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Summary

In this work we consider a particular randomized kinetic model for reaction-deactivation

of hydrogen peroxide decomposition. We apply the Random Variable Transformation tech-

nique to obtain the first probability density function of the solution stochastic process

under general conditions. From the first probability density function, we can obtain funda-

mental statistical information, such as the mean and the variance of the solution, at every

instant time. The transformation considered in the application of the Random Variable

Transformation technique is not unique. Then, the first probability density function can

take different expressions, although essentially equivalent in terms of computing probabilis-

tic information. To motivate this fact, we consider in our analysis two different mappings.

Several numerical examples show the capability of our approach and of the obtained

results as well. We show, through simulations, that the choice of the transformation, that

permits computing the first probability density function, is a crucial issue regarding the

computational time.

KEYWORDS:

Chemical kinetic model, first probability density function, Random Variable Transforma-

tion technique, random model

1 INTRODUCTION

Classically, kinetic equations have been used to describe reaction and deactivation processes in chemistry. Nonlinear differential equations that
model these kind of problems depend on two rates, the reaction and deactivation constants. Our analysis is based on a previous contribution 1,
where a particular kinetic reaction is considered, the catalysis. Catalysis is a process by which the rate of a chemical reaction is increased. In this
process the presence of a substance, called catalyst, accelerates the chemical reaction under study. In reference 1 a particular catalyst is considered,
the catalase, an enzyme that decomposes hydrogen peroxide to water and oxygen 2

2H2O2
catalase−−−−−→ O2 +H2O.

†Introducing randomness in the analysis of chemical reactions: An analysis based on random differential equations and probability density functions.
0Abbreviations: IVP, initial value problem; PDF, probability density function; RV, random variable; RVT, Random Variable Transformation technique; SP,

stochastic process
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This particular chemical reaction can be modeled via the following deterministic initial value problem (IVP)
dCS(t)

dt
= −kR CE(t) CS(t), t > 0,

dCE(t)

dt
= −kD CE(t) CS(t),

CS(0) = CS0
, CE(0) = CE0

,

(1)

being, for every time instant t, CE(t) and CS(t) the concentration of enzyme and the concentration of hydrogen peroxide, respectively. In IVP (1),
kR and kD denote the reaction and deactivation rates. After some algebra, and introducing the dimensionless fractional conversion

X(t) = (CS0 − CS(t))/CS0 ,

from the IVP (1) we obtain the following IVP based on a nonlinear differential equation
dX(t)

dt
= (k∗R − kD CS0

X(t))(1− X(t)), t > 0,

X(0) = 0,
(2)

where k∗R = CE0
kR. The analysis in this work is based on the IVP (2), whose solution is

X(t) =
1− e

(
k∗R−kDCS0

)
t

CS0

kD
k∗R
− e

(
k∗R−kDCS0

)
t
for kD CS0

6= k∗R,

X(t) = 1−
1

k∗R t + 1
for kD CS0

= k∗R.

(3)

In practice, the positive parameters, CS0
, kD and k∗R, in IVP (2) are usually calculated via experiments, then they have associated a certain mea-

surement error. In addition, there exist some external factors that can affect the system. These facts make more advisable to consider the three
aforementioned model parameters as random variables (RVs) rather than deterministic constants. In this contribution, we assume that all the input
parameters, CS0

(ω), kD(ω) and k∗R(ω), are absolutely continuous RVs defined on a common complete probability space (Ω,F ,P). For sake of gen-
erality, we will consider dependence between the random parameters, being f0(CS0

, kD, k
∗
R) the joint probability density function (PDF) of the

random vector (CS0
(ω), kD(ω), k∗R(ω)). In this manner, the randomized kinetic model considered in this contribution is a natural randomization of

the deterministic one described in IVP (2).
dX(t, ω)

dt
= (k∗R(ω)− kD(ω) CS0

(ω)X(t, ω))(1− X(t, ω)), t > 0,

X(0) = 0.
(4)

Therefore, the solution stochastic process (SP) can be directly inferred from (3) as follows

X(t, ω) =
1− e(k∗R(ω)−kD(ω)CS0

(ω)) t

CS0
(ω)

kD(ω)
k∗R(ω)

− e(k∗R(ω)−kD(ω)CS0
(ω)) t

, ∀ω ∈ Ω, (5)

where ω ∈ Ω stands for the sample outcome of the corresponding RV. In the deterministic theory of differential equations, the main goal is
the computation of the solution in order to study the behaviour of the dynamical system. In the random framework, as the solution is a SP, the
calculation of the main statistical functions (such as the mean and the variance) is also an important objective. If possible, the determination of the
1-PDF, which provides a full probabilistic description of the solution SP, is a more desirable target. In addition, from the 1-PDF the mean and the
variance can be calculated from the integration of the 1-PDF. We focus our contribution on the computation of the 1-PDF, f1(x, t), of X(t, ω) given
in formula (5). With this aim, the Random Variable Transformation (RVT) method will be applied. This technique has been applied by authors in
some contributions 3,4. The RVT method permits to determine the expression of the PDF of a random vector which results from mapping another
random vector whose PDF is known. For the sake of completeness, now we state the multidimensional version of the RVT technique that will be
extensively applied throughout this paper.

Theorem 1. (Multidimensional version, 5, pp. 24–25). Let u(ω) = (u1(ω), . . . , un(ω))> and v(ω) = (v1(ω), . . . , vn(ω))> be two n-dimensional abso-
lutely continuous random vectors. Let r : Rn → Rn be a one-to-one deterministic transformation of u into v, i.e., v = r(u). Assume that r is
continuous in u and has continuous partial derivatives with respect to u. Then, if fu(u) denotes the joint probability density function of the random
vector u(ω), and s = r−1 = (s1(v1, . . . , vn), . . . , sn(v1, . . . , vn))> represents the inverse mapping of r = (r1(u1, . . . , un), . . . , rn(u1, . . . , un))>,
the joint probability density function of vector v(ω) is given by

fv(v) = fu (s(v)) |Jn| , (6)
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where |Jn| is the absolute value of the Jacobian, which is defined by

Jn = det

(
∂s>

∂v

)
= det


∂s1(v1, . . . , vn)

∂v1
· · ·

∂sn(v1, . . . , vn)

∂v1
...

. . .
...

∂s1(v1, . . . , vn)

∂vn
· · ·

∂sn(v1, . . . , vn)

∂vn

 . (7)

The paper is organized as follows. In Section 2 we calculate the 1-PDF of the solution SP (5). We compute two different expressions for the 1-
PDF, by considering two different mappings in the application of the RVT method. We illustrate the capability of the theoretical established results
via some numerical examples in Section 3. In these numerical examples we consider a wide range of distributions for the random input parameters.
In addition, we show that the mapping considered in the application of the RVT method affects to the computational time to calculate the 1-PDF.
Conclusions are drawn in Section 4.

2 COMPUTING THE 1-PDF OF THE SOLUTION SP X(t, ω)

In this section two expressions for the 1-PDF of the solution SP X(t, ω) are computed. These formulas are obtained applying the RVT technique,
stated in Theorem 1, considering two different mappings.

2.1 Obtaining the 1-PDF: first mapping

Let t > 0 be fixed, we apply the RVT method with the following choice in Theorem 1

u(ω) =
(
CS0

(ω), kD(ω), k∗R(ω)
)>

,

v(ω) = (v1(ω), v2(ω), v3(ω))>,

where, for each ω ∈ Ω, the components of v are defined by the mapping r : R3 → R3

v1 = r1(CS0
, kD, k

∗
R) =

(
−1 + e(CS0

kD−k∗R)t
)

k∗R

CS0
kD e(CS0

kD−k∗R)t−k∗R

,

v2 = r2(CS0
, kD, k

∗
R) = kD,

v3 = r3(CS0
, kD, k

∗
R) = k∗R.

The inverse mapping of the transformation r, denoted by s, is calculated isolating parameters CS0
, kD and k∗R above

CS0
= s1(v1, v2, v3) =

tv3 + v1Wk

 e

t(−1+v1)v3
v1 t(−1+v1)v3

v1


tv1v2

,

kD = s2(v1, v2, v3) = v2,

k∗R = s3(v1, v2, v3) = v3,

where Wk(x) denotes the Lambert function, which is a multivalued function, namely the branches of the inverse relation of the function w ew 6.
That is, for each integer k, there is one branch, Wk(z), with the following property: if z and w are any complex numbers, then

w ew = z holds if and only if w = Wk(z), for some integer k.

W0 is known as the principal branch, and it gives the principal solution for w in z = w ew . In the set of real numbers, two branches W0 and W−1 are
sufficient. Then, the system has two solutions, considering W0(x) and W−1(x), see Figure 1. The Jacobian of the mapping s, for each k ∈ {0, 1} is

J3 =
1

t(−1 + v1)v21v2

v1 −
v1 + t(−1 + v1)v3

1 +Wk

 e

t(−1+v1)v3
v1 t(−1+v1)v3

v1



 .
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W-1(x)

FIGURE 1 Lambert function in the set of real numbers. Red line: W−1(x). Blue line W0(x).

Therefore, applying RVT method, the PDF of the random vector v(ω) is obtained in terms of the joint PDF, f0(CS0
, kD, kR), of the random input

parameters
(
CS0

(ω), kD(ω), k∗R(ω)
)

fv(v1, v2, v3) = f0


tv3 + v1Wk

 e

t(−1+v1)v3
v1 t(−1+v1)v3

v1


tv1v2

, v2, v3



∣∣∣∣∣∣∣∣∣∣∣∣
1

t(−1 + v1)v21v2

v1 −
v1 + t(−1 + v1)v3

1 +Wk

 e

t(−1+v1)v3
v1 t(−1+v1)v3

v1





∣∣∣∣∣∣∣∣∣∣∣∣
.

Marginalizing with respect to v2(ω) = kD(ω) and v3(ω) = k∗R(ω), and taking t > 0 arbitrary, we obtain the 1-PDF of the solution SP X(t, ω), which
depends on k ∈ {0, 1},

f11,k(x, t) =

+∞∫
0

+∞∫
0

f0


tk∗R + xWk

 e
t(−1+x)k∗R

x t(−1+x)k∗R
x


t x kD

, kD, k
∗
R



∣∣∣∣∣∣∣∣∣∣∣∣
1

t(−1 + x)x2kD

x−
x+ t(−1 + x)k∗R

1 +Wk

 e
t(−1+x)k∗R

x t(−1+x)k∗R
x





∣∣∣∣∣∣∣∣∣∣∣∣
dkD dk∗R.

(8)
As we have previously indicated, the density function obtained depends on k, then the 1-PDF f1

1 (x, t) shall be split into two pieces, f1
1,0(x, t) and

f1
1,−1(x, t), corresponding to the contribution of W0 and W−1, respectively. Then, the complete 1-PDF must be expressed by

f11 (x, t) = f11,0(x, t) + f11,−1(x, t). (9)

Notice that for each t > 0, f1
1,0(x, t) and f1

1,−1(x, t) are not separately PDF.

2.2 Obtaining the 1-PDF: second mapping

Given the complexity of the expression of the 1-PDF obtained in Eq. (8) and Eq. (9), in this subsection, we consider a different mapping. The chosen
transformation it is more complex than the previous one, but we obtain a simpler formula for the 1-PDF of the solution SP. Let t > 0 be fixed, we
apply Theorem 1 with

u(ω) =
(
CS0

(ω), kD(ω), k∗R(ω)
)>

,

v(ω) = (v1(ω), v2(ω), v3(ω))>.



J.-C. Cortés, A. Navarro-Quiles, J.-V. Romero, M.-D. Roselló 5

For each ω ∈ Ω, we define the mapping r : R3 → R3

v1 = r1(CS0
, kD, k

∗
R) =

(
−1 + e(CS0

kD−k∗R)t
)

k∗R

CS0
kD e(CS0

kD−k∗R)t−k∗R

,

v2 = r2(CS0
, kD, k

∗
R) = CS0

kD − k∗R,

v3 = r3(CS0
, kD, k

∗
R) = kD.

The inverse mapping of the transformation r, denoted by s, and the Jacobian are given by

CS0
= s1(v1, v2, v3) = −

(−1 + etv2 +v1) v2

(−1 + etv2 ) (−1 + v1)v3
,

kD = s2(v1, v2, v3) = v3,

k∗R = s3(v1, v2, v3) = −
etv2 v1v2

(−1 + etv2 ) (−1 + v1)
,

J3 = −
etv2 v2

(−1 + etv2 ) (−1 + v1)2v3
.

Applying RVT method, Theorem (1), we obtain the joint PDF of the random vector (v1(ω), v2(ω), v3(ω)) in terms of f0(CS0
, kD, kR), which is

assumed known,

fv(v1, v2, v3) = f0

(
−

(
−1 + etv2 +v1

)
v2

(−1 + etv2 ) (−1 + v1)v3
, v3,−

etv2 v1v2

(−1 + etv2 ) (−1 + v1)

)∣∣∣∣− etv2 v2

(−1 + etv2 ) (−1 + v1)2v3

∣∣∣∣ .
Finally, as we are interested in computing the PDF of v1(ω) = X(t, ω), we take the marginal with respect to v2(ω) and v3(ω), and taking t > 0

arbitrary, we obtain the 1-PDF of the solution SP X(t, ω)

f21 (x, t) =

+∞∫
−∞

+∞∫
0

f0

(
−

(
−1 + eta +x

)
a

(−1 + eta) (−1 + x)kD
, kD,−

eta x a

(−1 + eta) (−1 + x)

)∣∣∣∣ eta a

(−1 + eta) (−1 + x)2kD

∣∣∣∣dkD da. (10)

3 NUMERICAL EXAMPLES

In this section, we show two examples where the theoretical results obtained in Section 2 are applied. In the first example statistical independence
between the RVs is assumed, thus the joint PDF of the random vector (CS0

(ω), kD(ω), k∗R(ω)) can be written as the product of the marginals

f0(CS0
, kD, k

∗
R) = fCS0

(CS0
)fkD

(kD)fk∗R
(k∗R).

In the second example, we assume dependent RVswith a Gaussian distribution. In both examples we compute the 1-PDF of the solution SP,X(t, ω),
the mean and the variance with the both mappings indicated in Section 2. The mean and the variance are fundamental statistical functions that can
be directly calculated from the 1-PDF. Let f1(x, t) be a given 1-PDF of a SP, X(t, ω), the mean and the variance in every time instant t are defined by

µX(t) = E [X(t, ω)] =

∫
R

x f1(x, t)dx,

σ2
X(t) = E

[
X(t, ω)2

]
− E [X(t, ω)]2 =

∫
R

x2 f1(x, t)dx− µX(t).
(11)

In both examples we show how the chosen transformation significantly affects the computational time needed to calculate the 1-PDF.

3.1 Numerical Example 1. Independent RVs

We consider the randomized kinetic model described in (4) and we chose the following independent probability distributions for the input
parameters

• CS0
(ω) has a truncated Gaussian distribution with mean 0.01 and standard deviation 0.005 on the interval T = [0, 0.015], i.e., CS0

(ω) ∼
NT(0.01, 0.005). This selection is motived by the previous contribution 1, where the deterministic kinetic model is constructed under the
condition 0 < CS0

< 0.015.

• kD(ω) has a Gamma distribution with parameters 20 and 15, i.e., kD(ω) ∼ G(20, 15).

• k∗R(ω) follows a Beta distribution with parameters 15 and 20, i.e., k∗R(ω) ∼ B(15, 20).
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We have chosen the distributions of the RVs kD(ω) and k∗R(ω) taking into account only the positiveness restriction of both parameters. All the
computations have been carried out using the Mathematica R© software. We have calculated the 1-PDF of the solution SP, X(t, ω), with the both
mapping, f1

1 (x, t) and f2
1 (x, t) for different time instants t ∈ {0.1, 0.2, . . . , 1}. In Figure 2 we observe that the 1-PDF is practically the same in both

cases. Although theoretically f1
1 (x, t) and f2

1 (x, t) match, due to numerical errors they slightly differ. We use the L1-norm to measure, for each t

fixed, this difference
et =

∫
R

|f11 (x, t)− f21 (x, t)|dx. (12)

In Table 1 we collect the values of this norm at different time instants. On the other hand, in Figure 2 we observe that both the mean and the
variability of the distribution increase over the time. This behaviour is in agreement with the expectation and the variance plotted in Figure 3. The
computational time needed for the calculation of the 1-PDFs, for each time instant, is shown in Figure 4. We observe that the computational time
is approximately 26 times greater for the first mapping than for the second one, given the complexity of the expression of the 1-PDF obtained in
equations 8 and 9 compared with the formula obtained in (10). Notice that, for the calculation of the involved integrals we have used the command
NIntegrate and the "QuasiMonteCarloMethod" with "MaxPoints→200000", implemented in Mathematica R©.

t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
et 0.023889 0.025619 0.017179 0.016514 0.017891 0.012177 0.019279 0.013842 0.017829 0.017866

TABLE 1 Difference between the 1-PDFs, f1
1 (x, t) and f2

1 (x, t), for different time instants t ∈ {0.1, 0.2, . . . , 1}. This difference has been measured
via the L1-norm defined in (12). Numerical Example 3.1.

3.2 Numerical Example 2. Dependent RVs

In contrast to Example 3.1, in this numerical example we consider that CS0
(ω), kD(ω) and k∗R(ω) are dependent random variables. We assume

that the random vector (CS0
(ω), kD(ω), k∗R(ω)) has a truncated Gaussian distribution on the region T = [0, 0.015] × [0, 1] × [290, 310],

(CS0
(ω), kD(ω), k∗R(ω)) ∼ NT(µ,Σ), being µ and Σ the mean and the variance-covariance matrix, respectively, given by

µ =


0.01

0.5

300

 , Σ =
1

200


1 2 1

2 10 1.4

1 1.4 200

 .

In Figure 5 the 1-PDFs of the solution SP, X(t, ω), for each mapping, have been plotted. This graphical representation has been done for different
time instants t ∈ {0.1, 0.2, . . . , 1}. We observe that, as in the previous example, both 1-PDF practically match, being the longer the time, the
greater the expectation and the variability. As in Example 3.1, to highlight the numerical differences in the calculation of both 1-PDFs, f1

1 (x, t) and
f2
1 (x, t), in Table 2 we show the values of the L1-norm given in (12) at different time instants t ∈ {0.1, 0.2, . . . , 1}. In this case, the differences
are smaller perhaps because of the probabilistic dependence assumed for model parameters. The behaviour agrees with the expectation and the
variance represented in Figure 6. The computational time needed for the calculation of the 1-PDFs, for each time instant, is shown in Figure 7. In
this case, the computational time, in seconds, to compute the 1-PDF with the first mapping is also approximately 26 times greater than with the
second mapping considered in Section 2. To calculate the integrals in formulas (8) and (10), we also have used the command NIntegrate and the
"QuasiMonteCarloMethod" with "MaxPoints→200000", implemented in Mathematica R© software.

t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
et 0.000668 0.000574 0.000391 0.000504 0.000566 0.000395 0.000367 0.000276 0.000433 0.000417

TABLE 2 Difference between the 1-PDFs f1
1 (x, t) and f2

1 (x, t) for different time instants t ∈ {0.1, 0.2, . . . , 1}, this error has been calculated from
formula (12). Numerical Example 3.2.
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FIGURE 2 1-PDF of the solution SP, X(t, ω) for different time instants t ∈ {0.1, 0.2, . . . , 1}. Top: 1-PDF calculated from expressions (8) and (9)
(First mapping); Bottom: 1-PDF calculated from expression (10) (Second mapping). Numerical Example 3.1

4 CONCLUSIONS

In this paper we have obtained a full probabilistic description of the solution stochastic process of a particular randomized kinetic model. The
analysis have been done via the computation of the first probability density function of the solution stochastic process. We have obtained two
equivalent expressions for the first probability density function. With this aim we have applied the random variable transformation technique to
two different mappings. Despite both representations of the first probability density functions are valid, the computations reveal that there are
significant differences regarding the computational time required to carry out calculations from both expressions. Therefore, the choice of the
mapping required to apply the Random Variable Transformation technique to compute the first probability density function is a key point to save
computational time in the mathematical expressions where the first probability density function is involved.
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FIGURE 3 Expectation (left), µX(t), and variance (right), σ2
X(t), of the solution SP, X(t, ω), in the time interval [0, 1]. Numerical Example 3.1
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FIGURE 4Computational time (in seconds) needed for the calculation of the 1-PDFs, first mapping in red colour and secondmapping in blue colour,
for every time instant t ∈ {0.1, 0.2, . . . , 1}. Numerical Example 3.1
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FIGURE 5 1-PDF of the solution SP, X(t, ω), for different time instants t ∈ {0.1, 0.2, . . . , 1}. Top: 1-PDF calculated from expressions (8) and (9)
(First mapping); Bottom: 1-PDF calculated from expression (10) (Second mapping). Numerical Example 3.2
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