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Resumen

La prediccién de la demanda eléctrica es uno de los procesos mas importantes en el sector
energético. Desde la operacién de los sistemas hasta la gestion de compras y ventas de energia
en los distintos mercados existentes, predecir bien el consumo es vital para evitar problemas
como congestiones en las redes que pueden llegar a causar desabastecimientos o para evitar
importantes pérdidas econémicas como consecuencia de planificar mal las compras de los agentes
en los mercados mayoristas. En este TFM se plantea un modelo de prediccién de la demanda
eléctrica para administraciones publicas a partir de una descomposicién en tipos de consumo y
la aplicacién de redes neuronales artificiales (ANN). Normalmente, todas las administraciones
suelen contar con una cierta tipologia de tipos de consumo; iluminacién publica, oficinas, colegios,
semaforos. . .etc, cuya desagregacién puede ser 1util para fragmentar el problema y observar
patrones que sean mas facilmente predecibles. La metodologia se aplica al caso de estudio del
Ayuntamiento de Valencia. Se dispone de datos reales de los consumos municipales para el
periodo de 2017 y 2018. Estos consumos se van a clasificar por tipos y se van a tratar para
posteriormente facilitar el proceso de entrenamiento de las redes neuronales y que estas ofrezcan
la prediccion mas acertada posible. La prediccién de cada uno de los tipos de consumo se
hara por separado, dado que cada uno depende de unos inputs diferentes. Posteriormente, se
agregaran todas las predicciones individuales para obtener una predicciéon global del consumo del

ayuntamiento de Valencia.

Palabras Clave: Demanda eléctrica, Redes Neuronales Artificiales, Administracién publica,

Valencia, Prediccién, Eficiencia, Mercado eléctrico.
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Resum

La prediccié de la demanda electrica és un dels processos més importants en el sector energetic.
Des de 'operaci6 dels sistemes fins a la gestié de compra i venda d’energia en els diferents mercats
existents, predir bé el consum és vital per a evitar problemes com congestions en les xarxes
que poden arribar a causar desproveiments o per a evitar importants perdues economiques a
conseqiiencia de planificar malament les compres dels agents en els mercats majoristes. En aquest
TFM es planteja un model de prediccié de la demanda electrica per a administracions publiques
a partir d’'una descomposicié en tipus de consum i ’aplicacié de xarxes neuronals artificials
(ANN). Normalment, totes les administracions solen comptar amb una certa tipologia de tipus de
consum; il - luminacié publica, oficines, col - legis, semafors. . . etc, la desagregacié dels quals pot
ser util per a fragmentar el problema i observar patrons que siguen més facilment predictibles.
La metodologia s’aplica al cas d’estudi de I’Ajuntament de Valéncia. Es disposa de dades reals
dels consums municipals per al periode de 2017 i 2018. Aquests consums es classificaran per
tipus i es tractaran per a posteriorment facilitar el procés d’entrenament de les xarxes neuronals
i que aquestes oferisquen la prediccié més encertada possible. La prediccié de cadascun dels tipus
de consum es fara per separat, atés que cadascun depén d’uns inputs diferents. Posteriorment,
s’agregaran totes les prediccions individuals per a obtindre una prediccié global del consum de
I’ajuntament de Valencia.

Paraules clau: Demanda eléctrica, Xarxes Neuronals Artificials, Administracié piblica, Valéncia,
Prediccid, Eficiencia, Mercat eléctric.
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Abstract

Electricity demand forecasting is one of the most important processes in the energy sector. From
the operation of the systems to the management of energy purchases and sales in the different
existing markets, predicting consumption is vital to avoid problems such as grid congestion
that can lead to shortages or to avoid significant economic losses as a result of poorly planned
purchases by agents in wholesale markets. In this TFM we propose a model for predicting
electricity demand for public administrations based on a decomposition into types of consumption
and the application of artificial neural networks (ANN). Usually, all administrations have a
certain typology of consumption types; public lighting, offices, schools, traffic lights, etc., whose
disaggregation can be useful to lighten the problem and observe patterns that are more easily
predictable. The methodology is applied to the case study of Valencia City Council. Real data
on municipal consumption is available for the period 2017 and 2018. These consumptions are
going to be classified by type and treated to subsequently facilitate the training process of the
neural networks so that they offer the most accurate prediction possible. The prediction of each
type of consumption will be done separately, given that each one depends on different inputs.
Subsequently, all the individual predictions will be aggregated to obtain a global prediction of
the consumption of Valencia City Council.

Keywords:Electricity demand, Artificial Neural Networks, Public administration, Valencia,
Forecast, Efficiency, Electricity market
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1 Introduction and objectives

1.1 Motivation

For decades now, cities have been the center of work and social activity, as well as the place
where most of the resources necessary for life are located: hospitals, universities, administration
centers, etc. This make cities places with a high population density and, by 2050, it is estimated
that over 65% of the world’s population will live in cities (Urban Climate Change Research
Network (UCCRN), |2018)). As a consequence, cities, which only occupy around 2% of the planet’s
surface, are energy sinks, consuming two thirds of the world’s energy and being responsible
for 70% of carbon dioxide emissions (C40 cities, 2021; Wei et al., 2021). That high energy
consumption is also present for municipalities, which own facilities like schools, offices and health
centres that have to offer services to a huge population. Municipalities also own public lightning,
traffic lights and other infrastructures that in big cities can represent a considerable share of the
energy consumption for the municipality. This consumption constitutes an important economic
expense for municipalities and an important part of their budgets (Ajuntament de Barcelona,
2020; Ajuntament de Valéncia, 2021; Ayuntamiento de Madrid, 2020)). For this reason, some
municipalities have started to procure electricity in wholesale markets to eliminate intermediary
costs (Cambranos, 2019; Diario de Rivas, 2018; Radiotelevisién del Principau d’Asturies, [2014)).
Others had more ambitious plans and have created municipal electricity retail companies not to
only purchase electricity for municipal loads but also to offer this service to residential consumers
(Barcelona Energia, [2021; Bristol Energy, [2021; Eléctrica de Céadiz, |2021; Hamburg energie,
2021)). However, buying electricity in the wholesale markets has a large set of associated risks
(Bartelj et al., [2010; Boroumand & Zachmann, 2012; Ojanen, 2002). One of the most important
are penalties due to unbalances between the electricity bought and the actually consumed.
(Alcazar Ortega et al., 2019; Cabello Garcia, 2020; Carbajo, 2007). These imbalances can lead to
important economic losses, as will be discussed later on this document.

1.2 Background

One of the methods to forecast electricity demand that has gained most popularity in the last
years is Artificial Neural Networks (ANN) (Kumar et al., [2013; Li et al., 2015; Zhang et al., 1998).
ANN’s are a subset of machine learning and are at the heart of deep learning algorithms. Their
name and structure are inspired by the human brain, imitating the way that biological neurons
signal to one another (IBM Cloud Education, 2020)). ANN can be trained with past input and
output data and then forecast future outputs given only the inputs. Also, one strategy followed by
some authors is dividing the electricity consumption by end uses (Farinaccio & Zmeureanu, [1999;
Ghisi et al., 2007; Murthy et al., [2001)). In (Escriva-Escriva et al., [2014]) and (Escriva-Escriva et
al., 2011)), authors propose a method that combine the ANN strategy with dividing consumption
into end uses. Some of the end uses considered are Heat pumps, only chillers systems, public
lightning and some others. Nevertheless, this end-use decomposition is very difficult to apply to
big consumers like municipalities, since they count on a lot of consumption points whose end uses
are wide. In practice, conducting an end-use decomposition to a whole municipality would result
in a deep study of the end uses that every building or municipal facility has and a big expense

12
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on measurement devices and a good data acquisition system. Hence, the point is obtaining a
methodology that can offer as good results as combining end-use decomposition with ANN that is
applicable to facilities which can have a lot of consumption points of different nature. To achieve
this, in this TFM, a methodology to forecast municipalities’ electricity demand based on the
classification of Metered Supply Points (MSP) and the application of Artificial Neural Networks
(ANN) is proposed. MSP classification is a similar approach to end use decomposition but instead
of splitting consumption into end uses, consumption is divided by groups of MSP that share a
similar load curve and similar types of day and are affected by the same variables (temperature,
sunset time...etc). The most common groups of MSP in municipalities are public lightning,
public offices and working buildings and schools, among others. Once municipality consumption
is divided into groups of MSP, ANN’s are applied to each of the groups. By performing the
classification before the ANN application, the learning process is easier and forecast results are
improved.

The novelty of this work lies in the following aspects:

e The methodology is applied to an actual case of study and can be replicated to forecast
other municipalities’ electric consumption. That could lead to public administrations
having a deeper knowledge of their future consumption, facilitating demand-side strategies
or even buying their own electricity in the wholesale markets, getting the corresponding
savings and avoiding possible dependence on third parties.

e Municipality MSP are classified according to their load curve shape, variables influencing

consumption and the different types of day.

o This classification is easier to perform for municipalities, since it offers good results without
spending resources on a more complex measurement systems that is able to measure the
consumption of all the end uses. Only a smart meter is required for every MSP. Since in
most of the cases smart meters are mandatory, the measurement system doesn’t represent

an extra investment for the municipality.

e The methodology offers a big potential for the future, in the big data era, when all
consumption will be monitored. The highest the data availability, the better performance is
offered by the method, since the classification process can be done more precisely, improving

ANN’s training process and results.

1.3 Objectives

The objective of this TFM is proposing an energy forecast method replicable for municipalities
that offers high precision without spending a lot of resources on a complex data acquisition
system. The methodology is suitable for medium and large municipalities, with a number of MSP
high enough to have reproducible consumption patterns. If municipality is small, consumption
tend to be very variable and can have random behaviours that can make a forecast methodology
difficult to success. To reach this general objective, the following set of specific objectives has
been fixed:

e Study the evolution of the energy forecast methods.

13
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Describe the most important working principles of the wholesale market of Spain

Explain how ANN work

Apply the strategy described above to a real case of a study and evaluate the performance
e Draw some conclusions and analyse further work that can be done.

The methodology is used to forecast the electricity demand of a whole year of the municipality
of Valencia. To do so, 525 actual load curves provided by the Valencia Council are used. The
load curves represent a whole year consumption from the 2017-2018 period.

1.4 Organization of the document

14
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2 Electricity Market

2.1 The MIBEL

Since the methodology that is going to be developed is going to be applied to a case study in
Valencia, Spain, in this section, the basics of the Mercado Ibérico de Electricidad (MIBEL) are
going to be explained. If the methodology wants to be applied to other countries different to
Spain and Portugal, other markets should be studied. The following figure illustrates the different
market operators that run markets across Europe (Nord Pool, Epex Spot and OMIE). The little

icons are the different system operators existing in Europe.

NORD
W pooL

EPEXSPOT N

ORD
ELROFEAH POWER EXCHANGE P o o L

vlllle

M:rtcmm

Figure 1: Different market and system operators across Europe (Magnus commodities, 2022).
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Currently, the Spanish electricity markets are included in the Iberian Electricity Market, the
MIBEL. The MIBEL is a set of organized and unorganized markets common for Spanish and
Portuguese agents in which they have the possibility to carry out transactions or electricity
contracts and trade different financial products (Alcdzar Ortega et al., .

The negotiation process for the constitution of MIBEL started in 1998 and subsequently, in
2001, the cooperation protocol was signed between the Spanish and Portuguese authorities for
its creation. Three years later, the Santiago de Compostela agreement was signed, the terms
of which were revised in 2006 at the XXII Luso-Spanish summit in Badajoz and in 2008 with
the signing of the Braga agreement. MIBEL became fully operational on July 1, 2007 (MIBEL,
2021)). With the operation of MIBEL, the aim is to equalize the electricity legislation in both
countries, thus facilitating transactions, movements and actions of the companies and also to
achieve more competitive prices for consumers.

In the future, the aim is to achieve a common European electricity market, and the European
Commission is laying the foundations and setting the guidelines. Currently there is an alliance
between several countries in Europe that are interconnected (PCR Alliance) and that use a
unique algorithm called EUPHEMIA that calculates and assigns the daily market price in all the
countries of the alliance maximizing social welfare and guaranteeing objectivity and transparency.
The initiative started in 2009 but the cooperation and co-ownership agreement was signed by all
RCP members in June 2012. The countries forming this alliance are: Austria, Belgium, Croatia,
Czech Republic, Denmark, Estonia, Finland, France, Germany, Slovakia, Slovenia, Spain, Ireland,
Italy, Latvia, Lithuania, Luxembourg, the Netherlands, Norway, Poland, Portugal, Romania,
Sweden, Switzerland and the United Kingdom (OMIE, [2020).

- Markets using PCR: MRC

[ Markets using PCR: 4MMC

“] Markets PCR members

- Independent users of PCR

l:| Markets associate

members of PCR

Figure 2: Countries joining the PCR alliance (Gestore mercati energetici, |2021))

In spain and in General in the electricity systems, two kind of markets exist: the retail market
and the wholesale markets. On the one hand, the wholesale markets are those in which big
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amounts of energy are exchanged. These exchanges are done between big energy producers
or generators and big consumers. Big consumers are usually retail companies who buy energy
in the wholesale markets and then sell it to the final consumers. Actually, every consumer is
able to buy energy in the wholesale markets. However, to do so they have to pay the so-called
guarantees, a payment done to the Spanish market operator (OMIE), in order to ensure that the
market participants will be able to respond economically to the undertaken obligations. That
guarantees are high so, in practice, buying electricity in the wholesale markets is only an option
for big consumers. These markets are common for Spain and Portugal. On the other hand, the
retail market enables the exchange of little amounts of energy, usually between energy retailers
and final consumers. This market is different for the different countries. Also, in this market
consumers negotiate a price for the energy and they pay what they finally consume. Nevertheless,
in the wholesale markets, buyers pay previously for a precise quantity of energy. When the energy
is finally consumed, differences between the energy bought and the energy finally consumed
(imbalances) are settled (Alcazar Ortega et al., 2019)). Imbalances will be explained in Section
2.4.2)

2.2 The wholesale market
2.2.1 Forward or futures market

The forward market is based on a daily session in which operations can be negotiated from 4
years to 2 days before the exchange. The manager of these markets is the Portuguese market
operator (OMIP), which in turn is divided into two entities: OMIP for the technical management
of trading and OMICLEAR for the economic management (clearings).

Each futures market session starts at 8:00 and ends at 18:30 and consists of three phases (OMIE,
2021)):

- Pre-trading phase (8:00 - 9:00): brokers can only make inquiries.
- Negotiation phase (9:00 - 17:00): Agents make offers to buy and sell.
- Pre-close phase (17:00 - 18:30): As in the first phase, brokers can only make inquiries.

In the forward market, sellers and buyers make public their purchases and sales offers on an
electronic platform managed by OMIP. At the time of contracting a product on the forward
market, the quantity of energy to be traded, the date of delivery and payment of the energy and
the price to be paid for this energy are agreed upon. The products in the forward markets can
be both physically or financially settled:

- Physical settlement: implies that on the day of exchange, the seller will deliver an amount
of energy to the buyer, who in turn will consume that energy.

- Financial settlement: implies that on the day of delivery, the buyer and seller will not
exchange any amount of energy, but will simply settle the differences between the price
negotiated in the futures market and the actual price of the energy on the day of execution
of the contract.
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The better the agents’ forecasts of the daily market price, the more efficient their operations in
the futures market will be. For example, if subject A buys 1 MWh from subject B for €1/MWh
on the futures market and at the time of delivery the daily market price is €2/MWh, subject A
has saved €1 per MWh.

However, no payment or collection is made on the date of the agreement, but only once the
energy has been delivered to the buyer. The futures contract, like any other contract, establishes
obligations, so those who sign them incur penalties in the event of non-compliance, as commented
above.

2.2.2 Daily market

The daily market, also known as pool, is managed by OMIE and offers to buy and sell energy
are made the day before the exchange.

The purchase and sale bids are included in a matching procedure, which determines a different
price for energy in each of the 24 hours of the following day, depending on the purchase and sale
bids accepted in each hour. Once the bids for each of the hours of the following day have been
submitted, OMIE orders the purchase bids from highest to lowest price and the sale bids from
lowest to highest. With this process, the demand is covered first with the cheapest bids and
then with the most expensive bids until the point where the supply and demand curves intersect.
Normally, at the lower part of the supply curve are producers that need to sell the energy they
produce due to the impossibility of shutting down or storing it, as is the case of nuclear power
plants. Plants such as pumped-storage hydroelectric plants would be located in a higher part
of the supply curve, as they can store their resource to produce energy at another time that is
more convenient for them.

The electricity market is a marginalist market; the point at which the curves intersect is the
market price for each hour, which implies that the market price is always that of the last accepted

bid, the most expensive generation one.
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Figure 3: Supply-demand matching for any given hour.
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Bids to the right of the matching point do not enter the market. Generators that have bid above
the market price do not find a consumer to buy the power at that price. The same is true for
consumers if they have bid their purchase at a price below the market price.

2.2.3 Intraday market

Once the quantities to be exchanged and the price of energy for each hour of the day D has been
determined, buyers or sellers may notice changes in their energy predictions. In the intraday
market, new purchase and sale offers can be made after the close of the daily market to balance
the operations more accurately, thus avoiding deviations that can lead to significant costs. For
example, if a trader had bought 1 MWh and after the close of the daily market his predictions
show that 2 MWh will be consumed instead of the MWh he had previously calculated, the agent
can make a purchase offer in the intraday market to balance his mismatch.

Bids may be placed up to a few hours before the exchange, with several sessions being held after
the daily market: The following figure also shows the times for which trades are effective in

Table 1: Trading sequence in the intraday market (OMIE, |2021))

Session 1  Session 2 Session 3 Session 4 Session 5 Session 6

Opening of the session 14:00 17:00 21:00 01:00 04:00 09:00
Closing of session 15:00 17:50 21:50 01:50 04:50 09:50
Matching and publication 15:07 17:57 21:57 01:57 04:57 09:57

each of the sessions. For example, trades submitted in session 1, which opens at 14:00, will be
executed from 00:00 on day D until 23:00 on the same day D.
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Figure 4: Intraday market session scheduling horizon. Prepared by the authors on the basis of

(OMIE, 2021])

Prices in this market do not necessarily have to be more expensive than those of the daily market,
as they obey a matching system equal to that of the latter so that the difference will depend
exclusively on the purchase and sale bids made in one or the other market.

Apart from the intraday market by auction, there is a second option for adjusting bids, which
is the continuous contracting or Single Intraday Coupling (SIDC) market, which allows energy
to be traded continuously between different regions in Europe. This market currently includes
23 countries and allows adjustments to be made up to one hour before the delivery of energy.
Both the intraday and day-ahead markets are managed by OMIE. The SIDC is managed by all

market operators in its member countries.
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Figure 5: Current and expected members of the SDIC market.(Entso-e, 2021))

2.3 Wholesale market purchasers

In Spain, is considered that a qualified consumer is the one who is able to choose freely his
electricity provider and negotiate with him the economic conditions of his contract. Since the
year 2009, every consumer within the MIBEL is considered a qualified consumer. Hence, no
matter the volume of the annual energy consumed, they can acquire electricity either through a
electricity retailer or through the wholesale markets or even by signing a bilateral contract with
a provider outside the regulated market. However, as explained on Section these options are
only profitable for large consumers.

In the last years, entities like municipalities have started to satisfy their own electricity demand
by purchasing on the wholesale markets, especially on the daily market. In Spain, some examples
of this are Aviles (Asturias) and Rivas Vaciamadrid (Madrid), with 79.000 and 86.000 inhabitants,
respectively. The first city started operating in the day-ahead market in 2014 and the second
did it in 2018. Both started acquiring the electricity for their most predictable consumption to
not incur in imbalances and once they had enough experience, they extended it to most of their
consumption points. Both cities have reported saving of around 20% a year from their initial
bills (Cambranos, Diario de Rivas, 2018|).

Barcelona and Cadiz had more ambitious projects and they started municipal retail companies.
Barcelona, a 1,64 M inhabitants city is first city in Spain that created a new retail company,
Barcelona Energia, that provides electricity to the municipal consumption and 20,000 customers
through a public company, TERSA. The company buys the electricity and does the retail business
but also serves as a seller of the municipal generating infrastructure and has a program to help
its clients to install systems for self-generation. Barcelona does not offer cheaper prices but offers
a more transparent service with counselling to their customers.

Cadiz, with 116.000 inhabitants, has a municipal retail company too. Since the mid-20th century,
Eléctrica de Cddiz serves the municipal consumption and more than 60.000 customers. Its
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experience allows the company to provide competitive prices and services, which have recently
wined several prices regarding Energy Poverty and decentralised PV installations.

Other cities such as Pamplona and Palma de Mallorca have studied the possibility to create this
similar companies (Som energia, [2016). However, both projects have not been implemented yet
due to political and legal barriers.

2.4 Risks of the wholesale markets purchasers

Acquiring electricity in the wholesale markets is usually cheaper, since by doing it, no interme-
diaries like retailers are needed. Nevertheless, it has a set of associated risks that need to be
known in order to avoid problems like having important extra costs or losing the right to operate
in the market, which might lead to shortages.

2.4.1 Guarantees

In order to ensure the correct payment to the corresponding market agents, the Market Operator
and the System Operator require to every agent participating in the wholesale market to pay a
deposit called guarantees. Not fulfilling these payments, which are done weekly, can end up in
fees to the buyer and even its disqualification from the market.

2.4.2 Imbalances

Deviations are the difference between the energy that is scheduled in the different markets and
the energy that is actually produced or consumed in real time. There are always deviations, since
it is physically impossible for the system to generate or consume exactly what was scheduled
initially.

The system operator has to ensure that at all times the energy produced is equal to the energy
consumed, otherwise there could be problems with the frequency values of the grid and another
operation problems. To do this, market operator uses adjustment services offered in the operating
markets, which have a cost that the system has to pay. The cost of these adjustment services is
covered only by the agents that deviate in their predictions based on the system state. Deviations

can go against or in favour of the system:

1. In favour:
When the whole system is generating more energy than it consumes (surplus system) and
purchasers consume more energy than they bought on the market. Purchasers can also
deviate in favour of the system when it is consuming more energy than is generated (deficit
system) and they consume less than expected. In both situations, a contribution is made
to the generation-demand compensation in the system, so that the agents don’t receive any

penalty.

2. Against:
When the system is in surplus state, consumers consume less than expected and when
the system is in deficit state, consumers increase their consumption. In both cases, the

generation-demand gap increases, so agents are penalised.
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Table 2: Types of imbalances summarized. Own elaboration

System status Consumer action Type of imbalance Penalty

(compared to what they initially bought)

Surplus They consume less Against Yes
Surplus They consume more In favour no
Deficit They consume more Against yes
Deficit They consume less In favour no

3 Electricity load forecasting

3.1 Importance of electricity load forecasting

Forecasting models are widely used in different fields (Kuster et al., 2017a)); For example, in
the finance area to forecast stock exchange movements or different indices of the stock markets
(Bianco et al., [2009), in business to schedule staff, manage inventory and predict demand
(Intergovernmental Panel on Climate Change, [2014)), in medicine to monitor the spread of
diseases (Generous et al., 2014)), and in meteorology for predicting weather.

In the electricity field, forecasting is esential and very used. Load forecasting can offer useful
information for utilities that they can use to make important decisions like purchasing or
generating electricity, switching loads or decisions on infrastructure development (Singh et al.,
2012a)). Is considered specially important in the operation of power systems. Since system
operators need to schedule enough electricity to meet demand at every moment, accuracy of load
forecasts has considerable effects on the operational economies of the system. Indeed, operation
costs can be largely increased due to forecasting errors (either positive or negative)(Haida &
Muto, [1994).

Load forecasting is critically important when talking about large consumers or purcharsers
in the wholesale markets. As was discussed on Section [2.4.2] umbalances between the energy
bought and the actually consumed can be penalised if that umbalance goes against the system.
In (Mateo Barcos et al., 2020)), a quantification of costs due to umbalances is done, assuming
different percentages of hourly imbalances from a retailer that is purchasing electricity in the
Spanish daily wholesale market. This calculation was done considering that every imbalance was
against the system, which is the type of imbalance that has economic penalties in the Spanish
electricity market (Alcazar Ortega et al., 2019).The study was done for the period from 2017 to
2018, so market prices were the ones from that period and therefore also cost overruns.

23



Design and analysis of artificial neural networks for the prediction of the electricity demand of
public administrations based on type of consumption decomposition

Table 3: Volume of the hourly imbalances assumed (Mateo Barcos et al., [2020)

Hourly imbalances (%) Hourly imbalances (MWh)

5% 0,54
10% 1,09
15% 1,63
20% 2,18
25% 2,72
30% 3,26
35% 3,81

2.500.000 €
2.000.000 €

1.500.000 €

1.000.000 €
500.000 € I I
0€ .

5% 10% 15% 20% 25% 30% 35%

Cost overrun

Imbalances

Figure 6: Effect of the assumed imbalances over costs (Mateo Barcos et al., [2020)

Figure [6] show that imbalances play an important role when managing energy acquisition in the
wholesale markets. As it can be seen, cost overrun can reach 500.000€ with hourly deviations
from the purchased energy of a 10%. Therefore, it is essential for municipalities to count on good
tools to forecast their demand, not only to avoid important losses, but also to plan demand-side

strategies (Moghaddam et al.,|2011; Pina et al., [2012; Strbac, [2008]).

3.2 Evolution of electricity load forecasting methods

Forecast methods have evolved a lot in the last decades, from simple methods to the application
of complex Al algorithms and hybrid method that mix different techniques.

In the equator of the XX century, as more and more electric appliances, such as electric iron, radio
and electric washer, were being invented and became popular, the forecasting problem gradually
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turned to be non-trivial. In 1940’s, it was observed that electricity demand was very importantly
affected by weather, especially because of the penetration of air conditioners. Because there
were no statistical software packages at that time, an engineering approach was developed to
manually forecast the future load using charts and tables. Some of those elements, such as
heating/cooling degree days, temperature-humidity index, and wind-chill factor, are inherited by
today’s load forecasting models. The similar day method, which derives a future load profile
using the historical days with similar temperature profiles and day type (e.g., day of the week
and holiday), is still used in many utilities’ operations centers. Indeed, is used in this TFM to
improve the performance of the forecast.

From the 1980s onwards, as computer applications started to appear and became popular in
within the engineering community, a significant amount of research was dedicated to long term
spatial load forecasting, which consist of predicting when, where and how much load growth will
occur. The forecasting horizon ranges from several years to several decades. These forecasts have
been widely used in transmission and distribution planning.

Later, short term load forecasting started to gain more and more importance. Researchers
first tried to apply statistical techniques, such as regression analysis and time series analysis.
Then Artificial Intelligence (AI) became one of the most discussed methods in the scientific
community(Hong, 2013). The models based on AI techniques, such as ANN; fuzzy logic, and
support vector machine, which are black-box models, are very used today and will be discussed
on the following section.

3.3 Currently used forecasting techniques

There are multiple methods used in the field of electricity load forecasting. Some of the most
used are the Autoregressive Integrated Moving Average (ARIMA), the Autoregressive Moving
Average (ARMA), linear and multiple regression methods, Support Vector Machines (SVM) and
Artificial Neural Networks (ANN). ANN will be explained deeper on Section

o ARMA and ARIMA. These methods were introduced in 1970 (Box et al., 2015)). The basic
ARMA model is composed of an autoregressive model (AR) and a moving average model
(MA). The autoregressive model is a linear regression of the current value based on one or
more previous values. Just as an AR, the MA is a linear regression, at the difference that it
regresses current values against the white noise or error of one or more past values (Kuster
et al., 2017b). However, this model can only be accurate if the time series is stationary.
If the process is dynamic, then ARIMA is used and transformation of the series to the
stationary form is done first (Singh et al., 2012b)).

e Regression analysis. This method is present in a lot of forecasting processes. The dependent
variable or output can be defined by other independent variables. Linear regression links
the output to the independent variable by the simple linear model:

y=P0B+p1-x+e (1)

Where By, 51 and € are the intercept and the slope of the line and the random "error”,
respectively (Kuster et al., [2017b]). The difference between simple and multiple linear
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regression is the number of variables introduced as independent variables ranging from one

variable in the simple model to several in the multiple.

o Support vector machines.This method was firstly introduced in 1995 (Cortes & Vapnik,
1995). The power of an SVM stems from its ability to learn data classification patterns
with balanced accuracy and reproducibility. Although occasionally used to perform re-
gression, SVM has become a widely used tool for classification, with high versatility that
extends across multiple data science scenarios, including brain disorders research. An
SVM decision function is more precisely an optimal “hyperplane” that serves to classify
observations belonging to one class from another based on patterns of information about
those observations called features. That hyperplane can then be used to determine the
most probable label for unseen data (Pisner & Schnyer, 2020)).

3.4 Error measures used in the forecasting methods

In order to evaluate the performance of a forecast method, different kind of error measurements
are used. A wrong or incomplete selection of the error measure can lead to a inaccurate evalua-
tion of the forecasting results. Usually, at least 2 error measures are chosen to perform a good
performance analysis. In this section, different kind of error measures are explained (Shcherbakov
et al., [2013). They can be divided in the following groups:

Absolute Forecasting Error: The first group is based on the absolute error calculation.
They are all based on the calculation of the error ej:

e = (ye — ) (2)
Where:

- y; is the measured value at time t.

- ¢ is the forecasted value at time t.

This group of errors include, among others, the Mean Absolute Error (MAE), the Mean Square
Error (MSE) and the Root Mean Square Error (RMSE). These errors are very used in various
fields. However, they have the following limitations:

o Scale dependency (Hyndman & Koehler, 2006). If the forecast includes objects with
different scales, absolute error can’t be applied to obtain reliable results.

o High influence of anomalous data. If data contains errors like extremely high or low values,

absolute error will offer a very altered value.
Measures based on percentage errors. These errors are all based on the calculation of p;:

[yt — il

bt = Ve (3)
This is the most used kind of error in the forecasting field. Among this group, the most extended
one is the Mean Absolute Percentage Error (MAPE), which is one of the errors used in this TFM,
as it was stated on [f] Its formula is presented on Equation[7] The limitations of the MAPE are

the following ones:
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» A division by zero can appear when y; (the actual value of the magnitude) is zero.

e Non-symmetrical problem. The error values are different whether the forecasted value is
bigger or smaller than the actual. In fact, predicted values (g;) below the actual one (y;)
can only offer a maximum MAPE of the 100%. However, values above the actual one are
limitless (Goodwin & Lawton, [1999).

e Magnitude dependency. Deviations from the actual value of little importance in the
forecasting process can offer a big MAPE that doesn’t reflect reality. For example, if daily
energy consumption wants to be predicted, it may happen that, for some energy uses, like

lightning, that some hours in the day have consumption values near to 0, as it can be seen:
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Figure 7: Typical lightning daily consumption profile.

As it can be seen in Figure [7] consumption during day hours is close to zero, while during the

night, consumption reaches its maximum. The MAPE for the whole day, with the predicted
value, is represented in the next figure:
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Figure 8: Behaviour of the MAPE for the evaluation of a daily forecast in PL.

Even though errors during the day hours are almost insignificant in terms of volume of energy,
MAPE is higher during these hours than during the night. That could lead to think that the
forecast is poor, which might be far from reality. Nevertheless, when calculating the MAPE for
longer periods of time, like for example a whole week, this effect reduces its influence.

Scaled error: Scaled errors are based on the calculation of g;:

lye — D4
q = (4)
Til Z?:g |yz - y1'71|

Within this group, two main errors can be found; the Mean Absolute Scaled Error (MASE),
which is calculated as the mean of ¢; for the time horizon of the forecast evaluated and the Root
Mean Scaled Error (RMSSE):

RMSSE = \/mean;—1 »(q?) (5)

Besides the MASE and de RMSSE, EME (Equation could also be included in the category
of scaled errors. This measure has been found in (Escriva-Escriva et al., Escriva-Escriva
et al., . EME is similar to ¢; and is especially useful for the field of load forecast, since it
calculated the forecast error taking into account the volume of the energy consumed during the
time horizon of the forecast. That way, the issue that occurs on the calculation of the MAPE
(Figure , doesn’t take place with the EME. The main problem of the scaled errors is that,
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again, division by zero can occur. From all the error explained in this section, MAPE and EME
have been chosen. MAPE is going to be used since most of researchers have measured the error
of their forecast methodologies with it, so it would be easier to compare results of different
methodologies with the one presented on this TFM. On the other side, EME has been chosen
because it takes into account the volume of the energy consumed during the time horizon of the

forecast, being a good support to the MAPE measure.
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4 Artificial Neural Networks (ANN)

In this chapte