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Abstract. In this paper we study the randomized heat equation with homo-
geneous boundary conditions. The diffusion coefficient is assumed to be a random
variable and the initial condition is treated as a stochastic process. The solution of
this randomized partial differential equation problem is a stochastic process, which is
given by a random series obtained via the classical method of separation of variables.
Any stochastic process is determined by its finite-dimensional joint distributions. In
this paper, the goal is to obtain approximations to the probability density function of
the solution (the first finite-dimensional distributions) under mild conditions. Since the
solution is expressed as a random series, we perform approximations to its probability
density function. Several illustrative examples are shown.

Key words: Random heat equation, Random Variable Transformation technique,
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1. INTRODUCTION

Differential equations governing real phenomena contain some mathematical
terms (e.g., initial/boundary condition, source term, coefficients), referred to as model
parameters, that characterize physical features of the problem and its environment.
In practice, these terms must be determined from sampling and/or experimentally.
Hence they contain errors coming from different sources such as the lack of accu-
racy in sampling and/or measurements and the inherent uncertainty usually met in
complex physical phenomena. In that case, it is more convenient to treat constants
and functions playing the role of model parameters as random variables and stochas-
tic processes, respectively. This approach leads to Random Differential Equations
(RDEs). RDEs consist in a direct randomization of all model parameters subject
to uncertainty through random variables and/or stochastic processes having regular
trajectories. This approach allows for a wide range of random patterns (binomial,
Poisson, hypergeometric, beta, exponential, Gaussian, etc.) [1].

In dealing with RDEs defined in a complete probability space, say (⌦,F ,P),
as it also happens in the deterministic scenario, the primary objective is to compute
exact or numerically their solution, say u(x) = u(x)(!), ! 2⌦, which is a stochastic
(c) 2021 RRP 73(0) 115 - v.2.0*2021.5.17 —ATG



Article no. 115 Julia Calatayud, Juan Carlos Cortés 2

process instead of a classical function. A distinctive feature of solving RDEs, with
respect to their deterministic counterpart, is the need to compute relevant probabilis-
tic information of the solution, such as the mean function, E[u(x)], and the variance
function, V[u(x)]. While a more and complex ambitious goal is to determine the
finite-dimensional probability distributions, particularly the so-called first probabil-
ity density function, say f(u,x), associated to the solution, since from it one can
compute any one-dimensional statistical moment. Furthermore, the computation of
f(u,x) permits calculating the probability that the solution stochastic process lies
within an interval of interest, say [u1,u2].

The heat equation is a differential statement of thermal energy balance law.
It is a basic model to numerous physical phenomena such as diffusion, heat con-
duction, transport of solutes, etc., but it has also been successfully applied in other
apparently unrelated areas like finance to pricing security derivatives traded in the
stock market [2, 3]. Impurities and heterogeneity in the medium (cross section) and
error measurements justify the consideration of randomness in both the diffusion co-
efficient and the initial condition. This motivates us to study the randomized heat
equation defined on a finite spatial domain whose diffusion coefficient is assumed
to be a random variable, the boundary conditions are homogeneous and the initial
condition is a stochastic process. Different randomizations of the heat equation have
been studied in the existing literature using different techniques, such as general-
ized polynomial chaos based stochastic Galerkin technique [4], homogenization and
Monte Carlo approaches [5], random mean square calculus [6], random collocation
method [7], random interval moment method [8], Kolmogorov’s criterion [9], etc.

Our approach is based upon RDEs and our main goal is to construct reliable
approximations to the probability density function of the solution (the first finite-
dimensional distributions) under mild conditions. To achieve this target we will em-
ploy the Random Variable Transformation (RVT) technique. In the context of RDEs,
the RVT technique has been successfully applied to compute the probability density
function of the solution to significant problems in Physics, Biology, etc., assuming
specific distributions for the model parameters [10–13] or dealing with general para-
metric distributions [14].

The heat problem that we are going to deal with is the following:
8
><

>:

ut = ↵2uxx, 0< x < 1, t > 0,

u(0, t) = u(1, t) = 0, t� 0,

u(x,0) = �(x), 0 x 1.

(1)

We consider (1) in a random setting, meaning that we are going to work on an
underlying complete probability space (⌦,F ,P), where ⌦ is the set of outcomes, that
will be generically denoted by !, F is a �-algebra of events and P is a probability
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measure. We consider the diffusion coefficient ↵2(!) as a positive random variable
and the initial condition � = {�(x)(!) : 0  x  1, ! 2 ⌦} as a stochastic process
in our probability space. The solution to (1) is a stochastic process expressed as a
formal random series,

u(x,t)(!) =
1X

n=1

An(!)e
�n2⇡2↵2(!)t sin(n⇡x), (2)

where the random Fourier coefficient

An(!) = 2

Z 1

0
�(y)(!)sin(n⇡y)dy (3)

is understood as a Lebesgue integral, for each ! 2 ⌦ fixed (sample path integral).
Notice that if �(·)(!) 2 L1(0,1), then

|An(!)e
�n2⇡2↵2(!)t sin(n⇡x)| 2k�(·)(!)kL1(0,1)e

�n2⇡2↵2(!)t,

so by the comparison and the D’Alembert tests the random series given in (2) is
almost surely convergent and u(x,t)(!) is well-defined, for 0< x < 1 and t > 0.

The main goal of this paper is, under suitable hypotheses, to compute approxi-
mations of the probability density function of the solution u(x,t)(!) given in (2), for
0< x < 1 and t > 0.

We end the introduction by recalling the RVT technique. The RVT technique
gives the density function of a response Y under the relation output-input Y = g(X),
where g is a deterministic map, called the transformation mapping, and X is a ran-
dom quantity. It is assumed that the dimensions of X and Y are equal.
Lemma 1 (Random Variable Transformation (RVT) technique) [15, p. 47] Let X
be an absolutely continuous random vector with density fX and with support DX

contained in an open set D ✓Rn
. Let g :D!Rn

be a C1(D) function, injective on

D such that Jg(x) 6= 0 for all x 2D (J stands for Jacobian). Let h= g�1 : g(D)⇢
Rn ! Rn

. Let Y = g(X) be a random vector. Then Y is absolutely continuous with

density

fY (y) =

(
fX(h(y))|Jh(y)|, y 2 g(D),

0, y /2 g(D).
(4)

2. COMPUTATION OF THE PROBABILITY DENSITY FUNCTION

The following result provides general sufficient conditions so that the prob-
ability density function of u(x,t) can be approximated. Since u(x,t) depends on
infinitely many random variables, ↵2, A1,A2, . . ., we truncate the infinite series to
a finite order N , so that we achieve a transformation of ↵2, A1, . . . ,AN . The RVT
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method allows for computing the density function of such transformation. When
N !1, we expect convergence to the true density function of u(x,t).
Theorem 2 Suppose that ↵2

, A1 and (A2, . . . ,AN ) are independent and absolutely

continuous random variables, for N � 2. Suppose that the probability density func-

tion fA1 is almost everywhere continuous on R, bounded on R, and E[e⇡2↵2t] <1.

Then the density of uN (x,t)(!) =
PN

n=1An(!)e�n2⇡2↵2(!)t sin(n⇡x),

fuN (x,t)(u) =

Z

RN
fA1

 
e⇡

2↵2t

sin(⇡x)

(
u�

NX

n=2

ane
�n2⇡2↵2t sin(n⇡x)

)!

⇥f(A2,...,AN )(a2, . . . ,aN )f↵2(↵2)
e⇡

2↵2t

sin(⇡x)
da2 · · ·daN d↵2, (5)

converges pointwise to the density of the random variable u(x,t)(!) given by (2), for

0< x < 1 and t > 0. There is also convergence in L1(R;du).
Proof. Let

g(A1, . . . ,AN ,↵2) =

 
NX

n=1

Ane
�n2⇡2↵2t sin(n⇡x),A2, . . . ,AN ,↵2

!
.

In the notation of Lemma 1, D = RN+1, g(D) = RN+1,

h(A1, . . . ,AN ,↵2) =

 
e⇡

2↵2t

sin(⇡x)

(
A1�

NX

n=2

Ane
�n2⇡2↵2t sin(n⇡x)

)
,A2, . . . ,AN ,↵2

!

and

Jh(A1, . . . ,AN ,↵2) =
e⇡

2↵2t

sin(⇡x)
> 0.

Then, as a consequence of the RVT formula (4),

f(uN (x,t),A2,...,AN ,↵2)(u,a2, . . . ,aN ,↵2)

=f(A1,...,AN ,↵2)

 
e⇡

2↵2t

sin(⇡x)

(
u�

NX

n=2

ane
�n2⇡2↵2t sin(n⇡x)

)
,a2, . . . ,aN ,↵2

!
e⇡

2↵2t

sin(⇡x)
.

Computing marginals, we derive (5):

fuN (x,t)(u) =

Z

RN
f(uN (x,t),A2,...,AN ,↵2)(u,a2, . . . ,aN ,↵2)da2 · · ·daN d↵2.

From (5) and the independence between ↵2, A1 and (A2, . . . ,AN ), notice that

fuN (x,t)(u) =
1

sin(⇡x)
E
"
fA1

 
e⇡

2↵2t

sin(⇡x)

(
u�

NX

n=2

ane
�n2⇡2↵2t sin(n⇡x)

)!
e⇡

2↵2t

#
.

Since fA1 is almost everywhere continuous on R, the continuous mapping theorem
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[16, p. 7, Th. 2.3] implies

lim
N!1

fA1

 
e⇡

2↵2t

sin(⇡x)

(
u�

NX

n=2

ane
�n2⇡2↵2t sin(n⇡x)

)!

= fA1

 
e⇡

2↵2t

sin(⇡x)

(
u�

1X

n=2

ane
�n2⇡2↵2t sin(n⇡x)

)!

almost surely. On the other hand,
�����fA1

 
e⇡

2↵2t

sin(⇡x)

(
u�

NX

n=2

ane
�n2⇡2↵2t sin(n⇡x)

)!�����e
⇡2↵2t

 kfA1k1e⇡
2↵2t 2 L1(⌦;dP).

By the dominated convergence theorem [17, result 11.32, p. 321], we can interchange
the limit with respect to N and the expectation:

lim
N!1

fuN (x,t)(u) =
1

sin(⇡x)
E
"
fA1

 
e⇡

2↵2t

sin(⇡x)

(
u�

1X

n=2

ane
�n2⇡2↵2t sin(n⇡x)

)!
e⇡

2↵2t

#

= fu(x,t)(u).

This proves the pointwise convergence.
Finally, convergence in L1(R;du) follows from Scheffé’s Lemma [18, p. 55],

[19].
⇤

In the following examples, we detail some cases where the hypotheses of The-
orem 2 hold.
Example 1 If �(x) = B(x), where B is a standard Brownian bridge on [0,1] [20],
then A1,A2, . . . are independent, and we are in position of applying Theorem 2. In-
deed, by [20, Lemma 5.22] we know that Cov[B(y),B(z)] = min{y,z}�yz, hence

Cov[An,Am] = 4

Z 1

0

Z 1

0
(min{y,z}�yz)sin(n⇡y)sin(m⇡z)dydz

=

(
0, n 6=m,

2
n2⇡2 , n=m,

for 1  n,m  N , and since (A1, . . . ,AN ) is multivariate Gaussian for all N � 1,
then by [20, Lemma 4.33] independence of A1,A2, . . . follows. Notice that we have
used that An, 1 nN , defined by (3), are Gaussian, [1, Th. 4.6.4], since B(x) is
Gaussian for each 0 x 1, [20, p. 193].

Recall that the Brownian bridge has zero values at x= 0 and x= 1, so it does
make sense to model the initial condition via such process.
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Continuing with the computations, we have A1,A2, . . . independent and An ⇠
Normal(0,2/(n2⇡2)) for n� 1, so

f(A1,...,AN )(a1, . . . ,aN ) =

✓p
⇡

2

◆N NY

n=1

ne�
n2⇡2a2n

4 .

Thus,

fuN (x,t)(u) =

✓p
⇡

2

◆N Z

RN
e
�⇡2

4
e2⇡

2↵2t

sin2(⇡x)

n
u�

PN
n=2 ane

�n2⇡2↵2t sin(n⇡x)
o2

⇥
 

NY

n=2

ne�
n2⇡2a2n

4

!
f↵2(↵2)

e⇡
2↵2t

sin(⇡x)
da2 · · ·daN d↵2. (6)

Example 2 Let � be a process of the following form:

�(x)(!) =
1X

j=1

p
⌫j

p
2 sin(j⇡x)⇠j(!), (7)

where the sum is considered in the topology of L2([0,1]⇥⌦), {⌫j}1j=1 are positive
real numbers satisfying

P1
j=1 ⌫j < 1, and {⇠j}1j=1 are absolutely continuous ran-

dom variables with zero expectation, unit variance and independent. Notice that the
sum is well-defined in L2([0,1]⇥⌦), because for two indexes N >M we have, by
Pythagoras theorem in L2([0,1]⇥⌦),
������

NX

j=M+1

p
⌫j

p
2 sin(j⇡x)⇠j

������

2

L2([0,1]⇥⌦)

=
NX

j=M+1

⌫j k
p
2 sin(j⇡x)k2L2([0,1])k⇠jk

2
L2(⌦)

=
NX

j=M+1

⌫j
N,M!1�! 0,

since k⇠jk2L2(⌦) = V[⇠j ] = 1 and

k
p
2 sin(j⇡x)k2L2([0,1]) = 2

Z 1

0
sin2(j⇡x)dx= 1� sin(2⇡j)

2⇡j
= 1, j = 1,2, . . . .

Expression (7) for � is very intuitive: as we require �(0) = �(1) = 0, the orthonor-
mal basis to work with in order to expand �(·)(!) as a random Fourier series is
{
p
2 sin(j⇡x)}1j=1. In this way,

�(x)(!) =
1X

j=1

cj(!)
p
2 sin(j⇡x).

Expression (7) corresponds to the Karhunen-Loève expansion [20]. Some recent con-
tributions where the Karhunen-Loève expansion is applied to solve relevant problems
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in Physics can be found in [21, 22].
If � has expression (7) and the density function f⇠1 is almost everywhere con-

tinuous and bounded on R, then the hypotheses of Theorem 2 hold. Indeed,

An(!) = 2

Z 1

0
�(y)(!)sin(n⇡y)dy = 2

1X

j=1

p
⌫j

p
2

Z 1

0
sin(j⇡y)sin(n⇡y)dy ⇠j(!)

=
p
2
p
⌫n ⇠n(!), (8)

so A1,A2, . . . are absolutely continuous and independent random variables, which
gives the condition of Theorem 2. Thus, one may use formula (5), fuN (x,t)(u), to
approximate the density of the solution u(x,t)(!) given in (2), whenever � has the
form (7) and the rest of hypotheses in Theorem 2 hold.

3. NUMERICAL EXAMPLES

In this section we put specific probability distributions for ↵2 and �, and we
approximate the probability density function of u(x,t) at different space-time loca-
tions. We use orders of truncation N for the approximations.

Example 3 Consider the randomized PDE problem (1), with ↵2 ⇠ Uniform(1,2)
and �(x) = B(x) a standard Brownian bridge on [0,1], being both independent ran-
dom variables for each x 2 [0,1]. The hypotheses of Theorem 2 are satisfied. We
will perform numerical approximations to the probability density function of the so-
lution u(x,t)(!) given by (2). For that purpose, we will use formula (6), which gives
fuN (x,t)(u).

In Figure 1, we show the density fuN (x,t)(u) given by (5) for N =2 and N =3,
x= 0.5 and at different time instants t= 0.05,0.1,0.15,0.3. For these orders N , we
have a double and a triple integral, respectively, computable by means of quadrature
rules. Observe that similar densities are plotted for N = 2 and N = 3, showing rapid
convergence with N .

Notice that, as t increases, the density of u(x,t)(!) seems to behave as a Dirac
delta function. Indeed, as A1,A2, . . . are independent and An⇠Normal(0,2/(n2⇡2)),
then

E[u(x,t)] =
1X

n=1

E[An]E[e�n2⇡2↵2t] sin(n⇡x) = 0

(c) 2021 RRP 73(0) 115 - v.2.0*2021.5.17 —ATG



Article no. 115 Julia Calatayud, Juan Carlos Cortés 8

N=2
N=3

-0.6 -0.4 -0.2 0.2 0.4 0.6
u

0.5

1.0

1.5

fu (x=0.5,t=0.05)(u)

N=2
N=3

-0.6 -0.4 -0.2 0.2 0.4 0.6
u

1

2

3

4

fu (x=0.5,t=0.1)(u)

N=2
N=3

-0.4 -0.2 0.2 0.4
u

2

4

6

8

fu (x=0.5,t=0.15)(u)

N=2
N=3

-0.04 -0.02 0.02 0.04
u

20

40

60

80

100

fu (x=0.5,t=0.3)(u)

Fig. 1 – Approximations to fu(x,t)(u) for different orders of truncation and space-time positions,
Example 3.

since E[An] = 0 for all n= 1,2, . . . and, taking into account that ↵2(!)� 1,

V[u(x,t)]
�����

1X

n=1

|An|e�n2⇡2t

�����

2

L2(⌦)

=
1X

n=1

kAnk2L2(⌦) e
�2n2⇡2t

=
1X

n=1

2

n2⇡2
e�2n2⇡2t t!1�! 0.

Therefore, the density tends to be concentrated around zero.

Example 4 Let

�(x)(!) =
1X

j=1

p
2

j
3
2
p
1+ log j

sin(j⇡x)⇠j(!)

be a specific Karhunen-Loève expansion (see Example 2), where ⌫j = 1/(j3(1 +
log j)), and ⇠1,⇠2, . . . are identically distributed and independent, with f⇠1(⇠1) =p
2/(⇡(1+ ⇠41)) (it can be checked that f⇠1 is a density function, such that its ex-

pectation is 0 and its variance is 1). Let ↵2 ⇠ Uniform(1,2). Figure 2 draws the
density functions for orders N = 2 and N = 3 and different space-time positions.
Similar results are perceived with respect to N .
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N=2
N=3

-2 -1 1 2
u

0.1

0.2

0.3

0.4

0.5

0.6

0.7
fu (x=0.5,t=0.05)(u)

N=2
N=3

-1.0 -0.5 0.5 1.0
u

0.2

0.4

0.6

0.8

1.0

1.2

1.4

fu (x=0.5,t=0.1)(u)

N=2
N=3

-0.4 -0.2 0.2 0.4
u

0.5

1.0

1.5

2.0

2.5

3.0

fu (x=0.5,t=0.15)(u)

N=2
N=3

-0.10 -0.05 0.05 0.10
u

10

20

30

40
fu (x=0.5,t=0.3)(u)

Fig. 2 – Approximations to fu(0.5,t)(u) for different orders of truncation at different time instants
t= 0.05,0.1,0.15,0.3. Example 4.

4. CONCLUSIONS

In this paper we have determined approximations to the probability density
function of the solution to the randomized heat equation with homogeneous boundary
conditions. This solution is a stochastic process expressed as a random series, which
is obtained via the classical method of separation of variables. The random series
has been truncated, and the probability density function of the finite-term sum has
been computed via the RVT technique. A theorem guarantees the convergence of
these density functions to the target density when the truncation tends to infinity.
Some numerical examples with specific probability distributions have illustrated the
approximations to the target density function.
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