and a
stability analysis [69; 70]. Nevertheless, when the sample size is small, these
analyses might be seriously limited.

Lé Cao et al. [63] compared the classification performance of sSPLS-DA against
SGPLS and SPLSDA, among other methods such as LDA and the random fo-
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rest algorithm, on five data sets. They concluded that sPLS-DA is competitive
in terms of computational efficiency and superior in terms of interpretabi-
lity of the results via graphical outputs. They did not intend to address the
specific problem of unbalanced classes. While for this method Rohart et al.
[68] suggested using the balanced error rate (BER) when the classes are un-
balanced, because BER is less biased towards clusters with more elements
during the performance assessment. Also, Lé Cao et al. [71] showed that
sPLS-DA obtained relevant results in a microarray cancer data set.

While for running sPLS-DA, the number of variables to select for each latent
component is required as an input parameter, SPLSDA-LOG, SPLSDA-LDA,
and SGPLS require a tuned 7 parameter that varies between 0 and 1. The
closer to 1, the smaller variable selection size.

2. Random Forest

Random forest is one of the algorithms which follows the ensemble classifier metho-
dology (e.g., Bagging [72] and Boosting [73]) that determines a prediction model
by combining the strengths of a collection of simpler base models [74]. Figure
1.1 (from [75]) illustrates the methodology of ensemble methods. In particular,
for classification problems, the aggregation is performed employing the majority
vote. Aggregation is the method employed for forming an aggregate which is the

result of ensemble learning.

Ensemble Clasiffier

v

[Sample 1] (Sample 2] [Sample k}

v

(Classifier 1)( Classifier 2)( Classifier k) Performance
1 T T
fegrenthe) ) ’
DATA
L Single Classifier | ,| Evaluation of
Performance

Figure 1.1: Workflow displays the methodology of ensemble methods.

v

Random forest [74] is a modification of the bagging method and it improves the
variance reduction of bagging, by reducing the correlation between the trees. This
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is achieved by random selection of the input variables. Previous to each split,
the algorithm selects a set of m (m < p) variables at random, as candidates for
splitting. This algorithm is sensitive to the quality of input variables, because
these are selected using a process of sampling.

In the context of art conservation, the number of features computed from time series
could be greater than the number of time series, because most of the cases, museum and
similar buildings have restriction with the number of sensors that it is possible to install.
This scenario might lead to severely ill-conditioned problems. Considering the previous
idea and with the aim of identifying the main features that determine the clusters of time
series, two known versions of sparse PLS, sPLS-DA [63] and SPLSDA [53], and a new
proposal that combines sPLS [61] and LDA, are proposed. Furthermore, some features
are proposed as input for these methods.

Features proposed correspond to estimates of parameters from time series models
(e.g., seasonal ARIMA or seasonal ARIMA-TGARCH), estimates of components from
seasonal Holt-Winters method, some coefficients of Wold decomposition, and features
(e.g., maximum, mean, median, and variance) computed using function values of time
series (e.g., sample ACF and PACF) or periodogram, as well as, some variables based on
quantiles that are used in the field of astronomy. These features were organized accor-
ding to the process used. Method 1, if variables were computed using functions applied
to original time series; method 2, if variables were from seasonal Holt-Winters; method
3, if variables were from seasonal ARIMA or seasonal ARIMA-TGARCH; method 4, if
variables were from Wold decomposition. Features from the same method were used as
input in a classification method.

The interest of this work is to propose one statistical methodology for classifying
time series, using features computed from them and employing a sparse method that
helps to select the main features for determining clusters with easy interpretations.

Finally, the approach proposed for classifying time series is new in the context of
both, clustering of time series and cultural heritage. For classifying time series, the
dissimilarity measures computed for both sparse algorithms were applied to different
features, computed according to at least two of the approaches mentioned before (i.e.,
profiles of time series, dynamic structure of series, assuming specific underlying mo-
dels, future forecasts, among others). In this case, some measures were computed using
a linear combination of a set of variables. These variables can correspond to different

approaches, e.g., assuming specific underlying models and future forecasts, profiles of
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time series and the dynamic structure of series. In some cases, only one approach was
used, e.g., profiles of time series. Also, this is probably the first time that sSPLS-DA and
SPLSDA are employed in the context of clustering of time series applied to microclimate
monitoring, as well as, being the first time that the combination of the algorithms sPLS
with LDA are used for classifying in this context. On the other hand, for art conserva-
tion, the classification of time series has been rarely explored and it has been basically
analyzed using PCA.

Provide a statistical methodology with a robust framework to classify time series in the

context of microclimate monitoring for the preventive conservation of artworks.

1. To put forward different methods to extract features from time series that could be
used as input for classification algorithms.

2. To propose at least two supervised methods for classifying time series that select

the main features computed from series.
3. To compare the features selected for at least two supervised methods proposed.

4. To propose a methodology in order to select a subset of time series using the results
from one of the supervised methods.

5. To characterize microclimatic conditions in distinct zones or levels in Valencia’s
Cathedral, the archaeological site of L’Almoina, and the baroque church of Saint
Thomas and Saint Philip Neri (Valencia, Spain) using one of the methodologies
proposed.

The following is a list of all the contributions during the progress of this Ph.D. thesis:

Publications:
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This PhD dissertation is composed of three scientific publications that were pu-

blished in the Sensors journal, which is indexed in the Journal Citations Report (JC R®).

The papers were properly formatted according to the requirements of this dissertation.

Each article corresponds to one chapter of this document (i.e., Chapters 2, 3, and 4).

Chapter 2 presents a new methodology to classify time series that employs sPLS-DA

and variables extracted from seasonal ARIMA-TGarch models, seasonal H-W methods,

and features computed using values of sample ACF, sample PACF, periodogram of time
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series, among others. The methodology was applied to time series of RH from sensors
located in Valencia’s Cathedral. Chapter 3 extends the methodology proposed in Chap-
ter 2. For seasonal H-W method, values of predictions were used as input for sPLS-DA.
Also, coefficients of Wold decomposition were employed as classification variables. Fur-
thermore, time series were classified using Random Forests algorithm and the selected
variables were compared with results from sPLS-DA. Additionally, PCA with k-means
were used in order to determine possible clusters of the time series. Its Results were
interpreted according to the technical knowledge of the microclimate of the site. The
methodologies were applied to time series of RH from sensors located in L’Almoina
museum. Chapter 4 describes the application of two versions of sparse PLS (sPLS-DA
and sPLSDA) using features from methods employed in Chapters 2 and 3 as input. In
addition, some features that were used in the context of astronomy for classifying time
series were also employed. The methodologies were applied to time series of T from
sensors located in the baroque church of Saint Thomas and Saint Philip Neri. Chapter 5
refers to general discussion and chapter 6 to general conclusions.
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Ramirez, Sandra.; Zarzo, M.; Perles, A.; Garcia-Diego, FJ. Methodology for Discriminant
Time Series Analysis Applied to Microclimate Monitoring of Fresco Paintings. Sensors 2021,
21(2): 436. doi:10.3390/521020436.

This chapter corresponds to the publication mentioned above, after changing the

positions of some graphs and tables.

21



Chapter 2. A Methodology for Discriminant Time Series Analysis Applied to Microclimate
Monitoring of Fresco Paintings 2.1. Abstract

The famous Renaissance frescoes in Valencia’s Cathedral (Spain) have been kept un-
der confined temperature and relative humidity (RH) conditions for about 300 years,
until the removal of the baroque vault covering them in 2006. In the interest of longer-
term preservation and in order to maintain these frescoes in good condition, a unique
monitoring system was implemented to record both air temperature and RH. Sensors
were installed at different points at the vault of the apse during the restoration process.
The present study proposes a statistical methodology for analyzing a subset of RH data
recorded by the sensors in 2008 and 2010. This methodology is based on fitting diffe-
rent functions and models to the time series, in order to classify the different sensors.
The methodology proposed, computes classification variables and applies a discrimi-
nant technique to them. The classification variables correspond to estimates of model
parameters of and features such as mean and maximum, among others. These features
are computed using values of functions such as spectral density, sample autocorrelation
(sample ACF), sample partial autocorrelation (sample PACF), and moving range (MR).
The classification variables computed were structured as a matrix. Next, sparse par-
tial least squares discriminant analysis (sSPLS-DA) was applied in order to discriminate
sensors according to their position in the vault. It was found that the classification of
sensors derived from Seasonal ARIMA-TGARCH showed the best performance (i.e.,
lowest classification error rate). Based on these results, the methodology applied here
could be useful for characterizing the differences in RH, measured at different positions
in a historical building.

Keywords: ARIMA; art conservation; Holt-Winters ; sensor diagnosis; sPLS-DA;
TGARCH.

Over the past 300 years, the famed Renaissance frescoes in Valencia’s cathedral were
kept under confined conditions because they were covered by a baroque vault. Howe-
ver, this vault was removed in 2006 [7]. In the interest of longer-term preservation and
in order to maintain these frescoes in good condition, a monitoring system was imple-
mented to record both air temperature and relative humidity (RH). Sensors were located
at different points in the apse vault. The approximate location of each sensor can be seen
in Figure 2.1. The positions are: cornice C, ribs R, walls W, and frescoes F. Some sen-
sors were inserted on the painting’s surface itself. It is a unique system because sensors
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are rarely placed inside the frame or on the canvas of paintings. Details about the insta-
llation of probes in the frescoes can be seen in figures from [6; 7]. A perspective of the
upper part of the apse and terrace above the frescoes can be found in [7].

The system was intended to detect water entering from the roof at specific points,
or excessive general humidity in the vault itself. Any indication of high levels of thermo-
hygrometric conditions would instigate corrective measures [6]. The data analysis ca-
rried out by Zarzo et al. [7] showed the advantages of using humidity sensors for the
monitoring of frescoes, so as to maximize their protection and prevent deterioration.
The microclimatic requirements for churches and cathedrals are similar to those of mu-
seums, which also contain valuable works of art [6]. As in the case of museums, the in-
door thermo-hygrometric conditions should be maintained at optimal levels in order to
conserve the artefacts. The risks constituted by ventilation systems, air-conditioning,
central heating, and the presence of visitors should be assessed in order to prevent or
slow down the process of deterioration. Ideally, the temperature of walls and their
surfaces should be the same as the air in the immediate proximity because, otherwise,
an airflow is generated along the wall surface that increments the aerodynamic deposi-
tion of airborne particles and wall soiling.

Cultural heritage sites are subjected to climatic changes that put them at risk, which
has been widely discussed in [76; 77].

The internal environment should be appropriate [78] because changes in air tempe-
rature and RH can affect the conservation of fresco paintings [79; 80; 81]. Different stu-
dies [82; 83; 84; 85] have monitored thermo-hygrometric parameters inside museums in
order to assess the potential risks related to temperature and humidity. Other authors,
such as Camuffo et al. [81], have studied the interactions between the indoor atmosphere
and walls supporting frescoes or mural paintings. Similar works have been carried out
in churches [86; 87; 88; 89; 90]. Frasca et al. [86] performed a microclimatic monitoring of
the historic church of Mogita Abbey to analyze the impact of the environmental parame-
ters on the works of art. Among their results, they found that vulnerable objects were
at a high risk of mechanical damage approximately 15% of the time. The main cause of
the vulnerability was the RH variability.

The problems of deterioration due to high humidity identified in the Renaissance
frescoes at the cathedral of Valencia were studied by Zarzo et al. [7]. The researchers
suggested that these problems could be caused by the infiltration of rainwater through
the roof above the apse and, that maintenance or regular monitoring should therefore
be conducted for the long-term preservation of the valuable frescoes. Bernardi et al.
[91] studied the importance of waterproofing in the roof above frescoes in St. Stephan’s
church in Nessebar, Bulgaria.
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Figure 2.1: Approximate location of the probes and sensors at the apse vault of the
cathedral of Valencia. Details of the installation of the probes and a scheme depicting
the installation of probes in the frescoes can be seen in [7] and [6]. The image shows
the position of the 29 probes for monitoring the relative humidity (RH) of the indoor
atmosphere, displayed in different colors according to their position. Seven probes were
located on the ribs (orange), two at the cornice (light orange), ten on the walls below the
severies (purple), and ten probes on the frescoes (green).

In the same way, the European Standards [92; 93; 94; 95; 96; 97] summarized in [98]
as well as Corgnati and Filippi [99] adopted the approach of the Italian Standard UNI
10829 (1999) for the monitoring, elaboration, and analysis of microclimatic data for the
preservation of artefacts.

A big economic effort is being carried out by governments within the European
Union to preserve artworks in museums. Several works have monitored the micro-
climate within museums to analyze its relationship with the degradation of materials
from which works of art are made, for example, with the goal of preserving artwork
and artefacts [100].

Concerning data analysis, Garcia-Diego and Zarzo [6] used monthly principal com-
ponents analysis (PCA) in their research for February, September, October, and Novem-
ber of 2007. Furthermore, Zarzo et al. [7] also fitted a PCA per year for the years 2007,
2008, and 2010. The resulting loading plots highlight the most relevant similarities and
dissimilarities among sensors. Regarding RH recorded in 2007, researchers observed
that the daily evolution versus time of the RH mean per hour (RH) was rather parallel
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for all sensors. It was observed that sensors H, N, and R (inserted on the frescoes) recorded
higher values of RH than those installed on the walls. Interestingly, sensors H and R
were located in the zone where there was a moisture problem after their installation.
In 2008 and 2010, the correlation between RH and the first principal component PC1
was very high (greater than 0.994) [7]. After computing the average of moving ranges
with order 2 of RH (per hour HMV, day DMV and month MMYV), it was shown that PC2
for 2008 could be predicted as: PC2 = 232.88 — 2.69RH — 32.39DMYV. Regarding 2010,
the estimated regression model was: PC2 = 297.03 — 3.87RH — 32.12DMV. Based on
the results, researchers concluded that PC1 could be interpreted as the yearly RH ave-
rage, while PC2 provided basic information about daily mean variations. Furthermore,
researchers detected an abnormal performance in one sensor that might correspond to
a failure of the monitoring system [101] or a change in the microclimatic conditions su-
rrounding that particular sensor. They also concluded that the use of humidity sensors
and the interpretation of the first two principal components can be very useful when
discussing the microclimatic air conditions surrounding fresco paintings. Hence, PCA
is a powerful statistical method for characterizing the different performance among sen-
sors of the same type, located at different positions [7]. The advantage of PCA for sensor
diagnosis has also been reported by Dunia et al. [101] and Zhu et al. [102].

The present study re-analyzes time series of RH from sensors located at the apse
vault of Valencia cathedral. The data sets used here correspond to subsets of the database
used in the study conducted by Zarzo et al. [7]. The present work focuses on RH mea-
surements recorded from 23 sensors in 2008 and from 20 sensors in 2010. These time
series of RH do not contain missing values.

This research aims to bring forward a methodology for discriminating sensors accor-
ding to their position. For this purpose, the approach applied in this study consists
of three stages: (1) The different time series were divided according to climatic condi-
tion and changes of the slope and level of the time series; (2) Three methods (M1, M2,
and M3) were applied to obtain the classification variables per part of the time series
identified in stage 1; (3) Sparse partial least squares discriminant analysis sPLS-DA was
applied three times (one per method) as a discriminant technique in order to classify
sensors, by using the set of classification variables as predictors.

The methodology proposed in this research is new in the context of time series clus-
tering, as well as in sensor classification, when applied with the aim of conserving works
of art. This methodology is unique because it uses a Seasonal ARIMA-TGARCH model
to extract information from the time series, for discrimination purposes. It is also singu-
lar because it employs sPLS-DA in order to classify the time series.

According to the results of this study, sPLS-DA together with ARIMA-TGARCH-
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Student has a high capability of classifying time series with very similar characteristics,
which often occurs in museums or similar buildings. The proposed methodology is
well-suited to monitoring the sensors in this type of building.

This approach can be very useful in defining how microclimatic measurements should
be carried out for monitoring conditions in heritage buildings or similar sites. Further-
more, the methodology could be useful for reducing the number of sensors required to
monitor the microclimate. In summary, this approach could help to better manage the
preventive conservation of cultural heritage sites.

Regarding the frescoes in Valencia’s cathedral, 29 probes were implemented to moni-
tor the indoor air conditions. Each probe contains an integrated circuit model DS2438
(Maxim Integrated Products, Inc.) that incorporates an analogue-to-digital voltage con-
verter. This converter measures the output voltage of a humidity sensor (HIH-4000,
Honeywell International, Inc.) and a temperature sensor. The recorded values of RH
have an accuracy of +3.5%. Details of the probes, RH sensors, functions of calibration,
and their installation in the apse vault are described elsewhere [6; 7]. Seven probes were
placed on the ribs (R), two at the cornice (C), ten on the walls below the severies (W),
and ten on the frescoes (F) (see Figure 2.1).

The data sets used here do not contain missing values and correspond to subsets
of the database used by Zarzo et al. [7]. The electronics platform Arduino was used
https://www.arduino.cc/en/Guide/Introduction. Such data sets correspond to the
mean RH per hour or day (RHj, or RHy), where RH}, is the average of measurements
per hour, while RHj, corresponds to the average of measurements per day.

The RH datasets correspond to those sensors located in the cornice C, ribs R, walls
W, and frescoes F. As the statistical analysis was performed separately for each season,
sensors Min W and I at the R were discarded because it was necessary to deal with time
series comprising a time period of at least 300 observations without missing values.
Thus, time series are available in 2008 for 23 sensors: two on the cornice (A and B), five
at the ribs (C, D, I, J, and X), nine on the frescoes (E, H, X, 0, R, T, W, Y, and AB), and seven
on the walls (G, L, P, U, V, Z, and AA). In 2010, information from sensors H, Y, AB, G, and Z
was not available, but there were two additional sensors (S and Q) located at the C and
W, respectively. Hence, 20 sensors could be used for 2010: 8 at position RC (R or C), 6
on the walls (JV), and 6 on the frescoes (F) (see Figure 2.1).
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For both years, the follow-up time spanned the seasons of winter Wr, spring Sp, and
summer Sm. The data set RHj, for 2008 consists of 3851 observations: 1430 for Wr, 2099
for Sp, and 322 for Sm. Regarding 2010, 3414 observations are available: 636 for Wr,
2178 for Sp, and 600 for Sm.

Autumn was not considered because the number of observations was not high enough
according to the established conditions of the study (i.e., at least 300 observations). Data
sets correspond to the periods between 15 January and 4 July 2008, and from 22 Februa-
ry to 18 July 2010. Sensors from the selected times—both in 2008 and 2010—did not
experience electronic malfunction. In 2008, there was no evidence of conservation pro-
blems in the frescoes where these sensors were located. By contrast, in 2010 there was
evidence of salt efflorescence found in the same zones, before the first restoration works
in the apse vault [7].

The periods corresponding to each season were defined as follows: spring was
considered as being between 19 March and 20 June, summer between 20 June and 22
September, and winter between 22 September and 22 January.

Three different methods (M) were applied to the RH data in order to extract estimates
of parameters and features used subsequently as classification variables. These me-
thods consist of fitting the time series to different statistical models or functions. M1
included functions such as spectral density, sample autocorrelation function (ACEF),
sample partial ACF (PACF), and moving range (MR) [18; 103; 104; 105]; M2 was the
Additive Seasonal Holt—Winters method (Additive SH-W) [19; 20]; and M3 was a Sea-
sonal ARIMA with threshold generalized autoregressive conditional heteroskedastic
(TGARCH) model considering the Student distribution for residuals (Seasonal ARIMA-
TGARCH-Student) [12; 16; 106; 107].

The three methods were carried out separately for various seasons of the year ( Wr,
Sp, and Sm) for both 2008 and 2010. Once the classification variables were computed
from the three methods, sparse partial least square discriminant analysis (sPLS-DA)
[63] was applied to classification variables three times—one time per method—using
all classification variables per season. sPLS-DA was used to discriminate between sen-
sors according to their three possible positions in the vault: RC (R or C), W, and F.
The classes R and C were joined as a new class called RC in order to ensure a similar
number of sensors per group.

The statistical methodology applied consisted of different steps: Firstly, the identi-
fication of structural breaks in the time series (Section 2.3.2.1), which leads to the es-
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tablishment of periods where the analyses were carried out. Secondly, calculation of
classification variables using M1 (Section 2.3.2.2). Thirdly, the calculation of classifica-
tion variables using M2 (Additive SH-W; Section 2.3.2.3). Fourthly, the calculation of
classification variables using M3 (Seasonal ARIMA-TGARCH-Student; Section 2.3.2.4).
Finally, sensor classification was done by means of sPLS-DA (Section 2.3.2.5).

R software [108] version 4.03 was used to carry out the analyses. The main R pack-
ages used were aTSA [109], forecast [110; 111], mixOmics [67; 68], rugarch [16; 112],
strucchange [113], tseries [114], and QuantTools [105].

Many time series models (e.g., ARMA [106], ARCH, and GARCH [16]) assume the lack
of sudden changes due to external factors that might appear occasionally. However,
when analyzing time series of real situations, it can be found that external factors pro-
duce dramatic shifts such as a change in the slope of a linear trend, which cannot be
properly modeled. Such occasional events are known as structural breaks [12]. In or-
der to detect such events, different tests can be applied from the generalized fluctuation
test framework (e.g., CUSUM and MOSUM), which are based on empirical fluctuation
processes [115]. Others like the Chow [116] test are based on checking sequences of F
statistics [117; 118; 119], while the supF test [120] consists of applying the former at all
possible structural breaks. The null hypothesis is “no structural change”, versus the
alternative: “the vector of coefficients varies over time” [120].

By visually inspecting the evolution versus time of RHj, for both 2008 and 2010 (see
Figure 2.2), potential structural breaks were identified in at least two points. Their sig-
nificance was assessed by means of the CUSUM and supF tests. Both tests were carried
out with the logarithmic transformation [121], that is, s = In(RHj,), which has been
used in other works to stabilize the data variance [12; 121; 122]. It was observed that
most of the daily time series undergo seasonal trends, which makes it necessary to a-
pply regular differentiation (i.e., wy = r — r,_1) in order to remove any trend [121],
which is a common pretreatment in time series analysis. In this paper, r refers to trans-
formed values using the logarithmic function, while W refers to data that was subjected
to a logarithmic transformation and one regular differentiation. Figure 2.3 displays the
plot of the time series of RH from sensor Y (2008). Additionally, this figure shows the
plots of the time series of the logarithmic transformation of RH as well as one regular

differentiation of the previous time series.
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Figure 2.2: Evolution of RH},. Trajectories of sensors located at equivalent positions in
the apse vault are depicted in the same chart (data recorded between January 15 and July
4 2008): cornice and ribs (RC) (a), walls (W) (b), and frescoes (F) (c). Likewise for data
collected between February 22 and July 18 2010: RC (d), W (e), and F (f). Separation
by seasons (Wr, Sp and Sm) is indicated by means of vertical solid lines. Wr is divided
into two periods (dashed line) because a structural break was identified according to
the supF and CUSUM tests.

o : g
R

=

Eo E3 2

w0

o o <

[} . ol Q!

15-Jr 1-Mc 1-My  1-Jn 15-Jr 1-Mc 1-My 1-dn 15-Jr 1-Mc 1-My  1-Jn
t (hours) t (hours) t (hours)
(a) RH,, (b) r, where r; = In(RHj,,) (c) W, where w; = 1y — ;1.

Figure 2.3: (a) Observed time series of RH from sensor Y (2008), (b) logarithmic trans-
formation of the time series of (a), (c) one regular differentiation of the time series of (b).

The supF and CUSUM tests were applied to six groups: Wr 2008 (group 1, n = 1429),
Sp 2008 (group 2, n = 2098), Sm 2008 (group 3, n = 321), Wr 2010 (group 4, n = 635),
Sp 2010 (group 5, n = 2177), and Sm 2010 (group 6, n = 559).

29



Chapter 2. A Methodology for Discriminant Time Series Analysis Applied to Microclimate
Monitoring of Fresco Paintings 2.3. Materials and Methods

According to the supF test, a structural break was identified in Wr 2008, after the
1058th observation (March 27 at 7:00 AM, p-value = 0.01). Another break was found in
2010 at the 338th observation (March 8 at 1:00 PM, p-value = 0.04). The CUSUM chart
identified a significant shift at the same instant of time (1058th value in 2008 and 338th
observation in 2010). The main reason for structural breaks could have been the strong
changes of RH that occur in Valencia.

Ignoring structural breaks can lead to negative implications such as inconsistency
of the parameter estimates and forecast failures [123]. Accordingly, for each structural
break, it wasdecided to fit one model before this event, and another one after the struc-
tural break. On the other hand, in congruence with the physical characteristics of the
data, it might be convenient to split the statistical analysis per season and year. Accor-
ding to both considerations, the analysis was carried out separately in four periods,
denoted as WrA, WrB, Sp, and Sm. WrA corresponds to the winter period before the
structural break, while WrA refers to the following period (see Figure 2.2).

This method is based on features using estimates of ACF (p; at lag [), PACF (a; at lag
[), as well as features using mean () and moving range (MR). Furthermore, features
from spectral density were used, which was estimated using the periodogram (I(w)) of
signals w. These features can help to characterize and reveal interesting properties of the
underlying stochastic process without using any specific parametric model. Figure 2.4
shows a summary of the steps of M1.

RH values were used for estimating PACF, mean, and MR. By contrast, logarithm
transformation and regular differencing were applied before estimating ACF and spec-
tral density in order to stabilize the variances and remove the trend (i.e., W was em-
ployed). The objective of using both the ACF and spectral density with W was to focus
on the seasonal component of the time series. These functions are briefly explained
below:

Firstly, the mean of RHj was estimated for each period because this variable ap-
peared as important for discrimination purposes in the preliminary study [6; 7].

Secondly, MR with order n correspond to range values over n past values [105]. This
function was applied to RH;, and RH;;. For each period, the mean and variance were
computed for all MR values with order 2. These variables were calculated in order to
estimate HMV and DMV, which were used in the preliminary investigations of this project
[6; 7]. However, MMV (i.e., MR of order 2 for RH,,, estimated with the average RH per
month) could not be calculated in this research because the number of observations per
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month was too low. For RHj,, the mean of MR (jipr) corresponds to HMV and for RHy,

the mean of MR is represented by DMV.
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Figure 2.4: Flow chart for the steps of method 1: Blue lines indicate type 2 variables.
Red lines indicate type 1 variables. Solid lines indicate processes. Dashed lines indicate
results.

Thirdly, spectral density was estimated by means of the periodogram, which was

calculated on the log scale using a spectrum function [18]. The periodogram displays
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information about the strengths of the various frequencies for explaining the seasonal
components of a time series. The maximum peaks of spectral density and their corres-
ponding frequencies were identified [18]. These functions were applied to RHj,.

Finally, an estimation of ACF at lag [ is the correlation (quantified by means of Pear-
son’s correlation coefficient) between the values of a given time series, with the lagged
values of the same time series at | time steps (I refers to lags) [18]. W values were used
for this calculation. The values of sample ACF for the lags from 1 to 72 were used as
classification variables because they showed greater variations, while for further lags
they displayed lower values close to zero, comprised between the limits of a 95% confi-
dence interval in the ACF correlogram.

Regarding sample PACF, according to Cowpertwait and Metcalfe [124], “the partial
autocorrelation at lag [ is the correlation that results after removing the effect of any
correlations due to the terms at shorter lags”. Sample ACF and sample PACF plots
are commonly used in time series analysis and forecasting (e.g., autoregressive moving
average (ARMA) models and their particular cases such as autoregressive (AR) and
moving average (MA) models [124]). These plots, also called correlograms, illustrate
the strength of a relationship between the values observed at a certain instant of time
with those recorded in previous moments (with lag I) in the same time series. If sample
ACF values decline exponentially and there are spikes in the first or more lags of sample
PACEF values, the time series can be modeled as an AR process. If sample PACF values
decline exponentially and there are spikes in the first or more lags of the sample ACF
values, the time series can be modeled as an MA process. If both sample PACF and
sample ACF values decline exponentially, the time series can be modeled as a mixed
ARMA process [124]. Sample PACF was computed for RHj, values. The sample PACFs
for the first four lags were calculated for each period and were regarded as classification
variables because they are usually the most important ones for capturing the relevant

information in time series.

The features computed using the values of RH were called type 1 variables and
features calculated using values of W were referred to as type 2 variables. The list of
type 1 variables resulting from M1 are the estimates of the following parameters:

Mean of RHh (,aRH)

Mean of MR (jipr) of order 2 for RH; and RHj,.
Variance of MR (02 g) of order 2 for RH; and RHj,.
PACEF for the first four lags (a1, ¥, @3, and ay).

The list of type 2 variables resulting from M1 are the estimates of the following para-

meters:
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Maximum of spectral density (M) and frequency corresponding to the maximum (w).
Mean (ji5,), Median (mﬁl), range (ﬁﬁl ), and variance of the sample ACF (0’2‘31) for
the first 72 lags.

Winters [20] extended Holt’s method [19] for capturing the seasonality of a time series.
Hence, it was called Holt-Winters (H-W), which is a particular method of exponential
smoothing aimed at forecasting [125].

The Seasonal H-W approach (SH-W) is based on three smoothing equations: for
the level, trend, and seasonality. The parameter S denotes the number of values per
season, while three additional parameters capture the information at time ¢: a; denotes
the time series level, b; is the slope, and s; is the seasonal component [125]. There are
two different SH-W methods, depending on whether seasonality is modeled additively
or multiplicatively [125]. The Seasonal H-W approach (SH-W) is based on three smoo-
thing equations: for the level, trend, and for seasonality. The parameter S denotes the
number of values per season, and three additional parameters capture the information
at time t: a; denotes the time series level, b; is the slope, and s; is the seasonal component
[125].

In this research, the Additive SH-W method was fitted to both time series of RH
and to their logarithmic transformations, but it turned out that the best outcomes were
obtained with the transformed data. The period, the number of observations per sea-
son, was considered as S = 24 (i.e., 24 hourly values per day). Although this method
does not require a residual analysis, one was carried out in an attempt to extract fur-
ther information. Autocorrelation within the time series appeared in at least 10 out of
the 22 lags for over 80% of the Ljung-Box Q (LBQ) tests [126] applied. Furthermore,
the Kolmogorov-Smirnov normality (KS normality) [127] and Shapiro-Wilk (SW) tests
[122; 128; 129] rejected the hypothesis of normality for at least 80% of the cases applied.
The KS normality test compares the empirical distribution function with the cumulative
distribution function. The test statistic is the maximum difference between the observed
and theoretical values (normality). The statistic of the KS normality test was used as a
classification variable in order to gather information about the distribution pattern of
residuals and quantify departure from a normal distribution. The SW test detects devia-
tions from normality due to either skewness or kurtosis, or both. The statistic of the SW
test was also employed as a classification variable in order to identify lack of normality
in the residuals according to skewness and kurtosis. Furthermore, given that data sets

in this study are seasonal with a period of 24 hours, where 72 is the maximum of lags,
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this maximum value was also considered for estimation of the mean, median, range,

and variance of the sample ACF for the residuals.
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Figure 2.5: Flow chart for the steps of method 2: Red lines indicate estimated param-
eters. Blue lines indicate type 3 variables. Solid lines indicate processes. Dashed lines
indicate results.

Figure 2.5 shows a summary of the steps of M2. The first step consists of dividing the
different time series according to the climatic conditions: Wr, Sp, and Sm (Data 1). The
second step consists of dividing the time series (Data 1) according to possible structural
breaks (SBs) (Data 2). The third step applies a logarithm transformation and one regular
differentiation to Data 2. The result is Data 3. The fourth step consists of applying the
formulas of type 2 variables to Data 2. This is the first result. The fifth stage is carried
out by applying the formula of type 1 variables to Data 3. The outcome produced is
result 2. Different boxes contain symbols such as Wr, Sp, and Sm (or WrA, WrB, Sp,
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and Sm). They indicate that the results were computed for all different parts of the time
series.

The features computed from residuals of the SH-W method were called type 3 varia-
bles. The other classification variables corresponded to the estimates of the method’s

parameters. The list of classification variables resulting from M2 are the following:

Estimates of the parameters of the SH-W method: trend (b), level (a), and seasonal
components (§1, s, §24).

type 3 variables: sum of squared estimate of errors (SSE), maximum of spectral
density (M I(w)), frequency corresponding to maximum of spectral density (@), and
the mean (ji5,), median (Mdg,), range (R\ﬁk), and variance (aAZﬁk) of sample ACF for
72 lags. The statistic of the SW test (shap.t), and the statistic of the KS normality
test (kolg.t) are also included in this list.

ARMA models were popularized by Anderson [130], who developed a coherent three-
step iterative cycle for time series estimation, verification, and forecasting. This method
is also known as the Box-Jenkins approach. The ARMA model assumes that the time
series is stationary; if this is not the case, differencing the time series one or more times
is required, resulting in an ARIMA model. In the ARIMA(p,d,q) approach, p is the
number of AR terms, d is the number of regular differences taken, and g is the number
of the MA. Furthermore, ¢; (i =1, ..., p) are the parameters of the AR part of the model,
0; G =1,...,q) are the parameters of the MA part, and the ¢; are error terms—generally
assumed to be a white noise sequence [12].

Although ARIMA is flexible and powerful in forecasting, it is not able to properly
handle continuously changing conditional variance or the non-linear characteristics of
the variance that can be present in some time series [131]. This is often referred to as
variance clustering or volatility [132; 133]. If it is assumed that a given time series fo-
llows an ARIMA process, the conditional variance of residuals is supposed to be cons-
tant versus time. When this condition is not fulfilled, it is known as a conditional va-
riance process [121; 132; 133]. In such a case, data can also be affected by non-linear
characteristics of the variance. These patterns can be studied using the GARCH family
of models. Two of the most important ones for capturing such changing conditional
variance are the ARCH and generalized ARCH (GARCH) models developed by Engle
[14] and later extended by Bollerslev [15]. Engle and Bollerslev [134] were pioneers
in the area of volatility modeling by introducing ARCH and, subsequently, GARCH
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models, which provide motion dynamics for the dependency in the conditional time
variation of the distributional parameters of the mean and variance.

In recent years, different studies have applied hybrid forecasting models in various
fields, and have shown a good performance for rainfall data [135], for the price of gold
[136], for forecasting daily load patterns of energy [137], and for stock market prices
[138].

According to Ghalanos [16], the family of GARCH models is broad, including the
standard, integrated, and exponential models, as well as the GJR-GARCH, the asymme-
tric power ARCH, and the threshold GARCH (TGARCH) of Zakoian [139]. They cap-
ture the asymmetry of occasional impacts as well as abnormal distributions to account
for the skewness and excess kurtosis. For GARCH models, error terms can some-
times be assumed from the Student distribution [17]. Bollerslev [140] described the
GARCH-Student model as an alternative to the normal distribution for fitting the stan-
dardized time series. In particular, in the TGARCH-Student(s,r) model, s is the number
of GARCH parameters ; (i = 1,...,s), r is the number of ARCH and rotation parame-
ters a; and 171, respectively (j = 1,...,r), while w is the variance intercept parameter.
Error terms €; are assumed to be a white noise sequence following a Student distribution
with degrees of freedom v [16].

Thus, instead of considering the standard ARIMA approach, whose focus is the con-
ditional mean, it seems convenient to use here a hybrid approach based on ARIMA and
GARCH models which can simultaneously deal with both the conditional mean and
variance [12].

Given that data sets in this study are seasonal, it is necessary to use Seasonal ARIMA
models, which are capable of modeling a wide range of seasonal data. A Seasonal
ARIMA(p,d,q)(P, D, Q)s model is characterized by additional seasonal terms: P is the
number of seasonal AR (SAR) terms, D is the number of differences taken, Q is the
number of seasonal MA (SMA) terms, and S is the number of observations per period
(S = 24 in this study). Furthermore, ®; (i = 1,...,P) are the parameters of the SAR
part of the model, ®; (j = 1,...,Q) are the parameters of the SMA part, and the ¢; are
error terms, which are assumed to be a white noise sequence [12]. In particular, in the
Seasonal ARIMA(p,d,q)(P,D,Q)s -TGARCH(s, r) -Student model, the errors ¢; from
Seasonal ARIMA(p,d,q)(P,D, Q)s follow a TGARCH(s, r) -Student process of orders s
and r, so that their error terms €; are assumed to be a white noise sequence following a
Student distribution, with degrees of freedom v.

Two steps were considered for the application of a hybrid approach based on Sea-
sonal ARIMA and GARCH models, as briefly explained below. Firstly, the most success-
ful Seasonal ARIMA (or ARIMA) model was selected and the residuals were computed.
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Next, the most successful GARCH model was applied to fit these residuals. The follow-
ing steps were carried out:

The condition of stationarity was checked, that is, whether the statistical characte-
ristics of the time series were preserved across the time period. The null hypoth-
esis was that mean and variance do not depend on time t and the covariance be-
tween observations RH; and RH;; does not depend on ¢ [12]. To examine this
null hypothesis, the augmented Dickey—Fuller (ADF) [141] and LBQ tests were
applied for 48 lags. Furthermore, the sample ACF and sample PACF plots were
also used.

Transformation and differencing: the logarithmic transformation and regular diffe-
rentiation were applied to RH), data before fitting ARMA in order to transform
nonstationary data into stationary data [124]. The criterion for determining the
values of d ( differencing) is explained in the next step. The logarithmic transfor-
mation was preferred over other transformations because the variability of a time
series becomes more homogeneous using logarithmic transformation, which leads
to better forecasts [142].

Identification of the most appropriate values for (p,d,q) and (P, D, Q). Sample
ACF and sample PACF plots were used to identify the appropriate values of (p, q).
Furthermore, the corrected Akaike information criterion (AICc) [125] was useful for
evaluating how well a model fits the data and determining the values of both
(P,D,Q) and (p, d, q), taking into account the restriction that d and D should be 0
or 1. The most successful model for each time series was chosen according to the
lowest AICc value. The AICc values were compared for models with the same
orders of differencing, that is, equal values of 4 and D.

Secondly, the maximum likelihood estimation (MLE) method was used for estima-
ting the parameters of the Seasonal ARIMA (or ARIMA) [12]. The models chosen were
statistically examined in order to ensure that the resulting residuals do not contain use-
ful information for forecasting. For this purpose, different tests were applied to deter-
mine whether all conditions and model assumptions were fulfilled. The analysis of
residuals was carried out as follows:

The condition of white noise was checked. Error terms can be regarded as white
noise if their mean is zero and the sequence is not autocorrelated [12]. In order to
check this issue, the ADF and LBQ tests were applied to the residuals and their
squared values for 48 lags. Furthermore, the sample ACF plots were also used.

To study the absence of Arch effects: for this purpose, the Lagrange multiplier test
[14] and sample ACF plots [132] were applied to the residuals and their squared
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values [143].
To check the distribution of residuals: by means of the Q—Q normal scores plots as
well as the SW and KS normality tests.

The analysis of residuals revealed that error terms follow a GARCH process in all the
different ARIMA models that were fitted. Therefore, it was necessary to fit a GARCH
model to these residuals. The estimated model parameters were checked to determine
if they were statistically significant, and their residuals were evaluated as described
above. Finally, a hybrid model was fitted for each sensor and each period using the
combined Seasonal ARIMA (or ARIMA) and TGARCH approach. After repeating the
steps iteratively in order to select the most successful model, the normality tests applied
to their residuals rejected the hypothesis of normality in all cases. Furthermore, all Q-
Q normal scores plots showed that residuals were not falling close to the line at both
extremes. Thus, a Student distribution was used to fit the residuals of the different
TGARCH models.

For each period, a common model was applied to the hourly data of each sensor

(one day corresponds to a sequence of 24 values).

WrA (2008): seasonal ARIMA(1,1,0)(2,0,0)24— TGARCH(1,1)-Student.

WrA (2010): ARIMA(1,1,2)— TGARCH(1,1)-Student.

WrB (2008 and 2010): seasonal ARIMA(1,1,1)(2,0,0)24— TGARCH(1,1)-Student.
Sp (2008 and 2010): seasonal ARIMA(1,1,2)(0,0,2)4— TGARCH(1,1)-Student.
Sm (2008 and 2010): seasonal ARIMA(1,1,1)(1,0,0)24— TGARCH(1,1)-Student.

A seasonal model was not selected for WrA (2010) because the analysis of residuals
of the selected model showed similar results to the best seasonal model, and the selected
model was simpler.

When analyzing the residuals from Seasonal ARIMA-TGARCH-Student models for
2008, it turned out that in the case of WrA, the time series from 12 sensors out of the
23 available did not satisfy all expected conditions. The same happened for Sp: 14 out
of the 20 models did not fulfill all requirements. Thus, in an attempt to extract further
information not properly captured by these models, some features were calculated from
the residuals.

Figure 2.6 shows a summary of the steps of M3. The first step divides the different
time series according to the climatic conditions (Wr, Sp, and Sm) (Data 1). The second
step organises the time series according to possible structural breaks (SBs) (Data 2). The
third step applies the method to Data 2 in order to obtain the estimates of the method’s
parameters (first result) and then the residuals from the method. The fourth step con-

sists of applying the formulas for type 3 variables to the residuals (second result). Di-
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tferent boxes display symbols Wr, Sp, and Sm (or WrA, WrB, Sp, and Sm). This indicates

that the results correspond to all different parts of the time series.
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Figure 2.6: Flow chart for the steps of method 3: Blue, red, solid, and dashed lines
indicate estimated parameters, type 3 variables, processes, and results, respectively.

In all cases, residuals from the ARIMA-GARCH-Student models displayed evidence
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of stationarity for 48 lags. However, in some cases, there was evidence of autocorrelation
as well as the presence of ARCH effect. For the tests applied to residuals, 0.03 was the
maximum p-value found to reject the null hypothesis. Regarding 2008, the number of
time series (from the 23 sensors) that satisfied all tests in the residual analysis, is the
following: 12 in WrA, 22 in WrB, 22 in Sp, and 20 in Sm. In 2010, out of the 20 sensors
available, the values are: 18 in WrA, 19 in WrB, 14 in Sp, and 15 in Sm.
The features computed from residuals of the models were called type 3 variables.
The other classification variables corresponded to the estimates of the parameters of the
selected models. The estimates of the parameters are as follows:
Estimated parameters from ARIMA of: (1) the regular autoregressive operator
(¢»(B)) of order p and the regular moving average operator (8,(B)) of order g: ¢,
b2, 01, 05, etc.; (2) the seasonal autoregressive operator (®p(B**)) of order P and
the seasonal moving average operator G)Q(BZ4) of order Q: &Dl, @2, @1, @2, etc.
Estimated parameters from TGARCH (1,1) : a1, 111, B1, w, and v (for Student
distribution).

The estimate of type 3 variables:
Variance of the residuals ((;2), maximum of spectral density of the residuals (]\71 I(w))r
frequency corresponding to maximum of spectral density (@), mean (i3, ), median
(X/I\dﬁk), range (ﬁﬁk) , and variance ((;zﬁk) of sample ACF for 72 lags. The statistic
of the SW test (shap.t) and the statistic of the KS normality test (kolg.t) are also
included.

Once all classification variables were computed as described above for the data from
2008, they were structured in three matrices, one per method (denoted as Xj, X; and X3,
respectively), with 23 rows (sensors) where the classification variables are in columns.
The total number of variables obtained from each method was 53 for X;, 141 for Xp,
and 59 for X3. Likewise, regarding 2010, classification variables were structured in three
analogous matrices with 20 rows and with the same number of variables.

As the number of classification variables is much greater than the number of sensors,
this scenario suggests a high degree of multicollinearity, and it might lead to severely
ill-conditioned problems. Different approaches can be considered to deal with this pro-
blem. One solution is to perform variable selection, or to apply methods based on pro-
jection to latent structures like partial least squares discriminant analysis (PLS-DA).

One advantage of this multivariate tool is that it can handle many noisy and collinear

classification variables, being computationally very efficient when the number of varia-
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bles is much greater than the number of sensors. Even though PLS-DA is extremely
efficient in a high-dimensional context, the interpretation of results can be complex in
the case of a high number of variables. In such a case, sparse PLS-DA (sPLS-DA) has
very satisfying predictive performance, and is able to select informative variables easily.
Therefore, it was decided to apply sPLS-DA [63] here using the classification data sets
mentioned above in order to identify a small subset of components and classification

variables aimed at sensor clustering.
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Figure 2.7: Classification error rate (CER) from PLS-DA for 10 components. The CER
was computed for each prediction distance (maximum, centroid, and Mahalanobis) per
method (M1, M2, and M3) for 2008 and 2010. Two types of error rate are indicated:
balanced BER (dashed lines) or Overall (solid lines). Blue lines refer to maximum dis-
tance, red lines to centroid distance, and green lines to Mahalanobis distance. PLS-DA
was carried out using repeated three-fold CV 1000 times. For 2010, BER and centroid
distance showed the best performance achieved by one component. In 2008, M1 and
M2 performed the best for maximum distance and Overall, while Mahalanobis distance
performed the best in M3. The second-best distance for the three methods was the cen-
troid distance.

The algorithm of sPLS-DA used here was the one proposed by Rohart et al. [68],
which corresponds to a modified version developed by Lé Cao et al. [63]. This new ver-
sion uses the penalty /; (lasso) on the loading vector of the regressor matrix by shrinking
to zero the coefficient of some variables according to Rohart et al. [68].
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With the aim of sensor clustering, sSPLS-DA was applied to the previously mentioned
classification data sets. Three categories of positions were considered for the sensors:
RC, W, and F. This method was applied to the three matrices (X;, Xo, and X3) con-
taining the classification variables, with dimension n x p, where p is the number of
classification variables and 7 is the number of sensors. Furthermore, Y is a vector of
length n that indicates the class of each sensor, with values coded as 1 (for RC), 2 (F)
and 3 (V). This vector has to be converted into a dummy matrix (Z, i.e., with values
either 0 or 1) with dimension n x K, where n is the number of sensors and K = 3 the
number of classes or positions of sensors.

Before applying sPLS-DA, all anomalous values of each classification variable were
removed and considered as missing data after being previously identified using nor-
mal probability plots and box plots for each variable. As a result, in 2008: 1.20% (M1),
1.04% (M2), and 1.06% (M3) were the percentages of missing values of the classification
data sets. In 2010, the corresponding percentages were 0.40%, 1.39%, and 0.49%, respec-
tively, for each method. These values are relatively low. Furthermore, all classification
variables were normalized (i.e., centered and scaled to unitary variance). The package
mixOmics [68] was used to perform sPLS-DA, which is able to handle missing values by
using the NIPALS algorithm [68; 144].

Three-fold cross-validation (three-fold CV, S1 supplementary information of [68])
was used to evaluate the performance (i.e., low classification error rate) of the PLS-
DA. It was used to determine both the optimal number of components and the optimal
number of variables. The three-fold CV was performed with stratified subsampling,
where all positions (RC, F, and W) are represented in each fold.

In order to select the optimal number of components, three-fold CV was applied
for a maximum number of ten components, which was repeated 1000 times for each
fold. With the objective of assessing the PLS-DA performance, the classification error
rate (CER), the overall classification error rate (denoted as Overall), and the balanced
classification error rate (BER) were computed [68]. Each BER value corresponds to the
average proportion of wrongly classified sensors in each class, weighted by the number
of sensors in each class. BER is less biased towards majority classes during the per-
formance assessment when compared with the Overall criterion [68]. Thus, BER was
considered instead of the latter.

The classification of sensors was determined according to different prediction dis-
tances (PD): maximum, centroid, and Mahalanobis [68]), which were computed for each
sensor. Among the three distances calculated, it was found that the centroid one per-
formed better in most cases for the classification, and hence it was selected. Regarding
the centroid distance, the software computed the centroid (G) of the learning set of sen-
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sors (training data) belonging to the classes (RC, F, and W). Each centroid G was based
on the H latent components associated with X. The distances were calculated from the
components of the trained model. The position of the new sensor was assigned accor-
ding to the minimum distance between the predicted score and the centroids G calcu-
lated for the three classes considered.

The optimal number of components H was achieved by determining the best per-
formance, based on the BER criterion and prediction distances according to the centroid
distance. Once the optimal number of components was determined, repeated three-fold
CV was carried out to establish the optimal number of variables according to the criteria
of centroid and BER. Finally, once the optimal number of components and variables was
decided, the final PLS-DA model was computed.

Figure 2.7 displays the results from the first three-fold CV for the three methods and
for both years. For 2010, the values of BER and centroid distance suggested that one
component is enough to classify the time series, while for 2008 the results indicate that
one or two components are necessary. From this step, the centroid distance and BER
were selected in order to determine the number of components.
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Figure 2.8: BER according to the number of variables (5, 10 or 15) and different number
of components (1: orange dots, 2: blue dots, or 3: green dots) for each method, for
2008 and 2010. Three-fold CV was run 1000 times using centroid distance prediction.
Diamonds indicate the optimal number of variables per component according to the
lowest value of BER.
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Figure 2.9: Flow chart for the stages used to apply sparse partial least squares discrimi-
nant analysis (sSPLS-DA) to the results from the three methods. In the box titled “Data”,
the information corresponds to the variables from one of the three methods. If the infor-
mation is from M; then X=X;, i =1, 2 and 3. The values were computed for all sensors.
Thus, a matrix X was obtained.

Figure 2.8 shows the results from the second three-fold CV for the three methods
and for both years. For 2008, the results suggested that the number of variables per one
component were 15 (M1), 10 (M2), and 5 (M3). For 2010, the results suggest the number
of variables per one component was 15 for all methods. The information in Figures 2.7
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and 2.8 (centroid.dist, BER, and number of variables per component) was used to apply
the final PLS-DA. Figure 2.9 describes the steps used to apply sPLS-DA, using the results
from the three methods in the study.

Figure 2.9 shows the summary of steps of the sPLS-DA. The values were treated
before running the sPLS-DA algorithm. In the box titled “Data input for sPLS-DA”,
the information corresponds to the response vector converted into a dummy matrix Z.
In the following boxes the PLS-DA algorithm runs from left to right. The first three-
fold CV was used to evaluate PLS-DA and the prediction distance PD, classification
error rate (CER) with the optimal number of components selected. This information
was used in the second three-fold CV to check PLS-DA in order to select the optimal
number of variables V. The information obtained using both three-fold CVs was used
to run the final PLS-DA.

The main outputs from the analysis are: (1) a set of components (C) associated with
X1, X2, and X3 for the matrix Z; (2) a set of loading (L) vectors containing the coefficients
assigned to each variable that define each component; (3) a list of selected variables (V)
from X; (i = 1,2,3) associated with each component; (4) the values of BER for each
component; and (5) the predicted class (PC) for each sensor. Coefficients in a given
loading vector indicate the importance of each variable.

Components from sPLS-DA are linear combinations of variables that might correspond
to WrA, WrB, Sp, or Sm. By applying sPLS-DA to Xj, X;, and X3, only one component
appeared to be relevant in all cases. The variables selected (per component) by the sPLS-
DA algorithm are indicated in the following paragraph. The final model which used the
classification variables from M1 (2008) is based on 15 selected variables. The selected
model from M2 (2008) consists of 10 variables, while just 5 variables were considered
for M3 (2008). The final model for M1, M2, and M3 (2010) comprises 1 component and
15 selected variables from each model (see Table 2.1).

The BER values are indicated in Table 2.1a,b for the three methods, using data from
2008 and 2010, respectively. For both years, the classification variables which turned out
to be the most important for the first component were ordered according to the absolute
value of their loading weights, from highest to lowest. The notation of the results is
M) (spec.mx); for RHy: fimg (2Mh), 02y (xVh); for RHy: fipg (2Md), 02 g (£Vd). Also,
SSE (sse), kolg.t (kolg.t), 02 (res.v), w (omega), Ay (pacf2), S1 (s1), Sis (s18), Sy (s20),
So4 (s24), a (alpha), v (shape), fi5 (act.m), X/I\dﬁl (acf.md). An explanation about the
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most important variables, regardless of period and year, is presented below.

Table 2.1: Results from sPLS-DA (2008 and 2010): variables selected per component (C)
and per Method (M) for each period (WrA stands for winter-A, WrB for winter-B, Sp for
spring and Sm for summer). For each component, variables are ordered according to the
absolute value of their loading weights, from highest to lowest. Variables with negative
weights are highlighted. The Balanced classification Error Rate (BER) is indicated for each
component.

M  Variables BER

1 WrAspec.nxs WrAnn, WrBonvin, Spemins Smemn, WrApyn, WrBuyy, Spevi, Smyyy, WrA g, 30.02%
WrB:ma. Spl'/\*hlr Smypg, WrA,yg, WrBryg

2 WrAsse, WrAspec.mx, WrBsse, Spsse, W"Akolg.l/ Spspec.mixs Wern[g.[! Smkolg.tr Stisse, Sspec.mx — 24.05%

3 W"Asp(’c.m,\‘/ WrAres.v, WrBspvr.mx; WrBres.o, W"Aomt’gu 22.60%

a Results from sPLS-DA (2008).
M  Variables BER

1 WrAspecmx, WrAmar, WrBomida, SPrmds Stemdr Wr A WrBeyin, Spravins Stepn, WrA,yy, — 24.08%
W/‘B,.V/,, Sp,.\//,, SW;AV],, WFBWM'./!I,\': W"Bpnrfz

2 W/‘B\/nv(—_”,,\», SWISSI:, S]J]“,[g.t, 5}755” WrAlmlg.tl W)’BH], Sr”ku]g.tr V\ZI‘B“M W)'B,-z_l, Sms;u’(.lux/ 21.17%
Smg19, Smg1s, WrAy, Smsoo, Spsoa

3 SPres.vs SMres.o, Smspuam.\‘/ Wr Aves.o, WrBres.o, 5}’~;m.m.\r S}%mugm Smo:m*gm W}'Aspv(.m,\v 12.81%
Wrb’omugm W”Bsper.m,\'r WrAnIphm WrAsImpB/ Spm‘f.mdr Sptu"'f.m

b Results from sPLS-DA (2010).

M1: spec.mx, rMh, rMd, rVh, rVd, and pacf2 (see Table 2.1). The features rMh and
rMd account for changes in the mean of the time series, while rVh and rVd are
intended to explain changes in the variance. The rest of the features mentioned
provide information about the dynamic structure of each time series. It was found
that rMh, rMd, and rVh were important in the four periods considered, both in 2008
and 2010. rMd was relevant for WrA and WrB in 2008. The variable spec.mx was
relevant in WrA and WrB for 2008 and 2010, as well as WrB. The variable pacf2
was found in WrB 2010. Hence, consistent results were derived from the two years
under study.

M2: sse, kolg.d, and spec.mx (computed from the residuals), as well as b, s1,
518, 519, 520, and s24 (from the models). From the residuals, sse accounts for the
variance that is not explained by the models. This parameter appeared as impor-
tant in all periods considered, except WrA 2010. kolg.d quantifies the deviation
from normality for the residuals, and was relevant in all periods except Sp 2008
and WrB 2010. The third feature, spec.mx, which provides information about the
dynamic structure of each time series, was relevant for all periods except WrB
2008, WrA 2010, and Sp 2010. Regarding the parameters computed from the mo-
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dels, b is related to the trend component of the time series, which was important in
WrA 2010. The other variables mentioned are related to the seasonal components
of the time series, which were shown to be important in Sm 2010.

M3: res.v, shape, spec.mx, acf.m, and acf.md (computed from the residuals),
as well as omega and alpha (from the model). From the residuals, res.v is aimed
to explain the variance not explained by the models. It was relevant in all pe-
riods except Sp and Sm 2008. The variable shape provides information about the
distribution of residuals, but it was only relevant in WrA 2010. The other features
(i.e., spec.mx, acf.m, and acf.md) are intended to describe the dynamic structure
of each time series. Spec.mx was important in all periods except Sp and Sm 2008,
while the last two only appeared in Sp 2010. Regarding the parameters from the
models, omega explains the changes in the mean of the conditional variance, while
alpha quantifies the impact of the rotation on the conditional variance. The varia-
ble alpha only appeared in WrA 2010. Again, the fact that most variables were
common in the three periods and in both years suggests strong consistency in the

underlying phenomena explaining the discrimination between sensors.
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Figure 2.10: Discrimination of the time series of RH according to the position of sensors:
Frescoes (F), Cornice and Ribs (RC), and Wall (W). Color codes: F sensors are shown in
green, RC in orange, and W in purple. Graphics correspond to the projection of sensors
over the first two components from sPLS-DA. Each graph shows confidence ellipses for
each class to highlight the strength of the discrimination at a confidence level of 95%.

In all cases, the classification variables corresponded to the different parts of the
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time series (WrA, WrB, Sp, and Sm), except for M3 in 2008 which only showed variables
from winter (see Table 2.1).

The results shown in Figure 2.10 correspond to the score plots for the first two com-
ponents from sPLS-DA applied to the classification of sensors. They depict their pro-
jection over the two principal latent structures that best discriminate sensors according
to their position. In 2008, the first component for each method allowed a rather good
discrimination of sensors at the RC position with respect to the rest, though a poor
discrimination was achieved between F and W (see Figure 2.10a—c).
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Figure 2.11: Prediction classes derived from M3: these plots display the predicted
classes of each sensor located in different points in a simulated grid. The final classifica-
tion prediction for the position of the sensors is displayed. The points in orange (RC),
purple (W) and green (F) represent the class prediction for the sensors in the study. (a)
For 2008: according to the classification prediction, the wrongly classified sensors were
as follows: V, Y, Z, and AA. (b) For 2010: all sensors were classified correctly.

In 2010, the first and second components for M3 displayed a clear discrimination
between sensors located on the three positions. However, for M1 and M2, only RC sen-
sors appear far apart from those on the walls, while the F group is located in between
(see Figure 2.10d—f).

Regarding the performance of the three methods for achieving the classification of
sensors, the best results were derived from M3 and the worst from M1. M3 yielded
higher correct classification percentages: 77.40% in 2008 and 87.19% in 2010 (see Table
2.1b). For 2008, the final classification resulting from M3 variables displayed the follow-
ing wrongly classified sensors: Y, AA, Z, and V (see Figure 2.11a). Three of them (Y, Z, and
AA) were installed near the location where the salt efflorescence was found. For 2010,
the final results from sPLS-DA for M3 showed that all sensors were classified correctly
(see Figure 2.11b).
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The methodology proposed here consists of using sPLS-DA to classify time series of
RH according to classification variables that were computed from different functions
(e.g., sample ACF, sample PACF, spectral density, and MR). Additionally, the Seasonal
ARIMA-TGARCH-Student model and the Additive SH-W method were used. Further-
more, estimated parameters of the models, as well as the mean, variance, and maximum
values of the functions (e.g., sample ACF, sample PACF, spectral density, and statistics
of the KS normality test, among others) were applied to the residuals derived from
the models. The centroid distance was applied to classify the sensors, and the lasso
penalty was used to select the optimal variables that determine the relevant compo-
nents. Additionally, the BER parameter was employed to evaluate the performance of
the classification methodology.

We used sPLS-DA because the classification data in this study are characterized by
more variables than the number of time series (sensors), and in the interest of easily in-
terpreting the results. This technique leads to underlying latent variables (components)
that summarize the relevant information from the data for the purpose of discrimina-
tion. It performs variable selection for each component, which is an advantage. The
key issue in time series clustering is how to characterize the similarities and dissimi-
larities between time series. Various metrics for measuring such similarity have been
proposed, based on: parameters from models [38; 39; 40; 145; 146], serial features ex-
tracted from the original time series [27; 28; 29; 30], the complexity of the time series
[31; 32; 34; 35; 147; 148], the properties of the predictions [36; 37], and the comparison of
raw data [25]. Regarding methods based on model parameters, the criterion most com-
monly considered is to assume that time series are properly explained by ARIMA pro-
cesses. Piccolo [38] introduced the Euclidean distance between their corresponding AR
expansion [12] as a metric and used a complete linkage clustering algorithm to construct
a dendrogram. One problem of this metric is related to the numerical computations of
AR coefficients. The same metric was also considered by Otranto [149] for dealing with
GARCH processes. For ARMA models, Maharaj [41] developed an agglomerative hier-
archical clustering procedure based on the p-value of a hypothesis test applied to every
pair of stationary time series. Kalpakis et al. [42] studied the clustering of ARIMA time
series by using the Euclidean distance between the linear predictive coding (LPC) cep-
strum of two time series as their dissimilarity measure. Xiong and Yeung [43] classified
univariate ARIMA time series by considering ARMA models. They derived an expecta-
tion maximization (EM) algorithm for estimating the coefficients and parameters of the

models. However, if the underlying clusters are very close to each other, the clustering
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performance might diminish significantly. According to the review of the previously
mentioned studies about the clustering of time series, it seems that the methodology
applied here is rather unique because it uses a hybrid model comprising ARIMA and
GARCH to calculate a distance for classifying time series. This is also probably the first
using sPLS-DA in order to classify time series.

We found that the time series of RH, one per sensor, were very similar despite their
different positions in the apse vault of the cathedral. When classifying the sensors, it
turned out that few parameters appeared as relevant, most of which were features ex-
tracted from the residuals of models. This is most likely due to the similarity among
the time series studied. As a consequence, the information that was not properly ex-
plained by the models was decisive for characterizing the differences between time se-
ries. The classification variables derived from the ARIMA-TGARCH-Student model
yielded better performance than those from SH-W, which might suggest that the for-
mer model captures more information from the data than the latter. In fact, SH-W is an
algorithm intended for producing point forecasts [125].

A comparison of the results from method M1 with those from the preliminary study
of Zarzo et al. [7] indicates that a better classification was obtained here. The variables
HMV and DMV (rMh and rMd) were relevant in both studies. Although the mean for the
total observations was important in the preliminary project [7], this variable was not se-
lected by the sPLS-DA. The classification variables selected per sPLS-DA explained the
changes in the mean and variance of the time series with rMh, rMd, rVh, and rVd. Fur-
thermore, the method obtains variables from sample PACF and spectral density which
explain the autocorrelation of the time series. The research by Zarzo et al. [7] did not
use variables related to the autocorrelation of the time series.

One disadvantage of sPLS-DA is the need to use the same number of classification
variables for each sensor. As a consequence, a unique ARIMA-TGARCH-Student model
was used for all sensors in the same part of the time series (WrA, WrB, Sp, and Sm). This
means that a better fit might result, as it considers a different model for each time series.
Another disadvantage is that it is necessary to know a priori the number of classes of the
time series (sensors) for their classification. According to the previous idea, the limi-
tations of the statistical methodology proposed in this study are: (1) sPLS-DA needs to
know the number of classes before implementing the algorithm. (2) When applying a
unique ARIMA-TGARCH parametric model to all sensors, it is unlikely that the best
values for the classification variables will be found. This can affect the classification
error rate of the sensors.

One advantage of using both sPLS-DA and ARIMA-TGARCH-Student is the capa-
bility of classifying time series with very similar characteristics. Additionally, the func-
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tions and models utilized here can be easily implemented because different packages
are available in R software. One such example is the mixOmics package of R, which has
different functions that allow sPLS-DA to be implemented simply and makes it easy to
display the different results for interpretation. Furthermore, this package can handle
missing values using the NIPALS approach. It takes advantage of the PLS algorithm
which performs local regressions on the latent components. There are two main ad-
vantages of using PLS—it both handles missing values and calculates the components
sequentially. In this study, the anomalous values of classification variables were con-
sidered as missing values in order to avoid possible problems with the classification of
the sensors. The percentage of values that were used as missing were lower than 2%.
In relation to future studies, alternative classification variables could be considered
depending on the different scenarios and according to the characteristics of the time
series. In order to obtain classification variables that capture more information from the
data, flexible models can be proposed. Some options for calculating the classification

variables might be the following:

Cepstral coefficients: Ioannou et al. [150] studied several clustering techniques
in the context of the semiparametric model: spectral density ratio. They found
that the cepstral- based techniques performed better than all the other spectral-
domain-based methods, even for relatively small subsequences.

Structural time series model: the flexibility required from this model can be achieved

by letting the regression coefficients change over time [151].
A nonparametric approach of the GARCH [152; 153].

Regarding classification techniques when there are fewer variables than time series,
sPLS-DA can be extended by using the elastic net [154] as the penalization. Finally,
a further study might be carried out in controlled scenarios, where time series can be
computationally simulated by controlling different characteristics in order to identify
the strengths and weaknesses of the proposed methodology. In alignment with the
previous ideas for improving the methodology, future research will use sPLS-DA with
two methods: a nonparametric Seasonal ARIMA-GARCH model and a structural time
series model. Furthermore, several time series will be computationally simulated in
controlled scenarios in order to evaluate the results when using sPLS-DA, together with
one of the previously mentioned methods.

Garcia-Diego and Zarzo [6] concluded that the environment surrounding the Re-
naissance frescoes was not the same at all points of the apse vault of the cathedral.
Sensors located on the walls or on the paintings registered higher RH values than those
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in the vault ribs. Thus, the mean value of RH is related with the three previously men-
tioned classes. The ideal goal is obviously to achieve a correct classification of all sen-
sors. However, a poor classification error rate might be caused by either the malfunc-
tioning of some sensors or a poor performance of the classification technique, or if there
is a problem related with the microclimate where the sensors are located. Those sensors
incorrectly classified by the technique should be checked to identify possible moisture
problems in the artworks. In this work, the main cause of sensor malfunction was the
development of salt deposits around the probes as a consequence of fitting some of the
probes inside the layer of plaster supporting the frescoes.

The results indicate that sPLS-DA could be implemented for the online monitoring
of fresco paintings aimed at preventive conservation using the parameters and features
previously extracted from the hybrid models based on GARCH and ARIMA as classifi-

cation variables. This analysis might be carried out for each season of every year.

The methodology proposed here is useful for understanding the differences in thermo-
hygrometric conditions monitored inside large buildings or museums, which might pro-
vide a basis for better assessing the potential risks related to temperature and humidity
on the artworks. Among the methods proposed, a hybrid approach based on ARIMA
and GARCH models with sPLS-DA yielded the best performance. Parsimonious mod-
els with a small subset of components and classification variables were obtained using
sPLS-DA, which offers satisfactory results with easy interpretation. Another advantage
of sPLS-DA is that it can be implemented easily with mixOmics, which allows a focus
on graphical representation in order to better understand the relationships between the
different observations and variables. Furthermore, this package can deal with missing
values. Finally, the use of a hybrid approach based on ARIMA and GARCH models as
well as sPLS-DA is a novel proposal for classifying different time series.

In order to improve the methodology proposed in this research, future research will
use sPLS-DA with two methods that are more flexible than those applied in this study.
This will capture more information from the data. Furthermore, a computational simu-
lation will be carried out in order to evaluate the new methodology in different possible

scenarios.
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This chapter corresponds to the publication mentioned above, after changing the
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An earlier study carried out in 2010 at the archaeological site of L’Almoina (Valencia,
Spain) found marked daily fluctuations of temperature, especially in summer. Such
pronounced gradient is due to the design of the museum, which includes a skylight as
a ceiling, covering part of the remains in the museum. In this study, it was found that
the thermal conditions are not homogeneous and vary at different points of the mu-
seum and along the year. According to the European Standard EN10829, it is necessary
to define a plan for long-term monitoring, elaboration and study of the microclimatic
data, in order to preserve the artifacts. With the aforementioned goal of extending the
study and offering a tool to monitor the microclimate, a new statistical methodology
is proposed. For this propose, during one year (October 2019-October 2020), a set of
27 data-loggers was installed, aimed at recording the temperature inside the museum.
By applying principal component analysis and k-means, three different microclimates
were established. In order to characterize the differences among the three zones, two
statistical techniques were put forward. Firstly, Sparse Partial Least Squares Discrimi-
nant Analysis (sSPLS-DA) was applied to a set of 671 variables extracted from the time
series. The second approach consisted of using a random forest algorithm, based on the
same functions and variables employed by the first methodology. Both approaches allo-
wed the identification of the main variables that best explain the differences between
zones. According to the results, it is possible to establish a representative subset of sen-
sors recommended for the long-term monitoring of temperatures at the museum. The
statistical approach proposed here is very effective for discriminant time series analysis
and for explaining the differences in microclimate when a net of sensors is installed in
historical buildings or museums.

Keywords: ARIMA; art conservation; Holt-Winters; k-means; random forest; sensor
diagnosis; sPLS-DA

The environmental conditions of historical buildings, exhibition facilities and storage
areas in museums have been shown to be the most crucial factor in the preservation of
collections and artifacts. Temperature, humidity and lighting can potentially deterio-
rate or even destroy historical or cultural objects that are kept, protected and displayed
in collections [155]. A continuous monitoring of the indoor environment can provide

information about the microclimatic conditions affecting the works of art. Monitoring is
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an essential tool for developing a preventive control program aimed at maintaining the
optimal microclimatic conditions for preservation. As a consequence, long-term moni-
toring has to be applied to prevent the deterioration of artworks [99]. Furthermore, it
is necessary to find practical solutions and tools for the incorporation of climate change
adaptation in the preservation and management of cultural heritage [77]. In particular,
in archaeological sites, temperature differences between various minerals in block sur-
faces and alternative surfaces cause thermal stress. Humidity and thermal stresses are

important causes of microfractures between the mineral grains of blocks [99].

@
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Figure 3.1: Plan of the L’Almoina archaeological site, indicating the position of 27 data-
loggers for monitoring the air conditions inside the museum. Based on the multivariate
analysis of temperatures (see Section 3.4), three zones were established: North West
(NW, in blue), South East (SE, in green) and Skylight (Sk, in orange). The different
observable structures and the construction phases in the museum are indicated: (a) Ro-
man baths; (b) Imperial granary; (c) Portico of the imperial forum; (d) Imperial chapel;
(e) Imperial basilica; (f) Byzantine apse and tombs; (g) Byzantine Cathedral Baptistery;
(h) Republican and Imperial Asklepieion; (i) Alcazar Aldalusi; (j) Decumani; and (k)
Cardus [156].

In L’Almoina museum (Valencia, Spain), a pronounced gradient of temperature was
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found [157] due to a skylight which was included in the architectonical design of the
museum (Figure 3.1). A thermo-hygrometric monitoring study carried out in this mu-
seum in 2010 [157] discussed the significant effect of the skylight on the variations in T
and RH. A pronounced greenhouse effect was noted, as a consequence of the skylight
and the high temperatures reached in summer in Valencia. In 2011 the layer of water
was removed due to a leak that had to be repaired. To replace the beneficial effect of the
water layer, a provisional canvas cover was installed directly over the skylight, in order
to avoid the overheating of the archaeological site below, by preventing direct sunlight.
A second thermo-hygrometric monitoring study was performed in 2011 to assess the
effect of different corrective measures and changes implemented in the museum [158].
The microclimatic data of RH and T recorded in 2010 before laying the canvas cover
was compared with air conditions in 2013, after its installation. It was found that the
presence of the canvas covering the skylight improved the T and RH conditions, so that
the microclimate was in accordance with the international standards [159; 160].

Given the marked detrimental influence of the skylight, a long-term monitoring is
required for the control of thermal conditions. Thus, it is necessary to find practical
solutions and tools for the preservation and management of the ruins. For this purpose,
a statistical methodology for classifying different time series of temperature that are
very similar is of interest. Such methodology can help to characterize different zones in
the museum and to provide guidelines for monitoring the thermal conditions.

Some studies have been carried out in order to propose a plan for monitoring either
temperature (T) or relative humidity (RH) for art conservation. Three reported studies
proposed a methodology for classifying different time series using either observations
of time series, or features from time series. Garcia-Diego and Zarzo [6] and Zarzo et al.
[7] applied Principal Component Analysis (PCA) in order to study the values of RH
from sensors installed in different positions at the apse vault of Valencia’s Cathedral
(Spain). Zarzo et al. [7] reported that the first and second principal components could
be estimated according to a linear combination of the average RH values and the mo-
ving range of RH. Based on the two first components, the differences between the time
series of RH in different positions in the apse were discussed. Ramirez, Sandra et al.
[161] proposed a statistical methodology in order to classify different time series of RH,
which pointed to those zones with moisture problems in the apse vault of the Cathedral
of Valencia. Merello et al. [11] analyzed 26 different time series of RH and T, recorded
at Ariadne’s house (Pompeii, Italy), using graphical descriptive methods and Analy-
sis of Variance (ANOVA), in order to assess the risks for long-term conservation of the
mural paintings in the house. The work provided guidelines about the type, calibra-

tion, number and position of thermo-hygrometric sensors in outdoor or semi-confined
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environments.

The proposed methodology in this article has an adequate capability for discrimi-
nating time series with similar features. In addition, it can help to obtain parsimonious
models with a small subset of variables leading to a satisfactory discrimination. As
a consequence, its results can be easily interpreted and can help to select a subset of
representative sensors for the long-term monitoring of indoor air conditions inside the
museum. Finally, this methodology can be effective in order to establish the different

zones in the archaeological site and to discriminate the microclimate of these areas.

(b)

Figure 3.2: View of the skylight covering part of L’Almoina archaeological site: (a) ex-
ternal view from the pedestrian plaza; and (b) internal view.

Aimed at better understanding the differences of microclimate in L’Almoina archaeo-
logical site (Figure 3.2), a set of 27 autonomous data-loggers was installed at different
points of the museum (Figure 3.1). The time period under study was of about one year,
from 22 October 2019 to 20 October 2020. The main goal of this research was to identify
different microclimates at the museum and to characterize the differences in tempera-
ture between such zones. The purpose was to classify the sensors according to features
and variables extracted from the time series of T. Another target was to identify those
variables that best discriminate the different time series per zone. For this purpose, a
methodology was applied based on sparse partial least squares discriminant analysis
(sPLS-DA) and random forest (RF) with models and functions of time series [161; 162].
Another target was to identify a subset of representative sensors for a long-term moni-
toring of thermic air conditions in the museum, as well as to determine the best location
recommended for these sensors. The proposed methodology is rather new in the context
of clustering of time series applied to cultural heritage. Furthermore, this methodology
can be useful for defining different zones in the museum, according to features of the
time series of T, as well as to achieve a correct classification of all sensors in such zones.

This article is structured as follows. In Section 3.3, a short background related to
art conservation is presented. Characteristics of the dataset and the sensors, criteria
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for determining the stages of the time series of T, methods for calculating features of
the time series and strategies for classifying time series are introduced in Section 3.4.
The most notable results of the different analyses and their discussion are presented in
Section 3.5. Finally, conclusions appear in Section 3.6.

Many studies have been conducted in recent years which monitor the climatic parame-
ters for the long-term preservation of cultural heritage. Frasca et al. [86] studied the
impact of T, RH and carbon dioxide (CO,) on the organic and hygroscopic artworks in
the church of Mogita Abbey. They found that artworks were at high risk of mechanical
damage for approximately 15% of the time under study, due to an excessive variabili-
ty of RH. Huijbregts et al. [163] proposed a method for evaluating the damage risk of
long-term climate changes on artifacts in museums or historic buildings. This method
was applied for two historic museums in the Netherlands and Belgium. For the ex-
amined case studies, they found that the expected climate change would significantly
increase both indoor T and RH, with the increase of the latter having the highest impact
on the damage potential for artifacts in museums. Zitek and Vyhlidal [164] proposed
a novel air humidity control technique for preventing the moisture sensitive materials
from varying the equilibrium of their moisture content, maintaining desirable environ-
mental conditions for the preventive conservation of cultural heritage. Angelini et al. [4]
designed and installed a wireless network of sensors for monitoring T and RH, aimed
at establishing a correlation between the environmental conditions and the conserva-
tion state of artifacts. In addition, Lourenco et al. [5] studied air T and RH, among other
parameters, in the historical city center of Bragaca (Portugal). Other researchers have
studied the variation of some environmental parameters, in order to identify the main
factors involved in the deterioration of certain remains, e.g., exposed and buried re-

mains at the fourth century Roman villa of Chedworth in Gloucester, England [165].

Experts suggest that it is necessary to investigate the actual environmental dynamics
in a museum before any structural intervention. Furthermore, it is important to define

the compatibility between the climate control potentials and the preservation require-
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ments [99]. Several European Standards [92; 93; 94; 95; 96; 97; 98] have been developed
for the monitoring, elaboration and study of the microclimatic data, as supporting ac-
tions for the preservation of artifacts. Long-term monitoring is required, as well as an
appropriate statistical approach for the data management.

A large economical investment is being provided by governments within the Euro-
pean Union to preserve artworks in museums. Different research projects have moni-
tored the indoor microclimate within museums, in order to analyze the relationship
between thermo-hygrometric conditions and the degradation of materials, from which
works of art are made. For example, with the goal of preserving artwork and artifacts,
the CollectionCare Project is currently working on the development of an innovative
system for making decisions about the preventive conservation of artworks in small- to

medium-sized museums and private collections [166].

The archaeological site of L’Almoina in Valencia (Spain) is an underground museum
at about 3 m below the city floor level. It occupies an area of about 2500 m?. The
archaeological remains are covered by a concrete structure, which forms an elevated
plaza above the ruins. This cover connects with walkways and steps at different heights
along its perimeter. There is no vertical retaining wall inside the museum to isolate the
remains and prevent water diffusion through capillarity from the surrounding areas.
An external glass skylight (225 m?) was adapted to the museum so that part of the ruins
could be observed from the pedestrian plaza. Nowadays, the skylight is protected by a
layer of water (see Figure 3.2) to prevent high temperatures of the glass.

In total, 27 data-loggers were installed for the monitoring of T and RH at L’Almoina mu-
seum. Technical details are as follows: data-logger model WS-DS102-1, with a tempera-
ture range between —40 and +60 °C and an accuracy according to the MI-SOL manu-
facturer of £1°C, under 0-50 °C [167]. The data acquisition rate was of one recording
every five minutes, so that a manual download of data was necessary every two months.
The monitoring experiment started on 22 October 2019 and ended on 20 October 2020.
The initial number of available observations of T was approximately 104,832 per sensor
(i.e., 364 days-24 h/day-12 values/h), which were arranged as a matrix containing 27
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columns (i.e., temperatures recorded by each sensor) by 104,832 rows. Daily cycles are
clearly marked, which implies a repetitive pattern every 288 values, but such a data se-
quence seems too long. Thus, it was decided to calculate the median of values recorded
per hour, which leads to daily cycles every 24 values. This frequency seems more con-
venient for the use of seasonal methods of time series analysis. Thus, a new matrix
was arranged comprising 8730 observations by 27 sensors. This dataset did not contain

missing values.

All sensors were calibrated prior to their installation by means of an experiment car-
ried out inside a climatic chamber, model alpha 990-40H from Design Environmental
Ltd. (Gwent, UK). The temperature was maintained at three different levels: 5, 23 and
30°C. For each stage, the RH was 75%, 50% and 30%, respectively. Each stage of tem-
perature was maintained for 2 h, so that the total calibration experiment lasted for 6
h. The frequency of temperature recorded was one datum per five minutes from each
sensor. Next, the median of T per hour was calculated by sensor. Linear regression was
applied to obtain calibration functions, one per sensor, relating the measured median
of T as a function of the real temperature inside the chamber. Finally, the temperature
matrix (8730 x 27) was modified by correcting the bias of each sensor, according to the
resulting calibration functions, which leads to a corrected matrix containing the median

temperature per hour, after the calibration.

The statistical methodology comprises the following steps: (1) Identify structural breaks
in all time series. (2) Extract features directly from the time series. (3) Compute classi-
fication variables using the additive seasonal Holt-Winters approach. (4) Compute
classification variables by means of seasonal ARIMA. (5) Compute classification varia-
bles according to the Wold decomposition. (6) Determine the optimum number of
classes and establish the class for each sensor, using PCA and k-means algorithm. (7)
Check the classification of sensors using sPLS-DA and identify the optimal subset of
variables that best discriminate between classes, per method. (8) Check the classifica-
tion of sensors by means of the RF algorithm and identify the optimal set of variables
calculated from each method, that best discriminate between the classes. (9) Propose a
methodology for selecting a subset of representative sensors for future long-term moni-

toring experiments in the museum.
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The main R software packages [108] (version 4.3) used to carry out the statistical
analyses were: mixOmics [67; 68], aTSA [109], forecast [110; 111], strucchange [113],
tseries [114], moments [168], PerformanceAnalytics [169], NbClust [170] and QuantTools
[105].
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Figure 3.3: Trajectories of the different time series of T from the 27 sensors located in
the museum. Values were recorded between 22 October 2019 and 20 October 2020. The
separation of different stages (Wrl, Cd, Tr, Ht and Wr2) is indicated by means of solid
vertical lines. Dashed vertical lines indicate the structural breaks identified within the
stages Wr1, Cd and Ht.

In real conditions, time series can undergo sudden shifts or changes in the slope of a
linear trend. Such events are known as structural breaks [12]. The CUSUM and supF
tests, among others, can be used to detect structural breaks in a time series [115; 120].
By carefully inspecting the evolution of all observed time series of temperature (T) over
time (Figure 3.3), certain potential structural breaks can be observed. Both the CUSUM
and supF tests were applied after computing the logarithmic transformation and one
regular differentiation to the time series. Such logarithmic transformation was intended
to stabilize the variance, while the regular differentiation was used to remove the trend
of the different time series [107]. The notation used throughout this paper is the follo-
wing: r refers to the logarithmic transformation of T and W denotes one regular diffe-
rentiation of the logarithmic transformation of T. Thus, each value of W corresponds
tow; = ry —ri_q, being ry = In(Ty),t = 1,...,Eyax. The tests were computed with
functions Fstats and efp from the strucchange package [113]. Initially, 5 stages were
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tentatively established: warm 1 (Wrl, comprising n = 1490 observations), cold (Cd, n =
1703), transition (Tr, n = 2303), hot (Ht, n = 2327) and warm 2 (Wr2, n = 903) (see Figure
3.3). Wrl corresponds to 22 October-23 December 2019, Cd to 24 December-3 March
2020, Tr to 4 March-7 June, Ht to 8 June-12 September and Wr2 to 13 September-20
October 2020.

This method consists of computing features such as mean, median and maximum,
among others, from estimates of the Auto Correlation Function (ACF), Partial Auto Cor-
relation Function (PACEF), spectral density and Moving Range (MR) [18; 104]. The ACF
and PACF correlograms of the observed time series are commonly used to fit Auto Re-
gressive Moving Average (ARMA) models. Firstly, a set of variables denoted as Type 1
comprised the mean, MR and PACF, which were estimated for the 8 stages of T values.
The average of T was calculated to capture the level or position in each stage of the
time series. The mean of MR with order 2 (i.e., average range over 2 past values) was
computed to identify sudden shifts or increases in the level of T. For each stage of T,
the sample PACF parameters («; at lag [) were estimated for the first four lags (I =1, 2,
3, 4), which are usually the most important ones for capturing the relevant information
in time series.

Secondly, another set of variables called Type 2 comprised spectral density and ACE,
which were estimated for T values after applying the logarithm transformation and
regular differencing. The objective of using this transformation and differencing was
to stabilize the variances and remove the trend of T, so that the computed variables
provide information about the seasonal component of the time series. Spectral density
was estimated using the periodogram of observed time series W (I(w) of signals w). The
maximum peak of the periodogram and its frequency were identified. Values of ACF
(o1 atlag | ) were estimated to analyze the correlation between W values with the lagged
values of the same observed time series at each lag, for the first 72 lags. This criterion
was used because the values of the ACF correlogram for further lags were comprised
within the limits of a 95% confidence interval in the correlogram.

The different steps involved in M1 are depicted in Figure 3.4. Firstly, the 27 time
series were split according to the climatic stages observed: Wrl, Cd, Tr, Ht and Wr2
(Data 2). Secondly, some of the main stages (Data 2) were subdivided according to the
structural breaks (SB) identified in Wr1, Cd and Ht (Data 3). In the third step (Data 4),
the logarithm transformation was applied and, next, one regular differentiation (Data 5).

The fifth step consists of applying the formulas of Type 2 variables to w;: maximum of
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periodogram (M) and its frequency (w), as well as mean, median, range and variance
of the sample ACF for the first 72 lags (M5, Mdﬁl, Ry, and (75’, with! =1,...,72). Finally,
the formulas of Type 1 variables were applied to T values (Data 3): mean of T (ur),

mean of MR of order 2 (ypr) and PACEF for the first four lags (a1, a2, a3 and ay).
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Figure 3.4: Summary of steps involved in method M1: blue lines, Type 1 classification
variables; green lines, Type 2 variables; solid lines, process; dashed line, results. Dif-
ferent boxes contain the name of the stages (i.e., Wr1A, WrlB, CdA, CdB, Tr, HtA, HtB
and Wr2) to indicate that the procedure was applied to all parts of the time series. A
structural break was found in Wr1, Cd and Ht, so that the suffixes A and B denote the
substages before and after the break, respectively.

The estimates of MR values were computed with the R software according to the
function rollrange from the QuantTools package [105]. The sample ACF and sample
PACEF values were calculated with the function acf (stats) [171] and pacf (tseries)

[114], respectively. The values of the periodogram and their frequencies were obtained
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with the function spectrum (stats).

The Holt-Winters method (H-W) [19] is a type of exponential smoothing that is used for
forecasting in time series analysis. The seasonal H-W (SH-W) method uses a smoothing
equation for each component of a given time series: the level, slope and seasonality,
which are denoted at time t* as a;+, by and s+, respectively. The additive SH-W predic-
tion function of a time series of T is given by Equation (3.1), where p denotes the number
of observations per period and k is the integer part of (I —1)/p [21; 125]. This equation
was implemented with the conditions: 0 < a < 1,0 < <1,0< 9y <landt? >s.
When the algorithm converges, a corresponds to the last level of a;, b is the last slope
of by and s1—sy4 are the last seasonal contributions of each s;+. A forecast of £+ ; based

on all the data up to time t* is denoted by £, ;; a simpler notation for f4._ . is £ 4.
Epigpp = ap + Ibp 4 Spe iy p(q1), Where
ap = a(tp —sp—p) + (1 —a)(ap—1 + bp_1)
by = Blap —ap 1) + (1= B)bp 1
Sf* = ’)/(tt* — at*—l — bt*—l) + (1 — ’)’)St*fp

(3.1)

The method M2 consists of fitting additive SH-W equations in two steps. Firstly,
for each stage of the 27 time series of T, the classification variables are the last level of
smoothing components of the additive SH-W method per sensor: level (a), slope (b)
and seasonal components (sq,s2, . .., 524). The method was fitted by considering p = 24
as the number of observations per day. These smoothing components were called as
Type 3 variables. Secondly, by considering the complete time series, the first 24 predic-
tions of T for each unique additive SH-W model per sensor were regarded as additional
classification variables, which were denoted as Type 5 variables.

Although a residual analysis is not necessary when using SH-W method, estimates
of the features from residuals were also computed per stage of the time series (Type 4
variables): sum of squared estimate of errors (SSE), maximum of periodogram (M)
and its frequency (w) and several parameters (mean, median, range and variance) of
sample ACF for 72 lags (pg, Mdﬁl, R5 and 0’%1, with [ = 1,...,72). Moreover, the
Kolmogorov-Smirnov (KS) normality test [127] and Shapiro-Wilk test (SW) [122; 128;
129] were applied in order to extract further information from the different stages of the
observed time series. The statistic of the KS test (denoted as Dn) was used to compare
the empirical distribution function of the residuals with the cumulative distribution

function of the normal model. Likewise, the statistic of the SW test (Wn) was employed
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to detect deviations from normality, due to skewness and/or kurtosis. The statistics of
both tests were also used as classification variables because they provide information

about deviation from normality for the residuals derived from the SH-W method.
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Figure 3.5: Summary of steps in method M2: blue lines, Type 3 classification variables;
green lines, Type 4 variables; red lines, Type 5 variables; solid lines, process; dashed

line, results.

The steps involved in M2 are depicted in Figure 3.5. Firstly, the different time series
were split according to the climatic stages observed (Data 2) and the structural breaks
(SB) identified (Data 3). Secondly, the seasonal H-W method was applied to Data 3 in
order to obtain the last level of smoothing components (Type 3 variables) and then the
model residuals. The third step consisted of applying the formulas of Type 4 variables
to the residuals. Finally, the seasonal H-W method was applied to Data 1 in order to
obtain the first 24 predictions of T (Type 5 variables).

The HoltWinters function (stats) was used to fit the Additive SH-W method.
The shapiro.test (stats) and ks.test (dgof) [172] were used to apply the normality
tests. Values of the sample ACF and sample PACF were computed with the functions
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acf (stats) and pacf (tseries), respectively. Values of the periodogram and their fre-
quencies were calculated with the function spectrum (stats).

The ARMA model is also known as the Box-Jenkins approach, which focuses on the
conditional mean of the time series and assumes that it is stationary [107]. By contrast,
the ARIMA model can be used when a time series is not stationary. It employs regular
differencing of the time series prior to fitting an ARMA model. ARIMA (p,d, q) models
employ p Auto Regressive (AR) terms, d regular differences and g Moving Average
(MA) terms. Parameters of the AR component are denoted as ¢; (i = 1,...,p) and
parameters of the MA component as 0; (j = 1,...,9). The error terms €; are assumed
to be a sequence of data not autocorrelated with a null mean, which is called White
Noise (WN) [107]. In addition, if a given time series is assumed to follow an ARIMA
process, the conditional variance of residuals is supposed to be constant. If this is not
the case, then it is assumed that an ARCH effect exists in the time series. Two of the most
important models for capturing such changing conditional variance are the ARCH and
Generalized ARCH (GARCH) models [12].

Seasonal ARIMA (p,d,q)(P, D, Q)s models are more appropriate in this case given
the marked daily cycles. P refers to the number of seasonal AR (SAR) terms, D to the
number of difference necessary to obtain a stationary time series, Q to the number of
seasonal MA (SMA) terms and S to the number of observations per period (S = 24
in this case). Parameters of the SAR component are denoted as ®; (i = 1,...,P) and
the SMA component as @; (j = 1,...,Q). The error terms €; are assumed to be a WN
sequence [107].

A seasonal ARIMA (p,d,q)(P,D,Q)s model is given by Equation (3.2), where the
polynomial ¢, (B) is the regular AR operator of order p, 8,(B) is the regular MA op-
erator of order g, ®@p(B®) is the seasonal AR operator (SAR) of order P, @ (B®) is the
seasonal MA operator (SMA) of order Q and B is the backshift operator (i.e., Bv; = v;_1,
for t > 1 and B?v; = vy_o4, for t > 24).

®p(B%)¢,(B)vr = @ (B°)0,(B)e;, where,
¢p(B) =1—¢1B—---—¢,BF
0,(B) =1+6;B+--+06,B (3.2)
®p(B°) =1— ®B° — ®pB"®
©g(B%) =14 ©,B°+ -+ @uBY
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Furthermore, V2 represents the seasonal differences while V¥ accounts for the regu-
lar differences, so that V% is defined as (1 — B)P and V“ as (1 — B)“ [12]. In this study,
vy = VPV, which was obtained by differentiating the series once regularly (d = 1)
and once seasonally (D = 1). Thus, v; = V%4V1rt = V§4wt = Wy — Wi_n4.

For each stage of the time series, a common seasonal ARIMA model was fitted for
the 27 observed time series (see Table 3.1). Firstly, each observed stage of the time series
T was checked to determine if it could be regarded as stationary, which implies that
the mean and variance are constant over time t and the covariance between one obser-
vation and another (in lagged [ steps) from the same time series does not depend on
t [107]. The ACF and PACF correlograms were used to examine this condition. Fur-
thermore, the Augmented Dickey—Fuller (ADF) test [141] was applied for checking the
null hypothesis of non stationarity, as well as the Lagrange multiplier (LM) test [14] for
examining the null hypothesis about the absence of ARCH effect. In addition, the auto-
correlation Ljung-Box Q (LBQ) test [126] was applied for inspecting the null hypothesis
of independence in a given time series. This LBQ test was carried out on the different
lags from nt to nt + 48, where nt is the sum of the number of AR, MA, SAR and SMA
terms of the seasonal ARIMA models. It was applied to the time series of the model
residuals and the squared residuals.

The condition of stationarity is necessary when fitting an ARMA model. For this
purpose, logarithmic transformation, one regular differentiation (d = 1) and one sea-
sonal differentiation (D = 1) were applied to all time series of T, in order to stabilize the
variance and remove both the trend in mean and seasonal trend [124]. Seasonal differ-
entiation was applied to the observed time series W, and the results were denoted as V
(0t = Wy — Wy_p4), being wy =1y —rp_1.

In order to determine the appropriate values of (p,d,q) and (P, D, Q), the corrected
Akaike’s Information Criterion (AICc) [125] was used, which checks how well a model
fits the time series using the restriction d = 1 and D = 1. The most successful model for
each stage of the different observed time series T was chosen according to the lowest
AICc value. Next, the maximum likelihood estimation method was used to estimate the
parameters of the seasonal ARIMA models [107]. Different tests were used to determine
whether model assumptions were fulfilled. After computing the model residuals, ADF
and LBQ [126] tests were applied to the residuals and their squared values, for 48 lags, in
order to evaluate the condition of WN process. The ACF and PACF correlograms were
also used. The next step was to evaluate the absence of Arch effects in the residuals.
For this purpose, the LM test was applied to the residuals and their squared values
[132; 143]. Although the normality of errors is not an assumption for fitting ARIMA
models, the distribution of residuals derived from the fitted models were compared
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with the normal distribution by means of the Q-Q normal scores plots, as well as the
SW and KS normality tests.

Table 3.1: The most successful models per stage of the different observed time series r
are presented in the second column. Column 3 presents the percentages of the LBQ test
on the different lags from nt to nt + 48 from the 27 sensors that fulfill the assumptions
of independence. Column 4 presents the percentages of the LM test from the 27 sensors
that fulfill the assumptions of the absence of Arch effect. The significance level used was
0.01.

Stage Model LBQ LM
(a) For Method 3

WrlA Seasonal ARIMA(0,1,2)(2,1,0)24 77.00 92.52
Wr1B Seasonal ARIMA(0,1,0)(2,1,0)4 3.00 44.44
CdA Seasonal ARIMA(0,1,0)(2,1,0)p4 25.00 77.77
CdB Seasonal ARIMA(0,1,2)(2,1,0)24 18.00 18.52
Tr Seasonal ARIMA(0,1,3)(2,1,0)24 11.00 3.70
HtA Seasonal ARIMA(1,1,3)(0,1,1)4 22.00 22.22
HtB Seasonal ARIMA(0,1,3)(2,1,0)p4 0.00 37.04
Wr2 Seasonal ARIMA(0,1,2)(2,1,0)24 18.00 37.04
(b) For Method 4

WrlA A seasonal ARIMA per sensor 92.59 96.30
WrlB A seasonal ARIMA per sensor 51.85 59.26
CdA A seasonal ARIMA per sensor 81.48 81.48
CdB A seasonal ARIMA per sensor 48.15 25.93
Tr A seasonal ARIMA per sensor 25.93 3.70
HtA A seasonal ARIMA per sensor 59.26 29.63
HtB A seasonal ARIMA per sensor 25.93 44.44
Wr2 A seasonal ARIMA per sensor 55.55 37.04

Given that the errors of all models cannot be regarded as WN in this case, it is po-
ssible that the model residuals contain useful information about the performance of the
different time series. In order to extract further information from the residuals, some
features were calculated using ACF, PACF and statistics of normality tests, among o-
thers. They were used as additional classification variables.

The steps involved in Method 3 are illustrated in Figure 3.6. Firstly, the different time
series were split according to the climatic stages observed (Data 2) and the structural
breaks (SB) identified (Data 3). Secondly, the logarithm transformation was applied to
Data 3 (the result is denoted as Data 4). The third step consisted of applying the seasonal
ARIMA model to Data 4 in order to obtain the estimates of model coefficients: ¢,(B),
0,(B), ®p(B°) and @ (B®). These parameters were denoted as Type 6 variables. Next,
different features (Type 7 variables) were computed from the residuals: variance (¢?),
maximum of periodogram (M) and its frequency w. For the set of 72 lags, additional
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features were computed from sample ACF values: mean (ji5,), median (Mdp,), variance
(a%l) and range (Rg,), with = 1,...,72. Finally, the first four values of sample PACF (a1,

ap, a3 and ay) were computed, as well as the statistics of the KS normality (Dn) and SW
(Wn) tests.

%
Seasonal ARIMA Type 7
variables

Apply to Estimate in
Logarithm
transformation:
ri=In (T;)
Apply to Data 4: Residuals
A ry per period per period:
Data 3:

WrlA
Time series T; were divided

per SB. Time series T; per period - - -
WrlA, WrlB, CdA
CdB, Tr, HtA, and HtB

Data 2:
Time series T}
were divided
per period
Wrl,Cd,
Tr, Ht,
and Wr2

Data 1:
Time series T,
where t =1,..., tmax

Figure 3.6: Summary of steps in method M3: blue lines, Type 6 classification variables;
green lines, Type 7 variables; solid lines, process; dashed line, results.

In order to choose a seasonal ARIMA model and the estimations of the model parame-
ters for each sensor, the arima (stats) and auto.arima (forecast) functions [110; 111]
were used. The ADF test was computed using the adf . test (aTSA) [109]. The LBQ test
was applied by means of the Box.test function (stats). The LM test was carried out
using the arch. test function (aTSA). The SW and KS normality tests were applied using
the shapiro.test (stats) and ks. test functions (dgof), respectively.
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The Wold decomposition establishes that any covariance stationary process can be wri-
tten as the sum of a non-deterministic and deterministic process. This decomposition,
which is unique, is a linear combination of lags of a WN process and a second process
whose future values can be predicted exactly by some linear functions of past observa-
tions. If the time series {v;; t € Z} is purely non-deterministic, then it can be written as
a linear combination of lagged values of a WN process (MA (o) representation), that is,
vr = YiZo Yjer—j, where o = 1, Y24 1,0].2 < oo and ¢ is a WN [12]. Although the Wold
decomposition depends on an infinite number of parameters, the values of coefficients
of the decomposition decay rapidly to zero.

For Method 3, a unique model was fitted for the 27 sensors in the same stage of the
time series because it is necessary to have the same number of classification variables per
sensor, in order to apply later the sSPLS-DA method. It is not possible to work with "the
best model” per sensor in each stage. In order to obtain the same number of variables
using the 'best model” per sensor, the Wold decomposition was applied to each sensor.
Hence, Method 4 consists of obtaining the Wold decomposition for the ARMA models.
Firstly, different seasonal ARIMA models were fitted iteratively to time series r; per

sensor and stage of the time series, and the most successful model was determined.

As an illustration, consider that a time series r; follows a
seasonal ARIMA (2,1,1)(0,1,0)24 process. Now, consider that w; = r; — r;_1 and vy =
Wy — Wy_pa, With t = 1,..., tyax. Then, the time series v; follows an ARMA (2, 1) process,
which can be decomposed according to the Wold approach by obtaining the polyno-
mials ¢, (B) and 6,(B) that determine the best ARMA (p,q) model. In summary, for
each seasonal ARIMA (p,d,q)(P,D,Q)s, it was possible to find the best ARMA (p,q)
model and its Wold decomposition.

The analysis of residuals of the different models fitted suggests that the condition of
not autocorrelation is not fulfilled in all cases. Nonetheless, the Wold decomposition of
each model was fitted independently, in order to have the 'best seasonal ARIMA model’
per sensor and the same number of parameters per sensor. For each model, the first
five coefficients of the Wold decomposition were calculated and used as classification
variables. In all cases, the most successful seasonal ARIMA model per sensor used
D=1landd=1.

The steps involved in Method 4 are illustrated in Figure 3.7. Firstly, the different time
series were split according to the climatic stages observed (Data 2) and the structural
breaks (SB) identified (Data 3). Secondly, the logarithm transformation was applied
to Data 3 (the result is denoted as Data 4). The third step consisted of applying the
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seasonal ARIMA model to Data 4 in order to obtain the estimates of parameters and
their residuals. Next, the same formulas of Type 7 variables used in M3 were applied
to the residuals. Finally, the Wold decomposition was determined using the estimates
of parameters of seasonal ARIMA models. The first five coefficients of the MA weights

(i.e., ¢1,...,P5) were denoted as Type 8 variables.
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Figure 3.7: Summary of steps of method M4: red lines, Type 7 variables of M3; green
lines, Type 8 variables; solid lines, process; dashed line, results.

Apart from the same functions used for M3, this method employed ARMAtoMA (stats).
One function was created for reducing a polynomial with AR and SAR components to
a polynomial with just AR component. Likewise, another function converted a polyno-
mial with MA and SMA components to one with MA component.
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All classification variables calculated as described above for each sensor were arranged
as a matrix called ’total classification dataset’ (TCD) with 27 rows (sensors) by 671
columns corresponding to the classification variables from the four methods. The to-
tal number of variables was 88, 296, 143 and 139 from M1, M2, M3 and M4, respectively.
The multivariate analysis of the TCD matrix would allow the identification of different
microclimates in the archaeological museum. It was checked that the statistical dis-
tribution of some classification variables was strongly skewed, which recommends to
apply a data pretreatment prior to the multivariate analysis. For those variables with
a strongly skewed distribution, different standard (simple) Box-Cox transformations
[173] were applied with the goal of finding a simple transformation leading to a normal
distribution. In particular, the Box—Cox transformations were used on those classifica-
tion variables with a Fisher coefficient of kurtosis [174] or with a Fisher—Pearson stan-
dardized moment coefficient of skewness [174] outside the interval from —2.0 to 2.0.
Before applying the Box-Cox transformations, an absolute value function was used for
variables with a negative skewness that fulfilled one of the aforementioned conditions.
The skewness statistic was computed for each variable in order to check the asymmetry
of the probability distribution. The kurtosis parameter indicates which variables were
heavy-tailed or light-tailed, relative to a normal distribution. Moreover, the estimates of
kurtosis were useful measures for identifying outliers in the classification variables. The
functions kurtosis and skewness (PerformanceAnalytics) [169] were used to compute
the coefficients of kurtosis and skewness, while boxcoxfit (geoR) [175] was employed
to apply different Box-Cox transformations. The function prcomp (stats) was used to
carry out PCA.

Those values of a given classification variable that clearly departed from a straight
line on the normal probability plot were removed and regarded as missing data. These
were estimated using the NIPALS algorithm [144] implemented in the mixOmics pac-
kage [67], which is able to cope with this drawback and returns accurate results [176].
After the data normalization, all variables were mean-centered and scaled to unit varian-
ce, which is the common pretreatment in PCA. Next, PCA was carried out to reduce the
dimensionality of the TCD matrix. Each observation (sensor) was projected onto the
tirst few principal components to obtain lower-dimensional data, while preserving as

much of the data variation as possible.

Given that the two first components maximize the variance of the projected observa-
tions (TCD), only two components were employed to run the k-means clustering. This
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method is a centroid-based algorithm that computes the distance between each sensor
and the different centroids, one per cluster or class. The algorithm determines K clusters
so that the intra-cluster variation is as small as possible. However, prior to applying this
method, the number of clusters K has to be determined, which depends on the type of
clustering and previous knowledge about the time series of T. For this purpose, diffe-
rent criteria can be used [170; 177]. Such methods do not always agree exactly in their
estimation of the optimal number of clusters, but they tend to narrow the range of possi-
ble values. The NbClust function of the NbClust package [170] incorporates 30 different
indices for determining the number of clusters [177]. This function claims to use the
best clustering scheme from the different results obtained, by varying all combinations
of the number of clusters, distance measures and clustering methods. It allows the user
to identify the value K in which more indices coincide, providing assurance that a good

choice is being made.

Frequency

(a) (b)

Figure 3.8: Results associated with the k-means method. (a) Absolute frequency (num-
ber) of indices that indicates the best number of classes in the museum. For example,
two classes are selected by seven indices. (b) Classification of sensors installed in the
museum, according to the k-means method. Each color (blue, green and orange) corre-
sponds to a different class.

In this clustering method, the measure used to determine the internal variance of
each cluster was the sum of the squared Euclidean distances between each sensor and
each centroid. The distances were used to assign each sensor to a cluster. For this pur-
pose, the k-means algorithm of Hartigan and Wong [178] was applied by means of the
function kmeans (stats). It performs better than the algorithms proposed by MacQueen
[179], Lloyd [180] and Forgy [181]. However, when the algorithm of Hartigan and
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Wong is carried out, it is often recommended to try several random starts. In the present
study, 100 random starts were employed. This algorithm guarantees that, at each step,
the total intra-variance of the clusters is reduced until reaching a local optimum. Re-
sults from the k-means algorithm depend on the initial random assignment. For this
reason, the algorithm was run 100 times, each with a different initial assignment. The
final result was the one leading to a classification with the lowest total variance value.
By comparing the classification obtained with the position of sensors in the museum
(Figure 3.8a), the three zones were denoted as North West (NW), South East (SE) and
Skylight (Sk).

Partial Least Squares (PLS) regression [51] is a multivariate regression method which re-
lates two data matrices (predictors and answer). PLS maximizes the covariance between
latent components from these two datasets. A latent component is a linear combination
of variables. The weight vectors used to calculate the linear combinations are called
loading vectors.

Penalties such as Lasso and Ridge [182] have been applied to the weight vectors in
PLS for variable selection in order to improve the interpretability when dealing with a
large number of variables [52; 61; 64]. Chung and Keles [53] extended the sparse PLS [52]
to classification problems (SPLSDA and SGPLS) and demonstrated that both SPLSDA
and SGPLS improved classification accuracy compared to classical PLS [57; 58; 60].
Lé Cao et al. [63] introduced a sparse version of the PLS algorithm for discrimination
purposes (sPLS-Discriminant Analysis, SPLS-DA) which is an extension of the sPLS pro-
posed by Lé Cao et al. [61, 64]. They showed that sPLS-DA has very satisfying predic-
tive performances and is able to select the most informative variables. Contrary to the
two-stages approach (SPLSDA) proposed by Chung and Keles [53], sPLS-DA performs
variable selection and classification in a single-step procedure. In order to classify the
sensors and improve the interpretability of results, SPLS-DA was applied to the different
classification datasets.

Since the original PLS algorithm proposed by Wold [51], many variants have arisen
(e.g., PLS1, PLS2, PLS-A, PLS-SVD [183] and SIMPLS [184]), depending on how the
regressor matrix (X) and response matrix (Z) are deflated. Alternatives exist whether
X and Z are deflated separately or directly, using the cross product M = X'Z and the
Singular Value Decomposition (SVD). A hybrid PLS with SVD is used in the version
sPLS-DA [61]. For sPLS-DA, a regressor matrix is denoted as X (X1, Xo, X3 or X4 in this
case), with dimension n x p. The number of rows (sensors) is n = 27 and the columns
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correspond to the classification variables p (p1, p2, p3 or ps). A response qualitative
vector denoted as Y has length n and it indicates the class of each sensor, with values
coded as 1 (for NW), 2 (SE) and 3 (Sk).

sPLS-DA was carried out using Lasso penalization of the loading vectors associated
to X [66] using a hybrid PLS with SVD decomposition [185]. The penalty function is
included in the objective function of PLS-DA, which corresponds to PLS carried out u-
sing a response matrix Z with values of either 0 or 1, created with the values of response
vector Y. Thus, this vector was converted into a dummy matrix Z with dimension n x K,
being n = 27 the number of sensors and K = 3 the number of sensor classes.

Regarding the optimization problem of sPLS-DA, in this case: X € R"*? is a matrix
with p variables and 7 sensors, Y € R"*! is a response vector (classes k = 1,2,3) and
Z € {0,1}"3 is an indicator matrix, where z; = I(Y; = k), with k = 1,2,3. The sPLS-
DA method modeled Z and X as X = EC + E; and Z = ED + E,, where C and D are
matrices that contain the regression coefficients of X and Z on the H latent components
associated to X, while E; and E; are random errors. Furthermore, each component of =
is a combination of selected variables, where & = [, ..., {y]|, and each vector ¢, was
computed sequentially as §, = Xj_1u;,, where Xj,_; is the orthogonal projection of X
on subspace span{&i,...,&,_1}+ and (uy, vy,) is the solution the optimization problem
according to Equation (3.3), subject to ||uy||2 = 1.

(up, op) = arg Hvﬁn{ My, — w0 (|7 + Pa () } (3.3)
h/%h

The optimization problem minimizes the Frobenius norm between the current cross
product matrix (M;) and the loading vectors (u, and v;), where M;, = X;Zh and
Z;,_, is the orthogonal projection of Z on subspace span{¢,...,¢,_1}+. Furthermore,

12 =Y, ]’.’Zl(mi]- — u;vj)%, and Py (uy,), defined as Aljuy|1, is the Lasso

My, — w0,
penalty function [63; 64]. This optimization problem is solved iteratively based on the
PLS algorithm [65]. The SVD decomposition of matrix My, is subsequently deflated for
each iteration /. This matrix is computed as M;, = uAv ", where u and v are orthonor-
mal matrices and A is a diagonal matrix whose diagonal elements are called the singular
values. During the deflation step of PLS, M, # X;Zh, because X, and Z;, are computed
separately, and the new matrix is called Mj,. At each step, a new matrix M;, = X,/ Z,,
is computed and decomposed by SVD [61]. Furthermore, the soft-thresholding func-
tion g(u) = (|u| — A)4sign(u), with (x); = max(0, x), was used in penalizing loading
vectors u to perform variable selection in regressor matrix, thus #;e, = g/\(Mh,lvold)
[61].

Rohart et al. [68] implemented an algorithm to solve the optimization problem in
Equation (3.3), where the parameter A needs to be tuned and the algorithm chooses A
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among a finite set of values. It is possible to find a value A for any null elements in a
loading vector. These authors implemented the algorithm using the number of non-zero
elements of the loading vector as input, which corresponds to the number of selected
variables for each component. They implemented sPLS-DA in the R package mixOmics,
which provides functions such as perf, tune.splsda and splsda, in order to determine
the number of components and elements different to zero in the loading vector before
running the final model.

In order to compare the performance of models constructed with a different number
of components, 1000 training and test datasets were simulated and the sSPLS-DA method
(for a maximum number of 10 components) was tuned by three-fold cross-validation
(CV) for X. The perf function outputs the optimal number of components that achieve
the best performance based on both types of classification error rate (CER): Balanced
Error Rate (BER) and the Overall classification error rate (Overall). BER is the average
proportion of wrongly classified sensors in each class, weighted by the number of sen-
sors. In most cases, the results from sPLS-DA were better (or very similar) using Overall
than when using BER. However, BER was preferred to Overall because it is less biased
towards majority classes during the performance assessment of sPLS-DA. In this step,
three different prediction distances were used, maximum, centroid and Mahalanobis
[68], in order to determine the predicted class per sensor for each of the test datasets.
For each prediction distance, both Overall and BER were computed.

The maximum number of components found in the present work was three (K = 3)
when BER was used instead of Overall. Furthermore, when sPLS-DA used classification
variables from M2 and M3, two components led to the lowest BER values. Among the
three prediction distances calculated (i.e., maximum, centroid and Mahalanobis), it was
found that centroid performed better for the classification. Thus, this distance was used
to determine the number of selected variables and to run the final model. Details of
distances can be found in the Supplementary Materials of [68].

In order to compare the performance of diverse models with different penalties, 1000
training and test datasets were simulated and the sPLS-DA method was carried out by
three-fold CV for X. The performance was measured via BER, and it was assessed for
each value of a grid (keepX) from Component 1 to H, one component at a time. The
different grids of values of the number of variables were carefully chosen to achieve a
trade-off between resolution and computational time. Firstly, a two coarse tuning grids
were assessed before setting a finer grid. The algorithm used the same grids of keepX
argument in tune.splsda function to tune each component.

Once the optimal parameters were chosen (i.e., number of components and number
of variables to select), the final sSPLS-DA model was run on the whole dataset X. The
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performance of this model in terms of BER was estimated using repeated CV.

In summary, three-fold CV was carried out for a maximum of ten components, using
the three distances and both types of CER. The optimal number of components was
obtained by using the BER and centroid distance. Next, the optimal number of variables
was identified by carrying out the second three-fold CV. It was run using BER, centroid
distance and values of three grids with different number of variables. Next, when both
optimal numbers were obtained, the final model was computed.

Regarding the most relevant variables for explaining the classification of sensors,
there are many different criteria [65; 186; 187]. The first measure selected is the rela-
tive importance of each variable for each component and another is the accumulated
importance of each variable from components. Both measures were employed in this
research.

Lé Cao et al. [63] applied sPLS-DA and selected only those variables with a non-
zero weight. The sparse loading vectors are orthogonal to each other, which leads to
uniquely selected variables across all dimensions. Hence, one variable might be influen-
tial in one component, but not in the other. Considering the previous argument and
that the maximum number of components was three (h = 1, 2, 3), Variable Importance
in Projection (VIP) [65] was used to select the most important ones. It is defined u-
sing loading vectors and the correlations of all response variables, for each component.
VIP,; denotes the relative importance of variable X; for component % in the prediction
model. Variables with VIP;; > 1 are the most relevant for explaining the classification of
sensors. VIP;; was calculated using the vip function (mixOmics). Although the assump-
tion of the sparse loading vectors being orthogonal was considered, in practice, some
selected variables were common in two components. Then, a second measure of VIP
[187] was employed: VIP; denotes the overall importance of variable X; on all responses
(one per class) cumulatively over all components. It is defined using the loading vectors
and the sum of squares per component. Variables with VIP; > 1 are the most relevant
for explaining the classification of sensors. The selected variables were ranked accor-
ding to both types of VIPs, which are discussed below for each stage of the time series.

The RF algorithm [74] handles big datasets with high dimensionality. It consists of a
large number of individual decision trees that were trained with a different sample of
classification variables (X) generated by bootstrapping. The overall prediction from the
algorithm was determined according to the predictions from individual decision trees.

The class which receives most of the votes was selected as the prediction from each
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sensor. In addition, it can be used for identifying the most important variables.

An advantage of using the bootstrap resampling is that random forests have an Out-
Of-Bag (OOB) sample that provides a reasonable approximation of the test error, which
allows a built-in validation set that does not require an external data subset for valida-
tion. The following steps were carried out to obtain the prediction (output) from the
algorithm, using the different classification data. Firstly, from a classification dataset,
B random samples with replacements (bootstrap samples) were chosen, as well as one
sample of 17 sensors. Next, from each bootstrap sample, a decision tree was grown.
At each node, m variables out of total p were randomly selected without replacement.
Each tree used an optimal number of variables that was determined by comparing the
OOB classification error of a model, based on the number of predictors evaluated. Each
node was divided using the variable that provided the best split according to the value
of a variable importance measure (Gini index). Each tree grew to its optimal number of
nodes. The optimal value of this hyper-parameter was obtained by comparing the OOB
classification error of a model, based on the minimum size of the terminal nodes. From
each bootstrap sample, a decision tree came up with a set of rules for classifying the
sensors. Finally, the predicted class for each sensor was determined using those trees
which excluded the sensor from its bootstrap sample. Each sensor was assigned to the
class that received the majority of votes.

If the number of trees is high enough, the OOB classification error is roughly equiva-
lent to the leave-one-out cross-validation error. Furthermore, RF does not produce over-
titting problems when increasing the number of trees created in the process. According
to previous arguments, 1500 trees were created for all cases to run the algorithm and
the OOB classification error was used as an estimate of the test error. Prior to running
the final RF algorithm, the optimal values of the number of predictors and the terminal
nodes were determined (i.e., those corresponding to a stable OOB error).

In order to select the most important variables, the methodology proposed by Han
et al. [188] was used, which is based on two indices: Mean Decrease Accuracy (MDA)
and Mean Decrease in Gini (MDG). The combined information is denoted as MDAMDG.
Some reasons for using the methodology were: (1) The OOB error usually gives fair es-
timations compared to the usual alternative test set error, even if it is considered to be
a little bit optimistic. (2) The use of both indices is more robust than considering any
individual one [188]. MDA corresponds to the average of the differences between OOB
error before permuting the values of the variable and OOB error after permuting the
values of the variable for all trees. Because a random forest is an ensemble of indivi-
dual decision trees, the expected error rate called Gini impurity [189] is used to calcu-
late MDG. For classification, the node impurity is measured by the Gini index, and the

78



Chapter 3. Multivariate Time Series Analysis of Temperatures in the Archaeological Museum of
L'Almoina (Valencia, Spain) 3.5. Results and Discussion

MDG index is based on this. The former is the sum of a variable’s total decrease in node
impurity, weighted by the proportion of samples reaching that node in each individual
decision tree in the random forest [190]. The higher is the MDG, the greater is the con-
tribution of a given variable in the classification of sensors. The functions randomForest
and importance [191] were used to carried out the RF algorithm.

The methodology employed consists of using sPLS-DA and RF in order to classify time
series of T and to determine the optimal variables for discriminating the series. Both
methods had input features calculated from different functions (e.g., sample ACF, sam-
ple PACF, spectral density and MR), as well as estimated parameters from the seasonal
ARIMA model, Wold decomposition and the last level of smoothing components from
the additive SH-W method. Additionally, other features were computed such as the
mean, variance and maximum values of functions applied to residuals of the seasonal
ARIMA or SH-W models (e.g., sample ACF, sample PACE, spectral density and statistics
of the SW and KS normality test, among others). For sPLS-DA, centroid distance and
BER were considered when running the final model. Two indicators of VIPs were used
to rank the selected variables. The first one measures the relative importance of each
relevant variable, per component in the prediction model, while the second indicator
evaluates the overall importance of each variable over all components. Additionally,
based on the results from sPLS-DA, a methodology was proposed to reduce the number
of sensors required for a long-term microclimate monitoring. Regarding RF, the OOB
classification error was used as an estimate of the test error and the parameters MDG
and MDA were computed as indicators of the variable importance. Both sPLS-DA and
RF methods were applied to select and compare the optimal variables that explain the
classification of sensors according to values of T.

Before carrying out sPLS-DA and RF, the k-means algorithm with PCA was em-
ployed, in order to characterize the different zones in the museum, according to the
indoor temperature. Once the three zones (NW, SE and Sk) were established, these
classes were used as input for sPLS-DA and RE.

The supF and CUSUM tests were applied to study the stages. In Wrl, the former
test revealed a structural break after the 682nd observation (20 November at 7:00 a.m.,
p-value = 0.01). In Cd, this test suggests another break after the 1981st observation (13
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January at 10:00 a.m., p-value = 0.02). Finally, a structural break was also found in the
Ht stage at the 6133rd observation (4 July at 10:00 a.m., p-value = 0.03). Accordingly,
the stages Wrl, Cd and Ht were split in two parts (i.e., before and after the structural
break). Thus, the following eight stages of T were considered: Wr1A (warm 1 before
the structural break, n = 682), Wr1B (warm 1 after the break, n = 808), CdA (cold period
before the break, n = 491), CdB (cold stage after the break, n = 1212), Tr (transition, n =
2303), HtA (hot stage before the break, n = 637), HtB (hot stage after the structural break,
n = 1690) and Wr2 (warm 2, n = 903).

The CUSUM chart identified a significant shift at the same instances for the stages
Wrl, Cd and Ht. The main reason for these structural breaks could have been sudden
changes of T outside the museum or possibly modifications in the air conditioning and
heating systems. January is usually the coldest month of the year in Valencia, while
July and August are the hottest ones. It is reasonable to assume that the configuration
of the air conditioning system was modified in these months, in order to maintain an
appropriate microclimate inside the archaeological site.

According to the structural breaks, all time series were split into eight stages, and
the four methods explained in the next sections were applied to each stage. This step
is necessary to avoid possible problems with the properties of the estimated parameters
of the models applied [123]. The four methods (M1-M4) were carried out separately
for each stage of the 27 time series of T or W: Wr1A, Wr1B, CdA, CdB, Tr, HtA, HtB
and Wr2. As an exception, in Method 2, apart from modeling each stage separately, the

complete time series was also considered.

For Method 3, for the most successful seasonal ARIMA models, both tests (KS and SW)
rejected the normality hypothesis of the errors in 100% of cases. Furthermore, all Q-
Q normal score plots displayed that residuals were not falling close to the line at both
extremes. ADF test suggests that the errors are stationary in all cases. According to the
LBQ test, the errors are independent (lags from nt to nt 4 48) as maximum in 77.00% of
the 27 sensors (in stage Wr1A) and as minimum 0.0% (HtB). The LM test suggests the
absence of Arch effects as maximum 92.52% (Wrl1A) and as minimum 3.70% (Wr1B) (see
Table 3.1).

For Method 4, for the most successful seasonal ARIMA models (see Table 3.2), both
tests of normality rejected the hypothesis of normal distribution for the errors in 100%
of models. The ADF test suggests that errors are stationary in all cases. The analysis of
residuals of the different fitted models indicates that the condition of not autocorrelation
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(WN) is not fulfilled in all cases. In particular, according to the LBQ test, errors are
autocorrelated (up to lag 24) at least in 25.93% of the models (for stage HtB) and the
maximum was 92.59% (WrlA). The LM test suggests absence of Arch effects, with a
maximum of 96.30% (WrlA) and a minimum of 3.70% (Tr) (see Table 3.1). In order to
extract further information, the same features computed in M3 for the residuals (Type 7
variables) were also estimated in M4 and used as classification variables.

The results of Methods 14 were arranged as matrices, denoted as X; (27 sensors X
88 variables), X, (27 sensors x 296 variables), X3 (27 sensors x 143 variables) and Xy
(27 sensors x 139 variables), respectively. The regressor matrices X; to X contained the
following percentages of missing values: 5.28%, 5.66%, 3.55% and 8.61%, respectively.

The best option appeared to be K = 6 (coincidence of 8 out of the 27 indices), followed
by K = 2 and K = 3 (coincidences of 7 and 5, respectively), and then K = 4 and
K =5 (Figure 3.8a). According to previous research, there is a pronounced temperature
gradient at the museum, particularly in summer, caused by the greenhouse effect of
the skylight. Then, each cluster or class was expected to be related to the distance of
each sensor from the skylight, among other factors, such as the influence of the weather
conditions outdoors and the effect of the air conditioning system. Furthermore, due to
the large size of the museum (2500 m?) and the temperature gradient that exists at the
entrance and below the skylight, it seems better to consider three zones instead of just
two. Hence, K = 3 was the number of clusters used for the k-means algorithm.

The k-means method classified sensors C0O, C1, A4, A5 and F in the SE zone. Howe-
ver, by checking their position on the map of the museum (Figure 3.8b), these sensors
could be regarded in the boundary between the NW and SE zones. Hence, it should
be discussed whether such classification is appropriate, or if they should be regarded
within the NW zone. In order to study this issue, two classifications were analyzed
using sPLS-DA: (1) by considering A4, A5 and F in the NW zone; and (2) by locating CO
and C1 in the NW zone. For both cases, the rate of misclassified sensors was computed
by means of sSPLS-DA. The error rates for the classification from the k-means algorithm
were: 0.25 (M1), 0.30 (M2), 0.29 (M3) and 0.42 (M4). For Case (1), the classification error
rates were: 0.15 (M1), 0.19 (M2), 0.31 (M3) and 0.35 (M4). For Case (2), the error rates
were: 0.21 (M1), 0.23 (M2), 0.30 (M3) and 0.41 (M4). It turns out that the lowest error
rates were found for Case (1). Thus, sensors A4, A5 and F were considered as part of
the NW zone for the next sections. Finally, 13 sensors were classified in the NW zone
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(A4, A5, A6, B5, B6, C5, C6, D1, D2, D3, D5, D6 and F), eight in the SE zone (A, B, B1, C, CO, C1,
D and G) and six in the Sk zone (A2, A3, B2, B3, B4 and C3). The proposed classification of

sensors is shown in Figure 3.1a, which depicts an association between T values and the

three zones of the museum: NW, SE and Sk.

Table 3.2: The most successful seasonal ARIMA (p, d, q)(P, D, Q)s model (M) per sensor

for different stages (Stg), withS =24and D =d = 1.
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Figure 3.9: Evaluation of the PLS-DA performance for the classification of sensors into
three categories. Vertical axes indicate the classification error rate (CER) for each pre-
diction distance as a function of the number of components (horizontal axis) for: M1
(a); M2 (b); M3 (c); M4 (d); and using the variables from all methods (e). Three types of
prediction distances were considered: Mahalanobis (green lines), maximum (blue lines)
and centroid (red lines). Two types of CER were computed: balanced error rate (dashed
lines) and overall error rate (solid lines). PLS-DA was carried out using repeated three-
fold CV 1000 times.

Figure 3.9 displays the results from the first three-fold CV for the four methods (M1-M4)
and when using variables from all methods (Ms). According to the results, centroid dis-
tance performed the best for the first two components, in the case of M1, M4 and Ms. For
M1 and Ms, Overall or BER performed the best for both classification error rates. For the
other methods (M2, M3 and M4), Overall was the best. The centroid distance and BER
from these results were selected as input in the next step of the method (see Figure 3.10).
The values of BER and centroid distance suggested that three components are enough
to classify the sensors. Figure 3.10 shows the results from the second three-fold CV for
the final grid (5, 10 and 15 variables). The results suggest that the number of variables
for the first component of each method were the following: 15 (M1 and M2), 5 (M3 and
M4) and 15 for Ms. The information displayed in Figures 3.9 and 3.10 (centroid distance,
BER and number of variables per component) was used to apply the final model.

The notation used in this study are the estimates of the following parameters: mean,
range, median and variance of ACF values (acf.m, acf.r, acf.md and acf.v); PACF at
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lags 1-6 (pacfi-pacf6); mean of the time series (M); statistics of the KM test (kolg.t);
statistics of the SW test (shap.t); maximum values of the periodogram (spec.mx); fre-
quency of the maximum values of the periodogram (freq); variance of the residuals
(res.v); SSE (sse); seasonal components (s1-s24); level (a); slope (b); coefficients of the
Wold decomposition (psil-psi5); the first AR term (ar1); the first MA term (mal); the
tirst SMA term (sma1l); the first SAR term (sar1); and the 17th prediction of T, which was
denoted as pred.17.
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Figure 3.10: Evaluation of the PLS-DA performance (considering three components) for
the classification of sensors into three categories. Vertical axes indicate the Balance error
rate (BER) per component (orange lines, Component 1; green lines, Component 2; and
blue lines, Component 3). BER values were computed across all folds using 5, 10 or 15
variable (horizontal axes) for each method: M1 (a); M2 (b); M3 (c); M4 (d); and all meth-
ods (Ms) (e). The three-fold CV technique was run 1000 times, using maximum distance
prediction. Diamonds highlight the optimal number of variables per component.

The most relevant variables per method are the estimates of the following parame-
ters:

Selected variables from M1: PACF at lags 1-4, MR and parameters of the sample
ACF (mean, range, median and mean) (Table 3.3 (a)).
Selected variables from M2: Level, slope, some seasonal components (5, 8, 10-12,
16-21 and 23), mean and median of sample ACF (residuals), SSE (residuals) and
maximum of the periodogram (residuals) (Table 3.3 (b)).
Selected variables from M3: Parameters of MA, SAR and SMA of seasonal ARIMA
models, PACF at lags 1-5 (residuals), mean and median of sample ACF (residuals),
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statistic of KM normality test (residuals) and frequency for the maximum of the
periodogram (residuals) (Table 3.4 (a)).

Selected variables from M4: The first four Wold coefficients, mean and median of
sample ACF (residuals), statistics of the SW and KM normality tests (residuals),
PACEF at first five lags (residuals), variance (residuals) and maximum of the perio-
dogram (residuals) (see Table 3.4 (b)).

Selected variables when using the total set of variables from the four methods
(some values are highlighted in bold and blue in Tables 3.3 and 3.4): Slope (M2),
some seasonal components (2, 3,5, 8, 11, 12, 14, 16-18 and 21-23) (M2); SSE (M2);
Wold Coefficient 1 (M4); mean (M1-M4), median (M2), range (M1 and M2) and
variance (M1 and M2) of sample ACF values; and maximum of the periodogram
(M2-M4).

Based on the information in Tables 3.3 and 3.4, the two most influential stages of the
time series are highlighted in bold in Table 3.5 per component and method, or just one
stage when it had a value greater than 50%. It can be deduced from the results in Table
3.5 that the two most important stages for classifying sensors were HtA and Tr, which is
intuitively appealing because important temperature fluctuations occur in summer due
to the greenhouse effect caused by the skylight.

Figure 3.11 displays the estimations of the average BER over all components from
the sPLS-DA. According to the results, M1 obtained the best performance, followed by
M2.
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Figure 3.11: Error rates derived from the sPLS-DA and RF algorithms. Red points are
OOB classification error rates per method, based on different sets of classification varia-
bles: M1, M2, M3, M4 and all variables (Ms). Blue points are mean values of BER for all
the components, per method, for sPLS-DA.

For Component 1 (C1) versus Component 2 (C2) from sPLS-DA: C1 displays a clear
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discrimination between sensors in the Sk class against NW and SE for both M1 and M2
(see Figure 3.12a,d). This fact is more clear for M2. For M2, C2 clearly separates Sk
vs. SE, as well as Sk vs. NE (see Figure 3.12a). For M3, C1 discriminates Sk vs. NW
satisfactorily, and C2 shows the same performance for this method (see Figure 3.12e).
For M4, C1 properly separates SE vs. NW, while C2 discriminates between SE and Sk
(see Figure 3.12d). When using all variables (Ms), C1 shows an adequate discrimination
of Sk vs. NW and C2 between Sk vs. SE (see Figure 3.12i). For C1 vs. C3 from sPLS-DA:
For M1, C1 clearly separates Sk against NW (see Figure 3.12b). For M4, C1 discriminates
NW against the other classes, but Sk and SE appear overlaid (see Figure 3.12g). With
C3, the classes could not be discriminated. For C2 vs. C3 from sPLS-DA: C2 properly
separates SE against the other clusters in M1 and Ms, but the other classes appear over-
laid (see Figure 3.12¢,k). For M4, C2 shows a good discrimination of Sk against the other
classes (see Figure 3.12h), but C3 did not yield any separation.

Figure 3.11 displays the values of OOB classification error. The best results were achieved
from Ms and the second best result from M1. Table 3.6 shows the selected variables in
descending order, according to MDAMDG. The most relevant variables per method are
the estimates of the following parameters:
Selected variables from M1: Mean, range and variance of the sample ACF values,
the first four values of sample PACF, the maximum value of the periodogram and
the mean.
Selected variables from M2: Level, slope and 18 seasonal components (2, 3, 7-12,
14 and 16-24) from SH-W method, SSE, maximum of the periodogram values,
statistic of the KS normality test and 17th prediction of T.
Selected variables from M3: First term of the AR, MA and SMA components of the
seasonal ARIMA models, sample PACF at lags 1, 2 and 5, mean and median of the
sample ACF values, residual variance, maximum of the periodogram values and
statistic of the KS normality test.

Selected variables from M4: Coefficients 1, 3, 4 and 5 from the Wold decomposi-
tion; the first five values of the sample PACF; the mean, median, range and varian-
ce of the sample ACF values; residual variance; maximum of the periodogram
values of the residuals; and statistics of both the SH and KS normality tests.

Selected variables when using all classification variables from the four methods
(Ms): mean (M1-M3), median (M2 and M3), range (M2) and variance (M2) of the
sample ACF values; sample PACF at lags 1 (M1 and M3), 2 (M1) and 3 (M1); first
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coefficient of the Wold decomposition (M3); and statistic of the KS normality test
(M2) (the results from Ms comprise 20% of variables from M1, 60% from M2, 9%
from M3 and 11% from M4).
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Figure 3.12: Projection of sensors over the three relevant components (C1-C3) from
sPLS-DA, per method (M1-M4) or when using all variables (Ms). Graphs show
discrimination of the sensors, according to three classes: North Western (NW), South
Eastern (SE) and Skylight (Sk). Color codes: NW sensors in blue, Sk in orange and SE in
green. Each graph displays a confidence ellipse for each class (at a confidence level of
95%), in order to highlight the strength of the discrimination.
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Table 3.3: Selected variables (V) per component (C) from sPLS-DA. Variables
highlighted in bold and gray correspond to selected variables for Ms.

C1 C2 C3
Stage V Stage V Stage V
(a) For Method 1
1 Tr pacf2 Wr2  acfr CdA  pacf3
2 Tr acf.m Wr2  acfv WrlA pacf4
3 HtA  pacf2 HtA  acf.m CdA  pacf4
4 HtA  pacfl CdB  pacfl  WrlA acfr
5 HtB  pacfl CdB M WrlA acfv
6 CdB pacf2 WrlB M WrlA rMh
7 Wr2  pacfl HtB M WrlB rMh
8 WrlB pacfl WrlA M CdA rMh
9 CdA pacfl CdA pacfl CdB rMh
10 HitB pacf2 WrlB acfr Tr rMh
11 WrlB pacf3 WrlB acfv HtA  rMh
12 Tr M Wr2 pacf2 HtB rMh
13 HtA  pacf4 CdA pacf2 Wr2 rMh
14 Tr pacf4 HtA acf.r
15 Wr2 acf.m HtA  acfv
(a) For Method 1
1 HtA  sse HtA acf.m
2 Tr sse HtA acf.md
3 Tr s18 HtA s12
4 Tr b HtA sl1
5 Tr s16 HtA acf.r
6 HtB sse CdA  acfv
7 Tr s17 HtA acf.v
8§ HtB s21 HtA s23
9 Tr specmx CdA sl4
10 Wr2 s20 CdA s5
11 HtB acf.m Tr a
12 WrlB sl2 CdA s10
13 Wr2 acfmd HtA  s8
14 HtB s19 HtA  sl10
15 HitB s23 WrlA acf.m
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Table 3.4: Selected variables (V) per component (C) from sPLS-DA. Variables high-
lighted in bold and gray correspond to selected variables for Ms.

C1 C2 C3
Stage \' Stage \' Stage \'
(a) For Method 3

1 Tr acf.m CdA acf.m
2 HtA res.v CdA pacf4
3 Tr mal CdA pacf5
4 HtB mal Wr2 pacf4
5 Tr kolg.t Tr sar2
6 CdB pacf2
7 HtB pacfl
8 Wr2 sar2
9 CdA sarl

10 HtA smal

11 HtA pacf3

12 HtA freq

13 HtA pacfl

14 HtB acf.md

15 Wrl1A pacf5

(b) For Method 4

1 HtA psil HtA pacf5 WrlB psil
2 HtA spec.mx HtB pacfl CdB acf.m
3 HtA res.v Wr2 acf.v CdB spec.mx
4 Tr psil HtA shap.t Wr2 acf.m
5 WrlA acf.m HtA acf.m Wr2 shap.t
6 Wr2 acf.r
7 Tr pacfl
8 Tr acf.md
9 WrlB psi4

10 CdA pacf5

11 Tr psi3

12 CdA acf.md

13 Wr2 psi2

14 Tr kolg.t

15 Wr2 kolg.t
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Figure 3.13: (a) Projection of sensors over components C1 and C2 from sPLS-DA for M1.
The graph displays a good discrimination of the sensors according to the classes. They
are color coded according to the zone where the sensor is located: NW in blue, SE in
green and Sk in orange. The most important variables for (b) C1 (c) and C2, according
to the absolute value of their coefficients, are ordered from bottom to top. The color
corresponds to the zone in which the variable yields the highest mean component value.
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Table 3.5: Percentages of selected variables per stage of the time series for each com-
ponent (C) and each method (M). Values were computed according to the information
contained in Tables 3.3 and 3.4 (e.g., the value 60.0% for C2 of M2 means that 9 out of
the 15 selected variables correspond to HtA, according to Table 3.3 (b)). The two highest
values of each column are highlighted in bold and gray, but only one is selected in case
of a percentage > 50%.

M1 M2

M3 M4

Ms

Stage

ci C2 C3 C1

C2

cCiT C2 C1 C2

3 C1 C2 (3

WrlA
Wr1B
CdA
CdB
Tr
HtA
HtB
Wr2

0.00 6.70 30.80 0.00
13.30 20.00 7.70 6.70
6.70 13.30 23.10 0.00
6.70 13.30 7.70 0.00
26.70 0.00 7.70
20.00 20.00 7.70
13.30 6.70 7.70
13.30 20.00 7.70

6.70

6.70
0.00
26.70
0.00

40.00 6.70

60.00

33.30 0.00
13.30 0.00

0.00
0.00

6.70 20.00 0.00
0.00 0.00 6.70
0.00 26.70 0.00 13.30
0.00 6.70 0.00 0.00
60.00 6.70 20.00 26.70
20.00 26.70 60.00 20.00
20.00 13.30 0.00 6.70
0.00 13.30 0.00 26.70

0.00 0.00 0.00 0.00
20.00 0.00 0.00 33.30
0.00 0.00 20.00 6.70
40.00 0.00 0.00 53.30
0.00 60.00 6.70 0.00
0.00 20.00 60.00 6.70
0.00 20.00 0.00 0.00
40.00 0.00 13.30 0.00
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Table 3.6: Selected variables (V) from RF per method and when using the variables from
the four methods.

M1 M2 M3 M4 Ms

Stage V Stage V Stage V Stage V M Stage V

1 CdA pacfl HtA sse Tr acfm  HtA psil M1 CdA pacfl
2 HtA pacf4 HtA s24 HtA smal CdB psil M2 HtA sse

3 HtA pacfl HtA s23 Tr acfmd Tr resv. M3 Tr acf.m
4 Tr pacf2  HtA s8 CdB pacf2 HtA pacf5 M2 HtA s24

5 CdB pacf2 HtA sl1 HtA res.v HtA res.v M4 HtA psil
6 HtA acfm HtA s12 Tr kolg.t Tr ackm M1 HtA pact4
7 Tr acfm HtB acfm HtA specmx Tr spec.mx M2 HtA s23

8 CdA acftm CdA acfv CdB mal Tr psil M3 HtA smal
9 Tr pacfl  Tr sse Tr mal Tr kolg.t M2 HtA s8

10 HtB pacf2 HtA acfr HtA pacfl CdA pacfl M2 HtA sll

11 HtB M HtA acfmd CdA pacf5 HtA specmx M2 HtA acfr
12 Wr2  acftm  Wr2 s23 HtA arl WrlA acfm M2 HtA s12
13 Wr2  pacfl WrlB a WrlA sar2 CdA acf.md M2 HtA acf.m
14 CdB pacfl Tr b WrlA acfmd CdA pacf4 M2 CdA acfv
15 Tr M HtA s22 Tr specmx CdA acfv M2 WrlB a

16 Wr2 acfv Tr s16 CdA acfm HtB resv M2 HtA s22
17 Wr2  pacf2 Tr a Tr res.v CdA kolgt M2 HtB acfm

18 HtA pacf2 Tr s17 HtB mal WrlA psil M1 HtA pacfl
19 Wr2  acfr CdA 510 HtB sar2 WrlB acfm M2 HtA acf.md
20 CdA M CdA a HtB pacfl Tr pacfl M3 Tr acf.md
21 WrlB M HtA acfv  CdB kolgt Tr pacf5 M2 HtA s9

22 HtB pacfl Wr2 sl18 CdA sarl HtB  psil M2 Wr2 s23

23 Wr1B pacf3 HtB kolgt HtA pacf3 Tr acfmd M2 Tr s17

24 HtA M Wr2 519 HtA pacf5 Wr2 pacf4 M2 CdA a

25 CdB M HtB s21 Tr freq CdA acfm Ml Tr pacf2
26 WrlA pacf4 HtA s10 WrlB acfmd HtA shapt M2 Tr sse
27 HtB pacf4 HtB 59 WrlA mal HtA acfm M2 HtA acfv
28 WrlB pacf2 Tr spec.mx WrlB psi4 M4 CdB psil
29 HtB spec.mx Tr s18 Wr2  res.v M2 HtA 510
30 WrlB acfm CdA s5 CdA pactbs M2 Tr spec.mx
31 HtA pacf3 Tr s20 Wr2  acfr M3 CdB pacf2
32 Wr1B pacfl CdA sl4 CdA shapt M2 Tr s16
33 CdA pacf3 CdA sl Wr2 acfv M2 Tr b

34 CdB pacf4 HtA acfm HtB pacfl M2 Wr2 s20
35 WrlA pacf2 HtA s9 Wr2  specmx M3 CdB mal
36 WrlA M Wr2 s17 WrlB psi3 M2 CdA sl

37 CdA pacf2 All  pred.18 Wr2 pacf2 M2 CdA s10
38 Tr acfv.  CdA s22 WrlB pact5

39 Wr2 pacf4 HtA spec.mx CdB shap.t

40 Tr pacf4  Wr2 s3 HtA psid

41 HtA specmx CdA s23 92 Tr shap.t

42 CdB acfm Wr2 s2 WrlA pact5

43 Tr acf.r Wr2  kolg.t

44 HtB acf.m CdA pacf3
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According to Table 3.7, the most important stages for classifying the time series were
HtA and Tr. The same result was found from the sPLS-DA method. This result makes
sense because there is a pronounced temperature gradient inside the museum, due to
the skylight.

Table 3.7: Results from the random forest algorithm: percentages of selected variables
per stage and method (M1-M4) or when using all variables from the four methods (Ms).
M2 was the only method which used “all observations” and the "time series split per
stage” for computing the prediction of the time series of T. For the first column (Stage),
"All" refers to “all observations of a time series” and this category is only used for M2.
The two largest percentages per method are highlighted in bold and gray.

Stage M1 M2 M3 M4 Ms
WrlA 6.80 0.00 11.10 8.80 0.00
Wr1B 11.40 2.40 3.70 10.50 2.70
CdA 11.40 19.00 11.10 15.80 13.50
CdB 11.40 0.00 11.10 7.00 8.10
Tr 15.90 19.00 25.90 17.50 21.60
HtA 15.90 33.30 25.90 17.50 45.90
HtB 13.60 9.50 11.10 7.00 2.70
Wr2 13.60 14.30 0.00 15.80 5.40
All 0.00 2.40 0.00 0.00 0.00

For the purpose of time series discriminant analysis, various metrics have been pro-
posed in the literature for measuring such similarity, based on serial features extracted
from the original time series [27; 28; 29; 30], parameters from models [38; 39; 40; 145; 146],
complexity of the time series [31; 32; 34; 35; 147; 148], properties of the predictions
[36; 37] and the comparison of raw data [25]. A description about time series clus-
tering was reported by Vilar and Montero [1]. Furthermore, the sPLS-DA has been a-
pplied in a previous study for the classification of different time series of RH [161]
using centroid distance. In addition, BER was used to compare the performance of
various models. In this research, the variables computed as input for sPLS-DA were
the following: estimates of parameters from seasonal ARIMA-GARCH, the last level of
smoothing components from SH-W and features extracted from the original time series
(ACE, PACEF, spectral density, MR and mean). A common seasonal ARIMA-TGARCH
was used for the same “stage” of the different time series because it was necessary to
deal with the same number of variables as input for sPLS-DA. For the SH-W method,
the last level of smoothing components was used instead of RH predictions because
each series was split into different stages, according to the seasons and structural breaks
identified per season. Regarding the results of the aforementioned study, sPLS-DA with
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ARIMA-GARCH yielded the best results according to BER. The second best results were
achieved using sPLS-DA with SH-W. With respect to sPLS-DA carried out with varia-
bles extracted from the original time series, the results of the aforementioned work were
compared with previous studies using PCA directly applied to the time series [7].

In the present study, considering that SH-W is intended for producing point fore-
casts [125] and that two time series are similar if their forecasts are alike [37], predic-
tions of T were included as additional variables. However, according to results from
the sPLS-DA, these variables did not show up as important for the classification of sen-
sors. As an exception, by applying the RF, one prediction of T was selected among the
relevant variables. Furthermore, the first five coefficients of Wold decomposition were
computed using the estimates of parameters for the best ARMA model per sensor. Pre-
viously, the ARIMA polynomials were determined according to the seasonal ARIMA
that best fitted the time series. The 'best model” was obtained after one regular and one
seasonal differentiation. This procedure made it possible to find the "best model” and to
compute the same number of classification variables for each sensor. However, results
from the sPLS-DA and RF were better when using a common seasonal ARIMA, for all
sensors in the same stage of the series. By contrast, the previous study [161] used a com-
mon ARIMA-GARCH model and did not compute forecasts for SH-W. Expanding the
methods in this research, by using the Wold decomposition and predictions of T from
SH-W, did not improve the results.

Few parameters of the seasonal ARIMA models and Wold decomposition were found
as relevant for the classification of sensors. Regarding the SH-W, most of the important
variables were the last level of smoothing components, but, in the other methods, most
of the key variables were features extracted from the model residuals, as discussed be-
low. Actually, the percentage of important variables selected from the SH-W that do
not correspond to estimates from residuals was 60.0% and 74.0% for the sPLS-DA and
RF methods, respectively. Such appropriate results could be explained by the flexibility
of this method. The associated weight becomes higher for the most recent observation,
which generates both reliable forecasts and smoothing components for a wide range of
time series [125]. From sPLS-DA, the percentage of key variables selected that do not
correspond to estimates from residuals was 25.0% and 24.0% for the seasonal ARIMA
and Wold decomposition, respectively. From REF, these percentages were 33.3% and
21.1%, respectively. The main reason for these low percentages might be the similarity
between the time series and the fact that the estimates of parameters were very simi-
lar. Given that residuals account for the variability not explained by the models, their
information was relevant in this case for classifying the different time series.

According to the BER values from sPLS-DA, M1 performed better than M2. More-
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over, the latter yielded better results than using M3, which in turn led to a better classi-
fication than with M4. Regarding the results from sPLS-DA, compared with those from
the previous study [161], in both cases, the second best results were derived from the
SH-W, possibly because it reliably generates the last level of the smoothing components
for a wide range of time series. In the previous research, seasonal ARIMA-TGARCH
yielded the best result, while in the present work it was achieved using different func-
tions applied to the time series.

With respect to values of the OOB error from the RF, the use of functions applied to
different time series (M1) performed better than when applying seasonal ARIMA (M3),
which in turn achieved better results than when using SH-W (M2). The worst results
were derived from the Wold decomposition (M4). When using all variables from the
four methods, two of them were more important, depending on the number of varia-
bles selected per method, as follows. For sPLS-DA and REF, the most relevant method
was M2, possibly due to the flexibility of the exponential smoothing. The second most
important was M1 for sPLS-DA and M3 for RF, although the percentage of variables
from M1 was just 3% less than M3. Results from sPLS-DA were consistent with the BER
values, calculated separately for each method because, according to BER, M1 and M2
appeared as the most efficient. By contrast, different results were derived from the RF
procedure because M1 and M3 appeared as the best methods, according to OOB error.

The most important variables from sPLS-DA and RF are the following. For M1,
PACEF at lag 2 and the mean values of ACE, which explain the autocorrelation of the
different time series; for M2, seasonal Component 18, mean of ACF values that account
for the autocorrelation of the residuals from the SH-W method and the residual variance
(SSE); for M3, the first term of MA was a key variable, as well as two others explai-
ning the autocorrelation according to the ARIMA model (PACF at lag 2 and mean ACF
values) and the residual variance of the model; and for M4, the first coefficient of the
Wold decomposition explaining the autocorrelation of T, PACF at lag 5 that accounts
for the autocorrelation of residuals from the ARIMA model and the residual variance.
In summary, for M1, the key variables for classifying the different sensors explain the
dynamic dependency of the time series of T. In contrast, for M2-M4, some of the most
relevant variables explain the dynamic dependency of time series and the residuals.

One disadvantage of sPLS-DA is that it is necessary to know a priori the number
of clusters of the time series for their classification. Different indices were employed to
determine the number of clusters, and the k-means was used to establish the class for
each sensor. The results led to a classification of the series which was consistent with
the areas of the museum and the knowledge of the microclimate in this site.

For the task of identifying the key variables that characterize each cluster of sensors,
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the centroid per class was proposed, according to the first two components. Another
solution was to use the mean for each variable, in each class, to identify the class where
the mean was the highest. This solution helped to provide a value for characterizing
each zone, using the main variables.

By using sPLS-DA with estimates from the seasonal ARIMA, SH-W method or func-
tions applied to the time series, one advantage is the capability for classifying time series
with very similar characteristics. The best option among the different possible inputs
depends on the characteristics of the time series. The procedure was based on a pre-
vious study using a similar methodology to classify time series of RH [161]. SH-W also
turned out to be the second best approach according to BER, as was found in the present
study, while the best method was a hybrid model with seasonal ARIMA and GARCH.
In contrast, in this research, the best result of BER was found, using functions applied
to the time series (M1). Another advantage is that the centroids per class, the distances
between centroids and the projection of sensors onto the first two components might be

helpful in order to select a subset of representative sensors.

One drawback of the data-loggers used in the monitoring experiment is that they re-
quired a manual download of data every two months. It could be much more efficient
to use wireless sensors that transmit the readings to a server or a cloud. Commercial
wireless sensors are able to instantly transmit the recordings of indoor air conditions,
such as temperature and humidity, among others. In addition, these devices can alert
the user via e-mail and/or SMS when the recorded values are outside the range of va-
lues established as appropriate. Such limits are defined by users according to either the
European standards or the requirements of materials or type of artwork which needs
to be preserved. However, wireless sensors are more expensive (about 300400 euros)
than the autonomous type of data-loggers used in the present research (approximate
price 30 euros) [167]. Moreover, the former can suffer signal transmission problems in
some cases. The number of data-loggers used in the present experiment is too big for
the long-term monitoring of indoor conditions in this museum. Certain equilibrium
has to be reached between the accuracy required and other factors such as sensor price,
maintenance and time required to download the data. Thus, for the long-term monito-
ring of microclimate conditions, it is necessary to decide the optimal number of sensors.
For this purpose, one option is to select a subset of sensors per class, according to the
results from sPLS-DA. A methodology is proposed in this research for this purpose.
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It was assumed that the minimum number of sensors for three clusters should be 15,
because three sensors per class are the minimum for applying methodologies such as
sPLS-DA, and it is necessary to add a few extra sensors in the case of failure or malfunc-
tioning. Based on this criterion, the recommended position for the representative subset
of sensors was decided.

In this study, 27 data-loggers were used because the different zones with similar
microclimates were not known a priori, but this amount of sensors seems excessive
for long-term monitoring. Employing so many data-loggers on a routine basis is not
the best option for monitoring the microclimate in the long term, because it takes a
long time to download the data, and nearby sensors offer redundant information. One
solution is to make a selection of sensors that capture the relevant information. Thus,
it is important to determine how many sensors would be necessary and to establish
their location. With the goal of selecting an optimal number of sensors per class and
the 'best” option among the 27 sensors, the following methodology was applied. The
minimum number of training sensors was established as 15, because each class should
have at least three sensors in order to calculate the variance of any variable per class or
to apply methods such as sPLS-DA. The idea was to select a set of sensors, based on
the first two components from sPLS-DA, centroids of the three classes and the distances
between each centroid and the position of sensors in the multivariate space (i.e., pair of
coordinates using C1 for x-axis and C2 for y-axis for each sensor and the centroid of its
class).

The first step consists of deciding the optimal number of sensors per class, which
can be computed using the variance of the centroid distances of sensors in the same
class. The class with the highest variance should select more sensors, while the opposite
applies to the class with lowest variance. Secondly, sensors in the same class were split
into three subsets, which were created according to the distances to the centroid. The
idea is to draw three concentric circles per class, with three different values of the radius
(R1-R3) and the same center (O), the centroid. Each area between circumferences makes
it possible to identify the sensors per subset. Thus, there are three groups per class: the
tirst (G1) is determined by the inner circle, the second (G2) by the area between the
circumferences with R1 and R2 radius and the third group (G3) by the area between
the circumferences with R2 and R3 radius. Thirdly, the optimal number of sensors was
selected per subset. Such optimal value can be computed using the variance of the dis-
tances of sensors, within the same subset. Finally, in order to guarantee representation
for each subset, a sample of sensors per subset was randomly selected, according to M1,
which is the method with the lowest value of mean BER values.

In respect to the selection of a subset of sensors using the outcomes from sPLS-DA
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for M1, the percentages of the sum of variances of the centroid distances of the classes
NW, SE and Sk were 35%, 40% and 25%, respectively. A proposal based on the results
from sPLS-DA with M1 are the following:

For NW, the number of representative sensors was 15 x 0.35 = 525 ~ 6. The
13 sensors in this zone were classified in each of the three concentric circles, as
follows: D2, D5, A6 and C6 for the first area (G1); B6, B5, A5 and A4 for the
second area (G2); and D6, D3, F, D1 and C5 for the third area (G3). The number of
representative sensors selected per group (G1-G3) in this NW class was decided
according to the variance of the distances: one sensor in G1, three in G2 and two
in G3. The proposed subset of representative sensors is the following: D2 (for G1);
B6, A5 and A4 (for G2); and D6 and F (for G3).

For SE, the number of representative sensors was 15 x 0.4 = 6. The eight sensors
in this zone were classified according to the concentric circles as: CO (G1); A and B
(G2); and C, C1, B1, D and G (G3). The number of SE sensors selected per group
was determined based on the variance of the distances: one sensor in G1, one in
G2 and four in G3. The proposed subset of representative sensors is as follows: C0O
(for G1); A (for G2); and C, B1, D and G (for G3).

For Sk, the number of representative sensors was established as 15 x 0.25 = 3.75 ~
4. The six sensors regarded as Sk were classified as: A2 and A3 (G1); B2, B3 and B4
(G2); and C3 (G3). The number of sensors chosen per group was decided accor-
ding to the variance of the distances: one in G1, one in G3 and two in G2. The
proposed subset of representative sensors was: A3 (for G1); B2 and B4 (for G2);
and C3 (for G3).

HtA and Tr appeared as the most relevant stages for the sensor discrimination.
This result is consistent with a previous research [158], which reported a pronounced
temperature gradient at the museum, particularly in summer, caused by the greenhouse
effect of the skylight. The identification of the key stages of the time series for discrimi-
nating the sensors might help to select and enhance the criteria of adequate sampling
intervals in automated systems for microclimate monitoring.

Based on the results, the methodology proposed seems effective for characterizing
the indoor air conditions in a heritage building, aimed at preventive conservation. This
approach can use variables previously calculated by means of either functions applied
to different time series or fitting the SH-W method. Furthermore, sPLS-DA might be
useful to select a subset of representative sensors, in order to decide the best location for
autonomous data-loggers or wireless sensors.
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The temperature in the L’Almoina museum varies according to the location inside the
museum and along the year. In order to define a plan for the long-term monitoring
for preserving the artifacts, a statistical methodology was proposed. Some of the most
important results found in this research are the following.

Both the sPLS-DA and RF methods were useful for identifying the most important
variables that explain the differences among the three zones in the museum. For M1,
the relevant variables explain the dynamic dependency of the time series. By contrast,
with the other methods, the most important variables explain the dynamic dependency
of both, the time series of T and the residuals from either SH-W or ARIMA, although
most key variables were computed from residuals. Both approaches showed a good
capability for discriminating time series. It was possible to obtain parsimonious mo-
dels with a small subset of variables leading to satisfactory discrimination. Results from
sPLS-DA can be easily interpreted. PCA and k-means with sPLS-DA and RF were effec-
tive in establishing the different zones in the site and to discriminate the microclimate
of these areas. Furthermore, the stages HtA and Tr were the most relevant ones in order
to discriminate the different sensors.

The best method for determining the input of variables for sSPLS-DA depends on the
characteristics of the time series. The SH-W approach appeared to be more flexible for
modeling the different time series and obtaining low values of the classification error
rate. By applying SH-W, the percentage of selected variables that do not correspond to
residuals was higher than when using seasonal ARIMA and Wold decomposition.

For establishing the most important variables for each zone, the centroids of the two
first components from sPLS-DA were used. Another option was to identify the class
where the mean value of the selected variable was the highest. Thus, the variable with
the highest mean for a class could characterize that class.

The methodology proposed might be useful for characterizing different zones in
a building, according to the values of T and RH. Furthermore, it might be helpful to
establish the optimal number of sensors, in order to manage resources and to monitor
the microclimate according to the European Standards.

Regarding future studies: (1) Other versions of sparse PLS DA could be considered,
such as SPLSDA and SGPLS [53], in order to compare the capability of classifying time
series. Another unsupervised method could also be used to establish the classes before
applying sPLS-DA. For example, Guha et al. [192] recently proposed a novel Bayesian-
nonparametric strategy for setting the number of clusters and their labels. (2) Further
studies about the indoor air conditions at this museum should focus on the time se-
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ries analysis of both T and RH, in order to improve the characterization of zones with
a similar microclimate. (3) The proposed methodology in this paper might be imple-
mented in 'real time” monitoring so that corrective actions might be adopted in the case
of inappropriate measurements. (4) Work in progress is currently applying advanced
statistical methods to study the relationship between time series of T and the height

gradient in a typical church in a Mediterranean climate.
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Chapter 4. Characterization of Temperature Gradients According to Height in a Baroque Church
by Means of Wireless Sensors 4.1. Abstract

The baroque church of Saint Thomas and Saint Philip Neri (Valencia, Spain), which was
built between 1727 and 1736, contains valuable paintings by renowned Spanish artists.
Due to the considerable height of the central nave, the church can experience vertical
temperature gradients. In order to investigate this issue, temperatures were recorded
between Aug 2017 and Feb 2018 from a wireless monitoring system comprised by 21
sensor nodes, which were located at different heights in the church from 2 to 13 m from
the floor level. For characterizing the temperature at high, medium and low altitude
heights, a novel methodology is proposed based on sparse Partial Least Squares regre-
ssion (sPLS), Linear Discriminant Analysis (LDA), Holt-Winters method, among others
which were applied to time series of temperature. This approach is helpful to discrimi-
nate temperature profiles according to sensor height. Once characterized the vertical
thermal gradients for each month, it was found that temperature reached the maximum
correlation with sensor height in the period between August 10th to September 9th. Fur-
thermore, the most important features from the time series that explain this correlation
are the mean temperature and the mean of moving range. In the period mentioned,
the vertical thermal gradient was estimated to be about 0.043°C/m, which implies a di-
fference of 0.47°C on average between sensor nodes at 2 m from the floor with respect
to the upper ones located at 13 m from the floor level. The gradient was estimated as
the slope from a linear regression model using height and hourly mean temperature
as the predictor and response, respectively. This gradient is consistent with similar re-
ported studies. The fact that such gradient was only found in one month suggests that
the mechanisms of dust deposition on walls involved in vertical thermal gradients are
not important in this case regarding the preventive conservation of artworks. Also, the
methodology proposed here was useful to discriminate the time series at high, medium
and low altitude levels. This approach can be useful when a set of sensors is installed
for microclimate monitoring in churches, cathedrals, and other historical buildings, at
different levels and positions.

Keywords: Autocorrelation; Holt-Winters; LDA; Temperature gradient; sPLS; Wire-

less sensors.

Cultural heritage is a source of wealth because it promotes tourism, creative art and na-

tive culture. Tourists often select places to visit based on the culture and artistic signifi-
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cance of museums, monuments, exhibitions, and historical ruins, among other criteria.
The protection and conservation of cultural heritage is a challenge because artworks
undergo certain degradation over time. In order to prevent damage, artworks should
be maintained in stable and controlled climatic scenarios. However, usually, such con-
ditions are only achieved in museums [3].

Temperature (T) and relative humidity (RH) tend to be more stable inside a building,
while outer air conditions present a higher daily and seasonal variability [8]. In fact, the
most significant physical factors in the preservation of collections and artefacts are T and
RH, which can potentially deteriorate or damage historical or cultural objects [155]. The
requirements for an appropriate control of indoor air conditions depend on the type of
materials, some of which are very sensitive to sudden variations of T or RH. Thus, par-
ticular artworks demand specific microclimatic conditions. Also, certain characteristics
of buildings can generate more complex requirements because it is not possible to con-
trol the indoor environment [87; 88; 89; 90]. The values of T and RH inside a historical
building basically depend on the climatic conditions outside, apart from other factors
like construction materials, structure, and dimensions of the building. Variations in T
and RH can induce thermal shock [8], air movements, wet-dry cycles [78; 193], and sur-
face or under-surface salt dissolution—crystallisation [194]. Air movements, as well as
wet and dry cycles are usually responsible for soiling processes and deterioration [195].
Furthermore, dissolution of alkaline surfaces can be caused by condensation that can
be generated by either water vapour coming from open doors, human metabolism, or
the use of lit candles. Also, in the presence of high humidity and moderate tempera-
tures, surface condensation and damp can give rise to biological colonization by insects,
bacteria or fungi, which can generate biodeterioration in specific areas of the building
[196]. In numerous cases, artworks in churches have been affected due to inappropriate
microclimatic conditions [197].

In the Mediterranean region, the use of active air conditioning systems has been
more common in modern spaces of worship, due to the growing request from the public
for comfortable temperatures in the buildings. Such systems must guarantee conditions
of wellbeing, safety and energy efficiency [10], but it is a challenge to satisfy at the
same time the requirements of human comfort, the preservation of artworks and energy
efficiency [10]. In most cases, such requisites cannot be fulfilled optimally. In Spain, as
in other Mediterranean countries, the thermal conditions of historical buildings are not
considered in current environmental conditioning regulations (e.g., European Standards
EN 15757:2010 [97], which is based, on laboratory tests [198] and on case-studies [199;
200]) [201].

In Spain, the majority of ancient churches, cathedrals and other historical buildings
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do not have air conditioning systems; as a consequence, artworks can experience harm-
ful thermo-hygrometric oscillations, due to the outer climatic conditions. Moreover,
these buildings are large, which favors vertical air flows that are related to the deposi-
tion of dust and dirt on walls, paintings, frescoes, altarpieces, and other artworks, which
can require expensive cleaning and maintenance actions for an appropriate preservation
of the cultural heritage. Vertical air movements can be caused by the ventilation, be-
cause many of these buildings have windows in the upper part, so the air enters through
the main doors and lower inlets and leaves through the upper windows. The presence
of vertical thermal gradients is another factor of vertical air movements, because hot
air has a lower density and rises up. Therefore, studying the correlation between tem-
perature and sensor height is of interest to assess the vertical air flows, which makes
it possible to evaluate whether the gradient of T is acceptable or excessive, regarding
the risk for dust deposition in walls and paintings. In case of inappropriate gradients,
corrective actions might be proposed. The present research is intended to study vertical
temperature gradients in the church of Saint Thomas and Saint Philip Neri in Valencia,
Spain (Latitude: 39 30N and Longitude: 000 28W [202]), which has an unheated /natural
microclimate indoor (see Figure 4.1). The climate in Valencia is classified as BsK (trop-
ical and subtropical steppe) according to the Kdppen classification [202]. The principal
source of ventilation is through the main entrance of the church, and there are a few air
inlets in the sacristy and the chapel of the Holy Communion though the former is sepa-
rate from the main nave by a door that usually remains closed. This church contains
valuable artworks, among these are paintings by renowned Spanish artists such as Juan
de Juanes or Vicente Juan Macip (1507-1579), Jerénimo Jacinto de Espinosa (1600-1667),
José Vergara (1726-1799), and Vicente Lépez (1772-1850). These paintings are located in
the main chapel, as well as the altarpieces of Saint Joseph and Our Lady of the Unfor-
saken (see Figures 4.1c and 4.1d).
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Figure 4.1: Church of Saint Thomas the Apostle and Saint Philip Neri in Valencia
(Spain). (a) Front and side view of the church; (b) Front view; (c) Longitudinal sec-
tion; (d) Plan of the church, where the different observable structures are indicated: A.
Baptismal chapel, B. Chapel of Our Lady of the Forsaken, C. Chapel of the Holy Trin-
ity, D. Chapel of Our Lady of Mount Carmel, E. Chapel of the Calvary, F. Chapel of
Saint Anthony of Padua, G. Altarpiece of Saint Joseph, H. Altarpiece of Our Lady of La
Salette, I. Chapel of the Holy Communion, J. High altar and main altarpiece, K. Sacristy,
L. Bell tower, E1. Main entrance, E2. Side entrance. The small circles indicate the pro-
jection of vaults of the internal chapels. The larger circle represents the projection of the
main dome of the church. The arrows indicate the air inlet and sources of ventilation in
the church.

In recent years, European governments have funded different initiatives with the goal

of preserving artworks in museums and similar buildings. For example, the Collection-
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Care Project is working at present on an innovative system of wireless sensors for the
preservation of cultural heritage [166]. In this context, experts suggest that it is nece-
ssary to implement continuous monitoring systems to identify harmful microclimatic
conditions which affect the works of art [99]. Long-term monitoring of indoor air con-
ditions is a key issue, according to the new requirements for preventive conservation
[203]. Such systems require maintenance and routine practices [204]. Also, practical so-
lutions need to be proposed for the adaptation of climate change [77]. Furthermore, it
is important to define the compatibility between the climate control potentials and the
preservation requirements [99].

Many studies about the microclimate monitoring of historical buildings have recorded
time series of either T or RH by means of autonomous data loggers [4; 5; 6; 7; 8; 9; 10; 11;
161; 205] or wireless monitoring systems [3; 206]. Some of these research works [8; 9; 10]
have been carried out in European churches to investigate the possible consequences de-
rived from traditional heating, in order to improve indoor air conditions for preserving
the cultural heritage. Sensors are often located in the historical buildings at a similar
distance to the floor level. Regarding the statistical methodology, Principal Component
Analysis (PCA) was applied to time series of RH recorded at the Cathedral of Valencia
aimed at obtaining clusters of sensors [6; 7]. Using the same data set, a novel method-
ology was recently proposed for classifying the different time series of RH [161]; it was
based on sparse Partial Least Squares Discriminant Analysis (SPLS-DA) [63] using in-
put variables extracted from either Autoregressive Integrated Moving Average models
(ARIMA), Holt-Winters method, or functions applied to time series of RH. In a subse-
quent research, the aforementioned approach was extended using new variables from
the Holt-Winters method and Wold decomposition, which was applied to time series of
T recorded at the archaeological site of L’Almoina in Valencia [205].

The European Friendly-Heating Project [207] highlights the problems caused by in-
stalling heating systems in old worship places [10]. In the Mediterranean region, the
heating demand in churches is much lower in winter compared with places in Northern
Europe, while the requirements for dehumidifying and cooling are greater in spring and
summer because of the outdoor humidity and high temperatures [10].

Merello et al. [11] studied time series of T and RH recorded from dataloggers in
specific wall orientations and at different levels (floor vs. upper position) at Ariadne’s
house in Pompeii (Italy). They applied Analysis of Variance (ANOVA) to either esti-

mates of mean, minimum, or maximum of daily time series of RH and T, in order to
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study the effect of height and wall orientation where the sensors were located on. Like-
wise, Aste et al. [193] estimated the vertical gradients of T and RH on the entire volume
of the Duomo Cathedral (Milan, Italy). They computed the gradient as the difference
of T or RH from the lowest sensors compared with those located at the highest levels.
Measurements were recorded at 5, 10, 15, and 20 m, from the floor level. Where the
maximum height was 45 m, two further measurements were recorded at 35 and 40 m.
They found that the gradients in different points were not relevant except for the areas
near the entrance to the North aisle, which undergoes higher changes because the gate
is used as a primary entrance by churchgoers. Klein et al. [206] installed a wireless
monitoring system at The Cloisters, the medieval branch of the New York Metropoli-
tan Museum of Art, in order to improve long-term microclimate monitoring. Sensors
were located at different heights in the galleries (e.g., in the Late Gothic Hall the sensor
placement height ranged from 0.5 m up to 11.0 m). They evaluated air moisture levels,
the thermal stratification along the height of one gallery, and slight temperature gra-
dients between different galleries. They found higher variations in the Hall at the upper
level. Using sensors located in different positions and heights, Garcia-Diego et al. [208]
applied ANOVA and contour plots to study the performance of the mean T and RH
when the heating system was switched on in order to quantify the effects of the heating
system on temperature and RH.

Recently, in contrast to traditional technology, Adén et al. [196] used three-dimensional
thermal computer vision-based technologies (3D-TCV) for monitoring climatic condi-
tions. This novel approach records dense thermal information in a 3-D space, resulting
a data matrix containing 3-D coordinates with the associated T and time when the va-
lues were recorded. This methodology, combined with traditional recordings of T and
RH using a wireless monitoring system, was recently applied at the church of Santos
Juanes in Valencia [196]. Data were recorded by the wireless sensors at the lower zone
of the principal nave of this church and at the upper zone near the domes. Also, the local
surface temperature monitoring system obtained data from three different zones. Such
information was studied by computing standard deviation of surface T. The datasets
from 3D-TCV were analyzed by means of thermal orthoimages at different times and
graphs of thermal evolution over time [196].

In total, the present research analyzed 21 hourly time series of T from wireless nodes,
for seven months during 2017-2018. Sensors were positioned at different heights, ran-
ging from 2 to 13 m from the floor level in the church of Saint Thomas and Saint Philip
Neri in Valencia (Spain). The microclimate monitoring system was developed a few
years ago as a test prototype [3].

Different monitoring campaigns for the preventive conservation of cultural heritage
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have been carried out [209; 210]. Some of them used autonomous data-loggers, e.g.,
Hobo data-loggers [211] were employed by Visco et al. [212], data-loggers DS1922L
[213] by Valero et al. [214], and DS1923 [215] by Merello et al. [158, 216]. There are
also studies about microclimates in cultural heritage based on a wired sensor network,
composed of different nodes wired to a single microcontroller [6; 158]. A more versatile
wired /wireless system [217] can be used to solve the problem when using data-loggers,
which requires recordings from them to be downloaded manually. The IoT wireless
system employed in this study was developed by Perles et al. [3].

The study of thermal conditions in a building can be approached in different ways;
for instance, by analyzing the rate of T changes every two height levels (low to high),
or by analyzing changes in the characteristics of time series of T at different height le-
vels in the buildings. The latter approach would correspond to classifying time series
of T in different clusters according to the height levels. In the first case, a pronounced
rate of T change per height might imply phenomena of dust deposition on the walls
and artworks in the building, thus it would be necessary to take corrective actions to
reduce risks on works of art. In the second case, classifying time series according to
different heights (e.g., high, medium and low levels) could be helpful for monitoring
the microclimatic conditions in the building. Possible reasons for classifying a set of
sensors incorrectly, might be the malfunctioning of sensors, changes of thermal condi-
tions where the sensors are located, and the classification method performance, which is
influenced by the total number of sensors or the number of sensors per clusters. Thus,
sensors incorrectly classified should be evaluated to identify possible setbacks for the
artworks.

In order to study vertical temperature gradients and to characterize the time series
of T per different height level, two methodologies are proposed. The first one is helpful
to determine the existence of a vertical gradient, to estimate the gradient, and to esta-
blish the period in a year when such gradient is apparent. This methodology is based on
Pearson’s correlation coefficient [218] and linear regression [219]. The second methodo-
logy could be used for characterizing the temperature at high, medium and low altitude
heights and to determine the main variables that help establish the changes of tempera-
ture by level. This methodology which classifies time series, is based on sparse Partial
Least Squares regression (sPLS) and Linear Discriminant Analysis (LDA). They are em-
ployed for classifying purposes, using features from time series as input, which are
computed with two methods. The first one corresponds to using some traditional time
series functions (i.e., Auto Correlation Function ACF, Partial Auto Correlation Function
PACE, periodogram, Moving Range MR), and features defined using quantiles [220].
The second, corresponds to using the Holt-Winters method. Finally, with the goal of
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proposing a plan for long-term monitoring in the church of Saint Tomas and Saint Philip
Neri in Valencia, Spain, the thermal condition in this building was analyzed by using
both methodologies.

With respect to the first methodology proposed, the temperature gradient has not
received much attention yet in the context of art conservation. Some studies have
approached the temperature analysis by computing the variation in temperature at
different levels of heights [193; 206], by using contour graphs of temperatures or by
comparing estimates of parameters such as the maximum and minimum temperature
[11; 208].

Regarding the second methodology proposed, which is used here for classifying
time series of T according to different levels of height, it is considered as a novel a-
pproach in the context of clustering of time series and cultural heritage. The methodo-
logy consists of applying both sPLS [53] with LDA, using features extracted from time
series as input. The dissimilarity measures calculated for the method were computed
according to other approaches employed in the field of clustering of time series (i.e.,
profiles of time series, dynamic structure of series, assuming specific underlying mo-
dels, future forecasts, among others) [1; 25; 38]. In this case, the dissimilarity measure
(i.e., Mahalanobis or Euclidean distance) was computed using a linear combination of
a set of variables. These variables could correspond to different approaches, e.g., a-
ssuming specific underlying models and future forecasts, profiles of time series and the
dynamic structure of series. In this sense, Elorrieta, Felipe et al. [49] have proposed
using several features from the field of astronomy and two features that they designed
as input for different classification methods (e.g., logistic regression, CART algorithm,
boosting, random forest, support vector machine, artificial neural network, and Lasso
regression). Some features were extracted from raw data, while others after fitting a
harmonic model [49; 50]. Concerning the classification algorithms and the methods for
computing features from series that are proposed in this paper, this is probably the first
time that the combination of both algorithms and such methods are used for classifying
and clustering of time series. On the other hand, for art conservation, classifying time
series has rarely been explored and it has only been analyzed using PCA [6; 7] or sPLS-
DA [161; 205].

Finally, this research reports a statistical analysis conducted in the church of Saint
Tomas and Saint Philip Neri for the first time, which is of relevant interest since ina-
ppropriate conditions of temperature can affect the artworks inside the church. Fur-
thermore, the results found in this study might provide guidelines for establishing a
plan for thermal monitoring and preventive conservation in similar churches.

The structure of this paper is as follows. Firstly, section 4.3 describes the monitoring

109



Chapter 4. Characterization of Temperature Gradients According to Height in a Baroque Church
by Means of Wireless Sensors 4.3. Materials and Methods

system, the data set, installation of wireless nodes, as well as criteria for determining
the stages of the time series of T, methods for computing features from the series, and
the regression method for relating temperature values according to sensor height. The
most relevant results and discussion of the different analyses are presented in section
4.4. Finally, conclusions can be found in Section 4.5.

The monitoring system used in this paper is the same as in [3], where the details and
descriptions of the general system and their components are provided. Furthermore, the

reason why the general system and their different components were used is explained.
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Figure 4.2: Scheme of the wireless microclimate monitoring system. In respect to no-
tation: IoT is Internet of Things, ISM is industrial, scientific, medical band, UTMS is
Universal Mobile Telecommunications System, and AWS is Amazon Web Services.

The system (Figure 4.2) was specifically designed for the monitoring needs of cul-
tural heritage buildings and objects. It consists of low-energy wireless sensors, a gate-
way for collecting the data sampled by the sensors, and a cloud computing infrastruc-
ture for data storage, processing and visualisation.

A total amount of 21 wireless sensor nodes were installed at the church Saint Thomas
and Saint Philip Neri (Figure 4.3a) for monitoring indoor air conditions. These sensor
nodes are built around an ultra-low power C8051F920 microcontroller (Silabs, San José,
CA, USA), a CC1101 radio-modem (Texas Instruments, Dallas, USA), a high-density 3.6
V, 1 Ah Lithium-thionyl battery, and a SHT15 chip. The latter is a surface mountable
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device with a RH sensor and a temperature sensor (Sensirion, Staefa ZH, Switzerland).
This device was individually calibrated by the manufacturer (Sensirion). The calibra-
tion coefficients are programmed into an inside memory on the chip. To improve the
accuracy, these coefficients and the internal voltage regulator are used to calibrate the
transmitted signals from the sensors. The accuracy of the SHT15 sensor is +-0.3°C in the
range from 10°C to 40°C [221].

Figure 4.3: (a) wireless sensor node (approximate dimensions: 4.1 x 1.5 x 1.5 cm); (b)
sink gateway.

The sensor nodes were used to sample environmental variables of interest, which
were transmitted using GFSK (Gaussian Frequency Shift Keying) modulation in the 868
MHz European unlicensed industrial, scientific, medical (ISM) band. All sensors trans-
mit blindly on the same channel without acknowledgement messages from the gateway.
This approach allows to be very energy efficient at the cost of losing some transmissions.

This sensor node is an adaptation of a previous one devoted to the detection of xy-
lophagous [222] and copes adequately with the requirements of life-span and long dis-
tances and thick walls of historical buildings [3].

The gateway, shown in Figure 4.3b, was built to be as flexible as possible in order
to experiment with different approaches, so it was decided to implement it around a
Raspberry Pi 3 board (Broadcom Inc., CA, USA) and the Linux operating systems. To
this base system, we added suitable hardware to support the functionality: a CC1101 ra-
dio module and an STM32L04 microcontroller (StMicroelectronics n.v, Geneva, Switzer-
land) to receive the transmissions of the sensor nodes, a 3G USB dongle to provide
mobile connectivity to Internet, and, considering that the gateway is connected to the
mains power, a rechargeable lithium-ion battery to provide energy to the gateway du-
ring power outages. The main task of the gateway is to collect wireless transmissions
of the sensor nodes, store it temporarily in a local database and transmit it to Internet
when connectivity is available. The data transfer is implemented using the MQTT [223]
client server publish/subscribe messaging transport protocol.

For the implementation of the cloud infrastructure, it was decided to choose the of-
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fering from Amazon Web Services (AWS). The MQTT messages are processed by the
AWS IoT cloud service in order to split the message in sensed magnitudes like tem-
perature, humidity or light level (humidity and light not used in this work), as well
as in communication-related parameters (e.g., received signal strength indicator, ba-
ttery level and message counter). These two types of data flows are stored in a NoSQL
(stands for “non SQL” for ones and for “not only SQL” for others) AWS NoSQL Dy-
namoDB database and in an SQL AWS AuroraDB, respectively. In order to allow data
access through web browsers, a Linux virtual machine was deployed in the AWS EC2
service which runs a Redash [224] data visualization dashboard. For statistical analysis,
all data collected along the monitored period could be downloaded locally using AWS
Datapipelines service.

Among the advantages of this monitoring system are (1) it is capable of storing an
unlimited volume of data, this cloud helps to increase sample frequency, which means
that updating the recorded information can be carried out every time period, as re-
quired (i.e., every second, minute, and another time period), (2) the fact that updating
the recorded information does not need to be carried out manually.

The cost of these devices is highly dependent on the type of work to be performed.
Mass-market devices tend to be cheaper due to the scale of production, which reduces
the cost of the bill of materials and dilutes the engineering cost. In the field of cultural
heritage specific devices, and in general in the scientific field, this scale does not apply,
so engineering costs are easy to estimate in the cost of the devices and other impor-
tant costs, such as installation costs (e.g. a wired installation is often very expensive)
or personnel costs (e.g. a classical data logger will require periodic battery replacement
and manual data downloading) which have to be taken into account. In this particu-
lar project, wireless sensor nodes were the best fit in terms of simplicity of installation
and personnel requirements, but in a different situation, other options might be more
suitable [3].

As stated above, the temperature sensor used (SHT15) provides an accuracy of +0.3°C
according to the manufacturer. In order to get the best performance of the deployment,
all the sensors were calibrated by comparison before being installed in the church, aimed
at estimating their bias and improving the accuracy.

Basically, the set of nodes was located together inside a climate chamber of 23 m>
that was driven by an air cooler in the ceiling (Kiiba Comfort DP model DPB034). The
temperature was controlled inside the chamber during a period of three hours, increa-
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sing from 26°C up to 30°C. Sensors collected temperature at a rate higher than a sample
per minute.

By computing the mean temperature recorded in the hot stage of the calibration
experiment for each sensor, it was found that node M was the one closer to the overall
sample mean. Hence, this sensor was regarded as a reference (i.e., with a null bias).
Then, for each sensor, the bias was computed as the difference between the mean T
recorded by that node, during the hot stage, and the mean T of this reference node (see
Table 4.1).

An independent accurate sensor with a certified calibration would lead to a better
estimation of the bias, but, unfortunatelly, such sensor was not available.

This approach is good enough for the purpose of the present study because the main
goal is to analyze the relationship between temperature and the height of nodes, and
knowing the real bias per node is of little interest to this paper. Bias values range from
—0.28 to 4-0.28, which is consistent with the accuracy of £0.3°C indicated by the sensor

manufacturer.

Table 4.1: Temperature bias (°C) per node derived from the calibration experiment.

Node B T U S R C D G E o K
Bias -0.280 0.097 0.160 -0.003 0.069 -0.088 0.077 0.009 -0.019 -0.089 -0.036
Node N L M 1 ] 0 A F P H

Bias -0.046 -0.249 0.000 0.150 0.189 -0.277 -0.098 0.276 0.335 0.175

Each value of temperature registered per node during the microclimate monitoring
experiment was corrected by subtracting its corresponding bias.

The calibration "in situ" of sensors [212; 225] is an effective technique that consist
of putting together all node sensors along with a calibrated sensor inside the building
which is being monitored. Thus, it is possible to have a climatic condition reference from
the calibrated sensor for comparing the records from all nodes. In this study, calibration
"in situ" was not considered because for a massive campaign, the application of this
technique requires a greater investment due to the cost of using a calibrated sensor and
more time for its implementation. Furthermore, the experiment calibration approach of
T used here, was possible given that the goal was to compute the differences of T from

sensors, instead of estimating the mean of T.

After the calibration experiment, the 21 wireless sensor nodes were located in the church
at different heights (h): 2, 2.5, 3.9, 4.0, 4.3, 5.0, 8.7, 12.1, and 13 m from the floor level
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(Figure 4.4). The sensors located at each different height are the following;:

h = 13.0: nodes I and ] were located at the upper part of the retable decorating the
presbytery.

h = 12.1: nodes A, F, P, and Q were placed at the upper position, close to the
ceiling vaults.

h = 8.7: nodes L and M were also located at the retable.

h = 5.0: nodes G, H and O were placed near to the main altar.

h = 4.3: it corresponds to node U, which was located near the main entrance.

h = 4.0: nodes K and N were also installed at the retable.

h = 3.9: node D was located close to the altarpiece of Saint Joseph.

h = 2.5: nodes B and T were positioned near to the main entrance.

h = 2.0: nodes C, E, R, and S were located as indicated in Figure 4.4 at the lowest
level.

Some criteria for establishing the position of nodes were the following: (i) to spread
out the sensors in different places of the church, (ii) to locate some nodes close to the
main entrance and other openings allowing air exchange from outside, and (iii) to in-
stall at least 2 nodes at a comparable height for comparison purposes. Moreover, sensors
were not placed too close to the floor level because they might be stolen or manipulated
by churchgoers. The ideal scenario would have been to spread out the 21 nodes ran-
domly inside the church. However, restrictions such as the building characteristics, the
maximum number of nodes available, and the need to prevent problems caused by the
movement of people, among other factors, made it impossible to achieve a random dis-

tribution of the nodes.
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Figure 4.4: Position of the 21 wireless nodes located in the church of Saint Thomas and
Saint Philip Neri (Valencia, Spain). Color refers to height (h) of node (in meters, m). SG
indicates the position of the sink gateway that receives data wirelessly from the sensor
nodes. The light gray rectangle indicates the position of the main altarpiece (retable).

The experiment of microclimate monitoring was carried out from the 1st of August 2017
until the 28th of February 2018 (7 months, 212 days). When programming the commu-
nication of sensor nodes with the sink gateway, the time between two consecutive mea-
surements of T (¢, ;1) was established as a random variable following an exponential
distribution with a mean of one hour. Due to in fact the church has unheated /natural
microclimate indoor, that better explains the selection of the sampling time of 1 hour
that in case of a heated microclimate could not be sufficient. The main reason for using
this type of distribution was to decrease the probability of data transmission collisions.
However, as a drawback, it leads to missing values, which becomes a problem for the
methodology of time series analysis applied here.

Regarding the missing data resulting from the exponential distribution used for es-
tablishing two consecutive measurements of T, it was checked that the percentage of
missing values per node was approximately the same for the different nodes. By con-
trast, when the reason was having problems of wireless communication with the gate-
way or electrical failures, the percentage of missing values was greater. In particular,
such amount was the highest for node R (41.4%). Taking into account that this node
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was at 12.5 m from the gateway, which is not too far away, the problem of wireless co-
mmunication with the gateway was discarded as a reason for having such big amount
of missing values, and the main cause could be a flaw in the electronics. The target
was to have a common number of observations per sensor, particularly, one value per
hour. For this purpose, all missing values were imputed. Taking into account that the
distribution of missing data does not follow any specific pattern (i.e., missing at ran-
dom [226]), all missing data were imputed using either Stineman interpolation [227]
or linear interpolation. The latter was used when the time between two consecutive
available measurements of T was less than 2 hours (i.e., a single missing value). For the
rest of cases, the Stineman interpolation was used. The interpolation equations were
solved for every unknown observation of T between two known values of T. The re-
sulting data were organized as a matrix with 5088 rows (one per hour) by 21 columns
(one per node). Finally, each value of temperature registered per node during the mi-
croclimate monitoring experiment was corrected by subtracting its corresponding bias.
Similar studies have also applied interpolation procedures for the imputation of miss-
ing values. Klein et al. [206] estimated temperature and air moisture values using a
smooth bivariate interpolant to the scattered sensor data, which is an effective method
when the temperature is smoothly varying on short distances. However, this approach
most likely loses accuracy near air inlets and outlets in galleries. Trying to overcome this
drawback, the authors [206] also applied physics-based models incorporating Compu-

tational Fluid Dynamics by prescribing thermal boundary conditions.

The methodology is comprised of five main steps. First, identification of stages in the
time series of T (see Section 4.3.5.1). Second, estimation of the vertical gradient of T (see
Section 4.3.5.2). Third, computation of parameters from the time series (e.g., sample
mean values of Auto Correlation Function ACF, moving range MR, Partial Auto Corre-
lation Function PACF at the first 4 lags, among others, and the additive seasonal Holt-
Winters (SH-W) method (see Section 4.3.5.3). Fourth, analysis of the relationship be-
tween T and sensor height, using variables determined in the previous step and sparse
Partial Least Squares (sPLS) (see Section 4.3.5.4). Finally, characterization of temperature
at high, medium, and low altitude heights using Linear Discriminant Analysis (LDA)
and the latent components from sPLS calculated in the previous step [108]. The R soft-
ware (version 4.3) was used to carry out the statistical analyses. The main packages
used were mixOmics [68], k1aR [228], and spls [229].
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Regarding the monitoring experiment, two main stages were visually identified in the
different time series of T: firstly, the average temperature slightly decreases until about
November 14th and, next, it becomes approximately stationary (see Figure 4.5a). By
visually inspecting the evolution over time of the time series of T, all of them are quite
parallel (see an example in Figure 4.5b), which can be partly explained by the different
position of each node and, moreover, by the bias of each sensor (Figures 4.5a and 4.5b
show raw data, prior to the bias correction). The trajectory of M (i.e., the reference node)
is depicted in red in Figures 4.5a and 4.5b.
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Figure 4.5: (a) Trajectories of temperature for the 21 nodes, before subtracting their corre-
sponding sensor bias. The thick vertical dotted line (November 14th) indicates a change
of trend: T slowly decreases before this date on average while, next, the mean T is rather
constant. Each thin vertical dotted line separates two consecutive stages (months) that
were considered to split the different time series of T. In total, seven stages were con-
sidered. (b) Trajectories of temperature (before subtracting their corresponding sensor
bias) for the nodes B (in blue), H (in green), and M (in red) corresponding to the period
between October 30th 2017 to December 29th 2017.

The observed time series of temperature were denoted as T, where T = (f4, ..., ti,ooistn ).
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By using the supF test [115; 120], two potential structural breaks were identified (i.e.,
changes in the slope of a linear trend), at observation number 763 (September 1st at 6:00
PM, p — values < 0.02) and 2797 (November 11th at 12:00 AM, p — values < 0.01).

The supF test was applied after calculating the logarithmic transformation and one
regular differentiation to the distinct time series. Such logarithmic transformation was
employed to stabilize the variance, and the regular differentiation was intended to eli-
minate the trend of the different time series [107]. The notation employed throughout
this article is as follows: r indicates the logarithmic transformation of T, and W refers
to one regular differentiation of r. Thus, each value of W corresponds to w; = r; —rj_1
, where r; = In (¢;). The two structural breaks identified lead to splitting the time series
into three stages, but this number seems too low for the target of the present work. In
order to extract more features from each time series, which presumably might lead to
better results, it was decided to split all time series into seven stages, one per month
(see Figure 4.5a). This criterion is consistent with the structural break identified on
September 1st, though not with the one found on November 11th, but this issue was
considered as a minor drawback.

With the goal of determining if the vertical gradient is apparent, the Pearson correlation
test [218] was applied to different periods of the time series of T (i.e., each month as
established in Section 4.3.5.1). By using the test, it is possible to determine whether the
correlation between temperature and height of sensors is statistically significant. Once
a period with statistically significant correlation was identified, the slope of the linear
relationship was considered as the gradient estimation. Such slope is the derivative of
the function that estimates the mean temperature in the month with respect to height.
Consider that the relationship between temperature, T = (,...,t,), and height,
h = (hy,..., hy),is determined by the following linear regression model in Equation 4.1,
where, e = T — E(T|h), E(T|h) is the conditional expectation of T given h, E(¢) is the
expectation of the errors ¢, and V (¢) is the variance of € [219]. Details about computing

the estimated values and confidence intervals of By and B; can be found in [219].

t; = Bo + B1h;i + €;, where

i=1,...,n 1)
E(e) =0 '
V(e) = o?
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Considering the linear equation that estimates temperatures as a function of height,
the derivative of this function is the slope B of the regression line, which is the gradient
estimation. The thermal vertical gradient can be interpreted as the rate of increase of T
according to height.

In this study, for each month, the gradient was estimated as the slope of the linear
regression model by using height () as predictor variable and mean temperature as
response. This gradient was expressed as °C/m.

The existence of a gradient implies that the correlation between T and & is statisti-
cally significant, which was checked for each month. If this condition is not fulfilled,
there is not enough evidence to affirm that the slope of the regression line is different
from zero at the population level. Hence, there is no evidence for a vertical thermal gra-
dient. The proposed method for the calculation of vertical gradients seems reasonable
when all sensors are located one above the other, in the same vertical axis, but this is not
the case here. However, a preliminary analysis suggested that longitudinal thermal gra-
dients were not relevant in this case, because the ventilation rate of the building is rather
limited and because indoor air conditions are not affected by heating or air conditioning
systems, which are not installed in this church.

Two methods were used to compute features from the time series, which were applied to
the different observed time series (T or W ) separately per month. As an exception, each
complete time series was also used in the second method, in addition to modelling each
month independently. Features will be denoted hereafter as classification variables.

1. Method 1: Using Time Series Functions

This method consists of computing features from the observed time series T, in
some cases, and from the time series after applying the logarithm transformation
and regular differencing to T. The goal of using this transformation and diffe-
rencing was to stabilize the variance and remove the trend of the series in order
to extract information about the seasonal component. Features were calculated by
means of values of sample Auto Correlation Function (ACF), sample Partial Auto
Correlation Function (PACF), periodogram, Moving Range (MR) [18; 104], as well
as features defined using quantiles [220]. Each variable was computed for each
month and sensor. These correspond to estimates of the following parameters:
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a)

b)

f)

g)

h)

mean.ts: Mean of T recorded in the month. This parameter allows to com-

pare the level of the different time series.

sd.ts: Standard deviation of T, which provides information about the varia-
bility of the recorded values.

range.ts: Range of T (i.e., by subtracting the minimum to the maximum). It
reflects the amplitude of the time series of T and gives information about the

dispersion.

mean.mr: Mean of MR values with order 24 of T. MR computes the moving
range for all sequences of 24 consecutive observations.

median.mr: Median of MR values with order 24 of T. This parameter and the
previous one are helpful for capturing the daily variability of the different

time series of T.

mean.acf: Mean of the first 72 lags (I = 1,...,72) of sample ACF applied
to W time series. Each value of ACF for W at lag I (acf;) is the correla-
tion coefficient between the observations that are lagged for a time gap .
It is given by acf; = cor(wj, w]-,l), i.e., Pearson’s correlation coefficient be-
tween the time series and the lagged values (i.e., the time gap which is con-
sidered). The value 72 was used because sample ACF values computed for
I =1,2,...,72 were comprehended within the limits of a 95% confidence
interval in the correlogram. This parameter provides information about the

dynamic structure of the time series.

median.acf: Median of the first 72 lags of sample ACF applied to W. As in
the previous case, this parameter can be useful for comparing the dynamic
structure of the time series.

sd.acf: Standard deviation of the first 72 lags of sample ACF of W.

pacf: First 4 lags (I = 1,...,4) of sample PACF applied to T. A value of
PACF at lag I measures the autocorrelation between the observation #; and
ti_1, which is not accounted for by lags 1 to I — 1. The first four values of
PACEF are usually the most important ones for capturing the most significant
autocorrelation information. These four values were computed trying to di-
fferentiate the dynamic structure of the different time series.
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j) maximum.I: Maximum value from the periodogram (I), which is employed for
identifying the dominant periods or frequencies of time series of T. This pa-

rameter is helpful for recognizing the dominant cyclical behavior in a series.

k) range.I: Range of values of the periodogram. This parameter can be useful

to compare the impact of the dominant cyclical pattern in the different series.

1) maximum.slps: Maximum increase of T in one hour found in the month (i.e.,
max(ti;1 — t;)). This parameter allows the comparison of the maximum changes
of T for two consecutive hours, and it is intended to capture the information

of abnormal peaks or sudden increases due to occasional events.

m) median.abs.sd: Median of absolute values of the deviation between the val-
ues of T and the median of T. It is given by median(|T — median(T)|). This
parameter is somewhat related to the variance (i.e., average of the squared
deviations with respect to the mean) and, hence, it is another measurement

of data dispersion.

n) t.p.r.m20: itis computed as (Tso — Tao) / (Tos — T5), being T, the percentile a
of values in the month. Thus, it is the ratio of percentiles (60th—40th) over
(95th-5th) of T. The numerator is the range of variability corresponding
to 20% of the central part of the original time series. The denominator is
basically the range of the original time series after removing the lowest 5%
and highest 5% . An equivalent interpretation corresponds to the parameters
t.p.r.m35,t.p.r.m50, and t.p.r.m80 described next.

0) t.p.r.m35: it is computed as (Ts75 — T325)/ (Tos — Ts), which is the ratio of
percentiles (67.5th-32.5th) over (95th-5th) of T.

p) t.p.r.m50: Ratio of percentiles (75th-25th) over (95th-5th) of T.
q) t.p.r.m80: Ratio of percentiles (90th-10th) over (95th-5th) of T.

r) p.d.f.p: Ratio of percentiles (95th-5th) over the median of T. This parameter
divides the amplitude (range) of the time series, after removing the lowest 5%
and highest 5% of observations, by the median of T.

This list comprises a set of 21 variables that were computed for each one of the
seven months, which implies 147 variables in total. They were arranged in a ma-
trix denoted as X; comprised of 21 rows (one per node) and 147 columns (one per
variable).
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2. Method 2: Additive Seasonal Holt-Winters Method (SH-W)

This approach calculates features from time series of T, by using the Holt-Winters
method (SH-W) [20], which is an extension of the Holt’s method [19]. It captures
the level, trend, and seasonality of the different time series and is comprised of
the forecast equation and three smoothing equations (i.e., one for the level a;, one
for the trend or slope b;, and one for the seasonal component s;) with correspon-
ding smoothing parameters «, B, and -y [21]. According to the additive SH-W, the
forecast equation for a time series of T with period length p is given by Equation
4.2 (in this study, p is 24), where k is the integer part of (I —1)/p, and f;; is the
forecast at step (i +1) [21].

fi+z|i = a; +1bi + S; 1 p(k+1), Where
a; = a(t; —sip) + (1 —a)(ai_1 +bi-1)
bi = B(a; —a;—1) + (1 - B)bi 1 (42)
si = (ti — ai-1 — bim1) + (1= 7)si—y,
where 0<a <1, 0<B<1 0<y<land i>s

Slope, level and seasonal components at step i are estimated by using the three
smoothing equations (i.e., for b;, a;, and s;), respectively. If the algorithm con-
verges, 4, b and s; to s, are the estimations for the level, trend or slope and seasonal
components. This algorithm was run by using the function HoltWinters of the

stats package [171] of R software.

The flow diagram for additive SH-W method is displayed in Figure 4.6. In this dia-
gram, all the steps are repeated with each observation of time series t;,i: 1,...,n.
However, in step (1), the initial values of level (ag), trend, (bp) and seasonal coe-
fficients (sg) are only used once to start up the algorithm. The initial conditions
are estimated through a simple decomposition in trend and seasonal component
by using moving averages. After initialization, steps from (2) to (4) perform the
forecast task internally, these values were updated and stored for the next step
[171]. In step (2), the estimation of slope requires knowledge of the level at steps i,
(i — 1), and so on until g, as well as slope at steps i — 1, and so on until by. In step
(3), as in step (2), the equation is solved recursively. Estimation of level requires
knowledge of the level, slope, seasonal components at different steps starting at
i —1 (for a;), i — 1 (for b;), i — p (for s;), and finishing when the values are ay, by,
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and sp. It also requires values of T at steps i, and so on until t;, where ¢y is just
the oldest data point in the training data set (i.e., a set of observations starting
from t; until the current observation t;). Note that the weighting coefficients «,
and vy need to be computed for running steps (2), (3) and (4). Such coefficients are
calculated by minimizing the squared one-step prediction error [171]. Now that
the level, trend and seasonal component at time step i have been estimated, the
forecast f(i 11y atstep (i +1) with I = 1,...,24 can be estimated by using the three
values of components together.

- — Data set
(1) Computation of initial bt ;. ;
1eb2e-cepbjp-n-ilp
level, trend and

seasonal components b
l [Ohtaining current observation f,-]

Generalized Exponential Smoothing

(2) Estimation of trend — (3) Estimation of level — (4) Estimation of

b; at step 1 a; at step i seasonal component
5; at step |

(5) Estimation for the forecast
fiiy at step (i +1)

Figure 4.6: The flow diagram displays five steps for carrying out the additive SH-W
method. Step (1) indicates that the initial conditions for the components are computed.
Steps (2), (3), and (4), indicate that the slope, level and seasonal component at step i are
estimated. Finally, step (5) indicates that forecasts (f;,;) at step (i + [) are calculated,
wherel:1,...,24.

According to this method, the level, trend, and seasonal components are updated
over a historical period. For example, when the method is applied per month,
the components are updated every hour over each month. If the algorithm con-
verges, a4, b and s; to sy4 are the estimated values for the level, trend and seasonal

components at the last instant of time in the month.

The level at a time t corresponds to a weighted average between the seasonally
adjusted temperature and the level forecast, based on the level and slope at the
previous instance of time ¢t — 1. This component gives an estimate of the local
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mean (i.e., mean per hour in this study). Regarding the slope component, it ex-
presses the linear increment of the level, over an hour. Finally, the seasonality
component estimates the deviation from the local mean, due to seasonality.

The features calculated per sensor are the following;:
a) a: Estimated value for the level for each month of the time series.
b) b: Estimated value for the trend (slope) for each month.

c) s1,s2,...,s24: Estimated values for the seasonal components for each month.

d) sse: Sum of squared estimate of errors per month.

e) maximum.I: Maximum value of the periodogram computed with the residuals
of SH-W for each month.

f) mean.acf: Mean of sample ACF of residuals at lags 1 to 72 per month.

g) median.acf: Median of sample ACF of residuals at lags 1 to 72 for each
month.

h) range.acf: Range of sample ACF of residuals at lags 1 to 72 per month.

i) Dn: Statistic of the Kolgomorov-Smirnov (KS) normality test [127] of the resi-
duals derived from SH-W, per month of the time series. The KS normality test
was employed to compare the empirical distribution function of the residuals
with the cumulative distribution function of the normal model.

j) Wn: Statistic of the Shapiro-Wilk test (SW) [122] of the residuals per month.
This test was used to detect deviations from normality, because of either kur-
tosis or skewness, or both. The Dn and Wn statistics were also used as classi-
fication variables, because they provide information about deviation from
normality for the residuals derived from the SH-W method.

k) fcast: 24 forecasts of T (i.e., fi+l|l-, I =1,...,24) for a unique additive SH-W
model that was fitted using the complete time series without splitting it in
different months.

Features calculated from (a) to (j) imply a set of 33 variables computed for each
month. By including the 24 forecasts as explained in (k), the total number of varia-
bles was 33 x 7 4+ 24 = 255, which were organized as a matrix denoted as Xy,

comprised of 21 rows (one per sensor) and 255 columns (one per variable).
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For both data sets, X; and Xj, those variables with a strongly skewed distribution
were transformed with the goal of finding a simple transformation leading to normal
distribution. For this purpose, standard (simple) Box-Cox transformations [173] were
applied to those variables with a Fisher-Pearson standardized moment coefficient of
skewness [174], or with a Fisher coefficient of kurtosis [174] outside the intervals of —2.0
to 2.0. For those variables with a negative skewness, absolute values were used instead
of their original ones for applying a Box-Cox transformation. The skewness statistic
evaluates the asymmetry of the probability distribution. The kurtosis statistic indicates
which variables were heavy-tailed or light-tailed, relative to a normal distribution. Fur-
thermore, the estimates of kurtosis were useful measures for identifying outliers in the
different variables.

The percentage of outliers in both data sets was 0.73% in X; and 0.65% in X;, which
is a small amount. Outliers were discarded, and the resulting missing values were im-
puted using Non Linear Estimation by Iterative Partial Least Squares (NIPALS, [51;
65])). Given the low percentage of missing values, their estimation is assumed to be
appropriate [176]. Next, once the values were imputed, each column of X; and X, was
centered by subtracting its column mean. Also, it was scaled to unitary variance by
dividing over its standard deviation.

As both data sets contain more than 100 variables and just 21 rows, a high degree of
multicollinearity is expected a priori, which would lead to severely ill-conditioned pro-
blems. Furthermore, from a practical point of view, for these high-dimensional data sets,
results might be difficult to interpret given the large number of variables. One solution
is to extract latent variables that summarize the information using a subset of variables.
In this context, many sparse versions [52; 53; 61; 64; 230] have been proposed for feature
selection purposes. These versions work properly in regression by introducing penalties
in the model such as Lasso [182] and Ridge [231].

Since Partial Least Squares (PLS) regression was introduced by Wold [51], it has been
employed as an alternative approach to Ordinary Least Squares (OLS) regression in ill-
conditioned linear regression models that emerge in many disciplines, such as biology,
chemistry and economics [52]. PLS is a dimension reduction technique that relates a
regressor matrix X and a response matrix Y by computing latent components that corres-
pond to linear combinations of the original variables (predictors). PLS maximizes the
covariance between components from two data sets. PLS is computationally fast and the

projection of observations on a low-dimensional space allows a graphical representation
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of observations and variables. Due to these reasons, this method has gained a lot of
attention in high-dimensional classification problems [53].

In this study, the data sets X; and X, were analyzed using sPLS with a regression
model in an attempt to identify the main variables correlated with sensor height, which
will explain the differences in the time series of T according to the distance to the floor
level. The information used by sPLS was the following: the response vector, Y € R"*},
containing the height of each sensor (n = 21), and the regressor matrix, X € R"*? (X; or
X2), which contains the classification variables computed in Section 4.3.5.3.

sPLS modeled X and Y as a linear regression, where X = EC+ E; and Y = ED +
E; = XB + Ey, where B € R"*7 is the matrix of regression coefficients, E; € R"*7 and
E; € R™! are random errors, & = (&1,...,&H) € R"*H is the matrix of latent compo-
nent, where E = XU, with U € RP*H as H direction vectors, with 1 < H < min{n, p}
and U = (uy,...,up). Furthermore, (1, v;) is the solution of the optimization problem
according to Equation 4.3 for j = 1,...,h — 1, subject to ||u||» = 1.

min{[|M — uo " |[7 + Py, (u)} (4.3)

The optimization problem minimizes the Frobenius norm [|[M —uv " ||2 = Y1, ;’:1 (mij —
uivj)Z, where M = XY, u and v are the loading vectors, and V = (vy, ..., vy). Further-
more, Py, (u) is the Lasso penalty function, where Py, (1) = Aq|ju||; [63; 64].

This optimization problem is solved based on the PLS algorithm [65] and Singular
Value Decomposition (SVD) [66] of a matrix M), per dimension h. The SVD decomposi-
tion of matrix Mj, is subsequently deflated per iteration /. This matrix is computed as
UAV', where U and V are orthonormal matrices, and A is a diagonal matrix whose
diagonal elements are called the singular values. During the deflation step of PLS,
M, # XY}, given that X, and Y, are computed separately, and the new matrix is called
Mj,. At each step, a new matrix M, = X;Yh is calculated and decomposed by SVD. Fur-
thermore, in sPLS algorithm, the soft-thresholding function g(u) = (ju| — A)sign(u),
with (x); = max(0,x), was used in penalizing loading vectors u to perform variable
selection in the regressor matrix; thus, e = g A (My,_19014) [61].

The mixOmics package [67] offers different functions for carrying out multivariate
analysis of data sets, with a specific focus on data exploration, dimension reduction and
visualisation [68]. Among the different functions, it proposes some in order to carry out
sPLS. Also, it implements Leave-One-Out cross-validation (LOO-CV) to compare the
performance of diverse models with different Lasso penalties. Furthermore, in order
to perform variable selection, it employs an algorithm that uses the soft-thresholding

function g(u), according to Equation 4.4. By controlling 7 instead of the direction vector
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specific sparsity parameters A, the method evades combinatorial tuning of the set of
sparsity parameters and supplies a bounded range for the sparsity parameter [53].

8(u) = (Ju| —nmaxi<j<p| uj |)1sign(u), where
0<y<1 (4.4)
(x)+ = max(0, x)

The algorithm implemented in the mixOmics package uses the number of variables
denoted as keepX for running PLS, instead of the parameter 7, while it employs # close
to 1. The keepX argument in the package functions is employed in order to evaluate
different subsets of variables on each latent component and determine the best number
of variables that optimizes the objective function of PLS.

The perf function was used to determine the optimal number of components. The
performance of sPLS was evaluated for 10 components using LOO-CV. The optimal
number of components was determined by identifying when the further decrease in
Root Mean Square Error of Prediction RMSEP is relatively insignificant [232]. RMSEP
is defined in Equation 4.5, where PRESS, = Yi' ; (yi — ]?h(,i))z, with ¥j,_;) is the model

prediction with 1 to & components across all but the i — th observation.

RMSEP, = ,/%Ssh (4.5)

The main criterion for selecting the optimal number of components was RMSEP,
while the second one was the goodness-of-fit R? (0 < R? < 1). The latter is inflationary
and rapidly approaches 1 as the number of model parameters increases. Therefore, it is
not sufficient to only have a high R?.

In order to determine the optimal number of variables to select on each component, a
grid (keepX) of the non-zero elements of the loading vector was assessed on each compo-
nent, one at a time. The values of three different grids were carefully chosen to achieve
a trade-off between resolution and computational time. Firstly, two coarse tuning grids
were evaluated before establishing a finer grid. The penalization parameter was cho-
sen by computing the error prediction (RMSEP) with LOO-CV, per component. The
tune. spls function was used to determine the optimal number of variables per compo-
nent. Once the optimal number of components and variables were determined, the final
sPLS method was run.

Variable Importance in Projection VIP; [187] was used for computing the overall
importance of each predictor variable on the response, cumulatively over the total com-

ponents. This measure was computed using the loading vectors and the sum of squares
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per component. Variables with VIP; > 1 are the most important ones in the regression
model.

Although PLS was not originally designed for classification, it has been employed
for that objective, with effective performance [53]. In respect to the ajustment of PLS
to classification for high-dimensional data, some approaches have been studied, e.g.,
SPLS Discriminant Analysis (SPLSDA), Sparse Generalized PLS (SGPLS) [52], and sPLS-
Discriminant Analysis (sSPLS-DA)[63]. Regarding SPLSDA, different variants have been
proposed: SPLSDA-LDA (i.e., with linear discriminant analysis) and SPLSDA-LOG,
(i.e., with Logistic Regression). These methods aim to improve the PLS classification a-
pproaches by using dimension reduction and variable selection simultaneously. In fact,
sPLS-DA has been used in order to classify time series in the context of art conservation
[161; 162].

Likewise, this study proposed a statistical methodology based on SPLSDA [52] for
classifying different time series of T in the context of preventive conservation of cul-
tural heritage. SPLSDA computes latent components using sparse partial least squares
(SPLS) regression [53]. SPLS selects predictors while reducing dimension. Next, a clas-
sifier is fitted, either Logistic Regression (LOG) or Linear Discriminant Analysis (LDA)
[53]. Chung and Keles [53] suggest using a linear classifier because it might be better
from an interpretation point of view. The methodology proposed here consists of using
sPLS [61] instead SPLS [53]. Once the latent components are computed, LDA is used
subsequently.

When examining time series for art conservation, they are generally very similar
in distinct positions or height levels of the same building. In this area of research, it
is of interest to develop statistical methodologies that can improve the classification of
time series with easy interpretation. Such classification can be useful for characterizing
and monitoring microclimatic conditions in different zones and heights in a museum,
archaeological site or heritage building, with the goal of avoiding problems such as

moisture and dust deposition on walls and artworks.

LDA is a supervised method for the discrimination of qualitative variables in which
two or more clusters are known a priori and new observations can be classified into
one of them, according to their characteristics [231]. In this study, for separating three
clusters (K = 3) of sensors according to height, LDA was run by using the matrix X &
R4, whose elements correspond to values of the d components for n sensors. The
components (d = 2) were computed from sPLS (either method 1 or method 2). The
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clusters that were defined according to the heights (h), are the following: 1 (2.0 < h <
43),2(4.3 <h <87),and 3 (8.7 < h < 13). The number of nodes per cluster were 10,
5 and 6, respectively. Clusters 2 and 3 comprise of a vertical difference of 4.4 and 4.3 m
respectively, but this value is about half (2.3 m) in cluster 1. This is not an ideal situation,

but this criterion was adopted in order to have a similar number of nodes per cluster.

LDA predicts the cluster most appropriate for each of sensor by using Bayes’ theo-
rem, which helps computing the posterior probability P(y = k|x), for each cluster k,
k =1,2,3. Suppose that a predictor x € R4 and that the class conditional distribution
P(x|]y = k) is modeled as a multivariate Gaussian distribution (with mean p; € RY
and variance matrix X € R%*%), where all clusters have the same covariance matrix
Y. Then, the log posterior (Jx(x)) is given by Equation 4.6, where D is the Mahalanobis
distance between the data x and the mean p;. LDA classifies a sensor in the cluster
k, if the cluster maximizes the log posterior probability & (x) [231]. Thus, this method
classifies a sensor, by accounting for the cluster prior probabilities P(y = k), and the
cluster whose mean is the closest to the data x, according to Mahalanobis distance (D)
[231].

dr(x) =log P(y = k|x)
O(x) = — %D +log P(y = k) + constant, where (4.6)

D =(x—pe) 7" (x — pg)

Equation 4.6 can be written as indicated in Equation 4.7, which implies that this
method has a linear decision surface [231].

5x(x) =log P(y = k|x) =wy + w{ x + constant, where
-1 L (4.7)
Wy =X U W = —5H i +log P(y = k)

Figure 4.7 illustrates the boundary of decision, D(x) = d;—o(x) — d—1(x) = 0, for
classifying one observation (blue point) from two clusters (K = 2). The first cluster has
flo as the estimation of the mean, and the second one has fI; as the mean. The blue point
was classified in cluster 0 because D(x) > 0.
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Figure 4.7: The picture displays two clusters (cluster 0 and cluster 1). If D(x) is greater
than 0, the blue point is classified as cluster 0 and otherwise as cluster 1. The purple line
corresponds to the boundary of decision, D(x) = d;—q(x) — d=1(x) = 0.

LDA can be carried out by first transforming the data in order to have an identity
covariance matrix. Next, LDA assigns x to a cluster k, taking into account prior proba-
bilities of the cluster and the cluster whose mean is the closest to the observation, a-
ccording to Euclidean distance [231]. Calculating Euclidean distances in d-dimensional
space (ux € RY) is equivalent to first projecting the data points into an affine subspace of
the dimension at a maximum of K — 1 [231]. Thus, in this case, LDA determines linear
combinations of the components from sPLS for predicting the clusters for the different
sensors. This method was run by using the function train (with method="1da") of the
caret package [233], and partimat of the k1aR package [228] of R software.

In this study, the assumption that each component has a normal distribution for
each cluster was verified, as well as whether the variance of the components was the
same in all clusters. When the normal condition is not fulfilled, LDA loses accuracy
but can still reach a relatively good performance [18]. Results from the methodology
proposed (sPLS with LDA) were compared with the results from SPLSDA and sPLS-
DA. The classification error rates and number of selected variables from each method
were compared. SPLSDA was run by using the function cv.spls of the spls package
[229] and sPLS-DA method was run by using the functions perf and tune.splsda of
the mixOmics package [68].

The values of T inside the church are influenced by the climatic conditions outside.
Figure 4.8 displays the trajectories of T (days) in the period from August 1st 2017 to
February 28th 2018, outside and inside the church of Saint Thomas and Saint Philip
Neri. The trajectories of T inside the building correspond to the 21 node sensors em-

ployed in this study, while the trajectories of T outside correspond to the minimum and
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maximum daily temperatures. The trajectories show a similar tendency, as the tempe-
rature decreases until November, and T becomes stable after that day. The variability
of T, from sensors inside the building is obviously less pronounced than the variability
of T outside the church. The values of T inside the church are more influenced by the
maximum temperature outside. If the maximum daily temperature is smoothed, it can
be observed that the values are quite similar throughout the year to those registered
inside the church. This fact is striking, since it would be expected that the temperature
inside the temple would be intermediate between the maximum and minimum values
of outside air conditions. The main hypothesis is that the maximum outdoor tempera-
ture is measured in the shade and under standardized conditions. However, the solar
radiation incident on the roof of the church reaches a temperature much higher than
that of the surrounding air, which occurs throughout the year because the weather in
Valencia is very sunny. This heat is transmitted inside the temple, and would affect the
air temperature in the church. A detailed study of heat transmission would be necessary
to better study this issue, but it is out of the scope of the present work.

30

T(°C)
10 20

|
1st Aug 14th Nov 28th Feb
2017 2018

time(days)

Figure 4.8: Trajectories of daily-mean temperature over time (days) in the period from
August 1st 2017 to February 28th 2018. The green and brown trajectories correspond
to the minimum and maximum daily temperature, respectively, in the city of Valencia,
Spain. The blue trajectories correspond to temperatures recorded by the 21 sensor nodes
inside the church of Saint Thomas and Saint Philip Neri.

The vertical gradient was estimated for each month by fitting a linear regression model
using height and hourly mean temperature as the predictor and response variables, re-
spectively (see Section 4.3.5.2). The target was to identify in which month the correlation
between both variables was statistically significant. It was found that vertical thermal
gradients in the church of Saint Thomas and Saint Philip Neri change along the year.
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Figure 4.9a shows that the correlation between height and hourly values of T is around
r = 0.8 in August, but it decreases afterwards, reaching a null value in October, and
the correlation becomes slightly negative in winter. Taking into account that July and
August are the hottest months of the year in Valencia, this observed correlation suggests
that, in summer, the temperature at the upper part of the central nave is higher than at
lower levels. The reason could be the hot temperatures reached during the day in su-
mmer in the Mediterranean region [10]. By contrast, in winter, the correlation tends to be
slightly negative. However, such correlation is not statistically significant, as described
below, which implies that there is not enough evidence to affirm that temperatures in
the lower positions tend to be higher in winter. Results reveal that vertical gradients
of T are not stable throughout the year, and summer is the only period when vertical
airflows might be involved in phenomena of dust deposition in walls. For August and
September, most values of the correlation coefficient between sensor level and tempe-
rature were greater than 0.20 (upper red line in Figure 4.9a). In fact, the maximum value
of r = 0.80 was found for August. For the period from August 10th at 8:00 AM to
September 9th at 11:00 PM, most p — values were less than 0.05 (red line in Figure 4.9b),
which implies that the correlation between height and monthly mean T is statistically
significant. Thus, it is possible to establish a linear relationship between them. By con-
trast, since September 17th, most p — values were greater than 0.05 (see Figure 4.9b).
As a consequence, August and September are the most relevant months for explaining
the relationship between sensor levels and temperature. In particular, the period from
August 10th at 8:00 AM to September 9th at 11:00 PM.

For the period from August 10th at 8:00 AM to September 9th at 11:00 PM, the diffe-
rence between the mean temperature for the maximum sensor level (13 m) and the mini-
mum sensor level (2 m) was 0.39°C. Also, estimations of the intercept and slope with
their confidence intervals at 95% in the linear regression model using height (predic-
tor variable) and mean of temperatures (response) were 28.31 (28.207, 28.35) and 0.043
(0.030, 0.057) respectively. The coefficient of determination is R? = 70.55%. In the pe-
riod mentioned, at the floor level (height = 0), the estimated mean of T is 28.31°C. Also,
if the height increases by 1 meter, the mean of T will increase on average approximately
0.043°C/m, which implies 0.43°C per 10 m. This result is consistent with the difference
previously calculated. In a vertical difference of 11 meters, the model estimates 0.47°C
as the thermal difference. This linear increase can be seen in Figure 4.10. Given that
the gradient corresponds to the slope of the linear regression fitted to the data (mean
temperature per node vs. height), it is possible to compare the results from this study
with other works reporting differences of temperatures at different height levels.
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Figure 4.9: (a) Evolution of the correlation coefficient (r) between sensor height and
temperature, over time (hour). Horizontal red lines correspond to values of —0.20 <
r < 0.20. Dashed vertical lines account for the different months. (b) p — value from the
correlation test over time (hour). The red horizontal line corresponds to p — value =
0.05; for lower values the correlation was regarded as statistically significant. Purple
vertical lines correspond to August 10th at 8:00 AM and September 9th at 11:00 PM. The
blue line indicates September 17th at 9:00 PM.

The vertical thermal gradient quantified here is consistent with a similar study ca-
rried out in the Duomo of Milan [193], where the vertical gradient was estimated as
0.033°C/m. This Cathedral does not have a heating or air conditioning system inside,
which would explain the linear gradient and the small variations of T. If the trajectories
of T recorded in the Duomo are compared with those from the church of Saint Thomas
and Saint Philip Neri, their characteristics are rather similar (e.g., maximum, minimum,
trend, etc.), probably because the indoor microclimate in both churches is unheated (i.e.,

natural) without any air conditioning system and the climate in Valencia and Milan is
rather similar.
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Figure 4.10: Plot of fitted linear model for mean temperature in the period from August
10th at 8:00 AM to September 9th at 11:00 PM, from each node (codes as in Figure 4.4)
versus height. Prediction limits (in purple) correspond to 95% confidence level. The
vertical gradient estimated from 0 to 11 m is about 0.47°C.

In the Basilica di Santa Maria Maggiore, in Rome, a study of temperature gradients
was carried out at heights of 3, 7, and 11 m [234]. A greater vertical gradient was iden-
tified in August than in September and December. In August, most time series of tem-
perature underwent an increase by 0.05°C/m approximately. Regarding the trajectories
of T recorded in the church of Santa Maria Maggiore [234], which is relevant for the
case of Saint Thomas and Saint Philip Neri, in August and September, higher tempe-
ratures were recorded at the maximum height, while the lower ones were found for the
minimum height. By contrast, in December, the phenomenon changed, so that lower
temperatures were recorded at the maximum height while the opposite occurred near
the floor level. The difference between maximum and minimum heights for the sensors
were similar in both studies (i.e., 8 and 11 m, for the Basilica in Rome and for the church
in Valencia, respectively). Furthermore, the gradient found for August at the Basilica
of Santa Maria Maggiore was 0.05°C/m, which is consistent with the confidence inter-
val of 95%, (0.030,0.057), for the gradient estimated for the period from August 10th to
September 9th in church of Saint Thomas and Saint Philip Neri. However, in other pe-
riods like May, in Santa Maria Maggiore [234], the increment of temperature per meter
was at least 0.25°C/m. The main reason could be the hot air that came in through the
front door of the church [234]. According to reported results and the fact that some stu-
dies have displayed the effect of temperature gradient on the dust accumulation process
under different temperatures [234; 235], an important conclusion of both works is that

the ventilation of churches can be very important for discussing temperature gradient
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in height. The ventilation rate should be studied and quantified, as it contributes to the
deposition of dust on art works. This issue is discussed in Section 4.4.2.

Although many studies have analyzed time series of T in the context of art conser-
vation, their focus has not been on comparing parameters (e.g., mean, maximum and
minimum) of temperature at different height levels. For example, Merello et al. [11]
compared estimation of parameters such as the minimum and maximum of T in dis-
tinct positions in a building instead of different height levels of the sensors. Also, they
studied the performance of the mean T by using contour plots, which helped to analyze
the change of T at different height levels in the building. However, it is not possible
to estimate the vertical gradient from this reported study. The methodology proposed
by Merello et al. [11] based on ANOVA could be employed to compare the series of T
at different levels in the building. However, this method cannot help to discriminate
according to the different characteristics of series of T.

In order to study the temperature gradient and identify the best function that ex-
plains the changes of temperature according to the height variable (i.e., linear, quadratic
or further polynomial orders), it is necessary to employ temperature measures at dis-
tinct height levels. In case of a linear gradient, using a linear regression model seems
better than computing the differences between temperatures measured at two levels.
The estimation of the model provides a better interpretation of the results. Although
linear regression was used in this study, other methods based on smoothing techniques
and nonparametric regression [231; 236], which relax the usual assumption in several
standard models like the one used here, could be employed. These models are more
flexible and they can fit a wide range of structures in the data, e.g., observations from
buildings which employed an air conditioning system.

There are several European Standards [92; 93; 94; 95; 96; 97; 98; 237; 238] for pro-
viding guidelines for monitoring, elaboration and study of the microclimatic conditions
inside heritage buildings, aimed at art conservation [198; 199; 200]. According to Euro-
pean Standards EN 15757, variables such as annual average, seasonal variation, short-
term fluctuations, and 7th and 93rd percentiles of short-term fluctuations, can be used
as reference for specifying the levels of T or RH in order to avoid physical damage
in organic and hygroscopic materials. Seasonal variation are computed by using mo-
ving average of 30 days, and short-term fluctuations are calculated by using difference
between the instantaneous measures and a moving average [97; 239]. Short-term fluc-
tuations are used instead of seasonal cycles because buildings located in cold climates
are expected to be equipped with heating systems, which helps to provide more stable
seasonal cycles. As a consequence, the indoor conditions are less dependent on the ex-
ternal conditions. However, there is not a complete study on the application of the EN
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15757 in all types of climates, thus, it is necessary to assess its methodology in tempe-
rate climates and suggested changes, if required [201]. Silva and Henriques [201] carried
out an microclimatic study of the Church of St. Christopher in Lisbon (Portugal) with
records from November 2011 to August 2013. They analyzed T and RH from 17 ther-
mocouples or portables sensors located on the church in a vertical profile (5 levels: 0.15,
1.50, 3.90, 7.50, and 10 m), in horizontal profiles (4 profiles at different positions), some
surface points of on wall, among others. They studied indoor conditions as indicated by
references like the EN 15757:2010 [97], the Italian National Unification UNI 10829 [160]
and the American Society of Heating, Refrigerating and Air-Conditioning Engineers
ASHRAE specification [239]. This research is of interest because studies about indoor
air conditions in historical buildings in temperate climates are scarce [201]. Although
Portugal has a Mediterranean climate, due to its proximity to the Atlantic Ocean, ithas a
particular climate with winters less cold and summers less warm than climates of other
countries in southern Europe. Silva and Henriques [201] define an interval for short-
term fluctuations of T of 0.8 °C. This interval or target band was limited by 7th and 93rd
percentiles of T. They suggested following a target band for T in the future as a preven-
tive measure. Also, they found, for example, that the maximum temperature from sen-
sor at level 3.90 m was 24.9 °C and the temperature minimum was 13.2 °C. Although the
trend of the temperature trajectory found for the Church of St. Christopher may coin-
cide with other temperature trajectories for other buildings in Mediterranean countries,
the band, minimum and maximum temperatures can be very different. For example,
in this study, both the minimum and maximum temperatures were higher than those
determined in the Church of St. Christopher. Regarding to the previous ideas, it is ne-
cessary to evaluate the climatic conditions in buildings located in Mediterranean climate
in order to have reference values for monitoring indoor conditions. Thus, the method-
ology proposed in the present work for estimating the temperature gradient, could be
useful in order to determine reference measures for historical buildings. Furthermore,
for buildings located in Mediterranean countries, the confidence interval (95%) of verti-
cal gradient reported here (0.030 °C/m, 0.057 °C/m), could be considered as a reference
measure in summer.

Functions to estimate risk damage in cultural heritage are a permanent subject of
study and investigation [240; 241]. In [241], a detailed review of such risk damage can
be found. However, the quantification of vertical thermal gradients has not received
much attention yet regarding the study of risk damage in cultural heritage, though it is
well established that T gradients affect dust deposition on walls and works of art [234].
One reason for this can be the difficulty of measuring the speed of the movement of
air within the building, which is a consequence of thermal currents dragging particles.
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Air speed is not easily quantified since it is necessary to model the speed value at each
point [242; 243; 244]. The techniques related to Computational Fluid Dynamics (CFD)
analyze physical parameters at each point by using finite elements of volume, mainly
T, RH and wind speed. Although these techniques use a computer system for their
calculations, they need real measurements to indicate the boundary or input conditions
of the problem and, secondly, to verify and validate the results. Therefore, a technique
that is capable of quantifying a gradient, such as the one described in the present work,
might be useful in a CFD study [242; 243; 244].

It has been estimated that the total volume of the church of Saint Thomas and Saint
Philip Neri is about 18000 7%, including the side chapels and the Chapel of the Holy
Communion, which is separated from the main nave by a door that always remains
open, except in winter. In this chapel there are two tilt-and-turn windows of 1 x 1.5
m, almost always opened vertically. The Sacrist has ventilation to the outside, but the
door that connects the main nave with the sacristy remains closed most of the time.
The temple has multiple windows in the upper area, but they do not have openings
for ventilation. The main source of ventilation is the large front door, which is rarely
fully opened. Ordinarily, the main door gives access to the nartex, which is a wooden
structure that serves as a transition between the exterior and interior environment. This
nartex has two 2.4 x 0.9 m doors, which must be pushed to open by the churchgoers.
They close automatically by means of springs.

Through the website https://datosclima.es/Aemethistorico/Vientostad.php
(accessed on 18 October 2021) it has been found that in Valencia, between August and
December 2017, the average wind speed was about 1.4 m/s, which, multiplied by the
section of the narthex door (2.2 m?), is equivalent to an average air flow of about 3.08
m?/s. Assuming that during work days this door is open for a total of 200 s (taking into
account that the temple can be visited for 6.5 h a day), this equates to an average air
volume of 616 m>. Thus, under these conditions, 29 days would be necessary to renew
18,000 m? of the total volume.

Assuming that on Sundays the attendance of parishioners is much higher, up to
perhaps 10 times, it would take about 3 days to renew the total air volume. In any case,
these preliminary calculations show that the ventilation rate of the temple is very low.
Air renewal rate is an important aspect to consider in the present study. Actually, the
fact that the vertical thermal gradient was basically observed in August, could be related
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to the low ventilation rate during this month. Perhaps a much higher ventilation rate
could have homogenized the vertical profile of temperatures and could have altered the

results.

Next, sPLS was employed to identify the main features from the time series that are co-
rrelated with sensor height in the church, which is of interest particularly for those pe-
riods where the vertical gradient was not statistically significant. When applying sPLS
as described in Section 4.3.5.4, according to criteria of RMSEP and R?, two components
seem to be enough, both when using variables from method 1 and method 2. The total
number of selected variables for methods 1 and 2 were 7 and 13, respectively. Variables
are sorted in Table 4.2 by decreasing value of VIP; [187], which was computed for deter-
mining the overall importance of each predictor variable on the response, cumulatively
over the total components. The values of VIP; for variables in Table 4.2 are greater than
1, which are the most important ones in the model. Regarding method 1, the vari-
ables selected by sPLS correspond to the stages: 1 (mean.ts and mean.mr), 3 (pacf4), 4
(pacf4d), 5 (pacf3 and pacf4), and 7 (pacf3). The relevance of pacf3 and pacf4 is di-
fficult to interpret, because these variables imply that the time series are autocorrelated
with the values observed 3 or 4 hours before. Anyway, the most relevant information is
the fact that, in August, both mean.ts (mean temperature) and mean.mr (mean moving
range with order 24) present nearly the same degree of correlation (r = 0.67) with sensor
height. Thus, not only the mean temperature tends to be higher at the upper position,
but also the daily variability. The reason might be the high temperatures reached in
Valencia in August during the day, but they become mild at night.

The most relevant stages were 1 and 4, which correspond to August and November.
For both methods, August was the most important month. The mean temperature was
important for this month, because the overall mean temperature (mean. ts) was selected
for method 1 and, moreover, the local mean at the last instance of time (a, i.e., level)
was chosen for method 2. The feature mean.ts was the most important, according to
the VIP; for method 1 (see Table 4.2a) and the level was the 10th variable among the
selected ones for method 2 (see Table 4.2b). Regarding the selected variables from sPLS,
mean.ts and mean.mr were the only ones with a statistically significant correlation at
x =1% (r = 0.86, p — value < 0.001 and r = —0.65, p — value = 0.001).
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Table 4.2: Results from sPLS: variables selected (V), ordered from top to bottom accor-
ding to VIP;. The monthly stage is indicated as Stg1 (August) to Stg7 (February). Corre-
lation coefficients (r) of each selected variable vs. sensor height, and the corresponding
p — values of the correlation test. Results are presented in accordance with the variables
used in sPLS: (a) Method 1 and (b) Method 2

(a) (b)
Stage V r p —value Stage V r p—ovalue
1 Stgl mean.ts 0.86 0.000 sStg4d a -0.33 0.138
2 Stgb pacf4  0.28 0.217 sStgl s7 0.83 0.000
3 Stgd pacf4  0.36 0.108 sStgl s8 0.79 0.000
4 Stg7 pacf3  0.51 0.019 sStgt s6 0.80 0.000
5 Stg3 pacf4  0.43 0.054 Stgl s19 -0.77 0.000
6 Stgl mean.mr -0.65 0.001 stgb a -0.31 0.178
7 Stgb pacf3  0.31 0.167 Stg4 s12 0.74 0.000
8 Stgl s18 -0.75 0.000
9 Stgd s6 -0.23 0.319
10 Stgl a  0.77 0.000
11 Stg7 s20 -0.41 0.065
12 Stg7 s16 0.70 0.000
13 Stg4d s23 -0.69 0.001

In fact, the period from August 10th to September 9th was the most important pe-
riod for explaining the vertical gradient of temperature. Also, August was the most
relevant month for discriminating the temperature according to height. In the same
manner, research of the time series of T recorded at the archaeological site of L’Almoina
in Valencia found that the most important fluctuations occurred during summer [205],
due to the greenhouse effect caused by a skylight that covers part of the ruins. Results
reported here are consistent with a similar work that found summer as the most impor-
tant period for explaining the gradient of T, probably because outdoor temperatures in
the Mediterranean region are greater in summer [10].

For method 2, the estimated value for the level (a) was found as relevant in stages
1, 4 and 5. However, the correlation between the level and height was only statistically
significant for August (r = 0.77, p — value < 0.001). In fact, August was the unique
month with a pronounced correlation (r = 0.78, p — value < 0.001) between the level
and the mean temperature (mean.ts), which is strongly correlated with the height (r =
0.86, p — value < 0.001). By taking a look at the coefficients r in Table 4.2b, the highest
values corresponds to s6, s7 and s8 (stage 1), which implies a seasonality every 7 hours
approximately. Also, in this stage, s18 and s19 are relevant.
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Figure 4.11: Projection of sensors over the two relevant components (PLS1 and PLS2)
on the subspace spanned by the regressor data sets from sPLS; (a) using variables from
Method 1 and (b) Method 2. Sensor codes, represented by letters, as in Figure 4.4, which
were colored according to their height: 13.0 m in red, 12.1 m in pink, 8.7 m in gray, 5.0
m in blue, 4.3 m in green, 4.0 m in purple, 3.9 m in cyan, 2.5 m in brown, and 2.0 m in
orange. Solid tilted lines were inserted to better reflect the distribution of nodes in both
plots according to height.

In simple regression, Y = f(X), so that Y depends on the values of X. In the ob-
served correlation between mean temperature and sensor height, the temperature varies
according to the sensor height and, hence, temperature should be regarded as the de-
pendent variable (Y) and height as the predictor (X). In this linear model, the slope
can be interpreted as the gradient, as discussed above. Nonetheless, in order to be-
tter understand the differences in the time series recorded at the lower vs. the upper
positions, multiple linear regression (MLR) was used to fit sensor height (Y) as a func-
tion of variables selected from sPLS from method 1. Using these variables in the regre-
ssion model leads to a high degree of multicollinearity; thus, only two variables were
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considered in the final model as predictors: mean of T and mean of MR (i.e., moving
range of order 24), both from stage 1 (August). The estimation of the height is given
by #; =0.36+3.24-mean.ts-1.72:mean.mr, i = 1,...,21. Thus, sensor height can be fitted
according to the average temperature in August and a measure of daily variability. The
R? for the model was 87%; p — values (from F-test and t-tests) were less than 0.0001 for
determining whether the independent variables in the model are statistically significant.
The residual analysis showed that the assumptions of the linear regression model were
fulfilled.

Regarding the sPLS results from both methods, Figure 4.11 shows the projection of
sensors over the two relevant components (PLS1 and PLS2) on the subspace spanned
by the regressor data sets from sPLS. The projections of sensors were colored according
to their height levels (one color per height: 3.0 m in red, 12.1 m in pink, 8.7 m in gray,
5.0 m in blue, 4.3 m in green, 4.0 m in purple, 3.9 m in cyan, 2.5 m in brown, and 2.0 m
in orange). According to the tilted solid lines represented in Figure 4.11, it is possible
to establish 5 classes of sensor nodes according to both methods. It is noteworthy that
the solid lines are markedly tilted, which implies that both the first and second compo-
nents are necessary to achieve a reasonable discrimination of nodes according to height.
These classes are adjacent and appear ordered in the plots. Lines in Figures 4.11a and
4.11b separate the different groups, which were denoted as 1 (2.0 < h < 2.5) in blue, 2
(3.9 <h <4.3)inpink, 3 (5.0 < h < 8.7) in gray, 4 (h = 12.1) in purple, and 5 (h = 13.0)
in green. The tilted solid lines were drawn by visually checking the positions of points,
taking into account similar height levels of the sensors. For method 1, node E was
classified incorrectly. Nodes T and B are located in the limit of classes 1 and 2, while J
appears in the boundary of groups 4 and 5. By contrast, for method 2, all nodes were
classified correctly according to the lines drawn in the plot. However, U was located
in the limit between class 1 and 2.  This classification can be improved by utilizing
LDA, which maximizes the differences between the clusters, being the two first compo-
nents (LDA1 and LDA?2) a linear combinations of PLS1 and PLS2 components, which
in turn are linear combinations of predictor variables from methods 1 and 2. The most
important variables per method and component were the following: for method 1, PLS1
was mainly determined by mean.ts and mean.mr, while PLS2 was basically computed
by pacf3 and pacf4. For method 2, PLS 1 was determined by the variables a, s6, and
s7, while PLS2 was calculated by using s8, s12, s16, s18, s19, s20, and s23. These re-
sults suggest that for method 1, the first component explained the level and changes
of the levels of the time series of T, while the second explained the autocorrelation of
time series. Furthermore, for method 2, the first component explained the level of the
last observation of the time series of T, while the second component explained the pre-
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diction of the last observation of series at 7, 15, and 24 hours past the time of the last

observation.

By considering those variables found as relevant from sPLS with two components, LDA
was applied in order to check if is possible to discriminate sensors according to their
height, and to better understand the variables most relevant for such discrimination.

Three categories were established: low, medium, and high elevation.

Figure 4.12 displays how the sensors are discriminated in three clusters (i.e., blue for
cluster 1, red for cluster 2, and gray for cluster 3) by applying LDA. The plot outputs
show the projection of sensors over the two relevant components (LDA1 and LDA?2).
The three lines in the pictures which separate the three clusters, were determined a-
ccording to the boundary of decisions from LDA (see Section 4.3.5.5). By considering
variables from method 1, the nodes E, M and O, were incorrectly classified. Nonethe-
less, nodes E and O are located close the limit of the correct class. Figure 4.12b shows
results from method 2. Only node P was wrongly classified. ~Although four sensors
were classified incorrectly their projection on LDA1 vs LDA2 appear very close to the
boundary of decisions. Therefore, the incorrectly classified sensors do not depart too

much from the expected performance.

The discriminant approach used here is based on two steps; firstly, sPLS is applied
to identify the most relevant variables and, next, LDA is used for the discrimination.
Hence, this procedure was referred to as sPLS with LDA. In order to further discuss the
results, two additional discriminant methodologies based on a single step were applied:
sPLS-DA and SPLSDA. When comparing the results from the three methods, sPLS with
LDA led to the minimum error rates, 14.28% and 4.76% for method 1 and 2, respectively
(see Table 4.3). Using variables from method 1, sPLS-DA selected 10 variables, while
sPLS with LDA used 15 (see Table 4.3a). For method 2, SPLSDA selected 11 variables,
less than the other two methods, both of which used 15 (see Table 4.3b). Computational
experiments carried out by Chung and Keles [53] suggested that variable selection per-
formance of SPLSDA improves when the sample sizes increase. However, in the con-
text of art conservation, the number of sensors installed is usually rather small due to
restrictions in heritage buildings. Then, a combination of sPLS with LDA can be useful
to discriminate the time series according to different levels and zones in this type of
building.
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Figure 4.12: Projection of sensors over the two relevant components (LDA1 and LDA?2)
from LDA; (a) using variables from Method 1, (b) Method 2. Three classes were consi-
dered according to sensor height (h): class 1 (2.0 < h < 4.3), class 2 (4.3 < h < 8.7), and
class 3 (8.7 < h < 13). Red numbers correspond to sensors wrongly classified.

Table 4.3: Classification error rate and number of selected variables (N) using sPLS-DA,
SPLSDA, and sPLS with LDA. Results are presented according to the method used for
computing the features from the time series: (a) Method 1 and (b) Method 2.

(a) (b)
Classification method Error rate (%) N Error rate (%) N
sPLS-DA 35.06 10 18.75 15
SPLSDA 19.04 42 19.04 11
sPLS [61] with LDA 14.28 15 4.76 15

For the three classification methods applied, the classification error rates using varia-
bles from method 2 were lower or equal to the rates obtained for method 1. In a similar
study carried out in Valencia Cathedral [161] and L’Almoina museum [162], sPLS-DA
for method 2 obtained the second best results (lower error rate) when comparing with

143



Chapter 4. Characterization of Temperature Gradients According to Height in a Baroque Church
by Means of Wireless Sensors 4.4. Results and Discussion

method 1 and other approaches like ARIMA, ARIMA-GARCH or Wold decomposition.
Authors concluded that parameters extracted by applying SH-W has a good perfor-
mance for a wide range of series [162].

In this study, features defined using quantiles [220] were employed. These vari-
ables were not computed in previous studies [161; 162] when sPLS-DA was carried out
using input features from original time series. Regarding this type of variables, sPLS-
DA selected f.p.r.m35 (for stage 5), f.p.r.m80 (for stage 2), and p.d.f.p (for stage
1). Furthermore, SPLSDA selected f.p.r.m20 and f.p.r.m35 (for stages 1, 2, and 5),
f.p.r.m50 (for stages 1, 5, and 7), f.p.r.m80 (for stages 1 and 2), as well as p.d.f.p
(for stages 1, 2 and 6). However, the classification method based on sPLS with LDA
did not select any of these features. In summary, having a variety of time series cha-
racteristics can help improve results of the classification of sensors and comparisons of
results from different classification methods. Furthermore, finding a common subset
of variables was the most important outcome in this case for the classification meth-
ods, while other variables improved the results. Different studies have shown efficient
results using features from SH-W method.

sPLS-DA is one-stage approach that performs, in one step, dimension reduction and
selects variables for obtaining the lowest classification error rate. The other methods
are two-stage approaches (i.e., SPLSDA, and sPLS with LDA) which only maximize the
separation between clusters in the second step. One assumption is that employing two
steps instead of one might prevent from obtaining the important variables for classifying
the time series. However, the results show that using sPLS with LDA provides the best
classification error rates.

Elorrieta, Felipe et al. [49] proposed a new methodology for classifying time series
in the field of astronomy by capturing their peaks. The methodology was based on
different classification methods (e.g., Lasso regression, random forest, support vector
machine, logistic regression, CART algorithm, boosting, and artificial neural network),
and on certain features from the field of astronomy. Furthermore, they proposed two
new features to be used as input for the different classification methods [49; 50]. The
new methodology proposed by Elorrieta, Felipe et al. [49] shares a common aspect with
the approach used here. Both employed a classification algorithm using different cha-
racteristics from time series as input. Notwithstanding, the features extracted from time
series and classification algorithms are different. Time series from the art conservation
tield hold different characteristics from the ones in time series from astronomy research.
Furthermore, the main goal is to classify stars and results do not need to be interpreted.
Nonetheless, some features and all algorithms proposed by Elorrieta, Felipe et al. [49]
can be employed for analyzing the data from art conservation when the aim is to classify
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time series.

In the field of art conservation, high-dimensional real-world data sets were analyzed
to classify time series by using PCA with raw data as input by Zarzo et al. [7] and Garcia-
Diego and Zarzo [6]. The relevant principal components were calculated to identify the
patterns encoding the highest variance in time series of T and RH. Although PCA does
not maximize the separation between clusters for the different time series, it was found
that PC1 and PC2 discriminated several clusters from each other, when applying PCA
to different time series. Despite the succes of PCA in this context, LDA can improve the

results because this method maximizes the separation among clusters of time series.

The three methodologies (i.e., sSPLS-DA, SPLSDA, and sPLS with LDA) were effi-
cient for classifying time series, as they separate the time series clusters. It should be
remarked that these methodologies were numerically stable and competitive in terms
of computational efficiency. Consistent results were obtained when the processes were
repeated, and the time running was alike and little. Besides, using linear combinations

of variables extracted from time series can greatly improve their classification.

In order to study the vertical gradient of T and to characterize the temperature at
high, medium and low heights, it would have been more convenient to decide the po-
sition of sensors according to a statistical design of experiments considering the same
number of sensors at the different levels and different positions in the church. A proper
statistical design is important to improve the results and conclusions. However, it is
not always possible to use the ideal statistical design because there may be some restric-
tions in the buildings, such as the characteristics of the building itself, the maximum
number of nodes available, and the need to prevent problems derived by the movement
of people, among other factors. Nonetheless, results reported here will be helpful for
encouraging further studies using an adequate statistical design that can be adapted to
these restrictions.

According to the result, the different height levels of sensors can explain the ver-
tical thermal pattern in August. In the other months, the factors that might affect the
temperature, are the following: some sensors are located close to windows which were
exposed to direct sunlight for a continued period of the day, some sensors are posi-
tioned close to halogen lamps reaching a high temperature, among other factors. Work

in progress is currently being carried out to study these factors in detail.
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With the goal of proposing a methodology for the multisensor microclimate monitoring
in the church of Saint Thomas and Saint Philip Neri (Valencia, Spain), two methodolo-
gies were put forward for estimating the vertical gradient of temperature and charac-

terizing the differences between time series at high, medium and low heights.

1. This research reports a microclimatic study in the church of Saint Thomas and
Saint Philip Neri in Valencia for the first time, which is of relevant interest because
inappropriate conditions of temperature can affect the valuable artworks. The re-
sults suggest that temperature gradients in this church were comparable to those
estimated at the Duomo in Milan and Santa Maria Maggiore in Rome, Italy. More-
over, it turned out that the identification of such gradients was restricted to a very
limited period (August-September) during summertime. Furthermore, the results
found in this study might provide guidelines for establishing a plan for thermal

monitoring and preventive conservation in similar churches.

2. The first methodology is based on Pearson’s correlation coefficient and linear re-
gression. This methodology, which could help to determine reference thermal
gradients for art conservation, could be improved using smoothing techniques
and nonparametric regression. Furthermore, taking into account that datasets
about indoor air conditions in historical buildings in Mediterranean climates are
scarce, the confidence interval (95%) of the vertical gradient found in summer
(0.030°C/m,0.057°C/m), could be considered as a reference for further similar
studies. Results obtained can be extrapolated to similar scenarios, whether in a
heritage building or others, such as an industrial building, warehouse or farm of
similar volume and height, with little ventilation, in a similar climate, according

to some climate classification criteria (e.g., Koppen [245] and Trewartha [246]).

3. The second methodology proposed here combines sPLS [61] and LDA. Also, it
employs variables computed from seasonal H-W method, or functions that are
applied to time series. This methodology helped to obtain parsimonious models
with a small subset of variables, leading to satisfactory discrimination and easy
interpretation of the different clusters of the time series. Also, it was useful for
identifying the most important variables for classifying time series. The variables
computed from seasonal H-W method yielded better results. In other studies, SH-
W has also been shown to provide efficient results. This method was more flexible
for fitting the distinct time series and obtaining low values of the classification
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error rate. The new methodology proposed allowed an efficient characterization
of T at high, medium and low altitude levels. This approach had the best results
according to the classification error rate and number of selected variables, when
compared to results from SPLSDA [52] and sPLS-DA [63]. When using variables
from seasonal H-W as input for either sPLS with LDA, sPLS-DA, or SPLSDA, both
the error rate and the number of selected variables were better.
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The process of separating groups according to the similarities of data that are correlated
is a common situation in many scientific fields. From a statistical perspective, designing
new methodologies for identifying clusters in correlated data represents an important
challenge. There are different statistical approaches for dealing with clustering of time
series, according to the characteristic of the problem to solve. Some approaches were
presented in the introduction. However, clustering performance is reduced when the
clusters are close to each other, which is a problem when examining time series in the
context of microclimate monitoring for art conservation.

In this context, highdimensional realworld data sets were ana lyzed using PCA with
raw data as input, in order to identify clusters of time series. The principal components
were computed in order to represent the patterns encoding the highest variance in a
data set. Although this method does not help to maximize the separation between clus-
ters in the data set, it was found that the first principal components separated different
subgroups of the samples from each other, when applying PCA to these data sets.

In this dissertation, a methodology for classifying time series is proposed. This
methodology consists of applying a classification method using variables from different
methods as input. Among the three classification methods, the two first are versions of
known sparse methods which have not been applied to time dependent data. The third
method is a new proposal that is based on two known algorithms. The variables corres-
pond to parameter estimates from functions, methods, or models commonly found in
the area of time series. Also, some variables employed in the field of astronomy (for
classifying stars) were proposed.

Regarding the classification methods, the first two methods (SPLSDA and sPLS-DA)
were proposed by Chung and Keles [53] and Lé Cao et al. [63] respectively, for adapt-

ing sparse partial least squares for classification of high dimensional data. By contrast,
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the third approach is a new proposal that used both sPLS [61] and linear discriminant
analysis. This method is based on SPLSDA that was proposed by Chung and Keles [53].
These methods use variables that are extracted from time series as input, for adapting
the classification in the context of clustering of time series.

The methods employed for computing the variables for the three studies presented
in this dissertation were the following: The first study computed variables using func-
tions applied to the time series (e.g., ACF, PACE, moving range, quantiles, among o-
thers), using different seasonal Holt-Winters methods, and using a common seasonal
ARIMA- TGARCH model, per stage (i.e., according to climatic conditions and struc-
tural breaks) for each time series. The second study used four methods for determining
the variables. The first three methods were very similar to the approach used in the first
study and the fourth method computed variables using Wold decomposition and di-
fferent seasonal ARIMA models. For the second method, in addition to variables from
the seasonal Holt-Winters method computed in the first study, 24 forecasts were em-
ployed. For the third method, different seasonal ARIMA models per stage and time
series were used instead of a common seasonal ARIMA-TGARCH model, per stage.
The third study employed two methods, both applied in the previous study. However,
for the first method, some variables based on quantiles were employed, which are used
in the field of astronomy.

Regarding the performance of sPLS-DA with different methods for achieving the
classification of time series, the main results were the following: for the first study, the
best results were derived from the ARIMA-TGARCH models and the second from the
seasonal Holt-Winters method. For the second study, the best results were obtained
from functions applied to the time series and the second best results from the seasonal
Holt-Winters methods. For the third study, the best results were found when using the
seasonal Holt-Winters method. According to these results, the most relevant method for
determining variables for classifying time series was the seasonal Holt-Winters method,
because the variables helped to obtain effective results for the different data sets. Ex-
panding the methods in the second study, by using the Wold decomposition and pre-
dictions of T from the seasonal Holt-Winters method, did not improve the classification
of the time series. The Holt-Winters method performed better in the classification be-
cause this approach adapts to a wide range of time series and its flexibility helps to pro-
vide more information to capture differences for classifying time series. Due to the need
of using the same number of variables for each time series, either a common ARIMA-
TGARCH, ARIMA, or ARIMA with Wold decomposition, per stage of time series (i.e.,
every time series was divided into stages according to seasons or structural breaks)
was used. Among these models, ARIMA-TGARCH yielded the best results, the reason
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might be that the residuals were fitted using TGARCH models and this model captured
other differences between the time series that were not determined for the ARIMA mod-
els. In fact, when using ARIMA-TGARCH models, the main variables selected for PLS
correspond to estimates of parameters of the TGARCH model.

In the second study, the performance of sPLS-DA and random forest methods were
compared. Similar results were found when both methods used the variables from
functions applied to the time series and the seasonal Holt-Winters methods as input.
The best results were obtained when using functions applied to the time series and the
second best results when using the seasonal Holt-Winters method. Both the sPLS-DA
and random forest methods were useful for classifying the time series. It was possible
to obtain parsimonious models with a small subset of variables, leading to satisfactory
discrimination. Results from sPLS-DA could be easily interpreted via graphical outputs.

In the third study, the performance of sSPLS-DA, SPLSDA with a new approach, sPLS
[61] with LDA (which was proposed in this study), were compared. These methods
used variables from the functions applied to the time series and the seasonal Holt-
Winters method as input. When comparing the results from the three classification
methods, sPLS with LDA led to the minimum error rates for both cases analyzed (i.e.,
functions applied to time series and seasonal Holt-Winters method). For the three classi-
fication methods applied, variables from the seasonal Holt-Winters method performed
similarly or better than when using the functions applied to the time series.

In respect to the most important variables determined for sPLS-DA, the main results
are the following: for the ARIMA-TGARCH models, they were the estimates of w and a.
Also, estimates of mean and median of ACF at lags 1 to 72 of the residuals, variance of
the residuals, and maximum of the periodogram of the residuals. For the Holt-Winters
method, the most important variables were the estimates of the level, seasonal compo-
nents 18, 19, 20 and 24. Also, the estimates of SSE and maximum of the periodogram
of the residuals. For the ARIMA models, they were the estimates of parameters of MA,
AR and SAR. Also, sample PACF at lags 1 to 5, as well as the mean and median of the
sample of ACF at the first 72 lags of the residuals. For functions applied to time series,
they were the estimates of mean, moving range, PACF at lag 1 to 5. In the fourth study,
in addition to the variables mentioned, certain variables based on quantiles were also
selected. The majority of variables selected for sSPLS-DA were also chosen by SPLSDA.
However, sPLS with LDA did not select any variable based on quantiles.

Since both methods, SPLSDA and sPLS with LDA treat dimension reduction and
one-stage approach, and selects variables in order to obtain the lowest value of the cla-
ssification error rate, the other methods are two-stage approaches (SPLSDA and sPLS
with LDA) which only maximize the separation between clusters in the second step. It

151



Chapter 5. General Discussion

was assumed that using two steps instead of one might fail to select some important
variables for classifying the time series. However, the results displayed that using sPLS
with LDA, produces the best classification error rates.

For the long term monitoring of microclimate in the context of preventive conser-
vation of artworks, it is necessary to minimize the number of sensors used. In this
dissertation, one solution which was proposed was a sampling methodology that cap-
tures the relevant information from clusters of time series. The idea is to choose a set of
sensors, based on the first two components from sPLS-DA, centroids of the clusters, the
distances between each centroid and the position of sensors in the multivariate space
(i.e., pair of coordinates using C1 for x-axis and C2 for y-axis for each sensor and the
centroid of its cluster). Namely, it proposes characterizing the different zones of a build-
ing using the maximum number of sensors possible and the classification methodology
proposed, then selecting a subset of sensors with the sampling methodology described.
When there are a lot restrictions about the number of sensors, the proposal is to moni-
tor the microclimatic conditions using the subset of sensors and the information from
the first analysis for classifying sensors. In cases where it is possible to have at least 30
sensors the proposal is to repeat the classification methodology for characterizing the
different zones in the buildings every year.

The methodology proposed in this dissertation was useful for characterizing the
differences in climatic parameters (e.g., relative humidity and temperature), measured
at different positions and heights (high, medium and low altitude levels). Identifying
different levels or zones in a museum, archaeological site or historical building could
help to monitor the microclimatic conditions inside. Classification error rates from the
classification method might be affected by the malfunctioning of some sensors, pro-
blems related to the microclimate where the sensors are located, the performance of the
classification method which is influenced by the total number of sensors, the number
of sensors per clusters, or prior knowledge of clusters. Thus, the incorrectly classified
sensors should be evaluated to identify possible problems in the artworks.

Even though the methodology proposed helps to obtain effective results, the need to
obtain well-determined clusters when having a smaller number of time series is a pro-
blem that should be improved. Another situation that needs special attention is when
there is no information about the possible clusters of series. In the methodologies pro-
posed, the different versions of sparse PLS require to establish the number of clusters
before implementing the algorithm. In fact, in the second study, it was necessary to
carry out the k-means algorithm with PCA in order to obtain different possible clusters
of time series. Once the three clusters were established, they were employed as input
for sPLS-DA. Another situation that could be improved is computing other variables,
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in order to capture more information from time series. In particular, when a unique
ARIMA-TGARCH or ARIMA model was employed for all time series in the same stage,
it is unlikely that the best values for the classification variables could be obtained. Then,
results from any classification method can be affected. Furthermore, in high dimen-
sional classification with PLS, the selection of filtering methods and their tuning are still
among open questions. The bibliography on variable filtering is rich with many pros
and cons [247].

Different directions can be considered in future studies; the first direction could be
to determine classification variables, the second, improving the classification error rate
using a sparse version of PLS, and the third, proposing an unsupervised method to
help determine possible clusters to be used for a sparse version of PLS. With the goal
of obtaining variables that capture more information from the data, flexible models can
be applied to time series. Some options for computing variables might be structural
time series models [151] and a nonparametric approach of the GARCH as proposed in
[152; 153]. In respect to the second direction, another version of sparse PLS DA could
be considered, SGPLS [53], employing separate tuning parameters for every class com-
parison, in order to compare the capability of classifying time series for the different
classification methods in different scenarios (i.e., varying the number of time series per
cluster and using different or the same number of time series per cluster). According to
[53], SGPLS sacrificed some specificity related to selected variables because SGPLS em-
ploys a common 7 to control variable selection for every class comparison. Also, they
concluded that if employing separate tuning parameters for every class comparison,
the specificity of the method might improve although a significant increase in compu-
tational time can be required for tuning. For the third direction, another unsupervised
method could also be used to establish the classes before applying sPLS-DA. For e-
xample, a novel Bayesian-nonparametric strategy for setting the number of clusters and
their labels was proposed by Guha et al. [192].

Finally, the three approaches that have been proposed work very well when n in-
creases. Also, unlike other involved methods, they discriminate the clusters of the time
series when the time series are very similar, or if the number of variables from the time
series is greater than the number of the time series (p > n). Another important point is
that these methods are numerically stable and competitive in terms of computational e-
fficiency. Furthermore, using linear combinations of variables extracted from time series

as input for these methods can greatly improve their performance.
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The methodology proposed was based on versions of sparse PLS (sPLS-DA, SPLSDA or
sPLS with LDA) and variables computed from time series (i.e., using methods, models
or functions that are applied to time series) and helped to obtain parsimonious models
with a small subset of variables, leading to satisfactory discrimination of the different
clusters of the time series with easy interpretation.

The different versions of sparse PLS and random forest methods were useful for
identifying the most important variables for classifying time series. In particular, sPLS-
DA and random forest algorithm had high percentages of common variables among
the selected variables. Also, for both methods, the classification error rates were simi-
lar when using functions applied to time series and when using seasonal Holt-Winters
method.

The variables computed using seasonal Holt-Winters method helped to obtain better
results from the different sparse PLS methods. Seasonal Holt-Winters was more flexible
for fitting the distinct time series and obtaining low values of the classification error
rate.

The methodology proposed can be useful for characterizing and monitoring micro-
climatic conditions in different zones and heights in a museum, archaeological site or
heritage buildings, with the goal of avoiding problems such as moisture and dust con-
centration on the artworks. Classifying sensors using sPLS-DA could help to select
a subset of the most important sensors in the buildings with more restrictions on the
maximum number of sensors allowed. Also, clusters of time series that are identified
could be used as a reference for identifying possible changes in the climatic conditions
in a building, and incorrectly classified sensors should be evaluated to identify possible

problems with the artworks.
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