Document downloaded from:

http://hdl.handle.net/10251/181294
This paper must be cited as:

Marti-Campoy, A.; Rodriguez-Ballester, F. (2019). Combining watchdog processor with
instruction cache locking for a fault-tolerant, predictable architecture applied to fixed-priority,
preemptive, multitasking real-time systems. IEEE. 259-265.
https://doi.org/10.1109/ETFA.2019.8869168

The final publication is available at

https://doi.org/10.1109/ETFA.2019.8869168

Copyright |EgE

Additional Information

Combining watchdog processor with instruction
cache locking for a fault-tolerant, predictable
architecture applied to fixed-priority, preemptive,
multitasking real-time systems.

Antonio Marti-Campoy, Francisco Rodriguez-Ballester
Institute of Information and Communication Technologies (ITACA)
Universitat Politecnica de Valéncia
Valencia, Spain
amarti @disca.upv.es, prodrig@disca.upv.es

Abstract—Control flow monitoring using a watchdog processor
is a well-known technique to increase the dependability of a
microprocessor system. Most approaches embed reference signa-
tures for the watchdog processor into the processor instruction
stream. These signatures contain the information required to
detect control flow errors during program execution by the
main processor. This paper proposes an architecture that offers
both fault-tolerance and dynamic cache locking combined. This
combination is achieved taking advantage of the fact that
watchdog processor signatures are inserted along the program
code. Then cache locking information is incorporated into these
signatures. And also the required circuitry to inform the cache
controller whether to lock or not the instructions fetched by the
main processor is added into the watchdog processor. With this
approach both fault-tolerant and real-time features are supported
by the same hardware, therefore saving room on the silicon
die or FPGA size. Results from experiments show that in most
cases this approach reaches the same performance than previous,
hardware-costly proposals.

Index Terms—TFault-Tolerant Systems; Real-Time Systems;
Watchdog Processor; Cache Locking; Multitasking; Embedded
Systems.

I. INTRODUCTION

A fault-tolerant system may be implemented using well-
known techniques: replication, redundancy, or diversity. Each
technique presents different degrees of reliability and re-
sponses in front of a failure, but all the three uses replication
of hardware elements as a way to achieve fault-tolerance.

A watchdog processor [8], [5] is an alternative mechanism
for error detection in order to add fault-tolerance to a system
using less hardware than replication, redundancy, or diversity.

Instead of replicating the whole processor of a system, a
watchdog processor is a relatively small coprocessor added
to the system with the purpose of monitoring the activity of
the main processor and detect deviations from the expected
execution flow. This watchdog processor can detect control
flow errors, errors in which the main processor deviates from
the expected execution flow.

The information used by the watchdog processor to deter-
mine what is the correct, expected execution flow of the main

processor is introduced into the system through the use of
signatures or specialized instructions. In the most common
case the signatures are fetched by the main processor and
interpreted as no-operation instructions (NOP); other proposals
[5] allow signatures to be interspersed with the instructions of
the main processor but to remain unseen (neither fetched nor
executed) by the main processor.

In the finest-grained control architectures a signature is
inserted per basic block of instructions. A basic block is a
sequence of instructions with only one possible execution
flow that contains, at most, one branch instruction. In this
context a generic branch instruction is any instruction that
can break the sequential flow of execution: procedure call or
return, conditional branch, or unconditional jump. A branch-
in instruction is an instruction used as the destination of a
generic branch instruction.

If the program instructions are divided into generic branch
instructions, branch-in instructions, and blocks of branch-
free instructions (with neither generic branches nor branch-
in instructions), a basic block can be formally defined as a
sequence of branch-free instructions started by the preceding
branch-in (if any) and ended by the following generic branch
instruction (if any). A basic block may not be started by
a branch-in instruction if it follows a conditional branch
instruction; a basic block may not be ended by a generic
branch instruction if a branch-in is encountered (that starts
a new basic block).

Cache memories are an important advance in computer
architecture, improving system performance. The dynamic and
adaptive behaviour of a cache memory reduces the average
access time to main memory, but presents a non deterministic
fetching time [6]. This lack of determinism is a serious threat
in real-time systems, where execution and response time of
tasks must be known or at least bounded. The use of cache
memories poses two problems. The first one is to estimate
the worst case execution time (WCET) of a task taking into
account the intra-task or intrinsic interference, that is, the
misses produced because the tasks remove from cache their

own instructions [20]. The second one is to estimate the worst
case response time (WCRT) taking into account the inter-task
or extrinsic interference in preemptive, multitasking systems,
where the preempting task removes from cache instructions
belonging to the preempted task [7] [19]. This way, when the
preempted task resumes execution, a burst of cache misses can
happen that has not been accounted in the task’s WCET.

Cache locking is a well-known technique to gain pre-
dictability when estimating the response time of a task when
the architecture of the system includes a cache memory. By
predictability we mean the ability to obtain a bounded, safe,
accurate, and feasible estimation of the WCET of a task and
the WCRT for multitasking systems. This way, it is possible
to carry out an schedulability analysis in order to check if all
tasks will meet their deadlines.

Regarding the use of cache locking there are static and
dynamic techniques and also full or partial techniques.

When static cache locking is used, the cache contents
are loaded and locked during the system start-up and cache
contents remain unchanged during system execution. The
maximum number of main memory blocks that can be selected
is equal to the size of the cache in terms of cache lines. The
main goal of this technique is to get full predictability [9] [16].

In dynamic cache locking, cache contents may change
during system execution. During system design, the memory
blocks to be loaded and locked in cache are selected, but
this number can be larger than the size of the cache. During
system run, cache contents may be updated with a subset of
the selected blocks. This cache update can be at inter-task
level [9] [2] or at intra-task level [15]. In dynamic cache
locking an improvement in performance is pursued although
the predictability is reduced and then safe upper bounds of
execution and response times can not be as accurate as in
static cache locking, although performance is still improved.
Also, schedulability analysis becomes more complex.

In both static and dynamic cache locking, the whole cache
can be locked; this is known as full cache locking. Or only
some part of the cache is locked (partial locking). Full cache
locking provides a large degree of predictability. On the other
hand, partial cache locking may allow the existence in the
system of non-critical tasks running at full speed by using
part of the cache with no restriction. In [11] is presented
a comprehensive and accurate review of the use of cache
locking.

One of the challenges of cache locking techniques is to
design the hardware to support it. Following section discuss
this issue and states our proposal. Next sections describe how
to implement cache locking with the help of the watchdog
processor, and how to select cache contents. The paper finishes
with some experimental results and conclusions.

II. RATIONALE

The use of cache locking requires to select the memory
blocks that will be loaded and locked in cache memory. Once
the memory blocks have been selected, they have to be loaded
in cache and then locked. Depending on the technique of cache

locking employed, there are several proposals to carry out the
load and lock operations that may rely on software or hardware
solutions.

In software-based works cache locking is implemented
using the available processor instructions to load and lock
main memory blocks. In [9] the load and lock instructions are
executed by the system scheduler when a task switch happens,
allowing inter-task replacements but not intra-task. In [15]
[12] [1] the instructions to lock/unlock the cache are spread
across the code, locating them just when they are needed. This
allows to improve performance thanks to a fine-grain control
of cache contents, and also allowing intra-task replacements.
However, this method presents two disadvantages. First, the
number of instructions added can be significant, so memory
requirements may increase and the overload to execute them
may degrade performance. Second, the instructions to control
the cache have to be inserted into the code, shifting the task
instructions and modifying the application memory mapping
[11], thus probably requiring a new analysis.

To authors knowledge, there are two proposals that add
hardware resources to implement cache locking. [18] proposes
the addition of a side memory, Locking State Memory (LSM),
and [4] proposes the addition of a combinational circuit,
known as Locking State Generator (LSG), inside of an FPGA.
In both cases the hardware tells the cache controller when
to lock or not to lock the main memory block that is being
fetched. This way any of the techniques of cache locking can
be implemented. Despite the cost associated to add a new piece
of hardware, the main advantage of the hardware support is
that cache locking is transparent to the programmer and to the
compiler because no modification of compiled code is needed.

Focusing on the hardware approach, its main drawback is
the associated costs in terms of silicon die fabric or FPGA
size. This can be minimized if an already existent hardware
can be slightly modified to incorporate the circuitry to signal
the cache controller when a main memory block has to be
locked in cache. This is the case of the watchdog processor in
this proposal; its main purpose is to detect control flow errors,
but it can also be used to implement cache locking without a
significant increment of hardware costs.

III. ADDING CACHE LOCKING

The proposal of this work is to add one bit into the watchdog
signatures to tell the cache controller if the cache has to
be locked or not. If the cache is locked then no content
can be displaced by new fetched instructions; if the cache is
not locked then newly arrived instructions will displace those
already stored into the cache. The cache will remain in this
state, locked or not locked, until a new signature tells the cache
controller if the cache must remain in the same state (locked
or not) or swap its state. The watchdog processor is in charge
of reading this bit from the signatures and translate it to the
cache controller.

As the signature precedes the instructions the processor is
going to execute, if the bit compels the cache controller to
lock the cache current contents this means not to load into

PO o (G V1 \e—
2% Seq
qE) E Branch N1 Cache line size: 4 instructions
=a r S V2 V: Number of Vertex.
Seq 1 N: Number of Block.
zo <4
g s Jump V3 Branch: Conditional Branch
%’ Q% Seq 2 V4 Jump: Inconditional Branch
Seq - AN 2 Seq: No Branch Instruction
en L Seq T
2% Seq Vs
G S N3
=a < Ve
— Branch — 3
- Seq
g 4 Seq V7
538 S Weet=n-(E1+MAX(E2+E3,E4+E5)+E6)+E7
sm €q 4
Seq

Fig. 1: Example of C-CFG and related expression to compute
the WCET.

the cache the following fetched main memory blocks. On the
other hand, if the bit compels the cache controller to unlock
the cache current contents, the following main memory blocks
will be loaded in cache as they are fetched by the processor.

There are some differences in the described behaviour in
front of previous proposals as [18] and [4] where ad-hoc
hardware is added to lock and unlock the cache.

The main difference resides in the way main memory blocks
are selected to be locked in cache.

The WCET of a task can be calculated using the Control
Flow Graph [17] that leads to a set of expressions that can be
computed to obtain the WCET of a task. In the CFG, there
is a vertex for each basic block, that is, for each sequence
of instructions with no flow break. But, in order to improve
system performance in presence of cache locking, previous
proposals use the Cached-Control Flow Graph, C-CFG, where
there is a vertex for each cache basic block. A cache basic
block is a sequence of instructions with no flow break and all
the instructions belonging to the same main memory block.
Figure 1 shows an example of a C-CFG for a piece of code
with one branch inside a loop. The figure also shows the
expression to compute the WCET, where E; is the execution
time of the vertex V;, whose instructions belongs to main
memory block N;. The time of executing a vertex F; changes
if the main memory block N; is selected or not selected to be
locked in cache memory. If the block is selected to be loaded
and locked in cache, its execution time is T};; * I;. If the
block is not selected to be loaded in cache its execution time
is Toniss + (Thit * I;). Finally, the time to load into cache the
selected main memory blocks, T},,;ss * B, is added to the final
WCET of the task. T,;ss is the penalty for a miss access in
cache, T},;; is the time of executing an instruction from cache
memory, I; is the number of instructions of vertex ¢, B is the
number of main memory blocks selected to load and lock in
cache, and n is the number of iterations of the loop.

Dividing the basic blocks of instructions into cache basic
blocks allows a more fine-grained selection of the contents to
be locked in cache, irrespective of the tool or method used

Seq V1 \e—
Seq

Branch N1 Cache line size: 4 instructions

S V2 V: Number of Vertex.

£q N1 N: Number of Block.
Seq N2
Jump Branch: Conditional Branch
Seq 4 Jump: Inconditional Branch
Seq N3 Seq: No Branch Instruction

Seq
Seq

Memory
Block 1

Memory
Block 2

1]

Memory
Block 3

Seq
Ve
‘—— Branch — 3
o Seq
QS Seq
é 2 Seq V1) Woetn (EL*MAX(E2E4)E6)HET
m
Seq

Fig. 2: Example of CFG and related expression to compute
the WCET. Vertexes 3 and 5 are removed on purpose to ease
the comparison with C-CFG.

to select them. Regarding main memory blocks 1 and 2 in
figure 1, there are four options to select them to be locked
in cache: block 1 only, block 2 only, both blocks 1 and 2, or
none of them. This is possible because each vertex in the C-
CFG has its own cache control instruction to load it (software
approach), or each main memory block is marked in the LSM
or LSG to be loaded or not (hardware approaches).

But in the proposal presented here there isn’t one bit per
cache basic block as there is only a watchdog signature per
basic block of instructions (a vertex of the CFG). Therefore,
this proposal has to work with basic blocks of instructions,
because it is built over the watchdog schema. This means that
it is not possible to individually select each main memory
block due to the fact several different main memory blocks
can belong to the same vertex of the CFG.

For the same example code than figure 1, figure 2 shows
the CFG, that is, using only basic blocks of instructions.
Now vertex 3 is joined with vertex 2 (same basic block
of instructions), that includes instructions belonging to main
memory blocks 1 and 2, and vertex 4 is joined with vertex
5, including instructions belonging to main memory blocks 2
and 3. Since the technique of the watchdog processor inserts
a signature only at the beginning of each basic block of
instructions, both memory blocks 1 and 2 have to be selected
together or not selected at all. Even more, if memory block 3
is to be selected, blocks 1 and 2 must be also selected in order
to guarantee that blocks are loaded in cache independently of
the execution path followed when the task runs. This way, the
algorithm to select which blocks will be loaded and locked in
cache has to be aware of the interference between vertexes, as
described in the following section.

It would be possible to use the C-CFG by adding a new sig-
nature at the beginning of each cache basic block (interpreted
as a NOP instruction by the main processor). Using these new
signatures the watchdog processor would be able to inform the
cache controller whether to lock or not main memory blocks
in a one per one basis. However adding these signatures would

enlarge the code size and reduce performance because the
processor would have to execute more signatures. Moreover,
these signatures do not improve reliability (control flow error
detection), so in this paper basic blocks of instructions are
used, and the impact of this decision over performance is
evaluated in the section that discusses the experiments carried
out.

Regarding the estimation of tasks’ WCET and WCRT, and
thus solving the schedulability analysis, the use of the C-CFG
or the CFG does not matter, because to estimate execution
and response times it is only needed to know if a main
memory block is in cache. And a block will be always in
cache if it is selected to be loaded and locked. On the other
hand, if the block is not selected, the safe estimation is to
consider all the accesses to this block as a cache miss. So,
regarding schedulability analysis, this can be accomplished
using the CRTA (Cache Response Time Analyse) [3] in the
way described in [18].

However, the use of the C-CFG or the CFG matters when
selecting the blocks to be loaded and locked in cache. Next
section presents the details of how to carry out this selection.

IV. SELECTING CONTENTS TO BE LOCKED

There are several ways to select the contents to load and lock
into the cache: integer linear programming, greedy, iterative,
and genetic algorithms [11]. Without regard of the algorithm
selected, the main goal is to make a coherent selection of
blocks. This means to fulfil the mapping schema of the cache
and the behaviour of the underlying hardware, while at the
same time optimizing some system parameter.

In this work a modified version of the genetic algorithm
presented in [10] is used. There are two main modifications to
this algorithm. The first one is changing the fitness function
in such a way that the lower system utilisation, the better
solution. The second modification comes from the use of the
CFG instead of the C-CFG to model the flow graph of tasks.
In the original algorithm the codification of the problem is,
basically, an array of mb elements, where mb is the number of
main memory blocks. The value of each element determines
if the related main memory block is selected to be loaded
and locked in cache. The original algorithm has to meet some
restrictions:

o The number of selected blocks for a task has to be equal
or smaller than the number of lines of the cache. That
is, no intra-task replacements are allowed, making easier
the schedulability analysis.

o The number of selected blocks that map in a cache set
has to be equal or smaller that the number of ways of the
cache. As the previous requirement, this eliminates the
intra-task interference.

o When the genetic algorithm performs crossover and mu-
tation operations, the result of these operators has to meet
the two previous restrictions.

The use of CFG imposes news restrictions when selecting
blocks:

o If a memory block is selected to be loaded and locked in
cache, all the blocks belonging to the same vertex in the
CFG have to be selected. Since the signature that lock
or unlock the cache contents is inserted at the beginning
of the vertex, the cache will remain in the same state for
the execution of the whole vertex. This is the case, for
example, of vertex 2 in figure 2, where blocks 1 and 2
have to be locked or unlocked together.

o If a memory block B; is selected, and this block is shared
between two or more vertexes in the CFG, all the blocks
belonging to all these vertexes sharing the block B; have
to be selected. This is a consequence of the previous
restriction and helps to get predictability, keeping the
same cache contents irrespective of the execution path.
For example, in figure 2 if memory block 3 is selected,
block 2 has also to be selected, and therefore block 1 has
also to be selected.

¢ The two previous restrictions apply in the same way for
non selected blocks.

« If the selected blocks for a given vertex create an access
conflict (two or more blocks map onto the same cache
line), then all the blocks will be marked as not selected.
This requirement precludes the existence of intra-task
replacements.

Listing 1: Genetic algorithm pseudo-code

1 | function selectCacheContents(SystemParams, CacheParams)
2

3 // Initialization phase

4 population = initializePopulation(SystemParams, CacheParams)
5

6 // Evolution phase

7 for each value 1 to GENERATION

8

9 // Evaluate fitness of population

10 evaluateFitness(population)

11

12 // Elitist selection added to next generation

13 elite = selectBestIndividuals(population, 2)

14

15 // Next generation’s population

16 for each value 1 to (POPULATION —2)/2

17 parent_1 = selectParent(population, BinaryTournament)
18 parent_2 = selectParent(population, BinaryTournament)
19 cross_point = randomPoint(SystemParams.num_vertexes)
20 children = crossParents(parent_1, parent_2, cross_point)
21 addIndividuals(new_population, children, 2)
22 end for
23
24 // Mutation phase
25 mutate(new_population, MUTATION_PROB)
26
27 // Elite from previous generation added
28 addIndividuals(new_population, elite, 2)
29
30 population = new_population
31 end for

32

33 return selectBestIndividual(population)

34

35 | end function

It is worth noting that previous restrictions are devoted to
reach predictability and allow an easier schedulability analysis.

In order to implement the new restrictions, the way the
genetic algorithm encodes the individuals is changed. An array
of nv elements is created with nv being the number of vertexes
of all tasks in the CFG. Each element of this array determines
whether the vertex is selected to load and lock all its main
memory blocks or not. If the vertex is selected, the bit in the
signature at the beginning of its corresponding basic block is

set to 1, meaning to unlock the cache contents and allowing
fetched blocks to enter the cache. If the vertex is not selected
to load and lock its main memory blocks, the bit in the
signature is set to O so the cache contents are locked and
thus preventing fetched blocks to enter the cache and produce
cache replacements.

Genetic algorithm operators of initialisation, crossover and
mutation are carried out guaranteeing that the previous stated
restrictions are met. Listing 1 shows the pseudocode of the
genetic algorithm, and below some detail of the operators is
given.

o SystemParam and CacheParam: the CFG of tasks includ-
ing the signatures for the watchdog processor; Real-time
system parameters, like task periods and priorities; Cache
parameters, like size and number of ways, hit a miss
times.

o Initialisation: all individuals are created with a pseudo-
random set of vertexes and thus, main memory blocks,
marked as locked.

o Fitness function: fitness of an individual is the system
utilisation in the range]0, 1[. The system utilisation is
computed using CRTA and considering the vertexes, and
thus, the main memory blocks, selected to be locked in
cache. Non schedulable systems presents an utilisation of
1.

o Selection policy: binary tournament is used in order to
reduce the execution time of the GA [14]. Two individulas
are pseudo-randomly choosen and the better, the one with
lower utilisation, will became one of the parents. The
other parent is choosen repeating the same procedure.

o Crossover: one single point is randomly choosen and the
two parents are merged, creating two new individuals.

o Mutation: two vertexes are pseudo-randomly choosen and
their states are exchanged. The result can be a larger,
equal or smaller number of vertexes selected to be locked.

« Elitist selection: the two best individuals from the previ-
ous generation are copied to the new generation with no
crossover nor mutation.

The input to the genetic algorithm is all the information
related to the real-time system and the cache memory. The
result of the genetic algorithm is the WCET and WCRT of
each task, the answer to the schedulability test, and the value
of the cache-control bit that has to be set in each signature.

V. EXPERIMENTS

The objective of the experiments is to estimate the cost
of getting predictability. This cost is measured in terms of
loss of performance between the previous hardware-assisted
proposals, LSM and LSG, in front of the proposal presented
in this paper that uses signatures for the watchdog processor to
lock and unlock the cache. Performance is assessed by means
of system utilisation. The higher the utilisation, the lower the
performance.

Experiments are carried out using the real-time systems
presented in [10]. In this set of systems there are 14 different
task sets. Table I shows the main characteristics of tasks and

task sets. Tasks are artificially created to stress the cache
locking scheme. Main parameters of each task are defined,
like its size, the number and size of loops and their nesting
level, number of if-then-else structures and their respective
sizes. These parameters are fixed or randomly selected. Then,
a simple software tool creates the code using MIPS R2000
[13] compatible assembly language.

TABLE I: Main characteristics of task sets.

Characteristic | Minimum | Maximum
Number of tasks in the set 3 8
Task size 1.6KB 27.6KB
Task set size 12.5KB 57.6KB
Instructions executed per task (approx.) 50,000 8,000,000
Instructions executed per set (approx.) 200,000 | 10,000,000

Task periods are manually adjusted to force different num-
ber of preemptions among the tasks and therefore setting the
system utilisation in different values. For each task set, two
different sets of periods are assigned, where system utilisation
is higher as the periods become shorter. For all task sets, tasks’
deadlines are equal to tasks’ periods and priority is assigned by
the Rate Monotonic policy (the shorter the period the higher
the priority).

A total of 28 systems = 14 (task sets) x 2 (periods sets)
are evaluated using seven cache sizes (in cache lines, where
cache line size is four instructions): 64, 128, 256, 512, 1024,
2048, and 4096 lines. The total number of experiments is 196.
Regarding the cache mapping policy, direct mapping has been
used since it is the most restrictive mapping policy for cache
locking.

Using the same task set but different task periods and cache
sizes allows assessing the behaviour of the architectures and
algorithms in front of different scenarios.

The main parameters of the genetic algorithm are:

o Number of individuals: 240

o Number of generations: 5.000

o Crossover probability: 100 %

e Mutation probability: 8 %

o Number of repetitions to avoid the effect of seed for
pseudo-random numbers generator: 25

The execution of the 196 experiments finished in less than
10 hours running on a desktop personal computer with an Intel
IS microprocessor.

From here after, U,, refers to system utilisation when the
system runs using dynamic cache locking and the main mem-
ory blocks are locked by means of signatures for the watchdog
processor. In the other hand, U; refers to system utilisation
when the system runs using dynamic cache locking and the
main memory blocks are locked by means of LSM/LSG
added hardware. Both utilisations have been computed from
the genetic algorithm, using the presented WCET and CRTA
analysis and the list of selected blocks. Therefore, the values
presented are estimated, and represent an upper, safe bound
of the actual utilisation values.

From the 196 experiments, none shows a performance gain
(U — U; < 0) using signatures to encode the cache locking
information. This is due to the fact that using the CFG
reduce the freedom degree when selecting main blocks to
be loaded and locked into the cache. Using the LSM/LSG
approach, however, the genetic algorithm can select each block
individually.

In 153 of them (78%) the loss of performance (U,, — U;)
is less than one percent as can be shown in Figure 3. This
means that for a large set of systems the same performance
can be obtained implementing cache locking by means of a
modified watchdog processor than by means of the LSM/LSG
hardware.

For the remaining 43 experiments, where (U,, — U;) is
greater than one per cent, table II shows the main statistics.
Figure 4 shows the frequency histogram of U,, — U; for the
same 43 experiments. Around 60% of these 43 experiments
present a loss of performance below 10%. However in some
cases this loss of performance is close to 50%.

This significant loss of performance is due to the new
restrictions imposed in the selection of main memory blocks
when using basic blocks of instructions instead of cache basic
blocks.

TABLE II: Summary statistics for U,, — Uj.

Count 43
Average 13,19
Standard deviation 13,69
Minimum 1,31
Maximum 44,83
Stnd. skewness 3,49
Stnd. kurtosis 2,59

80 - —

60 — =

a0 -

porcentaje

20 — —

Fig. 3: Frequency histogram for U,, — U; for all 196 experi-
ments.

Figure 5 shows the box and whisker plot of U,, —U; in front
of the cache size for the 196 experiments. For small cache sizes
the loss of performance is greater, and also presents a larger

N L

T T
Lo

T
Lo

20—

|

percentage

L
Lo

10+

|

T T
TR

0%“““““‘ -

PR R |
0 10 20 30 40 50

Uw - Ulin %

Fig. 4: Frequency histogram for U,, — U; for experiments with
(Uw - Ul) > 1.

dispersion. For larger cache sizes the loss of performance is
much smaller and presents less dispersion. These results are
due to the fact that when the cache size becomes similar or
greater than the average size of system tasks, more main mem-
ory blocks can be loaded, so the new restrictions described
before for the use of CFG are applied less frequently or has
lower impact in the selection of blocks. Although the effect of
the cahe size is evident, the existence of outliers suggests that
other parameters may affect the performance of cache locking
when signatures for the watchdog processor are used to control
the cache.

These parameters can be related to the size or structure of
tasks, or the degree of interference between tasks. Because the
data does not follow a normal distribution (see stnd. skewness
and stnd. kurtosis values in table II) it is not advisable to
carry out an analysys of variance to identify the significant
parameters. Anyway, the next target of this research is to
develop an algorithm to select which blocks to load and lock in
cache, inserting new watchdog signatures when this addition
helps to improve performance.

VI. CONCLUSION

This work presents a new way of implementing the dynamic
use of cache locking for fixed-priority, preemptive multitasking
real-time systems that combines with a watchdog processor
used to gain reliability. The same hardware, the watchdog
processor, is used to obtain both reliability and predictability.
The proposal is feasible since devices coupling a processor
with an FPGA, or FPGAs that incorporate processors inside
have been available in the market for a long time. As the
FPGA is already included in the same die or package with the
processor, no additional hardware is needed.

The main advantage of this proposal is that previous, well
known techniques for cache locking can be used. In this work,
full dynamic cache locking has been implemented.

- [a

»

@

é 258 I ’

3

E=

o

©

O 512 |H_4un 'L

1024 |]0- s

2048 ‘0—1 s

4096 |}m =
I T R S S RS S U |
0 10 20 30 40 50

Uw-Ul %

Fig. 5: Scatter plot for U,, — U; versus cache size in lines (all
experiments).

Experiments show that close to 80% of the cases the ob-
tained performance is the same than the performance resulted
by implementing cache locking adding new hardware, like a
Locking State Memory or a Locking State Generator. This
way, predictability can be added to a reliable system without
additional hardware cost.

In front of software solutions, that is, using a binary
rewriter to insert instructions to lock an unlock the cache,
this proposal presents as advantage that the signatures are
inserted before blocks are selected and schedulability analysis
is accomplished, so no repetition of the analysis has to be done
after inserting the instructions to control the cache locking, as
must be done with binary rewriters.

Future work is focused on the development of an algorithm
to select the main memory blocks to be loaded and locked
in cache, evaluating at the same time if the insertion of extra
signatures can improve performance.

ACKNOWLEDGMENTS

This work was partially funded by the Plan Nacional
de I+D, Comisién Interministerial de Ciencia y Tecnologia
(FEDER-CICYT) under the project HAR2017-85557-P and
Agencia Estatal de Investigacién under the project DPI2016-
80303-C2-1-P.

REFERENCES

[1] Kapil Anand and Rajeev Barua. Instruction-cache locking for improving
embedded systems performance. ACM Trans. Embed. Comput. Syst.,
14(3):53:1-53:25, April 2015.

[2] Luis C. Aparicio, Juan Segarra, Clemente Rodriguez, and Victor Vifials.
Improving the wcet computation in the presence of a lockable instruction
cache in multitasking real-time systems. Journal of Systems Architecture,
57(7):695 — 706, 2011. Special Issue on Worst-Case Execution-Time
Analysis.

[3] J.V. Busquets-Mataix, J.J. Serrano, R. Ors, P. Gil, and A. Wellings.
Adding instruction cache effect to schedulability analysis of preemptive
real-time systems. In Real-Time Technology and Applications Sympo-
sium, 1996. Proceedings., 1996 IEEE, pages 204-212, jun 1996.

[4]

[5]

[6]
[7]

[8]

[9]

[10]

(11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Antonio Marti Campoy, Francisco Rodriguez-Ballester, and Rafael Ors
Carot. Lut saving in embedded fpgas for cache locking in real-
time systems. [International Journal On Advances in Systems and
Measurements, 6(1&2):190-199, 2013.

Rodriguez F., Campelo J.C., and Serrano J.J. A watchdog processor
architecture with minimal performance overhead. In Anderson S.,
Felici M., , and Bologna S., editors, Proceedings of the International
Conference on Computer Safety, Reliability, and Security SAFECOMP
2002, volume 2434 of Lecture Notes in Computer Science, pages 261—
272. Springer, Berlin, Heidelberg, Sept 2002.

John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, 4th edition, 2006.
Chang-Gun Lee, Kwangpo Lee, Joosun Hahn, Yang-Min Seo, Sang Lyul
Min, Rhan Ha, Seongsoo Hong, Chang Yun Park, Minsuk Lee, and
Chong Sang Kim. Bounding cache-related preemption delay for real-
time systems. IEEE Transactions on Software Engineering, 27(9):805—
826, 2001.

A. Mahmood and E. J. McCluskey. Concurrent error detection using
watchdog processors-a survey. [EEE Transactions on Computers,
37(2):160-174, Feb 1988.

A. Marti Campoy, A. Perles, F. Rodriguez, and J. V. Busquets-Mataix.
Static use of locking caches vs. dynamic use of locking caches for real-
time systems. In Electrical and Computer Engineering, 2003. IEEE
CCECE 2003. Canadian Conference on, volume 2, pages 1283—-1286
vol.2, May.

Antonio Marti-Campoy, Francisco Rodriguez-Ballester, Eugenio
Tamura Morimitsu, and Rafael Ors. An algorithm for deciding minimal
cache sizes in real-time systems. In Proceedings of the 13th annual
conference on Genetic and evolutionary computation, GECCO ’11,
pages 1163-1170, New York, NY, USA, 2011. ACM.

Sparsh Mittal. A survey of techniques for cache locking. ACM
Transactions on Design Automation of Electronic Systems, 21, 05 2016.
Fan Ni, Xiang Long, Han Wan, and Xiaopeng Gao. Combining
instruction prefetching with partial cache locking to improve wcet in
real-time systems. PLOS ONE, 8(12):1-19, 12 2013.

D.A. Patterson and J.L. Hennessy. Computer Organization and Design:
The Hardware/software Interface. Morgan Kaufmann, 3rd edition, 2005.
Adam Priigel-Bennett. Finite population effects for ranking and tourna-
ment selection. Complex Systems, 12(2):183-205, 2000.

Isabelle Puaut. Wcet-centric software-controlled instruction caches
for hard real-time systems. In Proceedings of the 18th Euromicro
Conference on Real-Time Systems, pages 217-226, Washington, DC,
USA, 2006. IEEE Computer Society.

Jan C. Kleinsorge Sascha Plazar and Peter Marwedel. Wcet-aware static
locking of instruction caches. In Proceedings of the 2012 International
Symposium on Code Generation and Optimization, pages 44-52, 2012.
A.C. Shaw. Reasoning about time in higher-level language software.
Software Engineering, IEEE Transactions on, 15(7):875-889, July 1989.
E. Tamura, J.V. Busquets-Mataix, and A. Marti Campoy. Towards
predictable, high-performance memory hierarchies in fixed-priority pre-
emptive multitasking real-time systems. In Proceedings of the 15th
International Conference on Real-Time and Network Systems (RTNS-
2007), pages 75-84, 2007.

Yudong Tan and Vincent Mooney.
multitasking real-time systems with caches.
Comput. Syst., 6(1), feb 2007.

Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter
Puschner, Jan Staschulat, and Per Stenstrom. The worst-case execution-
time problem overview of methods and survey of tools. ACM Trans.
Embed. Comput. Syst., 7(3):36:1-36:53, May 2008.

Timing analysis for preemptive
ACM Trans. Embed.

