
PROBABILISTIC PREDICTION OF THE BEHAVIOUR OF CYBER
ATTACKERS

Trabajo Fin de Máster presentado en la Escuela Técnica
Superior de Ingenieros de Telecomunicación de la
Universitat Politècnica de València, para la obtención del
Título de Máster Universitario en Ingeniería de
Telecomunicación

Curso 201819

Valencia, 16 de Mayo de 2020

Tutor: Pilar Candelas Valiente

Pablo Camacho González

IN DEGREE PROJECT COMPUTER SCIENCE AND ENGINEERING,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2019

Probabilistic prediction of
the behaviour of cyber
attackers

PABLO CAMACHO GONZÁLEZ

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Probabilistic prediction of the
behaviour of cyber attackers

PABLO CAMACHO GONZÁLEZ

Date: May 16, 2020
Supervisor: Pontus Johnson
Examiner: Mathias Ekstedt
School of Electrical Engineering and Computer Science
Swedish title: Probabilistisk förutsägelse av beteenden av
cyberattacker

Acknowledgements

Throughout the process of writing this project, I have received a great sup-
port that has made this effort easier to carry out. First of all, I’d specially like
to thank Mr. Pontus Johnson, who has the title of supervisor of this project,
and whose help and patience represented two important keys for a correct de-
velopment. I’d also like to thank the organisations of KTH Royal Institute
of Technology (Stockholm, Sweden) and Universitat Politècnica de València
(Valencia, Spain) for the opportunity to develop my academic work, learn and
grow as a professional.

I’d like to acknowledge the Systems Architecture and Security (SSAS) re-
search group for the opportunity to develop this project, specially to Nikolaos
Kakouros for his support, and Mathias Ekstedt for his interest and willing to
help.

In addition, I’d like to thank my parents, my siblings and Miguel, as well
as my close friends for their important presence and support in this and all
stages of my life. I’d also like to acknowledge all the people who crossed my
path during this time in Spain and Sweden, and took an important role in my
life, as well as Mariano Villalta and Jon Arrizabalaga for their help in the final
stage of this process.

All the people mentioned here, along with many others who became spe-
cial friends during the journey, represented the best personal and professional
support for this project.

iii

iv

Abstract
Probabilistic graphicalmodels are one of themost important tools used to learn
from data and make decisions. Data analysis and representation methods are
highly used in cyber security as a powerful way to find understanding and
improve as cyber crime advances and cyber attacks become smarter. The goal
of this project is to analyse and represent the behaviour of cyber attackers by
applying a Bayesian network model to a cyber range. In order to learn and
understand how this model can be used to represent behavioural patterns, a
deep research about probability and graph theory is made, as well as Bayesian
theory and analysis. A simulated dataset of detected cyber attacks is filtered
and analysed in order to find patterns and trace the actions of cyber attackers.
The processed information about dependencies and their probabilities is later
used to calculate predictive probabilities, and the designed model is tested
with the simulated dataset. The result is an interactive graphical model based
on a Bayesian network, which accurately represents the behaviour of cyber
attackers.

v

Sammanfattning
Probabilistiska Grafiskamodeller är en av de viktigaste verktygen som används
för att förstå sig på data och fatta beslut. Dataanalys och framställning meto-
der används i hög grad inom cybersäkerhet som ett kraftig sätt att hitta, förstå
och förbättra när cyberbrott avancerar och cyberattackerna bli smartare. Målet
med detta projektet är att analysera samt presentera beteenden av cyberattac-
kerna genom att applicera en Bayesian nätverksmodell till en cyber räckvidd.
För att kunna lära sig och förstå hur denna modellen används för att framställa
beteende mönster, uförs en grundlig foskning om probabilistisk och grafteori
sävälsom Bayesian teori och analys. En simulerad data set på upptäckta cy-
berattack filtreras och analyseras för att i sin tur kunna hitta mönster och spå-
ra handlingar av cyberattackerna. Det bearbetade uppgifter om dependencies
och dess sannolikheter kommer till användning för att beräkna förutsägbara
sannolikheter, den designade modellen prövas med den simulerade datasetet.
Resultatet är en interaktiv grafisk modell baserad på en Bayesian nätverk som
noggrant vis framställer beteenden av cyberattackerna.

vi

Resumen
Los modelos grafo probabilísticos son una de las herramientas usadas para
aprender sobre la información y tomar decisiones. Métodos de análisis y re-
presentación de datos son altamente utilizados en seguridad informática, co-
mo vía para entender y mejorar a la vez que el cibercrimen evoluciona y los
ciberataques se vuelven más inteligentes y elaborados. La meta de este proyec-
to es analizar y representar el comportamiento de ciberatacantes mediante la
aplicación de un modelo de red Bayesiana sobre un sistema de aprendizaje y
entrenamiento destinado a procesos de ciberseguridad. Con el fin de aprender
y entender cómo este modelo puede ser utilizado para representar patrones de
comportamiento, se lleva a cabo una profunda investigación sobre teoría pro-
babilística y de grafos, así como sobre teoría y análisis Bayesiano. Un conjunto
simulado de datos, formado por ciberataques detectados, es filtrado y analiza-
do con el fin de encontrar patrones y trazar las acciones de ciberatacantes. La
información procesada sobre dependencias y sus probabilidades es posterior-
mente utilizada para calcular probabilidades predictivas, y el modelo diseñado
es testeado con el conjunto de datos previamente simulado. El resultado es un
modelo gráfico interactivo basado en una red Bayesiana, el cual representa el
comportamiento de ciberatacantes con precisión.

List of Figures

2.1 Knowledge base scheme example [19] 4

3.1 Tree topology example . 9
3.2 Directed graph example . 9
3.3 Attack tree graph [38] . 10
3.4 Union . 14
3.5 Intersection . 14
3.6 Complement . 14
3.7 Graphical representation of the Bayes theorem factors 17
3.8 Example of a Markov chain 21
3.9 Graphical example of a Bayesian network 22
3.10 Nodes in serial connection 24
3.11 Convergent connection . 25
3.12 Tree connection . 25
3.13 Markov blanket . 26
3.14 Bayesian network with CPTs 28

4.1 Example of a cyber range virtual environment 31
4.2 Possible pattern 1 . 32
4.3 Possible pattern 2 . 32
4.4 Possible pattern 3 . 33
4.5 Possible pattern 4 . 33
4.6 Possible pattern 5 . 33
4.7 Possible pattern 6 . 33
4.8 Simulated behavioural main scheme 34
4.9 Time difference between steps (Minutes) 35
4.10 Real case simulation process 37

5.1 Attack list . 40
5.2 Nodes filtered from attack list 41

vii

viii LIST OF FIGURES

5.3 Node composition . 42
5.4 Attacker actions matrix . 45
5.5 Matrix filtering example . 45
5.6 Previous action as a parent of the attack 46
5.7 Example of an state with two parents 47
5.8 Single node . 48
5.9 Two nodes connected . 48
5.10 Two nodes converging in one 48
5.11 Binary combinations for a parent set with two elements 49
5.12 Sons association searching 51
5.13 Binary combinations for a node with two sons 52
5.14 Two nodes connected . 53
5.15 A node with two sons . 53
5.16 Poly-tree structure graph . 54
5.17 Nodes generated from states list 54
5.18 Edges generated from parent set 55
5.19 Python logo . 55
5.20 Processed graphical result 57
5.21 Processed model: Node selected 57
5.22 Information tables for the selected node 58
5.23 Serial connection node selected 58
5.24 Information tables for a serial connected node 59
5.25 Node with more than one parent selected 59
5.26 Information tables for a node with more than one parent 60
5.27 Root node selected . 60
5.28 Information tables for a root node 61
5.29 Leaf node selected . 61
5.30 Information tables for a leaf node 62
5.31 Edge selected . 62
5.32 Edge dependency information 62
5.33 Unconnected node . 63
5.34 Processed graphical results for a real case 63
5.35 Real case - Node selected . 63
5.36 Real case - Information tables of a single parent and son node . 64
5.37 Real case - Node with a shared son selected 64
5.38 Real case - Information tables of a node with a shared son . . . 65
5.39 Real case - Node with two parents selected 65
5.40 Real case - Information tables of a node with two parents . . . 65
5.41 Real case - Root node selected 66

LIST OF FIGURES ix

5.42 Real case - Information tables of a root node 66
5.43 Real case - Leaf node selected 66
5.44 Real case - Information tables of a leaf node 67

List of Tables

5.1 Attack class elements . 40
5.2 State class elements . 40
5.3 CPT of a single node . 48
5.4 CPT of a single-parent node 48
5.5 CPT of a multiple-parent node 48
5.6 Diagnosis table of a node with a single son 53
5.7 Diagnosis table of a node with multiple sons 53

x

Contents

1 Introduction 1

2 Background 3

3 Theory 8
3.1 Graph theory . 8

3.1.1 Directed Acyclic Graphs for cyber security 10
3.2 Probability theory . 11

3.2.1 Introduction . 11
3.2.2 Probability . 11
3.2.3 Random variables . 12
3.2.4 Algebra of events . 13
3.2.5 Expectation . 15
3.2.6 Joint probability . 15
3.2.7 Conditional probability 16

3.3 Bayesian probability theory 16
3.3.1 Introduction . 16
3.3.2 Applications . 18
3.3.3 Axioms . 18
3.3.4 Information . 19
3.3.5 Markov chains . 20
3.3.6 Bayesian networks 21

4 Case of study 30
4.1 Cyber range . 30
4.2 Assumptions . 31
4.3 Data . 32
4.4 Real case . 36

xi

xii CONTENTS

5 Method 39
5.1 Introduction . 39
5.2 Space . 41
5.3 Structure . 42
5.4 Conditional probability tables 47
5.5 Inference . 50
5.6 Model construction . 54

5.6.1 Application . 55
5.6.2 Methodology . 55
5.6.3 Graphical model . 56

6 Discussion 68

7 Conclusions 70
7.1 Future work . 71

Bibliography 72

A Method code 81

B Functions and mathematical operations code 89

C Styles 100

Chapter 1

Introduction

At this time of human history, communications get wider and easier every day.
Connections and systems have been highly developed in the last few decades
due to the evolution of internet, and it’s the most important field of investiga-
tion and research in the early XXI century. Telecommunications advances are
being applied to many types of projects and technological fields, making them
easier and smarter, and opening a new world full of opportunities. Due to the
fast evolution of communication technologies and computer science, many in-
habitants of the earth can’t handle the fast changes in the society, finding it
really difficult to adapt to the new communications and social systems and
having a lot of problems with the way they manage to create, hide and transfer
their information. Computer science advances are being applied to everything
in the daily life of the modern world, from education and healthcare to IoT
technologies [1]. This technological evolution has brought many facilities to
modern society, but has also created problems and dangers that are the main
focus of work and research of many computer science experts [2]. The field of
study that focus on computational systems safety and its investigation is called
cyber security. The definition of this term has always been a difficult task
due to its big scope, in which this project proposal is included, and big efforts
have been made in order to find a proper one, like it’s described in [3]. In
general terms, all its definitions refer to the protection and safety of systems
and networks.

Despite all the efforts made to construct a totally safe system, not a single
one can be defined like that yet. Every system has a vulnerability and all the
protocols and cyber security techniques start becoming more unsafe as time
passes since the first time they’re applied. Cyber security is constantly evolv-
ing, finding vulnerabilities and threats, and building methods to protect and

1

2 CHAPTER 1. INTRODUCTION

avoid risks. Identifying threats is an important part of this process, which al-
lows to find cyber attackers behavioural changes by analysing old reports [4].
Some organisations like ENISA keep working on this field to keep track of the
threat landscape and gather information. Latest cyber attack trends can be
found in [5][6]. Many countermeasures have been developed against the most
common cyberattacks like Brute Force, Denial of Service (DDoS) or Phishing
[7], as well as more complex defense models and attack analysis methods like
Defense Trees [8] or Attack Countermeasure Trees [9]. Information about
cyber attacks is an important factor to extract behavioural data from detected
events, for whichmethods like reverse engineering are widely used in order to
learn from them. Probabilistic methods are a powerful tool to learn from data,
and although some solutions regarding to cyber security have been proposed,
there’s still so much to learn about probabilistic cyber attackers behaviour pre-
diction and understanding.

Probabilistic graphical models are widely used in fields where reasoning
and learning efficiently from raw data are needed, like Artificial Intelligence
[10], as well as to build decision support systems, for which many different
solutions applied to different fields can be found [11][12][13]. This project
proposes a solution to learn from cyber attacks data by applying a probabilis-
tic graphical model based on Bayesian Networks, in order to trace patterns,
deal with uncertainty and predict cyber attackers behaviour inside a network
system. In order to build a reliable model, a solution must be found for three
main issues:

1. Filtering the dataset of detected cyber attacks in order to find the events
(Nodes) that compose the graphical model, as well as finding dependen-
cies between them by applying Structure Learning methods.

2. Reasoning and calculating Conditional probabilities, and use them to
compute the inference of any event given all the possibilities, in order
to predict and find out how likely are all the possible future events to
occur given a certain situation.

3. Building the graphical model and tracing the calculated patterns, allow-
ing to analyse and understand them.

The main goal of all this process, described in this draft, is to create an effi-
cient and scalable tool to learn from data, providing an specific approach of a
reliable probabilistic model solution for cyber security.

Chapter 2

Background

To understand the scope of this work, which is closely associated with data
analysis for cyber security, it is necessary to expose some background about
this field. Understanding how a system can be compromised is the most impor-
tant factor for cyber security to prevent attacks and develop safety programs.
Summarizing, the study of cyber attackers behaviour is crucial to minimize
threats and protect data, and it has a whole world of science inside, for which
the presence of probabilistic models represents an important source of infor-
mation. After detecting an attack, analysis methods are used to understand
how it was executed, being able to elaborate a forensic report and find ways to
avoid being affected by a similar action. Many other research reports and anal-
ysis methods have been developed by researchers and students, using modern
science methods to develop algorithms and improve the way we understand the
information. In order to learn how probabilistic models are usually applied to
cyber attacks tracing and prediction, and be able to elaborate a reliable model,
it’s important to study and understand what has been found by researchers, and
the solutions that have been proposed.

Prediction is one of the keys on which many cyber security methods are
focused. In fact, almost all the efforts made in order to avoid risks in a net-
work system need a reliable threat prediction method [14]. The research made
in [15] shows that cyber threat prediction modeling techniques can be divided
in two groups: Statistical modeling and Algorithmic modeling. Our predic-
tion model proposal can be included in the second group, due to its relation
with probabilistic modeling. This type of techniques include probabilistic
algorithms and usually have results that are easy to manage and understand.
Although there’s a common drawback when applying one of these methods,
which is that it’s difficult and confusing to find proper prior values (Usually

3

4 CHAPTER 2. BACKGROUND

needed in methods like Bayesian networks, described in section 3.3.6), they
represent one of the most efficient options for discrete information. Probabilis-
tic methods like Markov chains or Bayesian Networks are the most usual
algorithms used in prediction techniques, being applied for many different
solutions with different inputs, like in the case of [16] where a probabilistic
algorithm is applied using the information of single entities in order to com-
pute the likelihood of malicious behaviour coming from them. Many other
solutions for detection and prediction are being developed nowadays, like it
can be observed in research reports like [17] where a deep literature analysis
about research trends in detection and prediction for insider threats is made,
or [18] where themost usedmethods for prediction and forecasting in cyber se-
curity are analysed, comparing continuous and discrete methods and showing
the strong presence of Probabilistic graphical models for techniques where
discrete data is involved, like it’s the case presented in this project. Other
graphical solutions that are not associated with probability theory can also act
as a powerful tool for data reasoning, like the proposal made in [19] to build
an ontology for cyber security knowledge, like the example showed in figure
2.1.

Figure 2.1: Knowledge base scheme example [19]

The main goal of the model developed and described in this project is to
reduce the uncertainty by tracing and analysing cyber attackers behaviour pat-
terns inside a network system, applying a probabilistic graphical model based
in Bayesian networks. Bayesian networks represent an efficient tool for rea-
soning and representation, and have an strong presence in Prediction for cy-
ber security. There’s a high number of solutions and proposals involving this

CHAPTER 2. BACKGROUND 5

model, applying Bayesian theory to different data with different purposes as-
sociated with cyber security, like the project developed in [20] to build a risk
model based on Bayesian Networks, applied to a real system. There are many
other interesting solutions closely associated with Bayesian networks and the
model proposed in this draft, but applying a different approach for probabilis-
tic prediction. Some proposals like the model for attack plan recognition de-
scribed by the authors of [21], which goal is to find attack scenarios and pre-
dict cyber attackers strategies using security alerts and causal networks, or
the model proposed in [22] for cyber attacks prediction using unconventional
signals, can be included in this same scope, although these models propose
possible solutions using data that can be generated before an attack is per-
formed, instead of learning from performed actions. A very interesting ap-
proach proposed by Jinyu Wu, Lihua Yin and Yunchuan Guo in [23] also in-
cludes Bayesian networks for reasoning to find vulnerabilities in specific envi-
ronments, as well as specific information about the network, like Information
value, Usage condition and Attack history in order to predict cyber attacks.
Although this proposal is interesting, Bayesian analysis is applied for informa-
tion reasoning in this case, and not for cyber attackers patterns analysis.

Appart from research reports and proposals, an important part of the knowl-
edge associated with this type of models is also present in specific tools for
probabilistic prediction like P2CySeMoL[24], which is a Predictive, Prob-
abilistic Cyber Security Modeling Language that provides an attack graph
tool for enterprise architectures. This project was developed at KTH Royal
Institute of Technology and represents an interesting approach and a useful
and smart way to apply probabilistic analysis methods.

The very nature of a project like the one approached in this case requires
an special environment with specific properties. In this case, the research is
mainly focused on data reasoning, prediction and representation, but under-
standing and learning about the properties of the scenarios that are being anal-
ysed also represents an important and interesting point of view. The success
of an algorithm that is focused on learning from data relies upon the good
performance of an strong detection system. Attack detection and understand-
ing represents a very important task, for which many efforts are made. An
interesting approach to understand the importance of these efforts is the one
focused on modern threats, for which new algorithms and researches are be-
ing constantly developed, like the example of [25] where a descriptive ap-
proach about Phishing URL detection through top-level domain analysis is
presented, or the case of MaldomDetector [26], which represents a detection
system for algorithmically generated domain names. Another interesting ap-

6 CHAPTER 2. BACKGROUND

proach regarding to cyber attack detection applied to modern real systems is
[27], where the authors present a control scheme proposal for False Data In-
jection attacks in networked control systems, or the model proposed in [28]
for cyber attack detection in IoT systems using distributed deep learning. As it
was mentioned before, no system is completely safe, which also applies to In-
trusion Detection Systems. An interesting example of this approach is [29],
where the authors propose an attack detection algorithm based on machine
learning, focused on countering attacks performed against IDS.

The model described in this draft is based on a probabilistic prediction
algorithm, which goal is to learn from data in order to find behavioural pat-
terns. When talking about cyber security algorithms, probability and strategy
are closely associated concepts. It is usual to find cyber security models based
on Game theory for defense [30] and decision-making algorithms, like the
proposal made in [31] of an stochastic model of cyber attacks with imper-
fect detection. Defense and attack models for networks represent an extended
research field, as it can be observed in [32], where a review of attack and de-
fense models for systems is made. An specially interesting point of view for
this proposal is the application of Bayesian networks for defense models, like
the one proposed in [33] for optimal strategies, which shows the different pos-
sibilities of probabilistic graphical models applied to different cyber secrurity
approaches. From an strategic point of view, a probabilistic graphical model
for data reasoning like the one proposed in this draft represents a promising
method to learn and understand, and can be an interesting addition for the
cyber security research field.

Summarizing, probabilistic graphical models for cyber security analysis
and prediction methods are widely used in different ways and ranges, becom-
ing an interesting and important part of the research in this field and improv-
ing the way information is processed, proving versatility and efficiency. This
project offers a solution proposal including Bayesian networks for cyber se-
curity analysis, not focused on the safety of a certain system, but targeting the
analysis and prediction of the behaviour of cyber attackers, learning from their
actions to build models of the patterns they follow. This problem statement
leads to the following research questions:

1. Can the behaviour of cyber attackers be accurately modelled by applying
Probabilistic graphical methods?

2. Do Bayesian Networks represent an efficient and reliable model for trac-
ing and prediction using behavioural data?

CHAPTER 2. BACKGROUND 7

The answer to the questions stated above represents the main goal of all
the process described in this draft. The result of these efforts is expected to
bring the knowledge needed to understand the problems and solutions pre-
sented here.

Chapter 3

Theory

The method for probabilistic prediction proposed in this draft is based on the
use of Bayesian Networks to trace cyber attackers behaviour, using detected at-
tacks as events and defining the relations between them. Bayesian networks are
based on Bayesian probability theory, being defined as a model for causality
computation by applying its theoretical concepts. To understand the process
of calculus and construction of a Bayesian network, it’s necessary to define
important concepts about relations between events and probability, as well
as the properties of the resulting graphical model.

3.1 Graph theory
Essentially, Bayesian networks consist of a type of graphical model called Di-
rected Acyclic Graph, often called DAG. Basically, a DAG is a graph with
special properties, and it’s important to understand the basic concepts of graph
theory in order to know what it represents.

Like in this case, it is usually necessary to represent and model flows and
relations when using mathematics to solve a problem or add some understand-
ing about a situation. A relation between two or more objects is represented
using graphs. A graph consists of a structure made up of vertices and edges
(Lines connecting nodes) [34], which can be mathematically expressed as:

G(V,E) (3.1)

A vertex can represent a situation, state or an element with defined proper-
ties, connected with other nodes by edges which represent an existing relation
between them. A graph can also be defined as a set of subgraphs which ver-
tices and relations are included in its set range. This concept perfectly matches

8

CHAPTER 3. THEORY 9

the nature of a cyber attacker behavioural pattern, which can be considered as
an attack graph where smaller sets in the same set can also represent attack
processes [35].

An attack pattern can be represented as a series of events with causal de-
pendencies, creating a graph model associated with a tree topology, like the
example in figure 3.1. This type of topology fulfils the acyclic requirement of
a DAG.

Figure 3.1: Tree topology example

In a cyber attack process, the concept of reciprocity loses its sense when
analysing actions performed by one host to another. Usually, the actions per-
formed by a cyber attacker represent steps of a process, with an objective and
direction, and this can’t be modelled using undirected models. When repre-
senting a cyber attacker behaviour pattern, the direction taken by every action
has a high importance for the context understanding of the step, and makes
it necessary to use directed models. A directed graph showing dependencies
between vertices, like the one in figure 3.2, allows to understand a process like
this.

Figure 3.2: Directed graph example

As it was defined at the beginning of this section, a directed graph with
no cycles is the type of graph used in Bayesian networks (Directed acyclic

10 CHAPTER 3. THEORY

graph), and represents a suitable model for this case, now that the concepts of
directed and acyclic are considered understood. Every directed connection in
a DAG represents a causal relation where the source node is called parent and
the target is its child [36], and tere’s no possible way that a process started in
a certain node can end up in the same one by following the right direction of
the edges.

3.1.1 Directed Acyclic Graphs for cyber security
Directed Acyclic Graphs are often used in applications where precedence de-
pendencies are present, like project temporal schemes, Software design pro-
cesses or hierarchical structures in general [37]. To calculate dependencies in
this case, the precedence factor is also relevant to define the steps of an attack
process. The expected result of this project can be associated with Directed
Tree topologies.

Other solutions using this type of DAGs for cyber security have been de-
veloped before, and represent an interesting approach for this project, like
the cyber attack analysis model described in [38] which was published in Dr.
Dobb’r Journal in 1999, where the author Bruce Schneier presents a method
capable to define the security of a system.

Figure 3.3: Attack tree graph [38]

Like it was described in section 2, Tree topologies have been widely used
for cyber security analysis, and share many properties with this proposal due
to the use of DAGs. Although the type of graphical model is the same, the
theoretical approach is different, and the result of our algorithm can’t be totally
included in the scope of this topology, being this just a possible outcome of
the resulting network.

CHAPTER 3. THEORY 11

3.2 Probability theory

3.2.1 Introduction
The behaviour of different cyber attackers inside the same system usually fol-
low some kind of pattern and havemany characteristics in common, and that’s
why studying the behaviour of cyber attackers and create attack models can
increase the efficiency of a security system. Analysing the steps made by at-
tackers is useful to learn how to avoid the same attack in the future, but systems
usually have more than one vulnerability, making this not enough to protect
them. It’s not unusual to find different attack processes leading to the same
target, as well as different events who share a same previous action. Com-
puting the probability weight based on observed data for future events of, for
instance, a discrete distribution of possible outcomes, is a typical application
of probabilistic forecasting [39], and it’s present in the steps analysis of this
model.

The construction of Bayesian Networks is based on Bayesian probability
theory, and it’s necessary to define the basic concepts of probability in order
to fully understand the meaning of the results of the model.

3.2.2 Probability
The term probability refers to a numerical figure between 0 and 1 that de-
fines how likely is an event to occur, and the term probability theory defines
the science and methods that treat probability in a rigorous mathematical way
[40]. This mathematic branch is based on the analysis of random phenomena.
Random events, whose result of a single trial can’t be predicted with certainty
but present some kind of regularity when the number of samples grows, can
be analysed using the knowledge about same events that occurred in the past,
finding patterns and predicting the probabilities for all possible outcomes. This
theory is based on three axioms that define all the science inside [41].

1. For any event A, the probability of A is greater or equal to 0.

P (A) ≥ 0 (3.2)

2. The probability of, at least, one of the possible outcomes of an event to
occur is 1.

P (S) = 1 (3.3)

12 CHAPTER 3. THEORY

3. If A and B are mutually exclusive outcomes, the probability of either A
or B happening is the probability of A happening plus the probability of
B happening.

P (A ∪B) = P (A) + P (B) (3.4)

Study and predict the actions of cyber attackers supposes a difficult task
due to the variety of actions and the ignorance about possible threats that
haven’t been discovered yet. Every possible action must be taken seriously,
and the probabilistic analysis of the gathered data from cyber attacks brings a
big amount of knowledge, which can be used to find models and patterns. The
actions made by a cyber attacker can be seen as a sample space of a discrete
distribution (A finite and countable set of results) where every one of them has
a probability of success, and the sum of all of the probabilities is equal to one
(Which means that every probability has a value between zero and one).

f(x) ∈ [0, 1] for all x ∈ Ω (3.5)

∑
x∈Ω

f(x) = 1 (3.6)

When a sample scope has a big number of results, probabilities start to
converge inside a different interval of values for every event. This makes it
possible to find patterns and to create attack models analysing the steps taken
by cyber attackers, being responsive to changes and more accurate as data
increases.

3.2.3 Random variables
The concept of random variable refers to a function that is directly associated
to a random experiment. The result of a real-valued random variable func-
tion given an experiment outcome is contained in a sample space, where the
variable is defined. Generally, the probability of an event is stated as the prob-
ability of the involved random variable to be present in the interval (a,b) given
the outcome of an event [41][42].

P{ω : a ≤ R(ω) ≤ b} (3.7)

Every event involving a random variable is associated with a value of that
random variable in a set B called Borel subset, which is considered an event
that belongs to the sigma field F. The outcome for every possible input of
an experiment is defined by a continuous random variable (Infinite range),

CHAPTER 3. THEORY 13

and continuous random variables properties are defined by two main functions
[43]:

• Cumulative distribution function (CDF): This function represents the
continuous probability distribution for a set of samples of a random vari-
able.

FX(x) = P (X ≤ x) (3.8)

A random variable is considered continuous when its CDF is continuous
for all values of x.

P (a < X ≤ b) = FX(b)− FX(a) (3.9)

• Probability Density function (PDF): This function defines the proba-
bility density of a continuous random variable for a given sample.

f(x) = lim
∆→0+

P (x < X ≤ x+ ∆)

∆
⇒ f(x) = lim

∆→0+

FX(x+ ∆)− FX(x)

∆
(3.10)

For a random variable with an absolutely continuous CDF, the PDF is
defined as a derivate from the distribution function.

fX(x) =
dFX(x)

dx
(3.11)

A random variable with a finite and countable range of samples is called
discrete random variable. In this project, cyber attacks are considered dis-
crete distributions of random variables, whichmeans there’s a finite and count-
able range of samples that refer to successful results (or not) of the actions.

3.2.4 Algebra of events
The classical definition of probability defines the probability of an event as
the "number of favourable outcomes divided by the total number of outcomes,
where all outcomes are equally likely” [41]. Probabilities are assigned to
events, and samples spaces of events have different meanings depending on
the nature of the variables. New outcomes are created from old ones using
different operations:

• Union: The concept of Union refers to the set of points belonging to, at
least, one of the events. The third axiom of probability theory.

14 CHAPTER 3. THEORY

Figure 3.4: Union

• Intersection: Set of samples belonging to all the events.

Figure 3.5: Intersection

• Complement: The complement of an event refers to all the points that
don’t belong to that event.

Figure 3.6: Complement

Understanding these operations is a key factor when analysing samples
spaces of attack outcomes. Finding dependencies between actions requires the
usage of different probability concepts, like conditional probability, which
are based on this theory. It is usual that a cyber attack is associated with one or

CHAPTER 3. THEORY 15

more actions, leaving fingerprints and useful information in different parts of a
dataset. TheTheoremof Total Probability defines themethod to compute the
probability of an event to occur as a sum of all its possible intersections with
other mutually exclusive events, and adding marginal probabilities, following
the property of joint probability for mutually exclusive events. This concept
is closely asociated with the mathematical expression of a Bayesian Network.

P (A) =
∑
i

P (A ∩Bi)⇒ P (A) =
∑
i

P (Bi)P (A|Bi) (3.12)

3.2.5 Expectation
The expected value of a random variable, given a long list of samples, is
defined as the convergence value of a large number of samples that come from
the same experiment. In case of a finite discrete random variable, the expected
value is equal to the sum of x times the probability of a random variable being
equal to x [44].

E(R) =
∑
x

xP{R = x} (3.13)

In this case, the definition of expected value loses its validity when trying
to apply it to an absolutely continuous case. The convergence of independent
values can only be studied and computed given a discrete distribution, and it
becomes useful when a dataset is big enough and marginal probabilities of, in
this case, cyber attacks, can be used to find dependencies and build an attack
model.

3.2.6 Joint probability
The intersection of two or more events (Represented in section 3.2.4) is also
known as joint probability, or the probability of events A and B to occur. This
definition refers to discrete variables, and all the possible outcomes for the
joint probability of all the observed values of two discrete variables is called
Joint probability distribution. The probability of two events happening is
highly important to study and calculate dependencies between cyber attacks
because of its relation with conditional probability, and it’s present in the
whole process of analysis and representation.

16 CHAPTER 3. THEORY

3.2.7 Conditional probability
It is said that two events are dependent when the occurrence of one of them
affects the occurrence of the other. Conditional probability is the term that
defines how strong the dependency between two events is, so the probability
of an event A given an event B would be computed taking in account all the
times when A occurs and B have occurred, which can be deducted dividing
the intersection between events A and B by the marginal probability of event
B.

P (A|B) =
P (A ∩B)

P (B)
(3.14)

Applying the definition of joint probability for non-exclusive variables, it’s
possible to obtain the Bayes theorem [45], which is used for diagnosis and
forecasting because of the possibility to predict the posterior probability of
any event given a prior and an evidence factor.

P (A|B) =
P (B|A)P (A)

P (B)
(3.15)

Conditional probability and Bayes’ theorem are a very important part in the
process of tracing and predicting cyber attacks in this case, allowing to create
a model which can accurately predict the possible outcomes of an action given
the past experience.

3.3 Bayesian probability theory

3.3.1 Introduction
The creation and functioning of a Bayesian network is based on a Bayesian
approach for probability theory. Describing the basic concepts of this field is
necessary to understand the nature of this probabilistic model, and be able to
describe the result of this project. As it was defined before, probability theory
treats probability in a mathematical way based on three axioms that describe
the conditions and nature of probability. In this case, Bayesian probability is
based inBayes’ rule, which describes the nature of conditional probabilities.
The concept of probability is not interpreted as something associated with
frequency or propensity, but more like the level of certainty or truth related
to a possible outcome. In conditional probability, the joint probability of two
events is defined like:

CHAPTER 3. THEORY 17

P (A ∩B) = P (A|B)P (B) = P (B|A)P (A) (3.16)

Bayesian analysis allows to calculate probability using a hypothesis and
combining it with real data. A hypothesis is a consideration of how the analyst
thinks the outcome of an event will be. It’s important to consider that this is
created from evidence only, expectation or both, and that’s why it results to be
the most subjective part of a Bayesian analysis experiment. This element has a
probability P(H) called prior. The other two elements of Bayesian theory are
P(E), which is the result of integrating the joint probability of evidence and
hypothesis P(E|H)P(H) over H, called normalization constant, and the term
called posterior, which is the result of the likelihood function, the conditional
probability of H given E, represented by P(H|E).

Figure 3.7: Graphical representation of the Bayes theorem factors

Bayesian probability theory represents the evolution and learning of an ex-
pected outcome mixed with real data. The fact that a prediction result has a
better performance with more information brings an interesting point of view,
as well as a powerful tool to start developing and create reliable enough attack
models, making them responsive to changes, easy to adapt and better to under-
stand. As it was explained before, what makes Bayesian theory so interesting
and useful is that it uses the information about what is not known (Belief and
Uncertainty).

18 CHAPTER 3. THEORY

3.3.2 Applications
Bayesian probability is widely used for applications that need some kind of in-
formation processing. Generally, a Bayesian theory application has an input
that gives context and conditions, and an output corresponding to the pro-
cessed information given as an input. The input of a Bayesian theory applica-
tion usually consists in sets made out of measurements, laws and constraints
that describe some kind of system or world, and are processed to calculate
predictions, understand the systems and make decisions. Many of the appli-
cations for which Bayesian theory is the core of the model are associated with
parameter estimation, prediction models, decision making, forecast, patterns
searching and hypothesis. Bayesian theory seems to be very appropriated for
the creation of a cyber security diagnosis and prediction model. The problem
of dependencies searching and attack prediction suits very well in an input-
output format, allowing to perform accurate calculations and predictions with
the available datasets from systems monitoring.

3.3.3 Axioms
The Bayesian approach for probability theory is focused on uncertainty cal-
culation and hypotheses. The main difference with the classical definition of
probability theory is that the Bayesian approach doesn’t see probability as fre-
quency of events, but as certainty/uncertainty. The rules for certainty calcu-
lus, presented by Cox [46], define the application structure basic relations for
Bayesian probability theory.

1. The joint probability of two elements A and B is a function of what is
known about A and what is known about B given A.

P (A,B) = f{P (A), P (B|A)} (3.17)

2. The negation function of the negation of the probability of the element
A is equal to the probability of A.

g(g(P (A))) = P (A) (3.18)

3. The negation function of an operation OR between two statements is
equal to the operation AND of the negation function of both statements.

g(P (AORB)) = g(P (A)) AND g(P (B)) (3.19)

CHAPTER 3. THEORY 19

This approach is further studied and built by Jaynes, who stated that Bayesian
probability and its plausibility is defined by three main “desiderata” [47]:

• Sum rule
P (x+ y|H) = P (x|H) + p(y|H) (3.20)

• Product rule
P (xy|H) = P (x|yH)P (y|H) (3.21)

• Bayes’ rule

P (Model|Data, H) =
P (Data|Model, H)

P (Data|H)
P (Model|H) (3.22)

These rules are important tools to compute the probability information of
relations between events, key for the calculus of inference.

3.3.4 Information
The available information about every part of a Bayesian reasoning system
must be made understandable in order to be interpreted by the users. Usually,
the information content of a PDF is processed and turned into a simple scalar
number, which must describe the very nature and uncertainty of that part of
the system.

Information function

The information function, which properties were proposed by I. J. Good in
1966 [48], defines the information of amodelM given an evidence information
E and a context C.

I(M : E|C) (3.23)

One of the properties derived by Good is that this is an strictly increas-
ing function, which means the information quantity increases when any of its
arguments does.

Entropy

The concept of entropy refers to the measure of the uncertainty of the state
of a system. The measure of information was presented by Shannon as a
measure to quantify the transmission capacity of communication channels,

20 CHAPTER 3. THEORY

which is a qualified way to compute the average measure of the information.
The name of Entropy comes from its similarity with the uncertainty measure
of thermodynamic systems. The axioms that define the entropy of a probability
distribution are [49]:

1. An entropy function H is a continuous function of p.

2. H becomes amonotonically increasing function if all the probabilities
of the distribution are equal.

3. Uncertainty H does not change depending on order or groups of sam-
ples.

Entropy and quantity of the information defined by Shannon for a discrete
variable with n samples and probabilities, with an associated information I, is
the sum of the associated information for every sample.

In = pn ln pn ⇒ H[X] = −
N∑
i=1

pi ln pi (3.24)

Uncertainty allows to calculate the mutual information of two variables,
which is defined as the observed information of a variable X observing the
variable Y .

I[Y,X] = H[X]−H[X|Y] = H[Y]−H[Y |X] (3.25)

In this case, the information observed from a network monitoring is for-
matted into discrete distributions. Understanding what uncertainty and mutual
information means is very important when modelling a reasoning system for
cyber security.

3.3.5 Markov chains
In section 3.1, basic concepts of graph theory and its usage in cyber security
are defined. When working with uncertainty, generating reliable graphical
representations can’t be based on fixed values. Found dependencies between
states can be stronger than others, and it is necessary to talk about Probabilis-
tic Graphical models [50]. Probabilistic graphical models represent random
variables as states and their dependencies. Markov chains represent the prob-
ability distribution of transitions between states, describing the behaviour of a
system given the information between nodes. This type of graphical model is

CHAPTER 3. THEORY 21

based on all the possible states of a system, which depend on the number of
nodes and all the possible values they can take.

Figure 3.8: Example of a Markov chain

The probability distributions that represent every transition and state are
defined in the transition matrix, which is the information core of a Markov
chain. For a Markov model of N states, there’s an NxN transition matrix that
represents the probability of every possible state of the system.

P =

 P (A) P (A−B) P (A− C)

P (B − A) P (B) P (B − C)

P (C − A) P (C −B) P (C)

 (3.26)

This type of model is considered one of the most basic probabilistic graph-
ical models. In a Markov model, every state is considered a binary discrete
variable, being able to represent dependencies for two possible states and al-
lowing cycles, representing full relationships between states. A model using
binary discrete variables can be considered an efficient way to represent cy-
ber attacks as an state with two possible outcomes (Success or failure), but a
Markov chain model doesn’t allow to represent enough information about joint
and conditional probabilities, and neither to study the behaviour of the infor-
mation when it is affected by many other factors. To represent dependencies
and relations and be able to calculate and update beliefs, as well as to apply
Bayes theorem to calculate inference and predict, it is necessary to apply a
Bayesian graphical model, mostly known as Bayesian network.

3.3.6 Bayesian networks
Some graphical models, present in basic graph theory, are a good way to repre-
sent states and dependencies between them. In order to analyse the behaviour

22 CHAPTER 3. THEORY

of cyber attackers inside a system, it is necessary to deal with uncertainty due
to the wide interval of possibilities about attacks and dependencies, and be
able to trace and predict. The graphical models used to calculate and repre-
sent uncertainty are Bayesian networks [51]. This type of model consists of a
DAG (Directed Acyclic Graph, section 3.1) made out of nodes, that represent
random variables, and edges that represent dependencies between them. As
it was explained before, Bayesian networks are a type of DAG, which means
every edge is directed, creating parental relations between nodes, and none
of the possible ways in the model can be a cycle (End up where it started).

Figure 3.9: Graphical example of a Bayesian network

A Bayesian graphical model represents the probability of a certain number
of variables (Nodes), which is affected by their parent nodes. Directed edges
represent dependency relations, and the probability of a Bayesian network
model is the result of computing all the possible probabilities in the model
given their parents.

P (X) =
n∏

i=1

P (Xi| parents (Xi)) (3.27)

For instance, the probability of the model in figure 3.9 given the present
nodes and edges can be calculated as follows.

P (A,B,C,D,E, F) = P (A)P (C|A)P (B|A)P (D|B)P (E|B)P (F |C)

(3.28)
The probability of every node with a set of parents bigger than 0 is affected

by the previous steps, whichmakes it possible to represent chains of connected

CHAPTER 3. THEORY 23

events and their relation. This is called the chain rule of probabilities.

Explanation

When developing a reasoning system and trying to find certain conclusions
from data, like it is always done with Bayesian networks, the main goal is
to transmit knowledge finding the best way to make other people understand
what is being transmitted. Explaining the reasoning about a system and de-
scribing it providing understanding define the concept of explanation [52].
This definition comes from the approach of scientific explanation, but in the
case of Bayesian networks and probabilistic models, a more suitable approach
is the explanation in artificial intelligence, which focuses in the importance
of the explanation in decision-support systems, which can never be a sub-
stitute for the decision of a human being but can be very useful to provide
advice, and that’s the importance of an accurate and well performed explana-
tion when it comes to this type of systems. The concept of explanation for
Bayesian networks is wider than for many other prediction models. In this
case, it provides evidence explanation and prediction. The concept of expla-
nation for Bayesian networks is divided in three categories that summarize the
whole task.

• Explanation of reasoning: Refers to the explanation of the whole rea-
soning process of the model and how does it come to the final conclu-
sions.

• Explanation ofmodel: Representation of the knowledge of the network
in an easily understandable way.

• Explanation of evidence: Explanation of the state of the variables,
what is observed and their state using the other variables in the network.

Conditional independence

The joint probability distribution of two random variables is directly associ-
ated with their conditional probability (Section 3.2.6). In the case of Bayesian
networks, the concept of conditional independence is a key factor when
calculating the probabilities of the nodes. It is said that two variables are
conditionally independent when their joint probability is the product of both
marginal probabilities.

P (A ∩B) = P (A)P (B) (3.29)

24 CHAPTER 3. THEORY

Given this property, in case of conditional independence, the conditional
probability of an event given another event which is not a parent in the model
is equal to the marginal probability.

P (A|B) = P (A) (3.30)

P (B|A) = P (B) (3.31)

When calculating dependencies in a Bayesian network, the process ofmarginal-
ization consists of finding which variables are not directly associated with
others (Are conditionally independent), in order to remove false relations that
could intoxicate the calculus. The marginal probability for any event in a
Bayesian graphical model can be computed using rules of standard probability
[53].

P (Xi) =
∑
X1

· · ·
∑
Xi−1

∑
Xi+1

· · ·
∑
XN

P (X1, . . . , XN) (3.32)

D-separation

When talking about conditional independence of events in a Bayesian net-
work, the theory that defines how the evidence about an event affects the other
is called d-separation, where d stands for dependency. Two events are d-
separated when their conditional probability is not causally affected by the
other, and the fact that one of them is happening doesn’t give information about
the occurrence of the other.

Figure 3.10: Nodes in serial connection

In case of a serial connection, d-separation is impossible for any event. Al-
though two events are not directly connected and don’t have a parental relation,
the conditional probability of the last event in the chain is causally affected by
the events happening before its direct parents.

CHAPTER 3. THEORY 25

Figure 3.11: Convergent connection

When an event is affected by two different events, they are not necessarily
affected between them. In the case of the serial connection in figure 3.11,
events A and C are d-separated. The same happens when the structure of the
connection doesn’t show a direct relational way between two events, like it’s
the case of 3.12.

Figure 3.12: Tree connection

Markov blanket

The set of nodes connected with a certain event is called Markov blanket.
The Markov blanket of an event contains all parents and sons of that event,
and all those events that share a child with it.

26 CHAPTER 3. THEORY

Figure 3.13: Markov blanket

An event is considered d-separated of all the events out of its Markov
blanket. This concept is especially important to determine conditional proba-
bilities and apply inference methods.

Understanding conditional independency and its properties is of critical
importance to calculate and build accurate and reliable patterns in this case.

Structure learning

In order to construct a model that defines the behaviour and characteristics
of a system, like cyber attacker patterns, it is necessary to represent states as
random variables (Events) and their dependencies. Finding the best graphical
model for a Bayesian network is called structure learning. This theory has
two main different approaches, score-based and constraint-based.

1. Score-based approach: This approach is divided into two steps. The
first step is to evaluate how a Bayesian model fits the data and estab-
lish a criterion about it, and the second step is to use that criterion to
search in the space of all the possible DAGs in order to find the model
with the maximum score, which is considered the best structure for the
case. The score of a Bayesian network given a model BN and data X is
computed using the log-likelihood of the data in the given model, being
the parameters of themodel calculated under the principle of Maximum
Likelihood estimation. The score function avoids overfitting by adding

CHAPTER 3. THEORY 27

a second term, computed using the number of samples and the number
of parameters in the network [54].

S core(BN : X) = LL(BN : D)− φ(|X|)‖BN‖ (3.33)

Another function that is widely used to calculate the score of a Bayesian
network is theBayesianDirichlet score [55], which uses the conditional
probability of the data given the model and a prior probability for the
parameters. This operation is quite similar to the Bayes theoremmethod
for inference calculation.

The most famous algorithm based in this approach is the Chow-Liu
Algorithm [56]. This algorithm uses the maximum likelihood as the
score of the model, using it as a reference to find the best structure,
where every node has one parent at most. The process is divided in
three steps.

(a) Computing themutual information for every pair of nodes, creating
an undirected graph with weighted edges.

(b) Finding the treewithmaximumweights, removing the less-weighted
edges of the graph.

(c) Treating every node as a root, assigning directions to the edges
outward from it, transforming the graph into a directed one. In
this case, the direction of the edges is not taken in account due to
the symmetry of mutual information and the absence of more than
one parent.

2. Constraint-based approach: This approach finds the best graphical
model given a set of constraints that define dependency relations [57].
The constraints are set making an independence test, and the structure
of the model is found looking for a DAG that satisfies all of them in the
best possible way. Other structure learning approaches and algorithms
are being developed by researchers, using alternative methods like A*
search [58].

Conditional probability table

In a conditional probability table, all the knowledge about the probability
evidence of a node is gathered and represented. Every node in a Bayesian
network has an associated CPT with the probabilities of every possible state
of the event, given all the values that it and its parents can take.

28 CHAPTER 3. THEORY

Figure 3.14: Bayesian network with CPTs

In the case of root nodes, the table is made out of marginal probabilities
only. As the number of parents of a node increases, the number of probability
cases increases exponentially, representing all the possible ways to describe
the behaviour of the system.

Inference

The most useful characteristic of Bayesian models is the belief updating by
computing the inference using evidence (Applying Bayes theorem, section
3.2.7). Conditional probability tables represent the probability of any event
given its conditions (In this case, given the previous action of the attack pro-
cess). These probabilities can usually be observed and calculated from param-
eters when working with discrete distributions, and can be used to calculate
hypothesis and make diagnosis. Knowing how likely is an event to happen
given all the possible previous events, it is possible to compute how likely a
previous step would be to be a parent of that event. For the model in figure
3.14, applying Bayes theorem it is possible to find out how likely is A to be
a parent of B by setting a prior value for A and adding it to the equation with
the conditional probability of B given A.

P (A|B) =
P (B|A)P (A)

P (B)
(3.34)

CHAPTER 3. THEORY 29

When applying the rule, likelihood and prior are divided by the normal-
ization constant. The normalization constant of the son node is equal to the
probability of that node to be in the indicated state. In this case, the normal-
ization constant for B is the sum of all the joint probabilities of B.

P (B) =
∑
i

P (B,Xi)⇒ P (B) =
∑
i

P (B|Xi)P (Xi) (3.35)

Inference is one of the most important informative parts of a Bayesian
graphical model, but it needs a high computational performance in case of
a large network. In this case, exact inference can be computed, but it is neces-
sary to apply inferential algorithms to approximate the exact value when the
number of states is too big.

Prior estimation

One of the elements used to calculate Bayesian inference is an estimation of
the final result called prior. The value of a prior estimation can be very use-
ful when there’s some kind of knowledge available about the system and the
possible outcome of the diagnosis, but there are different methods for the es-
timation of prior values depending on the situation. In this case, the main
focus is on noninformative priors [59]. Noninformative prior estimation is
used when there’s no information about the possible outcome of the inference
equation. There are many methods and algorithms for noninformative prior
estimation, being Jeffreys prior [60] the most widely known distribution for
one and multiple parameter cases.

Chapter 4

Case of study

The research and knowledge gathered in this project are the base for the design
of a methodology for cyber attackers behaviour prediction using Bayesian net-
works. This proposal represents a tool included in the scope of a cyber range,
which goal is to learn from data, provide understanding and represent a reli-
able method for cyber security training. This process is designed to be applied
in a virtual environment, which represent a simulated network that is used to
train and learn about cyber security processes. This virtual environment can
be monitored, extracting data that can be processed in order to detect cyber at-
tacks peformed inside the systems included in it. The dataset from which the
described model is built contains information about detected cyber attackers
actions inside a cyber range virtual environment.

4.1 Cyber range
The concept of cyber range refers to a virtual environment that is used to prac-
tice, learn and train for cyber warfare. This type of models usually represent
a virtual system which emulates a real life infrastructure, providing tools and
methods designed to understand and learn.

30

CHAPTER 4. CASE OF STUDY 31

Figure 4.1: Example of a cyber range virtual environment

In this case, the proposed model represents a tool which application is
intended to be made in a cyber range system to learn from data and predict
cyber attacks. This specific system is used for the cyber security training of
Computer Science students. More specifically, it is designed to be attacked
and compromised by them, being able to find weaknesses and penetrate into
the system. The goal of the method described in section 5 is to learn from
the actions performed by the students, representing them as steps of attack
processes, analysing the influence and relations of the actions and building
patterns.

4.2 Assumptions
The described model is planned to work under some constraints that create a
suitable environment to apply this method. These conditions define the prop-
erties of the dataset used to trace and build a behavioural prediction model.

Here are described the assumptions that make up the starting point for the
application of the probabilistic prediction algorithm.

1. Cyber attack information: It is assumed that there’s enough detectable
information about the actions made by cyber attackers inside the net-
work.

32 CHAPTER 4. CASE OF STUDY

2. Success: Information about the success or failure of the attacks per-
formed is available and possible to detect. In this case, in order to emu-
late a real case and apply a pattern searching method, it’s assumed that
an unsuccessful action can’t be the previous step for another event.

3. Identification of cyber attackers: It is possible to identify the source
of every action and classify all of them.

Taking these assumptions as a starting point to create a dataset, the in-
formation is analysed and modelled to create the graph, tracing patterns and
performing the necessary calculations.

4.3 Data
In order to successfully trace and build patterns, a complete dataset of detected
cyber attacks is necessary. In this case, a dataset that simulates the actions
performed by 300 students inside a cyber range is analysed. The expected
outcome after the application of this model to the dataset is a Bayesian Net-
work that describes the typical behaviour of the students inside the system.
The events contained in the simulated dataset define six possible complete
patterns. It’s important to understand that smaller parts of a complete pattern
(graph) can also represent a pattern (Subgraph).

Figure 4.2: Possible pattern 1

Figure 4.3: Possible pattern 2

CHAPTER 4. CASE OF STUDY 33

Figure 4.4: Possible pattern 3

Figure 4.5: Possible pattern 4

Figure 4.6: Possible pattern 5

Figure 4.7: Possible pattern 6

All the possible patterns that can be found in the dataset compose the main
configuration of the attack process that is simulated; in other words, the result
of the combination of all the possible single patterns is the behavioural process
simulated in the dataset.

34 CHAPTER 4. CASE OF STUDY

Figure 4.8: Simulated behavioural main scheme

The resulting dataset represents a list composed by detected cyber attacks.
Every element of the list represents a detected event, and gathers information
about the type of attack, the name of the attacked host, the date and time it
was performed, and information about the success of the action. The elements
of this list represent steps of a process, which means that the nature of the
information is defined by the following properties:

• The next step of the process can only represent an event that is present
after a successful performance of the previous action.

• An event that represents a child of a previous action is placed forward
in time than its parent.

Following these conditions, the process to simulate a real dataset of cyber
attacks performed by students has the following configurations:

1. The total amount of cyber attackers that can be found in the dataset is
300. Every attacker has an identifier assigned, which simulates an IP
address.

10.0.0. {0− 299} (4.1)

2. The patterns followed by the attackers have three possible starting points
(A1 - A, A2 - A, A3 - B). The identifiers are divided into this three first
steps, starting and following the process from them.

A1−A⇒ 10.0.0. {0− 99} (4.2)

A2−A⇒ 10.0.0. {100− 199} (4.3)

A3−B⇒ 10.0.0. {200− 299} (4.4)

CHAPTER 4. CASE OF STUDY 35

3. The date and time of the first actions are randomly generated for every
attacker id. In case of a successful action, the next action of the process
is created and associated to the same attacker, adding the necessary time
difference between actions. This process simulates a real attack pattern
and its progression in time. The time differences applied to every tran-
sition are shown in figure 4.9.

4. Every attack associated to an attacker identifier is created and repre-
sented combining the name of the attack and the targeted system. For
instance, an attack A - A1 represents an action A performed in the sys-
tem A1.

5. Success values are added randomly as a binary variable (1 if success, 0
if fail). When an action is associated to an attacker id, this value is also
set in the object. In case the success value is 0, it’s considered that the
attacker failed, and no more actions are associated to the same identifier.

6. In order to create the next events after the starting points, the whole set
of actions is analysed, looking for the previous action (Attack and host)
of the event that is being created, and the identifier associated with it.
In case the success value of the previous action is 1, the next event is
generated and associated with the same attacker id. This configuration
simulates a real pattern, where the process of penetrating inside a net-
work is divided into smaller steps in different systems.

Figure 4.9: Time difference between steps (Minutes)

This simulation creates a list of events. Events represent actions performed
by cyber attackers to a certain host and their success, which value is randomly
assigned. The chains of events followed by every attacker can represent any
possible pattern that a real student could follow inside a virtual system in this
case. The result is a full dataset of detected cyber attacks than can be filtered
and processed, representing the starting point of the algorithm.

36 CHAPTER 4. CASE OF STUDY

4.4 Real case
The simulated dataset described in section 4.3 represents the main structure
of an attack process. As it has been described, tracking the actions of cy-
ber attackers and finding patterns requires the important task of establishing
a model, defining what represents a step and what represents an association
between them.

The dataset used to perform the simulation represents actions performed
on different systems. It is important to understand what these actions are,
what is their nature depending on the system they are performed in and what
is their purpose. In this case, an action can be represented as a cyber attack
or, depending on the dimension, a step of a greater process. These steps must
be defined as part of a model in order to be able to detect them and use them as
key parts of a pattern. Depending on their purpose or the target, cyber attacks
can be classified, as it can be observed in the MITRE ATT&CK Matrix for
Enterprises [61], which represents a catalogue where the typical threats and
attacks performed in an enterprise environment are classified, depending on
their nature or the goal followed by the actions.

In the case developed and simulated for this project, actions are represented
as steps of a process, which represent cyber attacks performed in a certain sys-
tem. The creation of a pattern is built based on amodel of the typical behaviour
of cyber attackers, where associations between steps represent a recursive se-
quence from one action to another. Understanding the nature of an attack and
its purpose can be helpful in order to represent these associations and under-
stand the results of this algorithm. This information becomes specially helpful
when the understanding about specific threats of every system is taken into ac-
count, like Initial access or Credential access techniques for systems with a
public interface (Web servers) or Lateral movement for applications or re-
mote connection servers.

CHAPTER 4. CASE OF STUDY 37

Figure 4.10: Real case simulation process

In order to understand the adaptability of this model, as well as analysing
how efficient its performance can be in a real situation, an example of a real
case based on real cyber attacks has been studied. This case (Figure 4.10)
represents a simulated dataset of typical attacks. These attacks represent the
steps of a whole process, which can be considered an attack pattern inside a
cyber range:

• Password cracking (Brute Force) performed on personal device (Laptop)

• Privilege scalation performed on server

• Exploit execution on web server

• SQL injection attack performed on database

• Malware execution on storage server

• Firewall access achieved on core system

The proposed model contains the elements that can be usually found in a
cyber range, which is the environment for which this project is developed, and
represents the most typical model of network and resources access architecture
for cyber security training.

It is important to understand that systems are constantly evolving, and the
technological risk increases as digitalization does. Cyber attack techniques
and hacking methods belong to a constantly innovating world, which makes
it necessary to make systems safe, as it can be observed in new attacks and
threats like False Data Injection Attack [62], or the result of investigations

38 CHAPTER 4. CASE OF STUDY

regarding to the Risk analysis of cyber-physical systems [63]. The nature
of cyber security science makes this project a versatile proposal, being able
to be applied to any type of attack, event dataset or cyber security training
environment, representing an effective method for any real scenario with the
ability of measure and detection.

Chapter 5

Method

5.1 Introduction
All the research and investigation made in this project are focused on proba-
bilistic analysis and modelling. The main goal of the work described here is to
gather information about probabilistic models and methods to learn from data,
provide understanding and use it to find patterns and predict the behaviour of
cyber attackers. In this section are described the process of filtering, model
structure construction and causality analysis, as well as the diagnosis process
using inferece and the construction of the network, explaining the solutions
and decisions taken in order to fulfil the main issues stated in section 1. The
model described in this document is based on the information obtained from
monitoring the systems of a virtual network, and the main goal is to create a
model to represent patterns and attack processes based on Bayesian analysis, to
find and represent information about events and dependencies between them,
and analyse the nature of the typical actions made by cyber attackers inside
the network. This model is meant to be scalable, giving the chance to improve
it and be used to analyse any dataset that could provide enough information to
find a pattern and calculate probabilities.

39

40 CHAPTER 5. METHOD

Figure 5.1: Attack list

As it was explained in the previous chapter, the dataset from which the
model is built consists of a list of cyber attacks like the one in figure 5.1, which
attributes and information are described in table 5.1.

Attack class
Attacker Identifier of the attacker
Name Name of the action performed
Host Name of the target

Datetime Datetime information
Success Information about success

Table 5.1: Attack class elements

In this case, every attack instance provides information about the respon-
sible host (Attacker id), the type of attack detected, the targeted host, the date
and time when it was performed, and the success of the action. This infor-
mation is first filtered to construct discrete variables, and then analysed and
processed in order to find dependencies, create patterns, trace them and cal-
culate conditional probabilities and inference. The information obtained from
the whole process, and from which the graphical model is built, is gathered in
a state list.

State class
Name Name of the node

P. Success Marginal probability of success
P. Failure Marginal probability of failure
Parents Parents of the node
CPT Conditional probability table

Prediction Table of calculated inference

Table 5.2: State class elements

CHAPTER 5. METHOD 41

This class contains the necessary information to build a Bayesian network.
Every state represents a node of the network as a discrete variable with its
marginal probabilities, also gathering the information of its dependency rela-
tions with other nodes as a parent set, the conditional probabilities observed
and calculated from the dataset (CPT), which define its behaviour with regard
to the other elements in the graph, and a diagnosis table including the predicted
probability values as the result of the inference calculation process.

5.2 Space
The construction of Bayesian networks is based on probability spaces. In other
words, the probability space of a model is the set of variables that represent
the nodes of the network.

P = {X1, X2, X3, ..., Xi} (5.1)

The first step of this method is to define the probability space of the model,
which includes the different events of the dataset. A dataset from which a
pattern can be found and built includes common actions and repeated events,
and every single event found in the dataset is added to the probability space of
the model and represented by a node in the network, no matter the frequency
of appearance. The main goal of this model is to describe the behaviour of
cyber attackers inside a network, and that’s why it’s important to analyse and
represent all the actions, event if they’re isolated and can’t be associated with
an specific pattern.

Figure 5.2: Nodes filtered from attack list

42 CHAPTER 5. METHOD

Figure 5.3: Node composition

Every detected attack performed inside an specific system represents a
node, which is labelled combining the name of the performed attack with the
name of the targeted host, and every node represents a variable of the proba-
bility space. In this case, variables are defined as discrete binary variables,
which means that they have a finite number of samples and two possible val-
ues. With this definition, the nature and marginal probability of the events can
be defined and computed by applying the basic rule of probability for binary
discrete distributions.

A

{
Success if p
Fail if q = 1− p

(5.2)

The number of samples of the variables represent all the times the same
attack was detected in the same host, allowing to calculate the total number
of successful and failed attempts.

p =
Number of success samples

Total number samples
(5.3)

The result of this process is a probability space composed by the events
detected in every different system included in the network, which represents
the base from which a Bayesian network is built. Once the variables are
defined, the next step is to set dependencies and build the structure of the
model.

5.3 Structure
The elements that compose a Bayesian network are nodes and edges. Nodes
represent the objects of the graphical model, and edges define the relations
between them. As it was explained in section 3.1, this type of model is based
on a Directed Acyclic Graph, which means that the connection between two
nodes represents a directed causal dependency relation between them.

CHAPTER 5. METHOD 43

The problem of learning Bayesian networks can be divided into two dif-
ferent methodological approaches [64]:

• Traditional approach: Also known as manual approach, refers to the
Bayesian networks structure construction by human experts and engi-
neers, collecting datamanually and representing the association between
variables as causal relations, adding a directed edge from cause to ef-
fect. This method supposes a highly time-consuming task.

• Learning approach: Also known as automatic learning approach, is
composed by the heuristic methods used to calculate Bayesian networks
structures, which main approaches are described in section 3.3.6.

The classical construction of a Bayesian network structure from data is
usually based on a probability space and a distribution of conditional prob-
abilities of the variables, which are used to find dependencies between them.
Applying heuristic structure learningmethods it is possible to build a reliable
graph to represent relations and fulfil the requirements of a Bayesian network
model.

As it was described before, heuristic structure learning methods are di-
vided into two main approaches, score-based and constraint-based. Score-
based methods suppose an efficient way to build a model by comparing all the
possible graph structures that fulfil the requirements of an specific case, us-
ing scoring functions like Bayesian information criterion [65], but although
these methods are efficient and robust, they also suppose a high computational
cost that makes them inefficient for this special case.

The nature of the probability space in this case, given the special environ-
ment it is based on, allows to apply some conditions for the construction of the
structure, and makes it more suitable for a process included in the scope of a
constraint-based approach [66]. In this case, applying a reasoning method to
calculate the topology of a behavioural pattern also needs a proper application
of the learning process for some specific constraints. The key of constraint-
based methods is the usage of independence tests, which results represent the
constraints. The performance of these algorithms is to compute the indepen-
dence factor between two variables for a certain subset of values, representing
totally independent variables X and Y for a subset of variables S as:

X ⊥ Y |S (5.4)

The subset of variables for which an independence test is made is usually
composed of those variables who are included in theMarkov blanket of both

44 CHAPTER 5. METHOD

analysed variables, which decreases the number of calculations needed, and
supposes that the computational cost of these algorithms, specially for high
datasets, is normally lower than the score-based approachmethods. Constraint-
based methods are based on both the Causal Markov condition, which de-
fines every variable as independent from its non-descendants, and the principle
of faithfulness or stability, which means that it’s not possible to represent a
causal relation between two variables of which mutual independence has been
computed and established [67].

Learning process

In this case, a learning process must be designed and applied in order to build
a topology which represents cyber attackers behavioural patterns by learning
from their actions. Applying a model like this for behavioural patterns means
that cyber attacks are treated as objects that influence the existence of others,
and act as cause or effect. This concept accurately defines the nature of cyber
attacks as steps of a process for this case.

The nature of cyber attackers behaviour, combined with the assumptions
made to describe the dataset, represent a set of conditions and constraints that
can be used to test the dependency between the filtered nodes:

• Chronological order: The behaviour of cyber attackers is represented
by a series of actions ordered in time. Other constraint-based solutions
that don’t depend on the dataset order [68] can be used, but it is an strong
and important condition that must be taken in account in this case.

• Identity: The source of an action can be identified.

• Success: An object that doesn’t represent a root node is considered an
effect of a previous successful attack.

For this special case, performing independency tests for every pair of vari-
ables requires a higher effort due to lack of knowledge about the association
between nodes at this point, and that’s why this test is made searching for direct
dependencies. The first step is to divide the dataset into a samples matrix,
separating the actions associated with every different attacker id.

CHAPTER 5. METHOD 45

Figure 5.4: Attacker actions matrix

The result of this filtering process is a matrix in which every row is a
chronologically ordered list of the actions performed by an attacker. The
next step is to use this resulting matrix in order to find dependencies between
nodes, which lead to the construction of a pattern. It’s important to take in
account the causality relation property between dependent nodes in this case,
from which only a successful attack can be the cause of another one. Due to
this condition, the resultant matrix is filtered in order to remove unsuccessful
actions.

Figure 5.5: Matrix filtering example

The outcome of this process is a list with all the series of successful actions
followed by the different cyber attackers inside the system. At this point, it is
possible to analyse which events represent a previous action, or cause, for
every node; in other words, it is possible to calculate the parent set for all the
variables in the probability space. The process applied to every node of the
probability space for its parent set search is:

46 CHAPTER 5. METHOD

1. Search for the series in the matrix where the attack is present, ignoring
the series where its presence is not found.

2. For every appearance of the attack in a series, the first previous action
is analysed (In case it exists), and its presence as a previous step of the
attack is calculated, comparing it with the rest of the appearances of the
attack. This process is made for all the different first previous actions
that are found in the series, for every appearance of the attack.

3. Depending on how often a previous action is present before the anal-
ysed attack, it’s considered a parent of it or not. It is important to avoid
false patterns, and that’s why a process performed only one time can’t
represent a typical behavioural process of cyber attackers. When an ac-
tion is found to be a previous step of the attack three times or more, it
can be considered a cause of the attack and a dependency relation be-
tween them is established, including it in the parent set of the attack.
This threshold for dependencies establishment could also be computed
based on probabilities, but it could lead to missing relations for small
datasets, which is the case of this specific network.

Figure 5.6: Previous action as a parent of the attack

After applying this algorithm, all the dependency relations between the
elements of the probability space have been set, and every state has now a
parent set. Graphically, the causal relation between every state and those in its
parent set is represented with an edge, directed towards the analysed state.

CHAPTER 5. METHOD 47

Figure 5.7: Example of an state with two parents

The parent set of the example in figure 5.7 can bemathematically described
as follows:

par(C) = {A,B} (5.5)

Due to the natural properties of this case, a process associated with the
traditional approach of Bayesian networks structure learning is used in order
to find causal relations, which also leads to an empirical independency test
process. The parent set information of every state allows to construct their
Markov blanket, considering every variable d-separated and, indeed, inde-
pendent from any other variable that has no presence in its parent set and
neither includes it in theirs; in other words, a variable A is considered inde-
pendent from B if they are not a parent or a son of each other in any case.

5.4 Conditional probability tables
The construction of a Bayesian network from discrete variables is based on a
probability space composed of discrete variables and a probability distribu-
tion. This probabilistic graphical model represents causal relations between
variables using conditional probabilities, and make it possible to understand
how likely all the possible situations are to happen. In this case, all the knowl-
edge is achieved by learning from a dataset of detected cyber attacks, and it’s
possible to observe and calculate conditional probabilities by analysing the ac-
tions and the dependencies that have been already set. Every node in themodel
has a Conditional Probability table associated that describe the probability
of the represented event to happen given all the possible situations where it
is involved. Given a set of parents, the CPT is calculated and adapted to the
nature of the state that is being analysed. Depending on the situation, the size

48 CHAPTER 5. METHOD

of the CPT for discrete binary variables increases exponentially as the number
of parents do. For root nodes, all the possibilities are defined only by their
marginal probabilities.

Figure 5.8: Single node

CPT
P(A)
P(A’)

Table 5.3: CPT of
a single node

Figure 5.9: Two nodes connected

CPT
P(B|A)
P(B|A’)
P(B’|A)
P(B’|A’)

Table 5.4: CPT of a
single-parent node

Figure 5.10: Two nodes converging in
one

CPT
P(C|A,B)
P(C’|A,B)
P(C|A,B’)
P(C’|A,B’)
P(C|A’,B)
P(C’|A’,B)
P(C|A’,B’)
P(C’|A’,B’)

Table 5.5: CPT of a
multiple-parent node

Conditional probability information is computed by analysing the evidence
found in attack processes. Given all the possible scenarios of previous con-
ditions, samples are filtered and the behaviour can be observed from filtered

CHAPTER 5. METHOD 49

information. All the possible outcomes (Given the previously found depen-
dencies) are covered and have a measured probability.

For this process, the matrix of series is not filtered, due to the necessity
of including the development in case of failures. Every variable has two pos-
sible outcomes, and it’s possible to compute the probability of both different
results for every possible situation by applying the basic probability concept
represented in the equation 5.3. For instance, given a variable A with a single
parent B, the probability of success of A given B’ is the result of dividing the
number of samples where A is successful after a failed attempt of B by the
total number of samples where A is successful.

P (A|B′) =
Times variable A is successful after B failed

Times A is successful
(5.6)

Given a parent set, all the possible conditions are represented as the number
of possible binary combinations of a number of bits equal to the lenght of the
set, applying them to filter the series matrix and calculate probabilities.

Figure 5.11: Binary combinations for a parent set with two elements

In this case, the scope for every variable is limited by the attacks included in
its parent set, and its CPT contains the conditional probability for all possible
outcomes (Success or Fail), given all the possible values of its parents. The
condition of discrete binary variables makes the number of entries in the CPT
to double its quantity every time a new element is included in the parent set.

The result of this process is a Conditional Probability table associated
to every state. The values included in the CPTs define the relations between
nodes, and represent the level of influence between cyber attacks in a be-

50 CHAPTER 5. METHOD

havioural pattern, which is a very useful property for a cyber attackers be-
haviour tracing system. This information is one of the most important parts
of a Bayesian network, and also supposes a key factor to compute inference
values.

5.5 Inference
When all the possible states are known and their conditional probabilities
are calculated, Bayesian inference is computed by applying Bayes theorem
for every possible situation. At this point of the process, the elements that
compose the DAG are already defined like discrete binary variables and their
marginal probabilities, and their dependencies and relations can be analysed
and represented using the information of their parent sets and CPTs. Using
this information, it’s possible to measure and represent predictions in order
to construct a Bayesian model. Calculating the inference is the process to de-
termine and represent how likely is an event to be a previous step for other
attacks, or the probability of a state to be a parent of the next one.

The posterior probability for every state given the calculated evidence
(CPTs) is computed by applying Bayes rule, translating the present condition
to the different parts of the equation.

1. Likelihood: The likelihood factor is the evidence given to the equation.
It is represented by the observed conditional probability given the situa-
tion that is being calculated. So, to compute the conditional probability
of an even A to be a parent of an event B, the likelihood factor is the
conditional probability of B given A.

P (A|B)⇒ Likelihood factor: P (B|A) (5.7)

In case of more than one parent, the likelihood factor is computed taking
in account all the possibilities that fulfil the conditions.

P (A|B)⇒ Likelihood factor: P (B|A,C) =
∏
i

P (B|A,Ci)

(5.8)

2. Prior: The prior factor is the expected outcome of the inference. In
this case, the only available information about the analysed event are its
marginal and conditional probabilities. Given the situation that states
are binary discrete variables and there is no available information about
the expected outcome, the marginal probability of a variable can be used
as a prior value.

CHAPTER 5. METHOD 51

3. Normalization constant: The likelihood and prior factors are divided
by the normalization constant. This factor provides information about
how likely the son node is to be in the indicated state; in other words,
it represents the isolated value of the variable in a certain state. The
normalization constant isolates the probability of a value by combining
conditional and marginal probabilities of the variables that influence its
behaviour.

P (B) =
∑
i

P (B|Ai)P (Ai) (5.9)

In case of more than one son, the normalization constant is computed
as the joint probability of all the sons. It is usual that the sons of a
node have no dependencies between them (The model has no cycles),
so it’s important to observe the possible conditional independency when
calculating this factor.

P (B,C) = P (C)P (B|C) (5.10)

Conditional Independence: P (B,C) = P (B)P (C) (5.11)

The process of inference calculation in this algorithm is applied for every
state of the model. The first step of this algorithm is to find the possible actions
an attacker can perform after the analysed variable, which is made by analysing
the presence of the variable in the rest of parent sets of the states list.

Figure 5.12: Sons association searching

The number of associations found in this process defines the number of
entries of the resulting prediction table, being represented as all the binary
combinations for a number of bits equal to the number of sons of the variable.

52 CHAPTER 5. METHOD

Figure 5.13: Binary combinations for a node with two sons

After defining the combinations, the previous theoretical concepts are ap-
plied to calculate the Bayes rule factors. These factors are computed using the
information gathered in the states list. For instance, the likelihood of an state
B’ which is included in the parent set of an event A is equal to the conditional
probability of A given B’.

P (A|B′) (5.12)

In this case, the normalization constant represents the probability of A,
which represents the variable A in the state of success.

P (A) = P (A|B)P (B) + P (A|B′)P (B′) (5.13)

Given the likelihood and normalization constant, and taking the marginal
probability of the variable B in state of failure B’, the inference model in this
case can be built and computed.

P (B′|A) =
P (A|B′)P (B′)

P (A)
(5.14)

The same process is applied for every state in the list, analysing their pres-
ence in the rest of parent sets of the list (Can’t be included in their own parent
set, no cycles are allowed) and calculating the inference for all the possible val-
ues and conditions. This process applies the same property of independence
of a naive Bayes classifier. The results for every connected state are gathered
forming a diagnosis table.

CHAPTER 5. METHOD 53

Figure 5.14: Two nodes connected

Diagnosis table
P(A|B)
P(A|B’)
P(A’|B)
P(A’|B’)

Table 5.6: Diagnosis
table of a node with a
single son

Figure 5.15: A node with two sons

Diagnosis table
P(A|B,C)
P(A’|B,C)
P(A|B,C’)
P(A’|B,C’)
P(A|B’,C)
P(A’|B’,C)
P(A|B’,C’)
P(A’|B’,C’)

Table 5.7: Diagnosis ta-
ble of a node with multi-
ple sons

After this process, a table with predictive probabilities is added to ev-
ery connected state, completing the Bayesian networks model reasoning al-
gorithm. At this point, all the elements of which the network is composed are
defined, and the model is built as a directed acyclic graph designed to repre-
sent cyber attackers behavioural patterns and provide as much understanding
as possible at every point. When different and conditionally independent pat-
terns are found and there are no connected states between them, the graph is
represented as a poly-tree structure which allows to observe different patterns
in the same model.

54 CHAPTER 5. METHOD

Figure 5.16: Poly-tree structure graph

5.6 Model construction
Once the previous processes are finished, the resulting state list can be used
to build the model. The first step of this process is to generate the elements
of the graph. This step is divided into two operations: Generating a node for
every state, adding the name of the state as a label, and generating directed
edges from every element found in their parent sets.

Figure 5.17: Nodes generated from states list

CHAPTER 5. METHOD 55

Figure 5.18: Edges generated from parent set

Once the elements of the graph are generated, the next step is to build the
graph and represent the processed information.

5.6.1 Application
The code needed to apply the filtering processes and mathematical methods
described before represents the application model, which process the obtained
data in order to build the resulting Bayesian network. All the mathematical
processes designed for this application, as well as the module for graphical
representation, are implemented using Python, which is considered the proper
platform for the design of this model due to its good performance for proba-
bilistic data analysis and representation.

Figure 5.19: Python logo

5.6.2 Methodology
The application core is divided into three blocks, separating the filtering code
from the mathematical algorithms and graphical representation.

1. BN.py: This is themain script used for the creation of themodel. In this
script is implemented all the process to filter data and find the param-
eters of the model, as well as the graphical representation method.

56 CHAPTER 5. METHOD

This code applies the method described before in order to find states
and dependencies from the simulated dataset of detected cyber attacks,
importing the functions included in AnalysisModules.py to calculate
probabilities and create a Bayesian network. The graphical model is
represented as a web application using Dash, creating a cyber security
tracing system as an interactive graphical model that allows the user
to explore all the available information about the parameters involved.
(Appendix A)

2. AnalysisModules.py: In this module, all the necessary functions to
generate simulated data and calculate probabilities are implemented.
This script is imported as a function set for the main script and is ap-
plied to the filtered data. The content of this file is composed by the
necessary functions to calculate marginal probabilities, the algorithm
to find dependencies given a list of actions made by cyber attackers,
the operations to calculate conditional probability tables, as well as
to find prior values, likelihood, and compute the normalization con-
stant to apply the Bayes theorem and calculate the inference given a set
of states. This block also contains operations to find root nodes and re-
move cycles to make sure the outcome meets all the requirements to be
a Directed Acyclic Graph. (Appendix B)

3. Style.css: Dash is a python library that allows to create web modules
using HTML in Python. This script works as an external stylesheet for
the graphical application implemented in the main script. (Appendix C)

5.6.3 Graphical model
The result of the process applied to the simulated dataset described in chap-
ter 4 is an accurate graphical representation like the one in figure 5.20. The
observable similarity between the resulting graph and the pattern scheme of
figure 4.8 shows the high level of accuracy of this method given the conditions
of this case.

CHAPTER 5. METHOD 57

Figure 5.20: Processed graphical result

The resulting graphical model is represented as an interactive tool to anal-
yse all the different points of the processed pattern. This means that the pro-
cessed information included in the state can be shown when selecting a node,
as well as the dependency relation between parent and son when selecting an
edge. After the selection, the CPT and diagnosis table of the state are shown,
providing the information about conditional probabilities and computed infer-
ence.

Figure 5.21: Processed model: Node selected

58 CHAPTER 5. METHOD

Figure 5.22: Information tables for the selected node

In the information tables, a blank field means probability zero. The ac-
curacy of the probabilistic computation can be demonstrated by analysing the
information tables. In case of a node in a serial connection as a single parent,
the inference results confirm the nature of the simulated data (The probabil-
ity of an unsuccessful event to be a previous step of another event is equal to
zero). This property is confirmed by the inference values, which are equal
to zero for the cases where the previous step failed, and the CPT, which also
represents all these cases as probability zero.

Figure 5.23: Serial connection node selected

CHAPTER 5. METHOD 59

Figure 5.24: Information tables for a serial connected node

In case of an state with more than one parent, Conditional Probability ta-
bles increase their size exponentially. This effect, previously explained in this
chapter, is due to the condition of discrete binary variables.

Figure 5.25: Node with more than one parent selected

60 CHAPTER 5. METHOD

Figure 5.26: Information tables for a node with more than one parent

In this model, root nodes represent the starting events of the analysed pat-
terns. These nodes observable probability is limited to their marginal proba-
bilities, which means they are not influenced by other states in any case.

Figure 5.27: Root node selected

CHAPTER 5. METHOD 61

Figure 5.28: Information tables for a root node

In case of leaf nodes, the appreciated effect is the opposite of the case for
root nodes. A leaf node is considered the last event of the process, which
mean that it doesn’t represent a cause for any other event and, indeed, is not
included in any parent set. For this type of nodes, there’s no possible inference
computation.

Figure 5.29: Leaf node selected

62 CHAPTER 5. METHOD

Figure 5.30: Information tables for a leaf node

Directed relations can also be analysed, providing information about the
parental relation they represent, as well as the most likely outcome of the
relation.

Figure 5.31: Edge selected

Figure 5.32: Edge dependency information

Sometimes, specially when working with large datasets, an small prob-
ability to establish a false dependency is present. Usually, a false relation
introduces a low probability connection in the model, which can create a cy-
cle inside the graph, and it’s easy to interpret and understand as an unrealistic
connection. This can happen in a small number of cases due to the condition
of chronological order of the simulated data.

CHAPTER 5. METHOD 63

In cases where there’s not enough evidence to establish a dependency re-
lation, nodes are represented as isolated events. In this special case, due to the
random success value assigned to the simulated attacks, this can sometimes
happen for the last steps of the process. Either way, this represents a minor
problem which is almost not likely to be present in case of a dataset of real
attacks.

Figure 5.33: Unconnected node

In the case of the example described in section 4.4, the resulting network
represents an easier way to understand the application of this process for a
real scenario, establishing a reference of the accuracy and possibilites of the
algorithm.

Figure 5.34: Processed graphical results for a real case

In this case, the information for every step can also be represented and
analysed, having a reference of the probabilities at every step of the process.

Figure 5.35: Real case - Node selected

64 CHAPTER 5. METHOD

Figure 5.36: Real case - Information tables of a single parent and son node

It can be observed that, following the same assumptions as the first simula-
tion, diagnosis probability results are absolute for nodes with a single parent.

Figure 5.37: Real case - Node with a shared son selected

In the case of Figure 5.37, diagnosis probability computation results are
also different for an event that represents a shared possible previous step for a
single outcome.

CHAPTER 5. METHOD 65

Figure 5.38: Real case - Information tables of a node with a shared son

In the case of events where more than one action represents a possible
previous step, it can be observed that the Conditional Probability table size
increases exponentially.

Figure 5.39: Real case - Node with two parents selected

Figure 5.40: Real case - Information tables of a node with two parents

66 CHAPTER 5. METHOD

In a real cyber attacker action pattern detected inside a cyber range, the
resulting effects can be similar to the ones represented by this simulation. The
actions that represent the initial steps of the process are represented by their
marginal probability. As it can be observed in the simumlation, the opposite
result can be found in the case of the last steps of this process, where the
diagnosis probability can’t be computed. This results can also be analysed in
this case.

Figure 5.41: Real case - Root node selected

Figure 5.42: Real case - Information tables of a root node

Figure 5.43: Real case - Leaf node selected

CHAPTER 5. METHOD 67

Figure 5.44: Real case - Information tables of a leaf node

The final result of this process is the graphical representation of the cy-
ber attacks performed by students in a cyber range. These actions are turned
into discrete variables and represented in a Bayesian network, defining their
properties and their influence with regard to the rest of elements in the proba-
bility space. The represented relations define the behaviour of cyber attackers,
allowing to analyse the possibilities and most likely outcomes at every point.

The resultingmodel, comparedwith the pattern used to simulate the dataset,
proves the reliability of this method under the conditions established for the
analysed case.

Chapter 6

Discussion

The research described in this draft and the whole development and design
process contained in the previous chapters of this document are focused on
answering the main questions stated in section 2. At this point, all the efforts
made and represented in this project have a reliable prediction system for cy-
ber attackers behaviour as a result, which can represent an answer to these
questions.

In this case, the environment for which this method is designed is a cy-
ber range. Learning from the information and being able to understand and
measure how likely is an attacker to perform an action in a certain system can
represent a very useful way to find vulnerabilities and protect it. When there’s
enough information available, a probabilistic graphical model like the one pro-
posed here turns out to be an accurate method to trace and understand the
behaviour of cyber attackers. The fact that Bayesian networks are not a sim-
ple graphical model but a reasoning method, represents a useful property for
probabilistic prediction in this case. This type of probabilistic model, applied
to a situation with special properties like the one described in this project, can
be also applied to different datasets that also contain patterns based on events
ordered in time.

This proposal represents a useful tool for fully controlled environments,
but presents special weaknesses if there’s a lack of information. In case of a
cyber range where a set of cyber attacks can be detected and analysed, this
model is able to perform accurate calculations, but this special situation is not
common, and sometimes not even useful for the goal of a cyber range, which
is meant to be an environment where challenges and problems can be solved
in order to learn and improve.

The good performance of this model depends on a set of detailed infor-

68

CHAPTER 6. DISCUSSION 69

mation about detected events. Cyber attacks detection represents an issue for
which many projects are developed nowadays. Cyber attacks are usually hard
to detect and trace, and this problem becomes exponentially more difficult
when trying to analyse their details. It’s usual that a cyber attacker performs
an action in a system from another compromised host or uses any other tech-
nique to hide the source of the attack, which becomes a problem when trying
to identify the responsible of the action. Other special aspects, like the chal-
lenge of understanding an action when some part of a system is found to be
compromised, or analysing if an attack has been successful, failed or just a
part of a larger process, have an strong presence in real cyber security chal-
lenges. Cyber attackers behaviour is usually very diverse, being sometimes
impossible to classify actions as events, and all these factors make this project
an unuseful method for a real case.

Due to the properties of a probabilistic graphical model like a Bayesian
network, the performance and applicability of this model are higher in the
case of a cyber range, for which it is specifically designed, as explained in
chapter 4. This model represents the actions of cyber attackers as objects that
influence the existence of the others, which provides a deeper understanding of
their behaviour. Depending on the situation, this proposal can represent a very
useful tool to find solutions and make decisions regarding to cyber security
actions when problems are known and can be analysed, but not when the cyber
range requires a deeper learning and there’s not a reliable detection system,
which is a very common case.

Although this model is designed for cyber attackers patterns, the versatility
of Bayesian networks can make it a good solution for different approaches,
representing this a useful proposal for an starting point to improve from.

Chapter 7

Conclusions

Cyber attackers behaviour tracing and prediction represents a problem ofwhich
solutions have an strongly innovative nature. In this case, the main purpose is
associated not only with representation, but also with understanding. Proba-
bilistic models are the base for most of the cyber security predictive methods,
but there’s still a clear lack of knowledge about this field that represents an
obvious need for research.

Probabilistic graphical models can be an efficient tool to represent relations
and properties of some set of elements given a discrete set of information. Ap-
plying probability concepts, specially Bayesian models, it’s possible to accu-
rately calculate and represent the nature of some system from discrete data us-
ing probabilities, like behavioural patterns. In this case, this type of graphical
models are an effective way to trace and predict cyber attackers behaviour, due
to their strong capability to represent causality and influence measures. Inside
this scope, Bayesian networks represent a complex and reliable probabilistic
model. In this case, applying this theory to cyber attackers actions, repre-
senting them as objects, it’s possible to extract detailed and useful knowledge
about them, but this model usually becomes inefficient when it’s not applied
in a correct environment, due to the large amount of information needed to get
reliable results. This makes them become unuseful for a cyber range some-
times, and even more when being applied to a real case. Either way, Bayesian
network theoretical models can have an strong usability for more specific cases
and different approaches associated with cyber security prediction.

Based on basic probability concepts and Bayesian probability theory, a re-
liable model for pattern representation and analysis like the one designed and
proposed here can be an efficient tool for a cyber range environment, to learn,
understand and create knowledge. This contribution also represents a possi-

70

CHAPTER 7. CONCLUSIONS 71

ble research starting point, having the possibility to create a more complete
and efficient model based on this project, or being applied to other projects
associated with a cyber range.

7.1 Future work
AlthoughBayesian networks have an strong capability to represent behavioural
patterns, their application needs a large amount of information and some spe-
cific conditions that make them being discarded when being applied to a real
case. The model proposed here is designed to be built from a dataset of de-
tected attacks, also calculating predictions from them. Many aspects of this
proposal can be improved in order to turn it into a more efficient and reliable
system.

1. This model is designed to be applied for a dataset where the source and
success of the actions can be detected. In order to be applied in a cyber
range, an strong and reliable detection system is needed, for which a
monitoring and filtering structure could be designed.

2. The possibility of using attack identifiers and success information is not
usual for many cyber ranges, and it’s also very far from a real case. De-
signing a learning method with a different structure learning algorithm,
being able to find dependencies with the same reliability, would suppose
a big improvement for this model.

3. The actual graph structure can be improved for a higher visual quality,
representing the presence differences between variables or the strength
of the connections.

4. The versatility of the model, based on a Bayesian network, also intro-
duces the possibility to analyse more detailed and specific aspects of a
cyber range, allowing to add more variables and causality relations that
could help to understand and complete behavioural processes.

Bibliography

[1] Feng Xia et al. “Internet of things”. In: International Journal of Com-
munication Systems 25.9 (2012), p. 1101.

[2] Mohamed Abomhara et al. “Cyber security and the internet of things:
vulnerabilities, threats, intruders and attacks”. In: Journal of Cyber Se-
curity and Mobility 4.1 (2015), pp. 65–88.

[3] Dan Craigen, Nadia Diakun-Thibault, and Randy Purse. “Defining Cy-
bersecurity”. In: Technology Innovation Management Review 4 (Oct.
2014), pp. 13–21. issn: 1927-0321. doi: http://doi.org/10.
22215 / timreview / 835. url: http : / / timreview . ca /
article/835.

[4] R. A. Kemmerer. “Cybersecurity”. In: 25th International Conference
on Software Engineering, 2003. Proceedings.May 2003, pp. 705–715.
doi: 10.1109/ICSE.2003.1201257.

[5] European Union Agency for Cybersecurity. “ENISA Threat Landscape
Report 2017”. In: (2018).

[6] European Union Agency for Cybersecurity. “ENISA Threat Landscape
Report 2018”. In: (2019).

[7] Andreea Bendovschi. “Cyber-attacks–trends, patterns and security coun-
termeasures”. In: Procedia Economics and Finance 28 (2015), pp. 24–
31.

[8] Barbara Kordy et al. “Foundations of Attack–Defense Trees”. In: For-
mal Aspects of Security and Trust. Ed. by Pierpaolo Degano, Sandro
Etalle, and Joshua Guttman. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2011, pp. 80–95. isbn: 978-3-642-19751-2.

72

BIBLIOGRAPHY 73

[9] Arpan Roy, Dong Seong Kim, and Kishor S. Trivedi. “Attack coun-
termeasure trees (ACT): towards unifying the constructs of attack and
defense trees”. In: Security and Communication Networks 5.8 (2012),
pp. 929–943. doi:10.1002/sec.299. eprint:https://onlinelibrary.
wiley.com/doi/pdf/10.1002/sec.299. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/sec.
299.

[10] P. Larrañaga and S. Moral. “Probabilistic graphical models in artificial
intelligence”. In: Applied Soft Computing 11.2 (2011). The Impact of
Soft Computing for the Progress of Artificial Intelligence, pp. 1511–
1528. issn: 1568-4946. doi: https://doi.org/10.1016/j.
asoc.2008.01.003. url: http://www.sciencedirect.
com/science/article/pii/S1568494608000094.

[11] A. G. Eleye-Datubo et al. “Enabling a Powerful Marine and Offshore
Decision-Support Solution Through Bayesian Network Technique”. In:
Risk Analysis 26.3 (2006), pp. 695–721. doi: 10.1111/j.1539-
6924.2006.00775.x. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1111/j.1539- 6924.2006.
00775 . x. url: https : / / onlinelibrary . wiley . com /
doi/abs/10.1111/j.1539-6924.2006.00775.x.

[12] Sarah Dorner, Jie Shi, and David Swayne. “Multi-objective modelling
and decision support using a Bayesian network approximation to a non-
point source pollution model”. In: Environmental Modelling Software
22.2 (2007). Environmental Decision Support Systems, pp. 211–222.
issn: 1364-8152. doi:https://doi.org/10.1016/j.envsoft.
2005.07.020. url: http://www.sciencedirect.com/
science/article/pii/S1364815205001817.

[13] Kristian Kristensen and Ilse A. Rasmussen. “The use of a Bayesian
network in the design of a decision support system for growing malt-
ing barley without use of pesticides”. In: Computers and Electronics in
Agriculture 33.3 (2002), pp. 197–217. issn: 0168-1699. doi: https:
//doi.org/10.1016/S0168- 1699(02)00007- 8. url:
http://www.sciencedirect.com/science/article/
pii/S0168169902000078.

[14] P. Yermalovich andM.Mejri. “Formalization ofAttack Prediction Prob-
lem”. In: 2018 IEEE International Conference "Quality Management,
Transport and Information Security, Information Technologies" (IT QM

74 BIBLIOGRAPHY

IS). Sept. 2018, pp. 280–286. doi: 10 . 1109 / ITMQIS . 2018 .
8525128.

[15] Ekta Gandotra, Divya Bansal, and Sanjeev Sofat. “Computational Tech-
niques for Predicting Cyber Threats”. In: Intelligent Computing, Com-
munication and Devices. Ed. by Lakhmi C. Jain, Srikanta Patnaik, and
Nikhil Ichalkaranje. New Delhi: Springer India, 2015, pp. 247–253.
isbn: 978-81-322-2012-1.

[16] Vaclav Bartos et al. “Network entity characterization and attack pre-
diction”. In: Future Generation Computer Systems 97 (2019), pp. 674–
686. issn: 0167-739X. doi: https://doi.org/10.1016/j.
future.2019.03.016.url:http://www.sciencedirect.
com/science/article/pii/S0167739X18307799.

[17] Iffat A. Gheyas and Ali E. Abdallah. “Detection and prediction of in-
sider threats to cyber security: a systematic literature review and meta-
analysis”. In: Big Data Analytics 1.1 (2016), p. 6. issn: 2058-6345. doi:
10.1186/s41044-016-0006-0. url: https://doi.org/
10.1186/s41044-016-0006-0.

[18] Martin Husak et al. “Survey of Attack Projection, Prediction, and Fore-
casting in Cyber Security”. In: IEEE COMMUNICATIONS SURVEYS
AND TUTORIALS 21.1 (2019), 640–660. issn: 1553-877X. doi: {10.
1109/COMST.2018.2871866}.

[19] Yan Jia et al. “A Practical Approach to Constructing aKnowledgeGraph
for Cybersecurity”. In: Engineering 4.1 (2018). Cybersecurity, pp. 53–
60. issn: 2095-8099. doi: https://doi.org/10.1016/j.
eng.2018.01.004. url: http://www.sciencedirect.
com/science/article/pii/S2095809918301097.

[20] Jinsoo Shin et al. “Development of a cyber security risk model us-
ing Bayesian networks”. In: Reliability Engineering System Safety 134
(2015), pp. 208–217. issn: 0951-8320. doi: https://doi.org/
10 . 1016 / j . ress . 2014 . 10 . 006. url: http : / / www .
sciencedirect.com/science/article/pii/S0951832014002464.

[21] X. Qin andW. Lee. “Attack plan recognition and prediction using causal
networks”. In: 20th Annual Computer Security Applications Confer-
ence. Dec. 2004, pp. 370–379. doi: 10.1109/CSAC.2004.7.

BIBLIOGRAPHY 75

[22] Ahmet Okutan, Shanchieh Jay Yang, and Katie McConky. “Predicting
CyberAttackswith BayesianNetworksUsingUnconventional Signals”.
In: Proceedings of the 12th Annual Conference on Cyber and Infor-
mation Security Research. CISRC ’17. Oak Ridge, Tennessee, USA:
ACM, 2017, 13:1–13:4. isbn: 978-1-4503-4855-3. doi: 10.1145/
3064814.3064823. url: http://doi.acm.org/10.1145/
3064814.3064823.

[23] J. Wu, L. Yin, and Y. Guo. “Cyber Attacks Prediction Model Based on
Bayesian Network”. In: 2012 IEEE 18th International Conference on
Parallel and Distributed Systems. Dec. 2012, pp. 730–731. doi: 10.
1109/ICPADS.2012.117.

[24] H. Holm et al. “P2CySeMoL: Predictive, Probabilistic Cyber Security
Modeling Language”. In: IEEE Transactions on Dependable and Se-
cure Computing 12.6 (Nov. 2015), pp. 626–639. issn: 1545-5971. doi:
10.1109/TDSC.2014.2382574.

[25] O. Christou et al. “Phishing URL detection through top-level domain
analysis: A descriptive approach”. In: cited By 0. 2020, pp. 289–298.
url: https://www.scopus.com/inward/record.uri?
eid=2-s2.0-85083039623&partnerID=40&md5=aea1ca3e05096ffbd2d90fd17beea9d9.

[26] A.O. Almashhadani et al. “MaldomDetector: A system for detecting
algorithmically generated domain names with machine learning”. In:
Computers and Security 93 (2020). cited By 0. doi: 10.1016/j.
cose . 2020 . 101787. url: https : / / www . scopus . com /
inward/record.uri?eid=2-s2.0-85082944913&doi=
10.1016%2fj.cose.2020.101787&partnerID=40&md5=
dfe674adba28b277242cebfec6226c63.

[27] A. Sargolzaei et al. “Detection and Mitigation of False Data Injection
Attacks in Networked Control Systems”. In: IEEE Transactions on In-
dustrial Informatics 16.6 (2020). cited By 0, pp. 4281–4292. doi: 10.
1109/TII.2019.2952067. url: https://www.scopus.
com/inward/record.uri?eid=2-s2.0-85081618470&
doi=10.1109%2fTII.2019.2952067&partnerID=40&
md5=5b7ba2972bdb6852a497a77cb80184b6.

[28] G. De La Torre Parra et al. “Detecting Internet of Things attacks us-
ing distributed deep learning”. In: Journal of Network and Computer
Applications 163 (2020). cited By 0. doi: 10 . 1016 / j . jnca .
2020.102662. url: https://www.scopus.com/inward/

76 BIBLIOGRAPHY

record . uri ? eid = 2 - s2 . 0 - 85083527952 & doi = 10 .
1016 % 2fj . jnca . 2020 . 102662 & partnerID = 40 & md5 =
b9d694b618964960abd59ba93b94d84a.

[29] M. Pawlicki, M. Choraś, and R. Kozik. “Defending network intrusion
detection systems against adversarial evasion attacks”. In: Future Gen-
eration Computer Systems 110 (2020). cited By 0, pp. 148–154. doi:
10.1016/j.future.2020.04.013. url: https://www.
scopus.com/inward/record.uri?eid=2-s2.0-85083297694&
doi=10.1016%2fj.future.2020.04.013&partnerID=
40&md5=982254f131757af19e1ab7dc62a345fc.

[30] V.M. Bier. “Choosing what to protect”. In: Risk Analysis 27.3 (2007).
cited By 65, pp. 607–620. doi: 10.1111/j.1539-6924.2007.
00906.x.url:https://www.scopus.com/inward/record.
uri?eid=2- s2.0- 34447325155&doi=10.1111%2fj.
1539-6924.2007.00906.x&partnerID=40&md5=aa914664fc39500ef684bb4f9b72043c.

[31] R. Fang and X. Li. “A stochastic model of cyber attacks with imper-
fect detection”. In: Communications in Statistics - Theory and Methods
49.9 (2020). cited By 0, pp. 2158–2175. doi: 10.1080/03610926.
2019.1568489. url: https://www.scopus.com/inward/
record . uri ? eid = 2 - s2 . 0 - 85061058048 & doi = 10 .
1080%2f03610926.2019.1568489&partnerID=40&md5=
ebe79f8d5c28e4a8165e2a2c768d8b0d.

[32] K. Hausken and G. Levitin. “Review of systems defense and attack
models”. In: International Journal of Performability Engineering 8.4
(2012). cited By 81, pp. 355–366. url: https://www.scopus.
com/inward/record.uri?eid=2-s2.0-84872381629&
partnerID=40&md5=2398c71b855f5cbf8c86b23169e3ebd9.

[33] M.n. Azaiez. “A Bayesian Model for a game of information in opti-
mal attack/defense strategies”. In: International Series in Operations
Research and Management Science 128 (2009). cited By 6, pp. 99–
123. url: https://www.scopus.com/inward/record.
uri?eid=2- s2.0- 84954501198&partnerID=40&md5=
66c4b3708efd4be508b9d4b054215c50.

[34] Douglas Brent West et al. Introduction to graph theory. Vol. 2. Prentice
hall Upper Saddle River, NJ, 1996.

[35] Béla Bollobás. Modern graph theory. Vol. 184. Springer Science &
Business Media, 2013.

BIBLIOGRAPHY 77

[36] Tyler J. VanderWeele and James M. Robins. “Directed Acyclic Graphs,
Sufficient Causes, and the Properties of Conditioning on a Common Ef-
fect”. In:American Journal of Epidemiology 166.9 (Aug. 2007), pp. 1096–
1104. issn: 0002-9262. doi: 10.1093/aje/kwm179. url: https:
//doi.org/10.1093/aje/kwm179.

[37] Jonathan L Gross and Jay Yellen. Handbook of graph theory. CRC
press, 2004.

[38] H. A. Dawood. “Graph Theory and Cyber Security”. In: 2014 3rd Inter-
national Conference on Advanced Computer Science Applications and
Technologies. Dec. 2014, pp. 90–96. doi: 10.1109/ACSAT.2014.
23.

[39] David B. Stephenson. “An Introduction to Probability Forecasting”.
In: Seasonal Climate: Forecasting and Managing Risk. Ed. by Alberto
Troccoli et al. Dordrecht: Springer Netherlands, 2008, pp. 235–257.
isbn: 978-1-4020-6992-5.

[40] Edwin T Jaynes. Probability theory: The logic of science. Cambridge
university press, 2003.

[41] Robert B Ash. Basic probability theory. Courier Corporation, 2008.

[42] Kai Lai Chung. A course in probability theory. Academic press, 2001.

[43] Jay L Devore. Probability and Statistics for Engineering and the Sci-
ences. Cengage learning, 2011.

[44] PeterWhittle.Probability via expectation. Springer Science&Business
Media, 2012.

[45] José M Bernardo and Adrian FM Smith. Bayesian theory. Vol. 405.
John Wiley & Sons, 2009.

[46] Richard T Cox. “Probability, frequency and reasonable expectation”.
In: American journal of physics 14.1 (1946), pp. 1–13.

[47] Maurice JDupré, Frank J Tipler, et al. “New axioms for rigorous Bayesian
probability”. In: Bayesian Analysis 4.3 (2009), pp. 599–606.

[48] Irving John Good. “A derivation of the probabilistic explication of in-
formation”. In: Journal of the Royal Statistical Society: Series B (Method-
ological) 28.3 (1966), pp. 578–581.

[49] Ali Mohammad-Djafari. “Entropy, information theory, information ge-
ometry and Bayesian inference in data, signal and image processing and
inverse problems”. In: Entropy 17.6 (2015), pp. 3989–4027.

78 BIBLIOGRAPHY

[50] Daphne Koller and Nir Friedman.Probabilistic graphical models: prin-
ciples and techniques. MIT press, 2009.

[51] Todd Andrew Stephenson. “An Introduction to Bayesian Network The-
ory and Usage”. In: (2000). url: http://infoscience.epfl.
ch/record/82584.

[52] Changhe Yuan, Heejin Lim, and Tsai-Ching Lu. “Most relevant expla-
nation in Bayesian networks”. In: Journal of Artificial Intelligence Re-
search 42 (2011), pp. 309–352.

[53] Wim Wiegerinck, Willem Burgers, and Bert Kappen. “Bayesian net-
works, introduction and practical applications”. In: Handbook on Neu-
ral Information Processing. Springer, 2013, pp. 401–431.

[54] Nir Friedman, Iftach Nachman, and Dana Peér. “Learning Bayesian
Network Structure fromMassive Datasets: The Candidate«Algorithm”.
In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial
Intelligence. UAI’99. Stockholm, Sweden: Morgan Kaufmann Publish-
ers Inc., 1999, pp. 206–215. isbn: 1-55860-614-9. url: http://dl.
acm.org/citation.cfm?id=2073796.2073820.

[55] Cassio Polpo de Campos and Qiang Ji. “Properties of Bayesian Dirich-
let scores to learn Bayesian network structures”. In: Twenty-Fourth AAAI
Conference on Artificial Intelligence. 2010.

[56] Sergey Kirshner, Padhraic Smyth, and Andrew W Robertson. “Con-
ditional Chow-Liu tree structures for modeling discrete-valued vector
time series”. In: Proceedings of the 20th conference on Uncertainty in
artificial intelligence. AUAI Press. 2004, pp. 317–324.

[57] Harald Steck. “Constraint-Based Structural Learning in Bayesian Net-
works using Finite Data Sets”. Dissertation. München: Technische Uni-
versität München, 2001.

[58] Changhe Yuan, Brandon Malone, and Xiaojian Wu. “Learning optimal
Bayesian networks using A* search”. In: Twenty-Second International
Joint Conference on Artificial Intelligence. 2011.

[59] Ruoyong Yang and James OBerger. A catalog of noninformative priors.
Institute of Statistics and Decision Sciences, Duke University, 1996.

[60] Harold Jeffreys. The theory of probability. OUP Oxford, 1998.

[61] MITREATTCKMatrix for Enterprises.https://attack.mitre.
org/matrices/enterprise/.

BIBLIOGRAPHY 79

[62] M. Ahmed and A.-S.K. Pathan. “False data injection attack (FDIA): an
overview and newmetrics for fair evaluation of its countermeasure”. In:
Complex Adaptive Systems Modeling 8.1 (2020). cited By 0. doi: 10.
1186/s40294-020-00070-w. url: https://www.scopus.
com/inward/record.uri?eid=2-s2.0-85083860018&
doi=10.1186%2fs40294-020-00070-w&partnerID=40&
md5=471d4d0481024701b3861aca0ec90218.

[63] F. DiMaio, R.Mascherona, and E. Zio. “RiskAnalysis of Cyber-Physical
Systems by GTST-MLD”. In: IEEE Systems Journal 14.1 (2020). cited
By 0, pp. 1333–1340. doi: 10.1109/JSYST.2019.2928046.
url: https://www.scopus.com/inward/record.uri?
eid=2- s2.0- 85081690376&doi=10.1109%2fJSYST.
2019.2928046&partnerID=40&md5=f79552e931e6276f953e21e1ab9f8eb3.

[64] Nicandro Cruz Ramırez. “Building Bayesian networks from data: a con-
straint based approach”. PhD thesis. Citeseer, 2001.

[65] Timo JT Koski and John Noble. “A review of Bayesian networks and
structure learning”. In: Mathematica Applicanda 40.1 (2012).

[66] Harald Steck. “Constraint-Based Structural Learning in Bayesian Net-
works using Finite Data Sets”. Dissertation. München: Technische Uni-
versität München, 2001.

[67] Tom Claassen and Tom Heskes. “A Bayesian approach to constraint
based causal inference”. In: arXiv preprint arXiv:1210.4866 (2012).

[68] DiegoColombo andMarloesHMaathuis. “Order-independent constraint-
based causal structure learning”. In: The Journal of Machine Learning
Research 15.1 (2014), pp. 3741–3782.

[69] Daphne Koller and Nir Friedman.Probabilistic graphical models: prin-
ciples and techniques. MIT press, 2009.

[70] John Adrian Bondy, Uppaluri Siva Ramachandra Murty, et al. Graph
theory with applications. Vol. 290. Macmillan London, 1976.

[71] Richard E Neapolitan et al. Learning bayesian networks. Vol. 38. Pear-
son Prentice Hall Upper Saddle River, NJ, 2004.

[72] David Heckerman, Dan Geiger, and David M. Chickering. “Learning
Bayesian networks: The combination of knowledge and statistical data”.
In:Machine Learning 20.3 (1995), pp. 197–243. issn: 1573-0565. doi:
10.1007/BF00994016. url: https://doi.org/10.1007/
BF00994016.

80 BIBLIOGRAPHY

[73] Gregory F. Cooper and Edward Herskovits. “A Bayesian method for the
induction of probabilistic networks from data”. In: Machine Learning
9.4 (1992), pp. 309–347. issn: 1573-0565. doi:10.1007/BF00994110.
url: https://doi.org/10.1007/BF00994110.

[74] SanjoyDasgupta. “Learning polytrees”. In:Proceedings of the Fifteenth
conference on Uncertainty in artificial intelligence. Morgan Kaufmann
Publishers Inc. 1999, pp. 134–141.

[75] Thomas Dyhre Nielsen and Finn Verner Jensen. Bayesian networks and
decision graphs. Springer Science & Business Media, 2009.

[76] Alexandr A. Borovkov. Probability Theory. Springer, 2019.

[77] Herman Bruyninckx. “Bayesian probability”. In: CiteSeer, não publi-
cado em con (2002), p. 81.

[78] Paul Damien et al. Bayesian theory and applications. OUP Oxford,
2013.

[79] Eugene Charniak. “Bayesian networks without tears.” In: AI magazine
12.4 (1991), pp. 50–50.

[80] Ana M MartıNez-RodrıGuez, Jerrold H May, and Luis G Vargas. “An
optimization-based approach for the design of Bayesian networks”. In:
Mathematical and Computer Modelling 48.7-8 (2008), pp. 1265–1278.

[81] Peter Spirtes and Christopher Meek. “Learning Bayesian networks with
discrete variables from data.” In: KDD. Vol. 1. 1995, pp. 294–299.

Appendix A

Method code

1 # Import modules
2

3 import dash
4 import dash_table
5 import pandas as pd
6 import requests
7 import json
8 import math
9 import collections

10 import operator
11 from AnalysisModules import *
12 from datetime import datetime
13 from datetime import timedelta
14 from datetime import date
15 from random import choice
16 import dash_bootstrap_components as dbc
17 import dash_table_experiments as dte
18 import dash_core_components as dcc
19 import dash_html_components as html
20 import plotly . plotly as py
21 import plotly . graph_objs as go
22 import networkx as nx
23 import dash_cytoscape as cyto
24 from dash . dependencies import Input , Output , State
25 from flask import request
26

27 ### Bayesian network construction
28

29 # Load extra layouts
30 cyto . load_extra_layouts ()
31

81

82 APPENDIX A. METHOD CODE

32 # Creation of the classes and the principal list of
moves

33 class attack :
34 attacker = None # Identifier of the attacker
35 name = None # Name of the action
36 host = None # Attacked host
37 datetime = None # Date and time when the action

was performed
38 success = None # Success of the attack
39

40 class state :
41 name = None # Name of the node
42 p_succ = None # Marginal probability of success
43 p_fail = None # Marginal probability of failure
44 parents = None # Parents of the node
45 cpt = None # Conditional Probability Table
46 pred = None # Table of calculated inferences
47

48 print (" Moves list created ")
49 # moves . sort (key = lambda x: x. datetime)
50 # First of all , the nodes list must be created
51 states = []
52 aux2 = []
53

54 # Every attack made to every host is a discrete
distribution with two possible outcomes , success

or failure
55 # These discrete distributions are treaten like an

state , and every state has its own distribution
and name

56 for x in moves :
57 aux1 = []
58 if not states :
59 for y in moves :
60 if y. name == x. name and y. host == x. host :
61 aux1 . append (y. success)
62 new_state = state ()
63 new_state . p_succ = prob_success (aux1)
64 new_state . p_fail = prob_fail (aux1)
65 new_state . name = x. name + ’ - ’ + x. host
66 aux2 . append (new_state . name)
67 states . append (new_state)
68 name = x. name + ’ - ’ + x. host
69 if name not in aux2 :
70 for y in moves :
71 if y. name == x. name and y. host == x. host :
72 aux1 . append (y. success)

APPENDIX A. METHOD CODE 83

73 new_state = state ()
74 new_state . p_succ = prob_success (aux1)
75 new_state . p_fail = prob_fail (aux1)
76 new_state . name = x. name + ’ - ’ + x. host
77 aux2 . append (new_state . name)
78 states . append (new_state)
79

80 # Once the list of states is created , it ’s
necessary to create a model of the network

81 print (" States list created ")
82

83 # It is necessary to set the dependencies between
the nodes

84 # This is made comparing the typical behaviour of
the attackers in order to find patterns

85 # Every pattern that is found is represented with
an edge between parents and sons

86

87 attackers = []
88

89 # List of attackers ids
90 for move in moves :
91 if not attackers :
92 attackers . append (move . attacker)
93 else :
94 if move . attacker not in attackers :
95 attackers . append (move . attacker)
96

97 # Separate performed attacks by attacker id
98

99 samples = dict ()
100

101 if len (attackers) >0:
102 for attacker in attackers :
103 samples [attacker] = []
104 for move in moves :
105 if move . attacker == attacker :
106 samples [attacker]. append (move)
107 samples [attacker]. sort (key = lambda x: x. datetime

)
108

109 # Due to the success constraint (The next step can ’
t be reached after an unsuccessful attack),
dependencies are calculated using successful
attacks

110

111 samples_s = dict ()

84 APPENDIX A. METHOD CODE

112

113 if len (attackers) >0:
114 for attacker in attackers :
115 samples_s [attacker] = []
116 for move in moves :
117 if move . attacker == attacker :
118 if move . success == 1:
119 samples_s [attacker]. append (move)
120 samples_s [attacker]. sort (key = lambda x: x.

datetime)
121

122 # Make parent list for every state
123 for x in states :
124 x. parents = []
125 x. parents = findparents (x, samples_s , attackers)
126

127 filterroots (states , samples , attackers)
128 removecycles (states)
129

130 # Calculate Conditional Probability Tables for
every state

131

132 for state in states :
133 if len (state . parents) >0:
134 state . cpt = cond_prob_table (state .name , state .

parents , samples , attackers)
135 else :
136 state . cpt = dict ()
137 state . cpt [state . name +’^’]= state . p_fail
138 state . cpt [state . name]= state . p_succ
139

140 # Apply Bayes theorem and create inference values
for diagnosis tables

141

142 for state in states :
143 state . pred = BT_diagnosis (state , states)
144

145 # The states must be configured as nodes and added
to the network

146

147 app = dash . Dash (__name__ , static_folder =’C :\\ Users
\\ pabca \\ OneDrive \\ Documentos \\ Trabajo \\ KTH \\
Tesis \\ App \\ assets ’)

148

149 app . config [’ suppress_callback_exceptions ’]= True
150

151 nodes = []

APPENDIX A. METHOD CODE 85

152 for state in states :
153 node = {’data ’: {’id ’: state .name ,’name ’: state .

name }}
154 nodes . append (node)
155

156 # Create edges between parents and sons
157 edges = []
158

159 for x in states :
160 if len (x. parents) >= 1:
161 for y in x. parents :
162 edge = {’data ’: {’ source ’: y, ’ target ’: str (x

. name),’label ’: ’Node ’+y+’ to ’+ str (x. name)}}
163 edges . append (edge)
164

165 elements = nodes + edges
166

167 # Define roots of the graph
168

169 roots = None
170

171 for x in states :
172 if not x. parents :
173 if roots == None :
174 roots = ’#’+x. name
175 else :
176 roots += ’ ,#’+x. name
177

178 # Define style of the graph
179

180 default_stylesheet = [
181 {
182 " selector ": ’node ’,
183 ’style ’: {
184 " opacity ": 1,
185 ’z- index ’: 9999 ,
186 ’font - family ’: ’ helvetica ’,
187 ’font - size ’: 14 ,
188 " content ": " data (name)",
189 "text - valign ": " top ",
190 "text - halign ": " center ",
191 " background - color ": " #555 ",
192 "text - outline - color ": " #555 ",
193 "text - outline - width ": 2,
194 " color ": "# fff ",
195 " widht ": 100 ,
196 " overlay - padding ": 6

86 APPENDIX A. METHOD CODE

197 }
198 },
199 {
200 " selector ": ’edge ’,
201 ’style ’: {
202 " curve - style ": " bezier ",
203 " opacity ": 0.45 ,
204 ’target - arrow - shape ’: ’ triangle ’,
205 ’z- index ’: 5000
206 }
207 },
208 {
209 ’ selector ’: ’node : selected ’,
210 " style ": {
211 " border - width ": 10 ,
212 " border - color ": " crimson ",
213 " border - opacity ": 0.3 ,
214 " background - color ": "#8 A8A8A ",
215 "text - outline - color ": " #464545 "
216 }
217 },
218 {
219 " selector ": ’node : hover ’,
220 ’style ’: {
221 " background - color ": "#8 A8A8A "
222 }
223 },
224 {
225 " selector ": " node . unhighlighted ",
226 " style ": {
227 " opacity ": 0.2
228 }
229 },
230 {
231 " selector ": " edge . unhighlighted ",
232 " style ": {
233 " opacity ": 0.05
234 }
235 },
236 {
237 " selector ": ". highlighted ",
238 " style ": {
239 "z- index ": 999999
240 }
241 },
242 {
243 " selector ": " node . highlighted ",

APPENDIX A. METHOD CODE 87

244 " style ": {
245 " border - width ": 6,
246 " border - color ": "# AAD8FF ",
247 " border - opacity ": 0.5 ,
248 " background - color ": " #394855 ",
249 "text - outline - color ": " #394855 "
250 }
251 }
252]
253

254 # Create graph layout
255 app . layout = html . Div ([
256 cyto . Cytoscape (
257 id=’ cytoscape ’,
258 elements = elements ,
259 style ={ ’width ’: ’100% ’, ’ height ’: ’350 px ’},
260 stylesheet = default_stylesheet ,
261 layout ={ ’name ’: ’klay ’, ’roots ’: roots }
262),
263 html .H4(id=’cytoscape - tapNodeData - output_1 ’),
264 html . Table (id=’cytoscape - tapNodeData - output_2 ’)

,
265 html .H4(id=’cytoscape - tapNodeData - output_3 ’),
266 html . Table (id=’cytoscape - tapNodeData - output_4 ’)

,
267 html .H4(id=’cytoscape - tapEdgeData - output_1 ’),
268 html . Table (id=’cytoscape - tapEdgeData - output_2 ’)
269])
270

271 @app . callback (Output (’cytoscape - tapNodeData -
output_1 ’,’ children ’),

272 [Input (’ cytoscape ’,’ tapNodeData ’)])
273 def displayTapNodeData_header_diagnosis (data):
274 return ’ Diagnosis table for "’+ data [’id ’]+ ’"’
275

276 @app . callback (Output (’cytoscape - tapNodeData -
output_2 ’,’ children ’),

277 [Input (’ cytoscape ’,’ tapNodeData ’)])
278 def displayTapNodeData_diagnosis (data):
279 for state in states :
280 if state . name == data [’name ’]:
281 if state . pred == None :
282 return ’No information available .’
283 else :
284 return html . Table ([html .Tr ([html .Th(’- P(’+

key +’):’)]+[html .Td(round (state . pred [key] ,3))])
for key in state . pred])

88 APPENDIX A. METHOD CODE

285

286 @app . callback (Output (’cytoscape - tapNodeData -
output_3 ’,’ children ’),

287 [Input (’ cytoscape ’,’ tapNodeData ’)])
288 def displayTapNodeData_header_cpt (data):
289 return ’ Conditional probability table for "’+

data [’id ’]+ ’"’
290

291 @app . callback (Output (’cytoscape - tapNodeData -
output_4 ’,’ children ’),

292 [Input (’ cytoscape ’,’ tapNodeData ’)])
293 def displayTapNodeData_cpt (data):
294 for state in states :
295 if state . name == data [’name ’]:
296 if state . cpt == None :
297 return ’No information available .’
298 else :
299 return html . Table ([html .Tr ([html .Th(’- P(’+

key +’):’)]+[html .Td(round (state . cpt [key] ,3))])
for key in state . cpt])

300

301 @app . callback (Output (’cytoscape - tapEdgeData -
output_1 ’,’ children ’),

302 [Input (’ cytoscape ’,’ tapEdgeData ’)])
303 def displayTapEdgeData_header (data):
304 return ’Found dependency between "’+ data [’ source

’]+ ’" and "’+ data [’ target ’]+ ’"’
305

306 @app . callback (Output (’cytoscape - tapEdgeData -
output_2 ’,’ children ’),

307 [Input (’ cytoscape ’,’ tapEdgeData ’)])
308 def displayTapEdgeData_prob (data):
309 for state in states :
310 if state . name == data [’ target ’]:
311 array = state . cpt
312 key = max (array , key = lambda x: array . get (x))
313 return html . Table ([html .Tr ([html .Th(’- P(’+

key +’):’)]+[html .Td(str (round (array [key] ,3)))])
])

314

315 if __name__ == ’ __main__ ’:
316 app . run_server (debug = False)

Appendix B

Functions and mathematical op-
erations code

1 # AnalysisModules .py
2 # The processes applied to detect attacks and

relevant actions from attackers are defined in
this script

3

4 # Import modules
5 import math
6 import random
7 import itertools
8 from datetime import datetime
9 from datetime import timedelta

10 from datetime import date
11

12 # Given a list of results , calculates the marginal
probability of success

13 def prob_success (samplelist):
14 success = 0
15 for x in samplelist :
16 if x == 1:
17 success += 1
18 prob = success / len (samplelist)
19 return prob
20

21 # Given a list of results , calculates the marginal
probability of failure

22 def prob_fail (samplelist):
23 fail = 0
24 for x in samplelist :
25 if x == 0:

89

90 APPENDIX B. FUNCTIONS AND MATHEMATICAL OPERATIONS
CODE

26 fail += 1
27 prob = fail / len (samplelist)
28 return prob
29

30 # Given an state , a list of samples and a list of
attackers IDs , find dependencies by comparing
patterns

31 def findparents (state , sampleslist , attackerslist):
32 class pos :
33 name = None
34 presence = 0
35 possibilities = []
36 parents = []
37 possibilities_n = []
38 max_p = 0
39 for attacker in attackerslist :
40 if len (sampleslist [attacker]) >0:
41 for x in range (len (sampleslist [attacker])):
42 name = sampleslist [attacker][x]. name +’ - ’+

sampleslist [attacker][x]. host
43 if name == state . name :
44 if x >0:
45 if not possibilities_n :
46 new_pos = pos ()
47 new_pos . name = sampleslist [attacker][

x -1]. name +’ - ’+ sampleslist [attacker][x -1]. host
48 new_pos . presence = 1
49 max_p = 1
50 possibilities . append (new_pos)
51 possibilities_n . append (new_pos . name)
52 if sampleslist [attacker][x -1]. name +’ -

’+ sampleslist [attacker][x -1]. host not in
possibilities_n :

53 new_pos = pos ()
54 new_pos . name = sampleslist [attacker][

x -1]. name +’ - ’+ sampleslist [attacker][x -1]. host
55 new_pos . presence = 1
56 max_p += 1
57 possibilities . append (new_pos)
58 possibilities_n . append (new_pos . name)
59 if sampleslist [attacker][x -1]. name +’ -

’+ sampleslist [attacker][x -1]. host in
possibilities_n :

60 for possibility in possibilities :
61 if possibility . name == sampleslist [

attacker][x -1]. name +’ - ’+ sampleslist [attacker][
x -1]. host :

APPENDIX B. FUNCTIONS AND MATHEMATICAL OPERATIONS CODE
91

62 possibility . presence += 1
63 max_p += 1
64 if len (possibilities) >0:
65 for possibility in possibilities :
66 if possibility . presence < 3:
67 possibilities . remove (possibility)
68 for possibility in possibilities :
69 parents . append (possibility . name)
70

71 return parents
72

73 # Filter the possible root nodes of the graph
74 # Checks the first attack made by every attacker
75 def filterroots (stateslist , sampleslist ,

attackerslist):
76 for state in stateslist :
77 for attacker in attackerslist :
78 if len (sampleslist [attacker]) >0:
79 if state . name == sampleslist [attacker][0].

name +’ - ’+ sampleslist [attacker][0]. host :
80 state . parents = []
81

82 # Removes cycles and redundant dependencies (
Dependencies can only have one direction)

83 def removecycles (stateslist):
84 for state in stateslist :
85 if state . name in state . parents :
86 state . parents . remove (state . name)
87 if len (state . parents) >0:
88 for parent in state . parents :
89 for s in stateslist :
90 if s. name == parent :
91 if state . name in s. parents :
92 s. parents . remove (state . name)
93

94 # Creates the conditional probability table of a
node given its parents , a list of samples and a
list with attackers IDs

95 def cond_prob_table (son , parents , sampleslist ,
attackers):

96 cpt_s = dict ()
97 comb = list (itertools . product ([0 , 1] , repeat = len (

parents)))
98

99 for combination in comb :
100 aux = []
101 parents_s = None

92 APPENDIX B. FUNCTIONS AND MATHEMATICAL OPERATIONS
CODE

102 for attacker in attackers :
103 if len (sampleslist [attacker]) >0:
104 for x in range (len (sampleslist [attacker])):
105 if sampleslist [attacker][x]. name +’ - ’+

sampleslist [attacker][x]. host == son :
106 if x >0:
107 if sampleslist [attacker][x -1]. name +’

- ’+ sampleslist [attacker][x -1]. host in parents :
108 if sampleslist [attacker][x -1].

success == combination [parents . index (sampleslist
[attacker][x -1]. name +’ - ’+ sampleslist [attacker
][x -1]. host)]:

109 aux . append (sampleslist [attacker][
x]. success)

110 for x in range (len (parents)):
111 if parents_s == None :
112 if combination [x] == 0:
113 parents_s = parents [x]+ ’^’
114 elif combination [x] == 1:
115 parents_s = parents [x]
116 else :
117 if combination [x] == 0:
118 parents_s += ’,’+ parents [x]+ ’^’
119 elif combination [x] == 1:
120 parents_s += ’,’+ parents [x]
121 if len (aux) >0:
122 for x in range (2) :
123 if x == 0:
124 cpt_s [son +’^| ’+ parents_s] = aux . count (x)/

len (aux)
125 if x == 1:
126 cpt_s [son +’|’+ parents_s] = aux . count (x)/

len (aux)
127 else :
128 for x in range (2) :
129 if x == 0:
130 cpt_s [son +’^| ’+ parents_s] = 0
131 if x == 1:
132 cpt_s [son +’|’+ parents_s] = 0
133 return cpt_s
134

135 # Computes the normalization constant of an state
136 # The normalization constant of an state is the

probability of that state to be TRUE or FALSE (
Depending on the situation) in all cases

137 def norm_cons (name , stateslist):
138 cons = 0

APPENDIX B. FUNCTIONS AND MATHEMATICAL OPERATIONS CODE
93

139

140 for state in stateslist :
141 if state . name in name :
142 if len (state . parents) == 1:
143 for parent in state . parents :
144 for state_s in stateslist :
145 if state_s . name == parent :
146 cons += state . cpt [name +’|’+ parent]*

state_s . p_succ
147 cons += state . cpt [name +’|’+ parent +’^’

]* state_s . p_fail
148 if len (state . parents) > 1:
149 comb = list (itertools . product ([0 , 1] ,

repeat = len (state . parents)))
150 for combination in comb :
151 s_names = []
152 for parent in state . parents :
153 if combination [state . parents . index (

parent)] == 0:
154 s_names . append (parent +’^’)
155 if combination [state . parents . index (

parent)] == 1:
156 s_names . append (parent)
157 for key in state . cpt :
158 aux = True
159 eq = 1
160 if name in key :
161 if ’^’ not in name :
162 if (name +’^’) not in key :
163 for s_name in s_names :
164 if s_name not in key :
165 aux = False
166 if ’^’ not in s_name :
167 if (s_name +’^’) in key :
168 aux = False
169 if aux == True :
170 eq *= state . cpt [key]
171 print (key)
172 for s_name in s_names :
173 for state_s in stateslist :
174 if state_s . name in s_name :
175 if ’^’ in s_name :
176 eq *= state_s . p_fail
177 print (state_s . name +’^’)
178 else :
179 eq *= state_s . p_succ
180 print (state_s . name)

94 APPENDIX B. FUNCTIONS AND MATHEMATICAL OPERATIONS
CODE

181 else :
182 eq = 0
183 cons += eq
184 else :
185 for s_name in s_names :
186 if s_name not in key :
187 aux = False
188 if ’^’ not in s_name :
189 if (s_name +’^’) in key :
190 aux = False
191 if aux == True :
192 eq *= state . cpt [key]
193 print (key)
194 for s_name in s_names :
195 for state_s in stateslist :
196 if state_s . name in s_name :
197 if ’^’ in s_name :
198 eq *= state_s . p_fail
199 print (state_s . name +’^’)
200 else :
201 eq *= state_s . p_succ
202 print (state_s . name)
203 else :
204 eq = 0
205 cons += eq
206 if cons > 1:
207 cons = 1
208 if cons < 0:
209 cons = 0
210 return cons
211

212 # Computes the inference and find predictive
dependencies of the steps given the observed
events

213 # The treated events are conditionally independent
214 # When there ’s more than one son , the joint

conditional probability is a multiplications of
the conditional probabilities of every son

215 def BT_diagnosis (node , stateslist):
216 pred_s = dict ()
217 sons = []
218

219 for state in stateslist :
220 if node . name in state . parents :
221 sons . append (state . name)
222 if not sons :
223 pred_s = None

APPENDIX B. FUNCTIONS AND MATHEMATICAL OPERATIONS CODE
95

224 else :
225 comb = list (itertools . product ([0 , 1] , repeat =

len (sons)))
226 for x in range (2) :
227 if x == 0:
228 n_name = node . name +’^’
229 for combination in comb :
230 joint_p = 1
231 constant = 1
232 s_names = []
233 p_name = n_name +’|’
234 for y in range (len (combination)):
235 if combination [y] == 0:
236 s_names . append (sons [y]+ ’^’)
237 if combination [y] == 1:
238 s_names . append (sons [y])
239 for son in sons :
240 for state in stateslist :
241 if state . name == son :
242 if len (state . parents) ==1:
243 print (" Joint probability of "+

s_names [sons . index (son)]+ ’|’+ n_name)
244 joint_p = state . cpt [s_names [sons .

index (son)]+ ’|’+ n_name]
245 print (joint_p)
246 else :
247 print (’Joint probability of ’+

n_name +’ and ’+ s_names [sons . index (son)])
248 for key in state . cpt :
249 if n_name in key :
250 if s_names [sons . index (son)]

== son :
251 if s_names [sons . index (son)]

in key and s_names [sons . index (son)]+ ’^’ not in
key :

252 aux = s_names [sons . index (
son)]+ n_name

253 counter = aux . count (’^’)
254 if key . count (’^’) ==

counter +(len (state . parents) -1):
255 print (key)
256 print (state . cpt [key])
257 joint_p *= state . cpt [

key]
258 print (joint_p)
259 for parent in state .

parents :

96 APPENDIX B. FUNCTIONS AND MATHEMATICAL OPERATIONS
CODE

260 if parent not in
n_name :

261 for state_s in
stateslist :

262 if state_s . name
== parent :

263 joint_p *=
state_s . p_fail

264 else :
265 if s_names [sons . index (son)]

in key :
266 aux = s_names [sons . index (

son)]+ n_name
267 counter = aux . count (’^’)
268 if key . count (’^’) ==

counter +(len (state . parents) -1):
269 print (key)
270 print (state . cpt [key])
271 joint_p *= state . cpt [

key]
272 print (joint_p)
273 for parent in state .

parents :
274 if parent not in

n_name :
275 for state_s in

stateslist :
276 if state_s . name

== parent :
277 joint_p *=

state_s . p_fail
278 for s in s_names :
279 if s_names . index (s) == 0:
280 p_name += s
281 if s_names . index (s) > 0:
282 p_name += ’,’
283 p_name += s
284 for s in s_names :
285 print (’ Normalization constant of ’+s)
286 constant *= norm_cons (s, stateslist)
287 print (’ Normalization constant of ’+s+’

is ’+ str (constant))
288 for state in stateslist :
289 if node . name in state . name :
290 prior = state . p_fail
291 print (’The prior value is ’+ str (prior))
292 if constant == 0:

APPENDIX B. FUNCTIONS AND MATHEMATICAL OPERATIONS CODE
97

293 if joint_p == 0:
294 pred_s [p_name] = 0
295 else :
296 pred_s [p_name] = 1
297 else :
298 pred_s [p_name] = (joint_p * prior)/

constant
299 print (’Value of ’+ p_name +’is ’+ str (pred_s

[p_name]))
300 if pred_s [p_name] > 1:
301 pred_s [p_name] = 1
302 if pred_s [p_name] < 0:
303 pred_s [p_name] = 0
304 if x == 1:
305 n_name = node . name
306 for combination in comb :
307 joint_p = 1
308 constant = 1
309 s_names = []
310 p_name = n_name +’|’
311 for y in range (len (combination)):
312 if combination [y] == 0:
313 s_names . append (sons [y]+ ’^’)
314 if combination [y] == 1:
315 s_names . append (sons [y])
316 for son in sons :
317 for state in stateslist :
318 if son == state . name :
319 if len (state . parents) ==1:
320 print (" Joint probability of "+

s_names [sons . index (son)]+ ’|’+ n_name)
321 joint_p *= state . cpt [s_names [sons

. index (son)]+ ’|’+ n_name]
322 print (joint_p)
323 else :
324 print (’Joint probability of ’+

n_name +’ and ’+ s_names [sons . index (son)])
325 for key in state . cpt :
326 if n_name in key and n_name +’^’

not in key :
327 if s_names [sons . index (son)]

== son :
328 if s_names [sons . index (son)]

in key and s_names [sons . index (son)]+ ’^’ not in
key :

329 aux = s_names [sons . index (
son)]+ n_name

98 APPENDIX B. FUNCTIONS AND MATHEMATICAL OPERATIONS
CODE

330 counter = aux . count (’^’)
331 if key . count (’^’) ==

counter +(len (state . parents) -1):
332 print (key)
333 print (state . cpt [key])
334 joint_p *= state . cpt [

key]
335 print (joint_p)
336 for parent in state .

parents :
337 if parent not in

n_name :
338 for state_s in

stateslist :
339 if state_s . name

== parent :
340 joint_p *=

state_s . p_fail
341 else :
342 if s_names [sons . index (son)]

in key :
343 aux = s_names [sons . index (

son)]+ n_name
344 counter = aux . count (’^’)
345 if key . count (’^’) ==

counter +(len (state . parents) -1):
346 print (key)
347 print (state . cpt [key])
348 joint_p *= state . cpt [

key]
349 print (joint_p)
350 for parent in state .

parents :
351 if parent not in

n_name :
352 for state_s in

stateslist :
353 if state_s . name

== parent :
354 joint_p *=

state_s . p_fail
355 if s_names . index (s) == 0:
356 p_name += s
357 if s_names . index (s) > 0:
358 p_name += ’,’
359 p_name += s
360 for s in s_names :

APPENDIX B. FUNCTIONS AND MATHEMATICAL OPERATIONS CODE
99

361 constant *= norm_cons (s, stateslist)
362 print (’ Normalization constant of ’+s+’

is ’+ str (constant))
363 for state in stateslist :
364 if node . name in state . name :
365 prior = state . p_succ
366 print (’The prior value is ’+ str (prior))
367 if constant == 0:
368 if joint_p == 0:
369 pred_s [p_name] = 0
370 else :
371 pred_s [p_name] = 1
372 else :
373 pred_s [p_name] = (joint_p * prior)/

constant
374 print (’Value of ’+ p_name +’is ’+ str (pred_s

[p_name]))
375 if pred_s [p_name] > 1:
376 pred_s [p_name] = 1
377 if pred_s [p_name] < 0:
378 pred_s [p_name] = 0
379 return pred_s

Appendix C

Styles

1 @import url (https :// fonts . googleapis . com / css ? family
= Lato :100 ,300 ,400| Playfair + Display :400 ,700 ,400
italic | Libre + Baskerville :400 ,700 ,400 italic | Muli
:300 ,400| Open + Sans :400 ,300 ,700| Oswald :400 ,700|
Raleway :400 ,100 ,300 ,700| Montserrat :400 ,700|
Merriweather :400 ,300 ,300 italic ,400 italic ,700|
Bree + Serif | Vollkorn :400 italic ,400 ,700| Abril +
Fatface | Cardo :400 ,400 italic);

2

3 h4 {
4 font - family : ’Lato ’;
5 font - size : 1.5 rem ;
6 font - weight : 900;
7 text - align : center ;
8 text - shadow : 1px 1px #808080;
9 color : #000;
10 }
11

12 h5 {
13 font - family : ’Lato ’;
14 font - size : 0.75 rem ;
15 font - weight : 900;
16 text - align : center ;
17 }
18

19 p {
20 font - family : ’Lato ’;
21 font - size : 0.75 rem ;
22 text - align : center ;
23 }
24

100

APPENDIX C. STYLES 101

25 table {
26 margin - left : auto ;
27 margin - right : auto ;
28 border - collapse : collapse ;
29 }
30

31 td {
32 border - bottom : 0.5 px solid black ;
33 font - family : ’Lato ’;
34 text - align : center ;
35 padding : 10 px
36 }
37

38 th {
39 border - bottom : 2px solid black ;
40 border - right : 2px solid black ;
41 font - family : ’Lato ’;
42 font - weight : bold ;
43 text - align : left ;
44 padding : 5px
45 }

www.kth.se

