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Universitat Politècnica de València,5
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Abstract. In this paper, we deal with the non-autonomous logistic growth model
with time-dependent intrinsic growth rate and carrying capacity. Accounting for
errors in recorded data, randomness is incorporated into the equation by assuming
that the input parameters are random variables. The uncertainty of the model
output is quantified by approximations of the first probability density function via
the random variable transformation method. A numerical example illustrates the
results.
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1. Introduction11

Growth models such as the logistic model are widely studied and applied in popu-12

lation and ecological modeling. Classically, the intrinsic growth rate and the carrying13

capacity of the logistic model have been considered constant. However, some works14

considered it as a function of time [6, 7], for instance, motivated by the principle15

that a changing environment may result in a significant change in the limiting ca-16

pacity [17]; or in the case of periodic coefficients which is especially important for17

many biological problems due to a natural periodicity of the Earth rotations [14].18

The model is then presented by the non-autonomous logistic equation19  N ′(t) = r(t)N(t)

(
1− N(t)

K(t)

)
, t ∈ R,

N(t0) = N0,
(1.1)20

where N0 > 0 is the initial condition, r(t) is the intrinsic growth rate, and K(t) is21

the carrying capacity.22

1
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Equation (1.1) is a Bernoulli-type ordinary differential equation. When subject23

to an initial condition N(t0) = N0 > 0, it has a unique solution N(t) given by [6, 14]24

N(t) =

N0 exp

(∫ t

t0

r(s) ds

)
1 +N0

∫ t

t0

r(s)

K(s)
exp

(∫ s

t0

r(ν) dν

)
ds

. (1.2)25

In [6], it is showed that if r and K are (measurable) functions on R for which the
numbers

rinf = inf
t∈R

r(t), rsup = sup
t∈R

r(t), Kinf = inf
t∈R

K(t), Ksup = sup
t∈R

K(t)

obey the relations 0 < rinf, rsup <∞, 0 < Kinf, Ksup <∞, then the non-autonomous26

logistic equation (1.1) possesses a canonical solution on R which is approached, in27

the limit of large t, by each solution satisfying N(t0) = N0 > 0.28

In the mathematical modeling of population and ecological processes, the param-29

eters are either measured directly or determined by curve fitting. These parameters30

may have large variability that depends on the experimental method and its inherent31

error, on differences in the actual population sample size used, as well as other fac-32

tors that are difficult to account for. In view of this fact, randomness is incorporated33

into equation (1.1) by assuming that the parameters N0, r(t) = r(t; ξ1, ξ2, ..., ξm) and34

K(t) = K(t; ξ1, ξ2, ..., ξm) depend on the random vector (N0, ξ1, ξ2, ..., ξm), being m a35

non-negative integer, with known joint probability distribution. Therefore, the gen-36

eral solution N(t) to (1.1), given by (1.2), becomes a random variable that evolves37

with time, that is, a stochastic process [2, 15]. In this paper, we will assume that38

these random variables and stochastic process are defined in a complete probability39

space (Ω,F ,P), where Ω is the sample space consisting of outcomes ω ∈ Ω, F is the40

σ-algebra of events, and P is the probability measure.41

The aim of this work is to provide and illustrate approximations of the first42

probability density function (pdf), fN(q; t), of the solution stochastic process N(t)43

from (1.2). By definition, the pdf is a non-negative Borel measurable function44

characterized by P[N(t) ∈ B] =
∫
B fN(q; t)dq for any Borel set B in R. A random45

variable or vector is said to be absolutely continuous when it has a pdf.46

The paper is organized as follows. In Section 2, an approximation of the first47

pdf of the solution stochastic process to (1.1) is constructed. This approximation48

is based on the random variable transformation method. Section 3 is addressed to49

illustrate numerical approximations of the first pdf of N(t) for a particular example.50

Finally, in Section 4 our main conclusions are presented.51

2. Approximation of the PDF of the solution process52

In this section, we assume that the random quantities N0, r(t), and K(t) of (1.1)53

depend on the random vector (N0, ξ1, ξ2, ..., ξm), which has a known probability54

distribution. We compute approximations of the pdf of N(t) from (1.2), for each55

fixed instant t.56
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Let (N0, ξ1, ξ2, ..., ξm) be an absolutely continuous real random vector in (Ω,F ,P).57

Obviously, all of its components depend on the sample parameter, for example58

N0 = N0(ω), ω ∈ Ω, but as usual this notation will be hidden hereinafter.59

To apply the random variable transformation method [3], [5, Th. 2.1.5], let us60

consider the mapping61

(N0, ξ1, ..., ξm) 7→ (N,X1, ..., Xm) =

(
N0 Θ

1 +N0 η
, ξ1, ..., ξm

)
, (2.1)62

where the auxiliary random variables X1 = ξ1, ..., Xm = ξm have been conveniently63

chosen, N = N(t), for a fixed t, and64

Θ = Θ(t; ξ1, ..., ξm) = exp

(∫ t

t0

r(s) ds

)
(2.2)65

and66

η = η(t; ξ1, ..., ξm) =

∫ t

t0

r(s)

K(s)
exp

(∫ s

t0

r(ν) dν

)
ds. (2.3)67

It is not difficult to verify that the function defined by (2.1) is invertible and its68

inverse is given by69

(N,X1, ..., Xm) 7→ (N0, ξ1, ..., ξm) =

(
N

Θ−N η
, ξ1, ..., ξm

)
. (2.4)70

From the random variable transformation method, the density function of N(t),
for a fixed t, can be presented as

fN(N ; t) =

∫
D(X1,...,Xm)

f(N,X1,...,Xm)(N,X1, ..., Xm) dX1 ... dXm =

=

∫
D(ξ1,...,ξm)

f(N0,ξ1,...,ξm)(N0, ξ1, ..., ξm) |J(N,X1, ..., Xm)| dξ1 ... dξm,

where f(N,X1,...,Xm) is the joint density of the random vector (N,X1, ..., Xm); f(N0,ξ1,...,ξm)

is the joint density of (N0, ξ1, ..., ξm); D denotes the support of the corresponding
random vector; and J(N,X1, ..., Xm) is the determinant Jacobian of the function
given by (2.4), that is,

J(N,X1, ..., Xm) = det

(
∂(N0, ξ1, ..., ξm)

∂(N,X1, ..., Xm)

)
=
∂N0

∂N
=

=
∂

∂N

(
N

Θ−N η

)
=

Θ

(Θ−N η)2
> 0,

almost surely, since Θ in (2.2) is positive.71

Summarizing, the following result has been established.72

Theorem 2.1. For a fixed t, the pdf of N(t) in (1.2), fN , is given by73

fN(q; t) =

∫
D(ξ1,...,ξm)

f(N0,ξ1,...,ξm)

(
q

Θ− q η
, ξ1, ..., ξm

)
Θ

(Θ− q η)2
dξ1 ... dξm,

(2.5)74

where Θ = Θ(t; ξ1, ..., ξm) and η = η(t; ξ1, ..., ξm) are given in (2.2) and (2.3),75

respectively.76
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It is important to note that if some input random parameter is independent of the
rest, then the joint pdf in the integrand in (2.5) can be factorized as a product. For
instance, in the particular case that N0, ξ1, ..., ξm are independent random variables,
the integrand of (2.5) reads

f(N0,ξ1,...,ξm)

(
q

Θ− q η
, ξ1, ..., ξm

)
= fN0

(
q

Θ− q η

)
fξ1(ξ1) ... fξm(ξm).

In that case, (2.5) can be presented parametrically [4] as77

fN(q; t) = E
[
fN0

(
q

Θ− q η

)
Θ

(Θ−N η)2

]
. (2.6)78

3. Numerical example79

Let us consider the logistic model (1.1) driven by the time-varying intrinsic growth
rate, r(t), and the time-varying carrying capacity, K(t), that take the following
forms:

Case 1. K(t) = a+ b sin (2πt/p) and r(t) = r0 + β sin (2πt/p);

Case 2. K(t) = a+ b sin (2πt/p) and r(t) = r0;

Case 3. K(t) = K1K2/
[
K1 + (K2 −K1)e

−ct] and r(t) = r0;

Case 4. K(t) = K1K2/
[
K1 + (K2 −K1)e

−ct] and r(t) = r0 + β sin (2πt/p),

where a ∼ Uniform[4.85, 5.15] (it is a random variable that follows a uniform distri-80

bution); b ∼ Uniform[1.93, 2.07]; p ∼ Uniform[1.97, 2.03]; r0 ∼ Uniform[0.94, 1.06];81

β ∼ Uniform[0.77, 0.83]; K1 ∼ Uniform[4.86, 5.14]; K2 ∼ Uniform[6.74, 7.26]; c ∼82

Exponential(1/0.8) (it has an exponential distribution with rate parameter 1/0.8);83

N0 ∼ Exponential(1/2) in Cases 1–2; and N0 ∼ Uniform[1.84, 2.16] in Cases 3–84

4. Moreover, all the involved random variables are assumed to be independent.85

Those several functional forms for K(t) and r(t) have been used in the literature86

[6, 7, 13, 16, 9, 17]. Essentially, they are periodic or steady for the intrinsic growth87

rate, and periodic or sigmoid for the carrying capacity. Fluctuating and periodic88

functions are quite common in scientific fields, not only in Ecology which this paper89

belongs to, but also in Physics [11, 12] or Epidemiology [8, 1], for instance.90

We point out that the uniform distribution corresponds to the maximum entropy91

distribution when only prior information about the bounded support is known, while92

the exponential distribution is the maximum entropy distribution for a positive93

random quantity with known mean value [10, 18]. In modeling, the support and94

the mean value of an input random parameter may be inferred from its physical95

interpretation, experimental measurements or curve fittings.96

To illustrate our results, in Figure 1 we present approximations of fN(q; t) given97

by (2.5) for (q; t) ∈ [0, 8] × [0, 6]. They were computed by using the crude Monte98

Carlo (MC) method with 200 000 realizations of the involved random variables to99

estimate the expectation in (2.6). As the integrand in (2.5), in Cases 3–4, has100

jump discontinuities in fN0 , the MC method has been utilized in all cases instead of101

computing the integral via quadrature techniques. The graphical results obtained102

are easily interpreted physically. In the top two panels for Cases 1–2, the stochastic103

solution has an oscillating behavior as time passes. Indeed, it is observed that the104
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probability density scrolls in the q domain from left to right and vice versa with105

time. This is due to the periodic definition of the carrying capacity. In the bottom106

two panels for Cases 3–4, by contrast, the carrying capacity is increasing towards107

K2 with time in a sigmoid form. In Case 3, r(t) is steady and positive, so N(t)108

increases with time in a sigmoid manner. This is the reason of the density function109

traveling towards higher q values. In Case 4, N(t) tends to the carrying capacity as110

time goes on, but oscillations are appreciated, which tend to disappear with time.111

Those fluctuations are a consequence of the periodicity of r(t).112

Figure 1. Approximations of fN(q; t), (q; t) ∈ [0, 8] × [0, 6]. Cases
1–2 (top left–right). Cases 3–4 (bottom left–right).

We also compare the densities fN(q; t) for several values of t with those ones113

obtained by employing a kernel density estimation method (with normal kernel and114

Silverman’s selection of the bandwidth), a non-parametric way to estimate the pdf of115

a random variable, and the classical Runge–Kutta scheme with 200 000 realizations116

of the involved random variables. It is observed full agreement, see Figure 2.117

Figure 3 illustrates fN(q; 6), for Cases 3–4, calculated by using the MC method118

in (2.6) using 1 500 000 realizations. Notice that, in contrast to kernel density es-119

timation (non-parametric nature), our parametric method is able to capture the120

density features (in this case non-differentiability points).121

To emphasize the relevance of the variability of the parameters, we compare the122

expectation of N(t), E[N(t)], with the solution of the simplified version of (1.1)123

and (1.2), where the random parameters are replaced by their respective means.124
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Figure 2. Estimations of fN(q; t), t = 1, 4, 6: by computing the
expectation in (2.6) using the MC method with 200 000 realizations
(black line); by a kernel density estimation method (red line). Case
number i = 1, 2, 3, 4 in row i.

Figure 4 illustrates the two approaches: the fat line refers to the simplified version125

of K(t); the red one refers to E[K(t)] computed using the crude MC method; the126

dots correspond to the numerical solution of the simplified version of N(t) employing127

the classical Runge-Kutta scheme; the blue line refers to E[N(t)] computed using128

the crude MC method. In the top panels, the carrying capacity is periodic, and N(t)129

tends to move within its range oscillating. This interesting behavior coincides with130

the deterministic situation, where convergence towards a periodic canonical solution131

holds [7]. In the bottom panels, by contrast, the carrying capacity increases with132

time in a sigmoid fashion. This is also the case for N(t) in Case 3, because r(t) is133

time-independent. In Case 4, instead, N(t) presents small oscillations, which die out134
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Figure 3. Illustration of fN(q; 6): by computing the expectation in
(2.6) using the MC method with 1 500 000 realizations (black line); by
a kernel density estimation method (red line). Case 3 (left) and Case
4 (right).

in the end, due to the periodicity of r(t). Observe that E[N(t)] and the simplified135

N(t) differ, with E[N(t)] being smaller for all t.136

Figure 4. Illustration of E[N(t)] and the simplified version of N(t),
t ∈ [0, 10]. Cases 1–2 (top left–right). Cases 3–4 (bottom left–right).
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4. Discussion137

In this paper we have extended, to the random setting, the non-autonomous138

logistic model whose intrinsic growth rate and environmental carrying capacity are139

time-dependent. Time dependency is necessary to better describe changes in the140

environment. Randomness is needed to account for errors in recorded data and141

in model assumptions. Solving a random differential equation problem means to142

understand the statistical content of the solution. This can be done by computing143

its probability density function. The random variable transformation technique144

is an exact method to derive the probability density function, by employing the145

explicit input-output relation of the system and the change of variables formula for146

integration. Although the exact expression for the density function may involve147

multidimensional integration, independence of the input random parameters allows148

for writing it as a simple expectation. Such expectation is parametrically estimated149

by crude Monte Carlo simulation, therefore kernel density estimation, which is non-150

parametric, gets improved. These aspects have been illustrated numerically, by151

considering several functional forms of the intrinsic growth rate and the carrying152

capacity that have been used in the scientific literature. Essentially, those functional153

forms are periodic or steady for the intrinsic growth rate, and periodic or sigmoid154

for the carrying capacity.155
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