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Foreword

It is with great pleasure that we present the Proceedings of the 26th Congress of Differential Equations and Appli-
cations / 16th Congress of Applied Mathematics (XXVI CEDYA / XVI CMA), the biennial congress of the Spanish
Society of Applied Mathematics SEeMA, which is held in Gijón, Spain from June 14 to June 18, 2021.

In this volume we gather the short papers sent by some of the almost three hundred and twenty communications
presented in the conference. Abstracts of all those communications can be found in the abstract book of the
congress. Moreover, full papers by invited lecturers will shortly appear in a special issue of the SEeMA Journal.

The first CEDYA was celebrated in 1978 in Madrid, and the first joint CEDYA / CMA took place in Málaga in
1989. Our congress focuses on different fields of applied mathematics: Dynamical Systems and Ordinary Differ-
ential Equations, Partial Differential Equations, Numerical Analysis and Simulation, Numerical Linear Algebra,
Optimal Control and Inverse Problems and Applications of Mathematics to Industry, Social Sciences, and Biol-
ogy. Communications in other related topics such as Scientific Computation, Approximation Theory, Discrete
Mathematics and Mathematical Education are also common.

For the last few editions, the congress has been structured in mini-symposia. In Gijón, we will have eighteen
minis-symposia, proposed by different researchers and groups, and also five thematic sessions organized by the
local organizing committee to distribute the individual contributions. We will also have a poster session and ten
invited lectures. Among all the mini-symposia, we want to highlight the one dedicated to the memory of our
colleague Francisco Javier “Pancho” Sayas, which gathers two plenary lectures, thirty-six talks, and more than
forty invited people that have expressed their wish to pay tribute to his figure and work.

This edition has been deeply marked by the COVID-19 pandemic. First scheduled for June 2020, we had to
postpone it one year, and move to a hybrid format. Roughly half of the participants attended the conference online,
while the other half came to Gijón. Taking a normal conference and moving to a hybrid format in one year has
meant a lot of efforts from all the parties involved. Not only did we, as organizing committee, see how much of the
work already done had to be undone and redone in a different way, but also the administration staff, the scientific
committee, the mini-symposia organizers, and many of the contributors had to work overtime for the change.

Just to name a few of the problems that all of us faced: some of the already accepted mini-symposia and
contributed talks had to be withdrawn for different reasons (mainly because of the lack of flexibility of the funding
agencies); it became quite clear since the very first moment that, no matter how well things evolved, it would be
nearly impossible for most international participants to come to Gijón; reservations with the hotels and contracts
with the suppliers had to be cancelled; and there was a lot of uncertainty, and even anxiety could be said, until we
were able to confirm that the face-to-face part of the congress could take place as planned.

On the other hand, in the new open call for scientific proposals, we had a nice surprise: many people that would
have not been able to participate in the original congress were sending new ideas for mini-symposia, individual
contributions and posters. This meant that the total number of communications was about twenty percent greater
than the original one, with most of the new contributions sent by students.

There were almost one hundred and twenty students registered for this CEDYA / CMA. The hybrid format
allows students to participate at very low expense for their funding agencies, and this gives them the opportunity
to attend different conferences and get more merits. But this, which can be seen as an advantage, makes it harder
for them to obtain a full conference experience. Alfréd Rényi said: “a mathematician is a device for turning coffee
into theorems”. Experience has taught us that a congress is the best place for a mathematician to have a lot of
coffee. And coffee cannot be served online.

In Gijón, June 4, 2021

The Local Organizing Committee from the Universidad de Oviedo
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Carreño A., Vidal-Ferràndiz A., Ginestar D. and Verdú G. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5



CONTENTS

Homoclinic bifurcations in the unfolding of the nilpotent singularity of codimension 4 in R4
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Gómez-Bueno I., Castro M.J., Parés C. and Russo G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

An algorithm to create conservative Galerkin projection between meshes
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Iterative processes with arbitrary order of convergence for approximating
generalized inverses

Alicia Cordero1, Pablo Soto-Quiros2, Juan R. Torregrosa1
1. Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, València, Spain

2. Escuela de Matemática, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica

Abstract
A family of iterative schemes for finding approximate inverses of nonsingular matrices is suggested and

established analytically. This class of methods can be used for finding the Moore-Penrose inverse of a rectangular
complex matrix. The order of convergence is stated in each case, depending on the first non-zero parameter. For
different examples, the accessibility of some schemes, that is, the set of initial estimations leading to convergence,
is analyzed in order to select those with wider sets. This wideness is related with the value of the first non-zero
value of the parameters defining the method. Finally, some numerical examples are provided to confirm the
theoretical results and to show the feasibility and effectiveness of the new methods.

1. Introduction
Computing the matrix inverse of nonsingular matrices of higher size is difficult and is a time consuming task.
Generally speaking, in wide variety of topics, one must compute the inverse or particularly the generalized inverses
to comprehend and realize significant features of the involved problems.
In the last decade, many iterative schemes of different orders have been designed for approximating the inverse

or some generalized inverse (Moore-Penrose inverse, Drazin inverse, etc.) of a complex matrix 𝐴. In this paper,
we focus our attention on constructing a new class of iterative methods, free of inverse operators and with arbitrary
order of convergence, for finding the inverse of a nonsingular complex matrix. We also study the proposed class for
computing the Moore-Penrose inverse of complex rectangular matrices. The designed family depends on several
real parameters, which by taking particular values provide us numerous known methods constructed by other
authors with different procedures.
The most known iterative scheme for computing the inverse 𝐴−1 of a nonsingular complex matrix 𝐴 is the

Schulz’s method whose iterative expression is

𝑋𝑘+1 = 𝑋𝑘 (2𝐼 − 𝐴𝑋𝑘 ), 𝑘 = 0, 1, . . . (1.1)

where 𝐼 is the identity matrix with the same size of 𝐴. Schulz in [8] demonstrated the convergence of sequence
{𝑋𝑘 }𝑘≥0, obtained from (1.1), to the inverse 𝐴−1 is guaranteed if the eigenvalues of matrix 𝐼 − 𝐴𝑋0 are lower than
1. Taking into account that the residuals 𝐸𝑘 = 𝐼 − 𝐴𝑋𝑘 , 𝑘 = 0, 1, . . . satisfy ‖𝐸𝑘+1‖ ≤ ‖𝐸𝑘 ‖2, expression (1.1) has
quadratic convergence. In general, in the Schulz-type methods it is common to use as initial approach 𝑋0 = 𝛼𝐴∗ or
𝑋0 = 𝛼𝐴, where 0 < 𝛼 < 2/𝜌(𝐴∗𝐴), where 𝐴∗ is the conjugate transpose of 𝐴 and 𝜌(·) the spectral radius. In this
paper, we use in the case of inverses and also in generalized inverses, the initial estimation 𝑋0 = 𝛽𝐴∗/‖𝐴‖2. We
also study the values of the parameter 𝛽 that guarantee convergence.
Li et al. in [5] proposed the family of iterative methods

𝑋𝑘+1 = 𝑋𝑘

(
a𝐼 − a(a − 1)

2
𝐴𝑋𝑘 + a(a − 1) (a − 2)3!

(𝐴𝑋𝑘 )2 − . . . + (−1)a−1 (𝐴𝑋𝑘 )a−1
)
, a = 2, 3, . . .

with 𝑋0 = 𝛼𝐴∗. They proved the convergence of a-order of {𝑋𝑘 }𝑘≥0 to the inverse of matrix 𝐴. This class was
used by Chen et al. in [2] and by Li et al. in [19] for approximating the Moore-Penrose inverse.
Soleymani et al. in [18] also constructed a fourth-order iterative scheme for calculating the inverse and the

Moore-Penrose inverse, with iterative expression

𝑋𝑘+1 =
1
2
𝑋𝑘 (9𝐼 − 𝐴𝑋𝑘 (16𝐼 − 𝐴𝑋𝑘 (14𝐼 − 𝐴𝑋𝑘 (6𝐼 − 𝐴𝑋𝑘 )))), 𝑘 = 0, 1, . . .

On the other hand, Stanimirović et al. in [16] designed the following scheme of order eleven for computing the
generalized outer inverse 𝐴(2)𝑇 ,𝑆

𝑋𝑘+1 = 𝑋𝑘 (𝐼 + (𝑅𝑘 + 𝑅2𝑘 ) (𝐼 + (𝑅2𝑘 + 𝑅4𝑘 ) (𝐼 + 𝑅4𝑘 ))), 𝑘 = 0, 1, . . .
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being 𝑅𝑘 = 𝐼 − 𝐴𝑋𝑘 , 𝑘 = 0, 1, . . ..
Kaur et al. in [4], by using also the hyperpower iterative method, designed the following scheme of order five

for obtaining the weighted Moore-Penrose inverse

𝑋𝑘+1 = 𝑋𝑘 (5𝐼 − 10𝐴𝑋𝑘 + 10(𝐴𝑋𝑘 )2 − 5(𝐴𝑋𝑘 )3 + (𝐴𝑋𝑘 )4), 𝑘 = 0, 1, . . .

These papers are some of the manuscripts that have been published to approximate the inverse of a nonsingular
matrix or some of the generalized inverses of arbitrary matrices. In this paper, we design a parametric family of
iterative schemes with arbitrary order of convergence that contains many of the methods constructed up to date.
For each fixed value of the order of convergence, we still have a class of iterative methods depending on several
parameters.
The rest of this manuscript is organized as follows. Section 2 is devoted to the construction of the proposed

class of iterative schemes, proving its convergence to the inverse of a nonsingular complex matrix, with arbitrary
order of convergence. In Section 3, it is proven that the same family of iterative methods is able to converge to the
Moore-Penrose inverse of a complex matrix of size 𝑚 × 𝑛. Some particular cases of this class are found in Section
4, corresponding to existing methods proposed by different authors. A wide range of numerical test are also found
in Section 5, checking the robustness and applicability of the proposed methods on different kinds of matrices.
With some conclusions and the references used finishes this manuscript.

2. A class of iterative schemes for matrix inversion
In this section, we present a parametric family of iterative schemes for approximating the inverse of nonsingular
matrices and we prove the order of convergence of the different members of the family. First, we define the following
polynomial matrix.

Definition 2.1 Let 𝑈 ∈ C𝑚×𝑚 be a complex square matrix and 𝑝 > 0 a positive integer number. We define the
polynomial matrix 𝐻𝑝 (𝑈) as

𝐻𝑝 (𝑈) =
𝑝∑︁
𝑗=1
(−1) 𝑗−1𝐶 𝑗𝑝𝑈 𝑗−1 = 𝐶1𝑝 𝐼 − 𝐶2𝑝𝑈 + 𝐶3𝑝𝑈2 + ... + (−1) 𝑝−1𝐶 𝑝𝑝𝑈 𝑝−1,

where 𝐶 𝑗𝑝 is the combinatorial number 𝐶
𝑗
𝑝 =

(
𝑝

𝑗

)
=

𝑝!
𝑗!(𝑝 − 𝑗)! .

The following technical result can be proven by using mathematical induction with respect to parameter 𝑝.

Lemma 2.2 Let 𝑝 > 0 be a positive integer and𝑈 ∈ C𝑚×𝑚. Then (𝐼 −𝑈) 𝑝 = 𝐼 −𝑈𝐻𝑝 (𝑈).
Let 𝐴 ∈ C𝑚×𝑚 be a nonsingular matrix and 𝑝 > 1 a positive integer. Let {𝛼1, 𝛼2, . . . , 𝛼𝑝} be a set of real

parameters such that 𝛼𝑖 ∈ [0, 1], for 𝑖 = 1, 2, ..., 𝑝 − 1, 𝛼𝑝 ∈ ]0, 1] and
𝑝∑︁
𝑖=1

𝛼𝑖 = 1.

We assume a sequence of complex matrices {𝑋0, 𝑋1, ..., 𝑋𝑛, ...}, of size 𝑚 ×𝑚, satisfying following conditions:
(a) ‖𝐼 − 𝐴𝑋0‖ = 𝛾0 < 1,

(b) 𝐼 − 𝐴𝑋𝑘+1 =
𝑝∑︁
𝑖=1

𝛼𝑖 (𝐼 − 𝐴𝑋𝑘 )𝑖 .

We consider the family of methods with iterative expression

𝑋𝑘+1 = 𝑋𝑘
𝑝∑︁
𝑖=1

𝛼𝑖𝐻𝑖 (𝐴𝑋𝑘 ), 𝑘 = 0, 1, . . . (2.1)

For each positive integer 𝑝, 𝑝 > 1, we have a different class of iterative methods, whose order of convergence
depends on the value of parameters 𝛼𝑖 , 𝑖 = 1, 2, . . . , 𝑝.
In the following results, the convergence of these schemes to the inverse of matrix 𝐴 is proven.

Proposition 2.3 Let 𝐴 ∈ C𝑚×𝑚 be a nonsingular matrix and 𝑝 > 1 a positive integer. Let us consider the sequence
of complex matrices constructed as

𝑋𝑘+1 = 𝑋𝑘
𝑝∑︁
𝑖=1

𝛼𝑖𝐻𝑖 (𝐴𝑋𝑘 ), 𝑘 = 0, 1, . . . ,
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where 𝛼𝑖 ∈ [0, 1], for 𝑖 = 1, 2, ..., 𝑝 − 1, 𝛼𝑝 ∈ ]0, 1] and
𝑝∑︁
𝑖=1

𝛼𝑖 = 1. Then, condition

𝐼 − 𝐴𝑋𝑘+1 =
𝑝∑︁
𝑖=1

𝛼𝑖 (𝐼 − 𝐴𝑋𝑘 )𝑖 ,

is equivalent to

𝑋𝑘+1 = 𝑋𝑘
𝑝∑︁
𝑖=1

𝛼𝑖
©«
𝑖∑︁
𝑗=1
(−1) 𝑗−1𝐶 𝑗𝑖 (𝐴𝑋𝑘 ) 𝑗−1

ª®¬
. (2.2)

By mathematical induction it is also easy to prove the following result.

Proposition 2.4 Let us consider sequence {𝑋𝑘 }𝑘≥0 obtained from expression (2.1). If ‖𝐼 − 𝐴𝑋0‖ < 1, then

‖𝐼 − 𝐴𝑋𝑘 ‖ < 1, 𝑘 = 1, 2, . . .

From these previous results, we can establish the following convergence theorem.

Theorem 2.5 Let 𝐴 ∈ C𝑚×𝑚 be a nonsingular matrix and an initial guess 𝑋0 ∈ C𝑚×𝑚. Let 𝛼1, . . . , 𝛼𝑝 be

nonnegative real numbers such that 𝛼𝑖 ∈ [0, 1], 𝛼𝑝 ≠ 0 and
𝑝∑︁
𝑖=1

𝛼𝑖 = 1. If ‖𝐼 − 𝐴𝑋0‖ < 1, then sequence {𝑋𝑘 }𝑘≥0,

obtained by (2.1), converges to 𝐴−1 with convergence order 𝑞 for any 𝑝 > 1, where 𝑞 = min
𝑖=1,2,..., 𝑝

{𝑖 | 𝛼𝑖 ≠ 0}.

In the next section, we extend the iterative schemes (2.1) for finding the Moore-Penrose inverse of any complex
rectangular matrix.

3. A class of iterative schemes for computing Moore-Penrose inverse
Let 𝐴 be a 𝑚 × 𝑛 complex matrix. The Moore-Penrose inverse of 𝐴 (pseudoinverse), denoted by 𝐴†, is the unique
𝑛 × 𝑚 matrix 𝑋 satisfying

𝐴𝑋𝐴 = 𝐴, 𝑋𝐴𝑋 = 𝑋, (𝐴𝑋)∗ = 𝐴𝑋, (𝑋𝐴)∗ = 𝑋𝐴.

This generalized inverse plays an important role in several fields, such as eigenvalue problems and the linear
least square problems [3]. It can be obtained, explicitly, from the singular value decomposition of 𝐴 but, with a high
computational cost. Therefore, it is interesting to have efficient iterative methods to approximate this matrix. In
this section, we prove how family (2.1) allows us to compute the pseudoinverse with the same order of convergence
that in the previous section, where the inverse of a square matrix was calculated. First, we establish the following
technical result, that is proven by mathematical induction, although other authors state similar results in the context
of outer inverses (see, for example, [17]).

Lemma 3.1 Let us consider 𝑋0 = 𝛼𝐴∗, where 𝛼 ∈ R, and sequence {𝑋𝑘 }𝑘≥0 generated by family (2.1). For any
𝑘 ≥ 0, it is satisfied

(𝑋𝑘𝐴)∗ = 𝑋𝑘𝐴, (𝐴𝑋𝑘 )∗ = 𝐴𝑋𝑘 , 𝑋𝑘𝐴𝐴
† = 𝑋𝑘 , 𝐴†𝐴𝑋𝑘 = 𝑋𝑘 . (3.1)

Now, some technical results are presented.

Lemma 3.2 ( [2]) Let 𝐴 ∈ C𝑚×𝑛 and 𝑋0 = 𝛼𝐴∗ be, where 𝛼 < 1
𝜎21

and 𝜎1 is the largest singular value of 𝐴. Then

‖(𝑋0 − 𝐴†)𝐴‖ < 1.

Lemma 3.3 Let 𝐴 ∈ C𝑚×𝑛 and {𝑋𝑘 }𝑘≥0 be the sequence generated by (2.1). Let us consider 𝐸𝑘 = 𝑋𝑘 − 𝐴†,
𝑘 = 0, 1, . . .. Then,

1. ‖𝑋𝑘 − 𝐴†‖ ≤ ‖𝐸𝑘𝐴‖‖𝐴†‖,
2. (𝐼 − 𝐴†𝐴)𝐸𝑘𝐴 = 0.
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Lemma 3.4 Let 𝐴 ∈ C𝑚×𝑛 and {𝑋𝑘 }𝑘≥0 be the sequence generated by (2.1). By using 𝐸𝑘 = 𝑋𝑘 − 𝐴†, defined in
the previous lemma, we have

𝐸𝑘+1𝐴 =
𝑝∑︁
𝑖=1

𝛼𝑖 (−1)𝑖−1 (𝐸𝑘𝐴)𝑖 , 𝑘 = 0, 1, . . . (3.2)

Finally, we can state the following convergence result.

Theorem 3.5 Let 𝐴 ∈ C𝑚×𝑛 and 𝑞 = min
𝑖=1,2,..., 𝑝

{𝑖 | 𝛼𝑖 ≠ 0}. Then, sequence {𝑋𝑘 }𝑘≥0 generated by (2.1) converges

to the Moore-Penrose inverse 𝐴† with 𝑞th-order provided that 𝑋0 = 𝛼𝐴∗, where 𝛼 <
1
𝜎21

is a constant and 𝜎1 is

the largest singular value of A.

4. Some known members of the proposed class
The family of iterative schemes (2.1) is a generalization of other known methods constructed with different
techniques. Now, we describe some of them.

1. For any 𝑝 > 1, if 𝛼1 = · · · = 𝛼𝑝−1 = 0 and 𝛼𝑝 = 1, then we obtain the method proposed by Li and Li. (see
Eq. (2.3) in [5] for inverse case and Eq. (2.1) in [2] for pseudoinverse one). Recall that method proposed by
Li and Li generalizes the Newton-Schultz (𝑝 = 2) and Chebyshev method (𝑝 = 3).

2. On the other hand, if 𝛼𝑖 = 0 for 𝑖 = 1, 2, . . . , 8, 𝛼9 = 𝛼12 = 1/8 and 𝛼10 = 𝛼11 = 3/8, then we get the method
proposed by Soleymani and Stanimirovic (see Eq. (12) in [9]).

3. Also, expression (2.1) gives us the method proposed by Toutounian and Soleymani (see Eq. (18) in [18]), if
𝛼4 = 1/2 and 𝛼5 = 1/2 and 𝛼1 = 𝛼2 = 𝛼3 = 0.

4. When the only not null parameter is 𝛼7 = 1, then we obtain method proposed by Soleymani (see Eq. (18)
in [11]).

5. In a similar way, if the only parameter different from zero is 𝛼6 = 1, then the method proposed by Soleymani,
Stanimirovic and Zaka (see Eq. (2.4) in [14]) is obtained.

6. When 𝛼𝑖 = 0 for 𝑖 = 1, 2, ...7, 𝛼8 = 𝛼10 = 1/4 and 𝛼9 = 2/4, the resulting scheme is that proposed by
Soleymani in Eq. (9) in [12].

7. The method proposed by Soleymani et al in [13], Eq. (10), appears if 𝛼1 = · · · = 𝛼8 = 0, 𝛼9 = 7/9 and
𝛼10 = 2/9.

8. The scheme proposed by Razavi, Kerayechian, Gachpazan and Shateyi, (see Eq. (16) in [7]) is obtained if
we choose 𝛼1 = ... = 𝛼9 = 0, 𝛼10 = 𝛼12 = 1/4 and 𝛼11 = 1/2 in Equation (2.1).

9. When the first eight paramenters are null, 𝛼9 = 343/729, 𝛼10 = 294/729, 𝛼11 = 84/729 and 𝛼12 = 8/729,
we get the scheme proposed by Al-Fhaid et al in [1], Eq. (5).

10. If 𝛼7 = 9/16, 𝛼8 = 6/16, 𝛼9 = 1/16 and the rest of parameters are zero, then the scheme proposed by
Soleymani is found (see Eq. (3.1) in [10]).

11. When 𝑝 = 12 and the only parameters different from zero are 𝛼9 = 𝛼12 = 1/8 and 𝛼9 = 𝛼10 = 3/8, therefore
the method proposed by Liu and Cai. see Eq. (4) in [6]) is obtained.

12. If 𝛼2 = 0, 𝛼1 = 1 − 𝛼 and 𝛼3 = 𝛼, where 𝛼 ∈ (0, 1], then we find the method proposed by Srivastava and
Gupta in [15]), Eq. (6).

5. Numerical examples
In this section, we check the performance of the proposed schemes, on small and large–scale matrices. Among
them, we work with the Hilbert matrix as an example of ill-conditioned matrix. These numerical tests have been
made with Matlab R2018b, by using double precision arithmetics. The convergence is checked by means of the
stopping criterium of the residual, ‖𝐴𝑋𝑘 − 𝐼 ‖ < 10−6 and a maximum of 200 iterations. In all cases, the initial
estimation taken is 𝑋0 = 𝛽

𝐴𝑇

‖𝐴‖2 , being 𝐴 the matrix whose inverse we are estimating and choosing values of
parameter 𝛽 close to 0.7.

ITERATIVE PROCESSES FOR APPROXIMATING GENERALIZED INVERSES

144



In Tables 1 - 2, elements 𝛼1 = 0, 𝛼1 = 0.6 and 𝛼1 = 0.8 for the class 𝑝 = 2 (all of them with 𝛼2 = 1 − 𝛼1) are
compared with the members of class 𝑝 = 3 corresponding to 𝛼1 = 0 and 𝛼2 = 0, 𝛼2 = 0.6 and 𝛼2 = 0.8, where
𝛼3 = 1 − 𝛼2. The comparison is made through the number of iterations needed to converge (it) and the residual
‖𝐴𝑋𝑘 − 𝐼 ‖, denoted by (res). If the method does not converge (typically giving “NaN"), it is denoted by “nc" in
the column of iterations; if the scheme simplify needs more than 200 iterations to converge, it is denoted by > 200.
In Table 1 the numerical results correspond to a Leslie matrix of size 100 × 100, and in Table 2 the results

generated by a Hilbert matrix of size 5 × 5 are shown.

𝛽
𝑝 = 2 𝑝 = 3, 𝛼1 = 0

𝛼1 = 0 𝛼1 = 0.6 𝛼1 = 0.8 𝛼2 = 0 𝛼2 = 0.6 𝛼2 = 0.8
it res it res it res it res it res it res

1 18 6.9e-12 55 8.5e-7 113 9.2e-7 11 2.9e-8 14 6.4e-7 16 2.4e-10
1.5 17 4.2e-9 54 7.7e-7 111 8.8e-7 11 4.8e-12 14 2.4e-9 15 1.4e-7
2 53 3.7e-11 53 8.3e-7 107 9.6e-7 33 8.0e-11 14 1.3e-11 15 1.4e-9
2.5 nc - 52 9.8e-7 108 9.2e-7 nc - 13 3.9e-7 nc -
3 nc - 52 7.5e-7 107 9.2e-7 nc - 13 3.7e-8 nc -
3.5 nc - nc - 106 9.5e-7 nc - 26 1.1e-12 nc -
4 nc - nc - 106 8.1e-7 nc - nc - nc -
4.5 nc - nc - 105 8.7e-7 nc - nc - nc -
5 nc - nc - 104 9.6e-7 nc - nc - 14 1.2e-12
5.5 nc - nc - 104 8.5e-7 nc - nc - nc -
6 nc - nc - > 200 - nc - nc - nc -

Tab. 1 Numerical results for a Leslie matrix of size 100 × 100

In Table 1, we notice that for large–scale (100 × 100) Leslie matrix, the numerical results obtained by 𝑝 = 2,
𝛼1 = 0 and 𝛼2 = 0.6 show convergence to the inverse matrix even when parameter 𝛽 of the initial estimation is
not close to zero. However, in these cases the number of iterations is very high. Regarding the lowest number of
iterations needed to converge, the best method corresponds to 𝑝 = 3, 𝛼1 = 0 and 𝛼2 = 0.6 as it holds low number
of iterations and high value of 𝛽.
Table 2 corresponds to a test on a 5 × 5 Hilbert matrix. It is clear that the number of iterations is high due to

the bad conditioning of the matrix. Nevertheless, the performance is, in general similar to previous cases.

𝛽
𝑝 = 2 𝑝 = 3, 𝛼1 = 0

𝛼1 = 0 𝛼1 = 0.2 𝛼1 = 0.4 𝛼2 = 0 𝛼2 = 0.6 𝛼2 = 0.8
it res it res it res it res it res it res

1 42 3.9e-9 54 5.7e-7 72 4.3e-7 27 2.3e-11 34 9.5e-11 37 1.07e-7
1.5 41 4.9e-7 53 9.3e-7 71 4.8e-7 26 5.1e-8 33 1.5e-7 37 9.8e-11
2 56 5.7e-8 53 4.2e-7 70 6.9e-7 nc - 33 2.3e-9 36 3.9e-7
2.5 nc - nc - 70 4.5e-7 nc - 33 4.8e-11 nc -
3 nc - nc - nc - nc - 33 1.3e-11 nc -
3.5 nc - nc - nc - nc - 32 2.1e-8 nc -
4 nc - nc - nc - nc - nc - nc -
4.5 nc - nc - nc - nc - nc - nc -
5 nc - nc - nc - nc - nc - nc -
5.5 nc - nc - nc - nc - nc - nc -
6 nc - nc - nc - nc - nc - nc -

Tab. 2 Numerical results for a Hilbert matrix of size 5 × 5

Finally, Table includes the results of pseudoinverse calculation for a random matrix of size 300 × 200. In this
case, Chebyshev’s method performs better than the most of schemes under study, as it need a very low number of
iterations to converge to the pseudoinverse, although 𝑝 = 2 can converge even with values of 𝛽 = 6 or higher.

6. Conclusions
In this paper, we have developed a parametric family of iterative methods for computing inverse and pseudoinverse
of a complex matrix, having arbitrary order of convergence. Moreover, we have shown in Theorems 2.5 and 3.5
that the order of the suggested method in (2.1) depends on the first non-zero parameter. The proposed parametric
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𝛽
𝑝 = 2 𝑝 = 3, 𝛼1 = 0

𝛼1 = 0 𝛼1 = 0.6 𝛼1 = 0.8 𝛼2 = 0 𝛼2 = 0.6 𝛼2 = 0.8
it res it res it res it res it res it res

1 19 5.4e-8 56 6.7e-7 109 9.7e-7 13 4.9e-15 16 1.2e-9 18 5.7e-14
1.5 19 1.3e-11 55 6.0e-7 107 9.3e-7 12 4.3e-8 16 4.2e-13 17 3.8e-10
2 18 5.4e-8 54 6.5e-7 106 8.1e-7 12 1.5e-10 15 2.1e-8 17 6.8e-13
2.5 nc - 53 7.7e-7 104 9.7e-7 nc - 15 6.1e-10 nc -
3 nc - 52 9.7e-7 103 9.7e-7 nc - 15 2.1e-11 nc -
3.5 nc - 52 7.7e-7 103 8.0e-7 nc - 15 3.5e-8 nc -
4 nc - nc - 102 8.5e-7 nc - nc - nc -
4.5 nc - nc - 101 9.2e-7 nc - nc - nc -
5 nc - nc - 101 8.1e-7 nc - nc - nc -
5.5 nc - nc - 100 9.0e-7 nc - nc - nc -
6 nc - nc - 100 8.1e-7 nc - nc - nc -

Tab. 3 Numerical results for the estimation of the pseudoinverse of a random matrix of size 300 × 200 with 𝑋0 = 𝛽
𝐴𝑇

‖𝐴‖2

family in (2.1) is a generalization of other methods which are obtained for particular values of the parameters.
The numerical experiments show the feasibility and effectiveness of the new methods, for both nonsingular and
rectangular matrices with or without full rank and arbitrary size.
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