

 1

Study of procedural terrain generation in plain and
spherical surfaces

LAB University of Applied Sciences

Double degree, bachelor of engineering, information and communications technology

2021

Lia de Belda Calvo

 2

 Abstract

Author(s)

Lia de Belda Calvo

Publication type

Thesis, UAS

Completion year

2021

Number of pages

60

Title of the thesis

Study of procedural terrain generation in plain and spherical surfaces

Degree

Double degree, bachelor of engineering, information and communications technology

Name, title and organization of the client

LAB University of Applied Sciences & Universitat Politécnica de Valencia (UPV)

Abstract

This thesis presents a study of different methodologies to approach a procedural

terrain generator on a plane and a spherical surface. Processing 3 will be the

environment for the implementation of these methodologies. Thanks to this

implementation the use of procedural algorithms (in videogames, cinema, and other

fields) would be demonstrated. The components of this work are divided into two

sections: First, a theoretical resume of the most relevant details of the terrain

generation, and second, the implementation for both, the plain and spherical terrain

generators, achieving a planetary-looking surface for the spherical case, and an

infinite terrain for the plain one. This work is based on previous knowledge over the

matter and older implementations of it using Java frameworks.

Keywords

Terrain, generation, noise, procedural, simulation, Processing, Java

 3

Contents

1 Introduction ... 5

2 Basics of the terrain generation ... 6

2.1 Main uses .. 6

2.2 Plain terrain generation ... 7

2.2 Spherical terrain generation .. 7

3 Details of terrain generation ... 8

3.1 Pseudo-random and random number functions ... 8

3.2 Diamond-Square algorithm ... 9

3.3 Perlin noise algorithm .. 10

3.3.1 Perlin noise basics ... 10

3.3.2 Fractal Perlin .. 13

3.4 Other noise algorithms .. 14

3.4.1 Poisson faulting .. 14

3.4.2 Fourier synthesis .. 15

3.5 Tessellation ... 15

3.6 Height maps .. 17

3.6.1 Height maps over a plane .. 18

3.6.2 Height maps on a sphere... 19

3.7 Parameters that influence the terrain.. 19

3.7.1 Granularity .. 19

3.7.2 Strength .. 20

3.7.3 Noise scale ... 20

3.7.4 Persistance .. 20

3.7.5 Lacunarity ... 20

3.7.6 Octaves .. 20

3.7.7 Noise coordinates .. 21

3.7.8 Mapping ... 21

4 IDE approach .. 22

5 Use case: Procedural terrain generator ... 25

5.1 Case definition and main objectives ... 25

5.2 Data model .. 25

5.2.1 Plain terrain geometry .. 27

5.2.2 Sphere terrain geometry .. 28

5.2.3 Perlin noise implementation .. 30

5.2.4 Plain terrain developed methods ... 32

 4

5.2.5 Spherical terrain developed methods .. 36

5.3 Data structures involved.. 39

5.4 Shaders and textures .. 42

5.4.1 Introduction .. 42

5.4.2 Plain terrain shader .. 42

5.4.3 Spherical terrain shader ... 45

5.5 Generations ... 47

5.5.1 Hydro erosion ... 47

5.5.2 Vegetation .. 48

5.5.3 Rivers and lakes .. 49

6 Conclusion .. 52

6.1 Future updates .. 52

6.2 Conclusions ... 53

List of references ... 54

Appendices

Appendix 1. Plain terrain renders.

Appendix 2. Spherical terrain renders.

 5

1 Introduction

When a team of developers is asked to design a world, with its terrain, lakes, rivers,

mountains, etc. the amount of work is overwhelming (Wang et al. 2011). Moreover when we

realize that at some point the user will have explored it all, finishing every quest or mission

that the team could think about. A way to surpass this is not to design that world, but, letting

the computer generate it, infinitely. So, for example, a user playing Minecraft, could in,

theory, walk forward and never reach an end, because each chunk of the terrain is

procedurally generated, in a coherent way so it feels natural and logical to move from one to

another. Another example could be a space exploring game, driving a ship forward into the

void will eventually generate planets with unique terrain and ecosystem, this way the user

could have a theoretical infinity amount of content (Smith, 2014). Since it began to be

possible to represent scenarios graphically using a computer, different research has been

done in how to improve the rendering of these virtual 3D spaces. With the increment in the

processing power of the computers, it is possible to show more and more complex worlds to

the user in real-time. When bounded and pre-rendered scenarios start to be a monotonous

habit, the procedural terrain generation appears, contributing to a new experience for both,

users and developers. In essence, the procedural terrain generation brings the possibility of

creating surface simulations through different techniques which will be explored and

commented on the points 4.1 Pseudo-random number functions, 4.2 Diamond-square

algorithm and, 4.3 Perlin Noise algorithm. The next subsections want to give a general view

of the main uses and terrain generation types that will be explored in this work. This thesis is

based on previous experiences with other projects for learning and self-interest using Java,

JavaScript, OpenGL, and frameworks like P5.js or Processing 2x, 3x made from scratch.

This project will cover the theoretical and practical concepts about terrain generation, such

as the main algorithms used, the parameters involved and, the implementation of those ideas

into Java.

 6

2 Basics of terrain generation

 2.1 Main uses

The generation of procedural terrain has various uses, going from its implementation in video

games, saving large labor costs associated with the detailed design of large scenarios,

simulations of hydro erosion, or the rendering of large fields for movies or any type of

multimedia presentation were useful (Kim et al, 2018). In the particular case of this work, a

more thought-out approach will be used for the first case, mainly due to the amount of detail

that can be achieved considering the computational costs. Some examples of these ideas

are:

• TerraGen.

TerraGen is a non-real-time heightfield landscape synthesis and rendering system.

Thanks to its built-in ray tracer system, TerraGen is capable of creating very realistic

images, including realistic lighting, atmospheric effects, clouds, water reflection, and

terrain shadowing. Although the heightfields synthesized with TerraGen look spectacular

and need to be taken as an example of what could be achieved with this kind of

technology, the number of different types of natural terrain that can be created with it is

somewhat limited (Tegel & Mengotti, 2013).

• World Machine by Stephen Schmitt.

Like TerraGen, World Machine is a heightfield synthesis application. However, its main focus

is flexibility to create these terrains. Simple real-time 2D and 3D rendering is supported, but

this feature is by far not as impressive as TerraGen's (non-real-time) renderer. The user can

design terrain by placing and connecting heightfield creation, blending, and transformation

nodes in a flow graph system which although is limited in comparison with TerraGen, brings

the possibility of seeing the changes in the terrain immediately, saving time in the check

process (Zábský, 2011).

• CryEngine Sandbox 1 & 2 by Crytek.

Official WYSIWYG level editors for the Crytek game engines, used for the Far cry and Crysis

games. These offer an impressive set of tools to aid the level designer. They are capable of

loading stored heightfields and simple procedural terrain generation. Local editing is

supported through the use of brushes, compared to the two previous, this is by far the most

advanced, flexible, and impressive tool. (Tracy & Reindell, 2012.)

Regardless of the use, the tools and all other aspects of terrain generation can be separated

into two broad categories: flat terrain (over a 3D plain) and spherical terrain (over a 3D

sphere).

 7

2.2 Plain terrain generation

In the case of procedural terrain generation on the plane, a virtually infinite amount of terrain

can be achieved (Schneider & Boldte, Rudiger Westermann, 2006). To do it, is possible to

start from a rectangular plane of specific dimensions, which will have several points or

vertices, modifying the height and the proximity of these vertices to each other. This brings

the possibility to achieve a terrain such that, although not perfect, provides a level of realism

that could give the impression of natural terrain. This generation of the terrain is based on the

algorithms that will be explored in the following chapters, allowing the plane to “move”

through a virtual space where the information to generate the terrain is located. Similar to

what Minecraft does (C. Duncan, 2019).

2.3 Spherical terrain generation

The spherical terrain generation does not allow a virtually infinite amount of terrain. It can be

thought of as the modifications over a sphere to achieve the texture of the terrain. It

supposes a series of very interesting implementation differences with respect to the flat

generation, since now instead of a plane, a sphere is used. It is made up of points or

vertices, which, as in flat terrain, will be used to provide the texture, however, the

implementation of the algorithms has subtle differences. Using this generation, instead of an

infinite terrain, an entire planet is achieved. In a space travel kind of game, this method could

be used to once the player has traveled a certain distance, new planets with different biomes

could spawn for the user to discover and investigate them. One example could be star

citizens (Ahrens et al, 2019) or no man’s sky even if this is an example of what not to do (R

Tait & L Nelson, 2021).

Figure 1. Plain and Spherical terrain, generated with Perlin Noise, and other techniques for this work.

 8

 3 Details of terrain generation

 3.1 Pseudo-random and random number functions

In the computational world, it is impossible to get truly random numbers (Tezuka, 2012).

Random processes can only be found in natural processes such as the decay of radioactive

isotopes or atmospheric data, therefore it is treated with a series of deterministic algorithms,

that is, the sequences of numbers that are obtained will be given by a process marked by

steps. The first and perhaps the simplest example is that the random function can be found in

all programming languages, which is given by the following expression:

A = Constant1

M = Constant2

Q = M / A

R = M % A

number = (A * (number mod Q)) - (R * floor(number / Q));

if (number is negative)

number = number + M;

End

Figure 2 Graph of the random function. 100 samples with values between 0 and 1.

The algorithm, although it has its uses and its utilities, is inappropriate for the result

wanted in this work. The terrain must be consistent, however, the random function

throws a series of values that do not save any type of relationship between them. As it

can be seen in Figure 2, this would generate ridiculous and incoherent situations in

addition, in the long run, this type of randomness causes a normal distribution, which is

not good for the desired result.

 9

 3.2 Diamond square algorithm

This algorithm, like Perlin Noise, is based on the idea of obtaining a set of coherent

pseudo-random values that can be used for the creation of heightmaps, that is,

obtaining a set of values (Generally between -1 and 1) which will be used for different

applications, in the case of this work, determine the height of the points or vertices on a

plane/sphere. This algorithm was first presented by Fournier, Fussell, and Carpenter in

1982 in SIGGRAPH. (A. Fournier et al, 1982.)

Figure 3 Heightmap example. 8 Octaves, 45% persistence.

The operation of this algorithm is rather simple, given a set of points on a plane, the

diamond and square steps will be applied alternately after having initialized the values

of the points belonging to the corners with random values.

In the step of squares, for each diamond within the set, the value of the point in the

center of the diamond is established as the average of the other 4 points plus a random

value.

In the passage of diamonds, for each square within the set, the value of the point in the

center of the square is established as the average of the other 4 points plus a random

value. (Wang et al, 2010.)

Figure 4 Diamond-square algorithm steps representation.

Although this algorithm is capable of generating height maps, it only does so from

some sets that seem to not work correctly in non-square extensions. For an adaptive

size plane or spherical generation this method is found inappropriate, although

software how TerraGen uses it, achieving more than magnificent results, see Figure 5.

 10

Figure 5 Example of the achievements accomplished by TerraGen using the Diamond-square algorithm. (PlanetSide, 2021)

3.3 Perlin noise

This algorithm was developed in 1983 by Ken Perlin at the Mathematical Applications Group,

inc, with direct use in the Disney animated film Tron. It was formally described in a paper for

SIGGRAPH in 1985 called An Image Synthesizer. For this work, Ken Perlin received an

Academy Award for Technical Achievement from the Academy of Motion Picture Arts and

Science for his contributions to CGI (Computer Generated Image).

Perlin carried out this development moved by his discomfort with the results of his time of

CGI images, being that these were too rough and unnatural. This algorithm allows the

creation of more natural textures for surfaces generated by computers. Perlin Noise provides

a set of pseudo-random values with consistent differences between them, and with them

construct a heightmap. Although its most typical implementations correspond to 2 or 3-

dimensional spaces, this algorithm applies to n dimensions. (Perlin, 1985.)

3.3.1 Perlin noise basics

The implementation of this algorithm may vary, since its publication, there have been

different implementations beyond the original, such as the one published in 2001, Simplex

Noise and Open Simplex Noise, although those improve performance and correct some

errors linked to the original algorithm, for this work the implementation described in 1985 will

be the one to be discussed and used (Perlin, 2002). This algorithm presents a computational

cost of 𝑂(2n) being 𝑛 the number of dimensions in which the algorithm will work.

This implementation consists of three steps:

● Define a grid with random vector gradients.

● Calculate the cross product of the gradient vectors and their offsets.

● The interpolation of these values.

 11

Next, the details of each of these steps will be explained. It must be considered that this

explanation will be for two-dimensional space, but it can be implemented in a similar way for

n dimensions. The first step is to define the grid, where each point in the said grid will have a

value associated, this value will therefore be a vector (in this case of 2 dimensions) of unit

gradient (values that oscillate between 0 and 1). (Perlin, 1985.)

In Figure 6, an example can be seen where the red arrows are a visual representation of the

vectors described, for instance, an arrow with values of 1 in X and 0 in Y, represents a

completely horizontal arrow pointing to the right.

The second step is the calculation of the cross-product. In Figure 6, an example of gradient

grid can be seen. It can be thought of as the computer screen, this is divided into pixels so

that, within each cell of the previous grid there is a certain number of pixels. Therefore, each

pixel must be assigned a value between -1 and 1 (Green, 2005). To achieve this, for each

pixel first locate the cell of the grid to which it belongs. Then, knowing which cell it belongs to,

the values of the vectors corresponding to the corners of its cell are also known (since

working with a two-dimensional grid, each cell has four corners, but generalizing for n

dimensions it would have 2n corners). Next, a set of new vectors resulting from the

displacement from the corner and the pixel being evaluated are calculated. Finally, the cross

product between the corners vectors and the displacement vectors is calculated.

Figure 6 Representation of Perlin Noise steps.

 12

For the third and last step, the interpolation of the crossed products must be performed (in

the case of this explanation there will be four, one for each corner and its displacement

vector, for n dimensions there will be 2n crossed products) (Archer, 2011). This interpolation

has different approximations such as:

• The simplest and perhaps the easiest way, corresponds to a linear function such that

to interpolate a and b values, with a factor that determines the weight c (whose value

ranges between 0 and 1):

return (𝑎 − 𝑏) * 𝑐 + 𝑏

• However, as it can be seen in Figure 7, the values returned by the linear interpolation

are rough and has no smothering at all. To achieve that appearance so characteristic

of this algorithm, this interpolation part comes hand in hand with a smoothing function

used on the interpolation step. Ideally, the smoothing function will be such that its first

and second derivatives have a value of 0 (Gustavson. 2005). Typically for this it is used

a cubic function:

Return (𝑎 − 𝑏) * ((𝑐 * (𝑐 * 6 − 15) + 10) * 𝑐3

• The downside of this method is that it adds a significant effort to the already heavy

computational load. In personal implementations of this algorithm there have been

found different functions that provide very pleasant and less expensive results, such as

cosine interpolation:

function Cosine Interpolate (a, b, c)

 ft = c * π

 f = (1 – cos(ft)) * 5

 Return a (1 – f) + b * f

Figure 7 Comparison of the linear (left) cubic (middle) and cosine (right) interpolation (Aran D.).

As it has been pointed out these, are not the only available functions to implement in the

interpolation step, there are plenty of them and in each implementation of the algorithm, it has

to be taken into account different aspects like the overall performance, cost, and computational

complexity. Ideally, every implementation should provide an interpolation function such that the

first and second derivative equals zero, but as it has been said, that is not always an option.

 13

3.3.2 Fractal Perlin

Fractal Perlin is the process of adding multiple layers of Perlin Noise values to create a

combined one that will show a more complex and sophisticated appearance and self-similar

properties (B. Mandelbrot, 1982).

Figure 8 Representation of different noise functions with different amplitudes and frequencies ends up into one final detailed
noise. One dimension, Similar effect happens in two dimensions.(Aran D,).

In Figure 8 can be seen how the lower amplitudes the lower the general change that layer

produces in the final shape, and higher frequencies produce more pronounced changes. This

process of course also happens in higher dimensions as can be seen also in Figure 8.

Although the details of the Perlin noise parameters will be presented and discussed in point

4.7 parameters which influence the terrain, when adding together different noise functions,

there is the question of exactly what amplitude and frequency to use for each one. In Figure

8 it is used twice the frequency and half the amplitude for each successive noise function

added (in both one dimensional and two dimensional Perlin). This is the standard in almost

every Perlin Noise implementation. A single number is used to specify the amplitude of each

frequency. This value is known as Persistence and it has the following relationship:

frequency (f) = 2
𝑛

amplitude (a)= 𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒
𝑛

(p)

Where n is the nth noise function being added (starting from 0) and persistence goes

between 0 and 1.

 14

f=1 f=2 f=3 f=4 f=5 f=6 result

p=¼

a=1

a=1/4

a=1/16

a=1/64

a=1/256

a=1/1024

p=½

a=1

a=1/2

a=1/4

a=1/8

a=1/16

a=1/32

p=1

a=1

a=1

a=1

a=1

a=1

a=1

 Table.1 Different noise function and result changing with different amplitudes and frequencies (Aran D,) .

3.4 Other noise algorithms

Although algorithms like Diamond-Square or Perlin noise are the most visible ones when

discussing about procedural textures, they are not the only ones. Other options as the Poisson

faulting or the Fourier synthesis are based on more abstract concepts rather than a set of

operations applied to a group of nodes as the Diamond and Perlin algorithms do.

3.4.1 Poisson faulting

It was first introduced in Dr. Dobb’s Journal (R. KRTEN, 2001). Starting from flat terrain, this

algorithm generates in an iteratively way random vertical faults as lines, vertices on one side

or another of the line are displaced upwards or downwards, depending on the distance to

the fault. In the long term, this method can provide a semi-complex landscape with rich

mountains and valleys. This method can be generalized to other geometries such as circles

or curves, it can also be extended to a spherical geometry to achieve fractal planets as

mentioned in the rendering of stochastic models (Fournier et al, 1982). In general, this

algorithm provides an acceptable result but with two major inconveniences, first, it cannot be

applied in order to achieve an infinite terrain, for every new “chunk” of terrain the algorithm

will have to start again. The second problem directly attached to the previous is the

computational cost, 𝑂(𝑁
3

) Where N is the width or height of the heightfield (measured in

vertices or points). Although it isn’t an appropriate algorithm for the goals searched in this

work, this technique is used in commercial heightfield applications.

 15

Another Poisson faulting kind of algorithm is the one called “particle deposition” . As it names

points, this technique involves a simulation of dropping particles on a flat plane. In this idea

over the heightfield, many droplets will fall, rolling through the height field surface, and

carrying a small amount of sediment until a local minimum is found. Then in that point, the

sediment will be released increasing the height of that point by a small amount. This

technique resembles in some way thermal weathering. This algorithm works correctly for

volcanic-like terrains.

3.4.2 Fourier Synthesis

Also called approximation with trigonometric polynomials. This method uses some rules to

generate coefficients for sin and cos functions, summing the Fourier series the height on a

point of the terrain is obtained, then in order to know all the heights in the heightfield it is

used the Fast Fourier Transform (FFT). This method accomplishes removing some of the

artifacts presented in the result of other algorithms such as the Diamond-Square, but at the

cost of much bigger time requirements. Terrain generated with this method will present

characteristics such as periodicity and a computational cost of O(N2 log N). This periodicity

can be an advance or a problem depending on the goal, for instance, this technique suits

well with the generation of a smooth and old terrain (A. Mastin et al, 1987). Also, the

possibility of extending the results of this algorithm in the creation of an infinite terrain is even

though possible, much less straightforward than the ones accomplished with others such as

Perlin Noise.

3.5 Tessellation

Tessellation is the process to cover an n-dimensional shape in individual and indivisible

pieces called tiles, those have no overlaps and no gaps, in real life this can be seen in

puzzles, mosaics, or floor tiling using different kinds of materials such as cemented ceramic

shapes.

Figure 9 Examples of a tiled surface.

In computer graphics, tessellation is used to form and control datasets of polygons. Making it

possible to represent objects in a scene and divide it into suitable structures for rendering.

Arbitrary 3D bodies are usually too difficult to analyze directly (examples could be human

bodies, animals, general 3D objects such as furniture, or terrain), because of this,

tessellation is often used to decrease the complexity of those objects into simpler ones like

polygons.

 16

In this work, there are two scenarios at first very different but at the end practically the same.

On one hand there is the plain tessellation and in the other the spherical one. In both cases,

the tiles used in the tessellation process will be the triangles, as they are the most typical

approach in almost every kind of shape in computer graphics.

In a plain tessellation, after disposing of the points in a grid position, each point is joined with

the point to the right, up, and the one in diagonal to the right (considering that the start point

is in the left-bot corner). Another way of constructing this triangle mesh is the typical

clockwise method, in this case starting from the top left corner of the mesh, the vertices are

joined following clockwise movement, as can be seen in Figure 10 right. For a square divided

with two triangles, there are 4 vertices and therefore the order to join them will be a, b, d, d, c,

a. generalizing it to an n x n grid where i is the actual vertices, the order will be: i, i+1, i+n+1,

i+n+1, i+n, i.

Figure 10 Example of a14x14 point grid before and after triangle tessellation.

In the spherical case, there are multiple ways to construct the model. In general terms it can

be identified in two main categories, using the spherical coordinate system (polar system), or

constructing the sphere from a polygon.

Each one presents a different set of benefits and detriments, for instance, it can be seen in

Figure 11 left how the geometry of the polar system is deformed in the pole in such a way

that the density of the vertices is huge compared to the equator. On the other hand, the

polygon approach implies several implementation difficulties as it can be intuited from Figure

11 right.

At the end each one is perfect according to the necessities of the project and the

circumstances which it involves, for instance the polar system is more efficient and easier to

implement, the polygon method provides much more detail and less artifacts, but with the

cost of much more of both memory and computational complexity among with a harder

implementation. Both the polar system and the polygon approach will be discussed in the

use case, explaining the pros and cons of each other among with other methods, and finding

a perfect fit for them.

 17

Figure 11 Comparison between polar sphere construction method (left) and polygon based sphere (right), in this case the base
polygon is an Icosahedron.

3.6 Heightmaps

A heightmap or heightfield is the term used to describe a data structure which will be used in

computer graphics to determine the elevation of a given point, this data structure

corresponds typically to an array of float numbers, in which each position has a relation one

to one to a given pixel. This elevation could be used in a bump map to create shadows in a

material, to create a textured surface for a particular material, or most commonly to be

applied over a 3D mesh to generate terrain (De Carpentier, 2008).

Heightmaps are widely used in terrain rendering software and modern video games. They

are an ideal way to store digital terrain elevations; compared to a regular polygonal mesh,

they require substantially less memory for a given level of detail. Most modern 3D computer

modeling programs are capable of using data from heightmaps in the form of bump, normal,

or displacement maps to quickly and precisely create complex terrain and other surfaces (S.

Ebert et al. 2003).

In the earliest games using software rendering, the elements often represented heights of

columns of voxels rendered with ray casting, simulating 3D spaces when in reality’s

everything was being rendered in 2D. In most newer games, the elements are represented

with the height coordinate of polygons in a mesh in a true 3D environment. (POV-RAY.)

Heightmaps are commonly represented on greyscales see Figure 12, where white is the

highest point and black the lowest. When the height field is stored in the form of an image the

resolution of the height field is influenced by two factors: the resolution of the image and

precision of the color/index values. The size of the image determines the resolution in terms

of width and height. The bigger the image the bigger the total number of triangles it will have

the tessellation and therefore the smother the result. The resolution of the color/index value

determines the resolution along the depth or z component. A height field made from an 8-bit

image can have 256 different height levels while one made from a 16-bit image can have up

to 65536 different height levels. Thus, the second height field will look much smoother in the

z component if the height field is created appropriately. There are eight or possibly nine types

of files that can define a heightfield: gif, tga, pot, png, pgm, ppm, tiff, jpeg, and possibly sys

which is system-specific (for instance. Windows BMP or Macintosh Pict) format file. (POV-

RAY.)

 18

Most scenes requiring terrain will make use of a heightfield. This is typically because

heightfields are the most efficient way to describe the numerous tiny fluctuations of a typical

landscape at design time. When a heightfield's design is completed, it can be transformed or

converted to a more efficient polygon mesh, it must be taken into account that not all

heightfields benefit from this conversion (for instance) those containing only a few

connected areas of similar slope). Although there exist methods to represent the heightfields

without a typical mesh conversion (Albersmann. et al, 1999).

But heightfields have their limits (Feldmann & Hinrichs, 2012). By ignoring specific width and

breadth information, (leaving only height values), each height value must occupy a unique

2D location when viewed from above. The important corollary to this is that no 2D location in

the heightfield can have more than one height value associated with it. This effectively rules

out using heightfields to model rocks, asteroids, bridges, caves, or terrain with slopes

equaling or exceeding ninety degrees. Some objects, however, can be convincingly modeled

with two or more heightfields carefully placed.

Although this fact makes heightfields unsuitable for many types of objects, it also makes

heightfields very easy to work with, since the height values can effectively be treated using

standard bitmap-editing interfaces that work with 2D images. This feature also makes it easy

to paint heightfields by mapping bitmaps onto them. All that's required is to project the bitmap

onto the heightfield's ground plane, and every point on the height field will be textured, also

the heightfields can be modified and edited with numerous tools and programs (Yalcin, M. A.,

& Capin, T. K, 2009; Bradbury et al, 2014).

Figure 12 Relation between the heightmap and the terrain generated from it.

3.6.1 Height maps over a plane

In the plain case the implementation or use of the heightmap is rather simple (Garland &

Heckbert, 1995), as has been said, the heightmap stores a set of decimal values which

corresponds one to one to the vertices or points which forms the plain, then the given value

is mapped between a minimum and maximum height and the result will be the Z component

of the given point.

 19

3.6.2 Height maps on a sphere

For the sphere case, there is a bit more complexity, instead of having a one-to-one

relationship between the image (heightmap) and the set of points. The value of the

heightmap for a given point is calculated using the parametric sphere equations or a UV

transformation, making the heightmap in a spherical surface instead of a plain one in a

similar way to how an earth map works (Barmore, 2002). Although the one-to-one

relationship is not impossible and can be used with the sphere too. Instead of making the

result the Z component, now it is the magnitude of the point, being this equal to its current

value plus the mapped result. Another method to consider is to use the Perlin Noise

algorithm in 3 dimensions using the normalized vector between the point being evaluated

and the center of the sphere as inputs.

 3.7 Parameters that influence the terrain

 3.7.1 Granularity

In the Perlin Noise context, the granularity can be interpreted as the level of detail that a

heightmap is able to provide. In general, this is also related to the number of octaves or

layers that forms the heightmap, being a big granularity a fuzzier result and small granularity

a detailed one. (S. Ebert et al, 2003.)

In the terrain context, this parameter is very useful because, depending on the kind of biome

that needs to be generated, the changes on the granularity would be crucial, for instance, a

mountainous biome needs the level of detail corresponding to the small granularity in order

to represent the rocks, cliffs, slopes, etc. but a desert one formed mainly by dunes doesn't

need that many details and can be done with a bigger granularity.

Figure 13 Comparison of two heightfields generated with Perlin noise, one with big granularity (left) and other with small

granularity (right).

 20

3.7.2 Strength

The strength or amplitude refers to the importance of a given layer of the noise in regard to

the others (S. Ebert et al, 2003). As it has been shown in Figure 8 and Table 1, the more the

amplitude the more that layer will influence the result, in general, the higher amplitudes are

for the firsts layers, which have a low frequency, this means that the firsts layers will have an

important impact in the shape of the function but will not be the ones responsibilities of the

detail. This can also be seen in picture 18 where the first heightmap provides a general shape

but fuzzy.

3.7.3 Noise scale

Another way to control the output of the Perlin Noise algorithm is the scale. Consider that this

algorithm works in an infinite n-dimensional space in such a way that the coordinates given

in the input are not really important, but the distance between points is. In general

applications a scale with values between 0.005 and 0.03 works fine (S. Ebert et al, 2003),

considering that with smaller distances the smoother the final output will be.

3.7.4 Persistence

A multiplier that determines how quickly the amplitudes diminish for each successive octave

in a Perlin-noise function. The amplitude of each successive octave is equal to the product of

the previous octave's amplitude and the persistence value (S. Ebert et al, 2003; Libnoise).

Increasing the persistence produces "rougher" Perlin noise, on the other hand lower

persistence tend to give a plainer terrain which resembles more to a valley or a smooth hill.

3.7.5 Lacunarity

A multiplier that determines how quickly the frequency increases for each successive octave

in a Perlin-noise function. The frequency of each successive octave is equal to the product of

the previous octave's frequency and the lacunarity value (S. Ebert et al, 2003; Libnoise). If

the persistence makes each successive octave to have less impact in the result, the

lacunarity is the responsible of adding the details, thanks to the increment in the frequency

of each octave the result can be rich in details, both persistence and lacunarity must have an

equilibrium in order to represent a coherent terrain.

3.7.6 Octaves

One of the coherent-noise functions in a series of coherent-noise functions that are added

together to form Perlin noise. These coherent-noise functions are called octaves because

each octave has, by default, double the frequency of the previous octave (S. Ebert et al,

2003; Libnoise). Musical tones have this property as well; a musical C tone that is one

octave higher than the previous C tone has double the frequency. The number of octaves

control the amount of detail of Perlin noise. Adding more octaves increases the detail of

Perlin noise, with the added drawback of increasing the calculation time.

 21

3.7.7 Noise coordinates

As said before, Perlin Noise provides an infinite n-dimensional space with values between -1

and 1 for each point evaluated. This point will be defined generally in 1, 2, or 3 dimensions,

and with the values obtained from the algorithm on those coordinates the terrain will be

modified. As commented in the scale section, the important thing is the space between the

points which are being calculated and not the points themselves. This is a direct

consequence of a coherent terrain, for example for a particular biome everywhere should

look more or less the same regarding the details.

3.7.8 Mapping

• Sin/Cos based functions.

In some cases, after obtaining the noise value for a given point, it can be interesting

and useful to map that value. Plugging that value into a given function to modify the

noise value in order to conserve the coherent pseudo-random values of the noise,

ending up with complex transformations. One example of this mapping function are

the sin/cos functions. In Figure 14 is represented a classical sine function, and a

modified sine function, this one will be used in the use case to map the noise values

in order to create cliffs in the plain terrain.

Figure 14 Graph representations of the function 𝑓(𝑥) = 𝑠𝑖𝑛(𝑥) (left) and f(x) = 1 - |sin(x)|2 (right)

● Conversion of values.

The following methods are an extension of the concepts explained in point 4.3.2

Fractal Perlin Noise, in fact they are procedures which will be applied after calculating

the fractal Perlin. First the Billowy turbulence (De Carpentier & Bidarra, 2009)

presents a more ‘billowy’ aspect, defining a more eroded and less rigid terrain when

applied as a height map. To apply the Billowy turbulence the only step required is to

return the absolute value of the noise value.

B𝑖𝑙𝑙𝑜𝑤𝑦𝑁𝑜𝑖𝑠𝑒 = | 𝑃𝑒𝑟𝑙𝑖𝑛𝑁𝑜𝑖𝑠𝑒 (𝑥, 𝑦) |

The next turbulence which can be applied in order to modify the noise value will be

the Rigid turbulence or rigid noise(De Carpentier & Bidarra, 2009). It isn’t anything

more than the complement of the Billowy turbulence.

 22

With Rigid turbulence a less eroded and more sharp terrain will be generated. To

apply the Rigid turbulence first calculate the Billowy turbulence, and the return one

minus that value.

𝑅𝑖𝑔𝑖𝑑𝑁𝑜𝑖𝑠𝑒 = 1. 0 − 𝐵𝑖𝑙𝑙𝑜𝑤𝑦𝑁𝑜𝑖𝑠𝑒

Figure 15 Plain terrain generated for this work. 128x128 grid with Billowy (left) and Rigid (right) turbulence.

4 IDE approach

In computer engineering an integrated development environment (IDE) is the software for

building applications that combines common developer tools in a single graphical user

interface (GUI). An IDE typically is formed with a source code editor, a local build automation

and a debugger.

For this work the chosen IDE was Processing, it was first started in Spring 2001 by Ben Fry

and Casey Reas, along with Andres Colubri, Elie Zananiri and Samuel Pottinger. Processing

is a flexible software sketchbook and a language to code within the context of the visual arts.

Since 2001, Processing has promoted software literacy within the visual arts and visual

literacy within technology. It is an open-source software based on Java, it provides outputs in

multiple formats such as 2D, 3D, PDF or SVG, uses technologies such as OpenGL

integration for accelerated 2D and 3D and it is available for GNU/Linux, Mac OS X, Windows,

Android and ARM.

Processing is a descendant of the Design By Numbers (DBN) project and other initiatives at

the Aesthetics + Computation Group (ACG). DBN is a simplified programming language that

was developed to teach the structure and interpretation of software visually. Design By

Numbers was created by John Maeda and accompanied a book of the same name. While at

the ACG, Ben and Casey were involved in the development and maintenance of the DBN

software and courseware, and that experience provided the basis for the Processing project.

(Reas & Fry, 2014.)

Processing code is converted to straight Java code (using the "preprocessor") when hitting

the Run button. This also makes it possible to embed other Java code in the sketches, or use

the core.jar file from the Processing distribution to develop sketches with other environments.

For instance, Eclipse.

 23

Processing also relies on (and is indebted to) other open projects, namely:

● jEdit Syntax package, which is public domain.

● The ECJ Compiler from the Eclipse project, which uses the Eclipse license.

● Java Native Access (JNA) project, released under the LGPL.

● Release 0149, use a slightly modified version of launch4j to create processing.exe on

Windows.

● The quaqua library, which makes Java applications look more like Mac applications

when running on OS X.

In summary, the Processing Development Environment (PDE) makes it easy to write

Processing programs. Programs are written in the Text Editor and started by pressing the

Run button. In Processing, a computer program is called a sketch. Sketches are stored in the

Sketchbook, which is a folder on your computer.

Sketches can draw two- and three-dimensional graphics. The default renderer is for drawing

two-dimensional graphics. The P3D renderer makes it possible to draw three-dimensional

graphics, which includes controlling the camera, lighting, and materials. The P2D renderer is

a fast, but less accurate renderer for drawing two-dimensional graphics. Both the P2D and

P3D renderers are accelerated if the computer has an OpenGL compatible graphics card.

The capabilities of Processing are extended with Libraries and Tools. Libraries make it

possible for sketches to do things beyond the core Processing code. There are hundreds of

libraries contributed by the Processing community that can be added to the sketches to

enable new things like playing sounds, doing computer vision, and working with advanced

3D geometry. Tools extend the PDE to help make creating sketches easier by providing

interfaces for tasks like selecting colors.

Processing has different programming modes to make it possible to deploy sketches on

different platforms and programs in different ways. The Java mode is the default. Other

programming modes may be downloaded. (Reas & Fry, 2014.)

One inevitable question is why to aboard this work with a Java-like technology when there

are other options like Unity with C# and C++, the answer is that this work is not a technical

demonstration of the capabilities of those languages or the potential peak performance that

could be achieved, but instead a catalyst to explore the ideas of the procedural terrain

generation and the capabilities of algorithms like Perlin Noise.

Between the simplicity that some languages like Python, Ruby or others scripting languages

could offer, and the performance that more advanced languages (C-style) could offer, is

Java, moreover with Processing Java counts with a new graphics and utility API along with

some simplifications which simplifies several aspects of the development phase.

 24

 25

5 Use case: Procedural terrain generation system

 5.1 Case definition and main objectives

The scope of this work is to develop a program capable of generating a complex and

coherent terrain for both, plain, and spherical surfaces. To achieve these objectives a couple

of problems have to be solved, for instance: First, a set of operations must be defined for the

program to render the different objects that will make the scene. Second, the geometries for

both the plain and spherical terrain must be implemented, establishing how the different

terrains will be rendered. Then, the noise (Perlin noise) among its modifications, and the

different function which support it must be developed and implemented. Also, the data

structure that will provide the functionality to the whole project has to be designed among the

different shaders that will contribute strongly to the aesthetic and visual details of the

landscapes. In the end, the plain terrain must be able to provide landscapes formed by

regular mountains, mountain ranges, valleys, cliffs, coast, oceans, and rivers, with a

dynamical light system, and most importantly, a virtual infinite terrain extension. The

spherical terrain must create a planetary-looking object, in which different continental masses

can be distinguished, among oceans, islands, archipelago, and atmosphere systems, and

finally, a cloud system which changes over time.

 5.2 Data model.

This section will include some of the key points in the development and implementation of

the ideas and concepts presented in the theoretical part of this work. The data model will be

then, the model or skeleton of the project.

The first problem to be solved in order to accomplish a decent terrain generation system was

how to represent the terrain in the first place. In the theoretical part it has been pointed out

that the terrain will be represented with vertices in a 3D space, to accomplish this the

following methods were used:

• PShape: Processing data type for storing shapes (collections of points in 2D or 3D,

which can make a closed or open shape). Before it is used, it must be loaded with

loadShape() (if it is a precomputed shape, for instance, a blender export) or created

with createShape(). The shape() function is used to draw the shape to the display

window. Processing can currently load and display SVG (Scalable Vector Graphics)

and OBJ shapes. OBJ files can only be opened using the P3D renderer. The

loadShape() function supports SVG files created with Inkscape and Adobe Illustrator. It

is not a full SVG implementation but offers some straightforward support for handling

vector data.

• shape(): Draw shapes to the display window. Shapes must be in the sketch's "data"

directory to load correctly. Processing currently works with SVG, OBJ, and custom-

created shapes (this will be the ones used in this work). The shape parameter

specifies the shape to display, and the coordinate parameters define the location of

the shape from its upper-left corner. The shape is displayed at its original size unless

the parameters specify a different size. The shapeMode() function can be used to

 26

change the way these parameters are interpreted.

• createShape(): The createShape() function is used to define a new shape. Once

created, this shape can be drawn with the shape() function. The basic way to use the

function defines new primitive shapes. One of the following parameters is used as the

first parameter: ELLIPSE, RECT, ARC, TRIANGLE, SPHERE, BOX, QUAD, or LINE.

The parameters for each of these different shapes are the same as their corresponding

functions: ellipse(), rect(), arc(), triangle(), sphere(), box(), quad(), and line().

Custom, unique shapes can be made by using createShape() without a parameter.

After the shape is started, the drawing attributes and geometry can be set directly to

the shape within the beginShape() and endShape() methods.

The createShape() function can also be used to make a complex shape made of

other shapes. This is called a "group" and it's created by using the parameter

GROUP as the first parameter.

• beginShape() & endShape(): Using the beginShape() and endShape() functions allow

creating more complex forms. beginShape() begins recording vertices for a shape and

endShape() stops recording. The value of the kind parameter tells it which types of

shapes to create from the provided vertices. With no mode specified, the shape can

be any irregular polygon. The parameters available for beginShape() are POINTS,

LINES, TRIANGLES, TRIANGLE_FAN, TRIANGLE_STRIP, QUADS, and

QUAD_STRIP. After calling the beginShape() function, a series of vertex() commands

must follow. To stop drawing the shape, call endShape(). The vertex() function with

two parameters specifies a position in 2D and the vertex() function with three

parameters specifies a position in 3D. Each shape will be outlined with the current

stroke color and filled with the fill color.

• vertex(): All shapes are constructed by connecting a series of vertices. vertex() is used

to specify the vertex coordinates for points, lines, triangles, quads, and polygons. It is

used exclusively within the beginShape() and endShape() functions.

• size(): Defines the dimension of the display window width and height in units of pixels.

In a program that has the setup() function, the size() function must be the first line of

code inside setup(), and the setup() function must appear in the code with the same

name as the sketch folder. The built-in variables width and height are set by the

parameters passed to this function. For instance, running size(640, 480) will assign

640 to the width variable and 480 to the height variable. If size() is not used, the

window will be given a default size of 100 x 100 pixels.

• width() & height(): System variables that store the width & height of the display

window. These values are set by the first and second parameter of the size() function.

 27

 5.2.1 Plain terrain geometry

To create the plain itself a collection of dots in a 3D space were defined according to the

width and height of the windows. The shape was generated using the PShape(),

beginShape(), endShape() and vertex() functions. For the beginShape() function it was used

the TRIANGLE_STRIP parameter obtaining the results shown in Figure 16 left.

Figure 16 Simple plain (left). The vertices are joined using TRIANGLE_STRIP parameter.

The space between each vertex will be called offset, this offset can be easily calculated as

follows: For the x coordinate, offset 𝑤 / pointsrow & for the y coordinate, offset ℎ / pointscolumn,

being 𝑤 and ℎ the length in pixels of the plane’s width and height, 𝑝𝑜𝑖𝑛𝑡𝑠row the number of

points per row and pointscolumn the number of points per column.

To join all the points, it is needed to iteratively traverse each row of vertices using the

beginShape() and endShape() making a point and the one of the upper row vertices of the

shape as it is illustrated in Figure 16 right.

With the plain formed and all the vertices correctly joined, make the elevations will be as

easy as modifying the z component of each vertex in the case of the plain terrain, and the

magnitude of the vectors in the spherical case.

With this approach surges a problem, as it has been explained in point 4.3.1, Perlin Noise

presents a computational cost of O (2 n) , considering that in order to generate a terrain in

which the camera is able to move and render new terrain. Both the Perlin noise and the

rendering of the vertices and strips algorithms must be recalculated in each frame. This

situation can cause some performance issues. This problem will be explored in the Data

structures involved point.

 28

5.2.2 Sphere geometries

For the sphere, there are different approaches as was introduced in point 4.5. The first and

maybe the most extended way is creating the sphere through the polar sphere equations.

These equations bring a method to calculate a sphere formed with an arbitrary number of

points. The position of each point is calculated according to 2 angles. They are simple and

easy to implement but present an important problem, near the poles of the sphere the point’s

density increases significantly compared to the equator. This situation can involve different

problems like a distortion of continents near the poles and in the equator, as it can be seen in

Figure 17, the distortion in the equator is more evident with a low level of detail. Contrary to

the density problem which is easier to appreciate with higher numbers of vertices.

θ ∈ [0, π] (for inclination)

φ ∈ [0, 2 π] (for azimuth)

𝑟 being the radius of the sphere.

𝑥 = 𝑟 𝑐𝑜𝑠(φ) 𝑠𝑖𝑛(θ)

𝑦 = 𝑟 𝑠𝑖𝑛(φ) 𝑠𝑖𝑛(θ)

𝑧 = 𝑟 𝑐𝑜𝑠(θ)

Figure 17 Comparison of the distortion near the equator and the density near the poles.

Although this method present problems for the rendering of the planet as mentioned before, it is

useful to represent simpler structures. For this project this method was used to implement the

atmosphere of the planet and clouds.

Another approach is the Fibonacci sphere or Golden ration sphere. Here modifying the polar

equations an equal distribution of points is archived as it can be seen in Figure 18 (consider that

a truly equal distribution of points in a sphere is a very complex problem in mathematics. This

method presents an almost equal distribution, more than enough for the scope of this work).

Although this method presents obvious benefits as the density of points and also some

performance improvements in both computational complexity and memory, it presents the

challenge of sorting and arranging the points to form a solid 3D shape. Although this is possible,

it adds several layers of complexity to the original problem, making it not ideal but worthy of

mention.

 29

Φ = 1 − √5
 λ = Φ π

 𝑡 = 𝑖 / 𝑛

 𝑎1 = 𝑎𝑐𝑜𝑠 (1 − 2𝑡)

 𝑎2 = λ 𝑖
 𝑖, being the index of the point.

 𝑛, being the total number of points.

 𝑟, being the radius of the sphere.

𝑥 = 𝑟 𝑐𝑜𝑠(𝑎1) 𝑠𝑖𝑛(𝑎2)

𝑦 = 𝑟 𝑠𝑖𝑛(𝑎1) 𝑠𝑖𝑛(𝑎2)

𝑧 = 𝑟 𝑐𝑜𝑠(𝑎1)

Figure 18 Starfield (left) Fibonacci sphere forming an equal distribution of points (center and right).

Due to the difficulties associated with the process of joining the points, this method was used

to create a starfield as can be seen in Figure 18. The position of the points was first initialized

with the Fibonacci sphere algorithm for later, displace each point a determined distance using

arbitrary movements with coordinates of the points as input. The points are then distributed in

a way that resembles more to the distribution of the stars, also, to implement a feeling of depth

some of the points are brighter than others simulating different distances.

Finally, the method which will be used to render the spherical surface is the cube sphere. This

method presents the idea of defining a set of 3D vectors forming a cube. Forcing those vectors

to have all the same magnitude a sphere emerges, as it can be seen in Figure 19. With this

method, the density problem is partially solved and the construction of the 3D mesh is easier

(in the end it works like 6 plains joined together). There are two evident benefits of this

method: first, the sphere is divided into 6 equal parts, therefore the computational cost of the

rendering of the planet could be decreased, this is because now is possible to only render the

nearest face of the planet to the camera, and second, it will open the possibility to implement a

dynamical level of detail (LOD) in each face according to the distance between the terrain and

the camera. In summary, this method falls in the middle of performance and accuracy, and at

the same time, presents fewer problems and difficulties in the implementation. The process of

making the vectors to have all the same magnitude can be easily made in Processing with the

function setMagnitude(), which is based on the following equations:

 30

Where 𝑥, 𝑦, 𝑧 are the components of the cube vector and 𝑥' 𝑦' 𝑧' are the new components for

the sphere vector. It is worthy of mention to say that the cube is not the only geometrical body

that can be used as a base to construct the sphere, other methods provide better results like

the ones which use an octahedron or an icosahedron. For the sake of simplicity, the cube is

the one chosen for this work.

Figure 19 Comparison of a cube before and after setting the magnitudes.

5.2.3 Perlin noise implementation

With the plain and spherical terrain covered and knowing the geometry of these surfaces, is

important to think about the implementation of the noise function. As mentioned before, for this

work it will be used the 1983 version of Perlin Noise. This version is already implemented in

Processing with the use of the noise() function. In the Processing implementation, the Perlin

noise function returns values between 0 and 1, in addition, this implementation suffers from a

lack of customizable parameters such as the lacunarity or amplitude, because of that there is a

couple of considerations that must be pointed out: First, in the Processing implementation the

lacunarity will be always 2 making the frequency of each successive octave twice the previous.

The amplitude although can not be modified for each octave can be controlled indirectly through

the persistence, which will be specified as the parameter of the function noiseDetail() along with

the number of octaves. Other factors which influence the terrain such as the scale, coordinates,

and the mapping functions will be explained later. Finally in order to solve the values range

problem, and make the result of the noise() function oscillate between -1 and 1 the result will be

mapped with the following equation:

 31

f(noise) = noise(x ,y, z) * (-2.0) + 1.0

Here are the quotes to the Processing references of the noise() and noiseDetail() functions:

noiseDetail()

Adjusts the character and level of detail produced by the Perlin noise function. Similar to

harmonics in physics, noise is computed over several octaves. Lower octaves contribute

more to the output signal and as such define the overall intensity of the noise, whereas

higher octaves create finer-grained details in the noise sequence.

By default, noise is computed over 4 octaves with each octave contributing exactly half

than its predecessor, starting at 50% strength for the first octave. This falloff amount can

be changed by adding an additional function parameter. For example, a falloff factor of

0.75 means each octave will now have 75% impact (25% less) of the previous lower

octave. While any number between 0.0 and 1.0 is valid, note that values greater than

0.5 may result in noise() returning values greater than 1.0.

By changing these parameters, the signal created by the noise() function can be

adapted to fit very specific needs and characteristic.

noise()

In contrast to the random() function, Perlin noise is defined in an infinite n-dimensional

space, in which each pair of coordinates corresponds to a fixed semi-random value

(fixed only for the lifespan of the program). The resulting value will always be between

0.0 and 1.0. Processing can compute 1D, 2D and 3D noise, depending on the number of

coordinates given. The noise value can be animated by moving through the noise

space, as demonstrated in the first example above. The 2nd and 3rd dimensions can

also be interpreted as time.

The actual noise structure is similar to that of an audio signal, in respect to the function's

use of frequencies. Similar to the concept of harmonics in physics, Perlin noise is

computed over several octaves which are added together for the final result.

Another way to adjust the character of the resulting sequence is the scale of the input

coordinates. As the function works within an infinite space, the value of the coordinates

doesn't matter as such; only the distance between successive coordinates is important

(such as when using noise() within a loop). As a general rule, the smaller the difference

between coordinates, the smoother the resulting noise sequence. Steps of 0.005-0.03

work best for most applications, but this will differ depending on use.

There have been debates over the accuracy of the implementation of noise in

Processing. For clarification, it's an implementation of "classic Perlin noise" from 1983,

and not the newer "simplex noise" method from 2001.

 32

In summary, for the Perlin Noise implementation it has to be defined the following variables:

• The number of octaves, which will variate between 4 and 8 (for a typical range, but it

can oscillate between 1 and n).

• Scale, to determine the distance traversed in the noise space for each vertex of the

plain or the sphere.

• An offset in the x and y coordinates, will make the camera able to move in the plain

terrain while the position of the vertices stays the same.

• The persistence or fallout, to determine the loss of impact each octave has compared

to the previous one.

• Also for the plain terrain there will be an initial displacement (respect to the noise

space) in order to avoid some possible artifacts in the result.

 5.2.4 Plain terrain developed methods

Moving into the plain terrain, the functions developed for this work are:

• preinit(), In this function some control variables are initialized.

• initTerrain(det), being det, the number of vertices along the width and height of the

terrain. This function will prepare the terrain disposing of the vertices of the terrain

itself, the water, and the starfield. The terrain and water surfaces will have a total of

det2 number of vertices, and the starfield will have a nstar number of stars (points). In

addition to this other variables such as the initial displacements, x and y offsets, scale,

and persistence are initialized.

• alterHeights(), this will be the method responsible of making the terrain elevations. It

will be called each frame unless the function createStaticFrame() has been called.

Inside this alterHeights function lays the control of the Perlin noise parameters

described before and the mapping functions (Billowy noise, Rigid noise, and my

personal mapping function which from now on will be abbreviated to mpi). It has a

computational complexity of θ(n) being n the total number of vertices of the terrain.

• renderField(), this is the method responsible for rendering the terrain. This method is

called each frame after the alterHeights function has been invoked. It will render the

terrain, coloring it according to a set of methods which will be explained in the shaders

and textures chapter. The method may change the rendering results according to some

variables like if the water needs to be rendered or not, or if the final texture has to be in

colors or pure white. It has a computational complexity of θ(n) being n the total number

of vertices of the terrain minus det.

• renderSeaField(), the analog of the renderField function but for the water surface, but

with the detail that now the Perlin noise function is being used in a 3d context using the

z component as time. With this, the water can move and change.

 33

• generateStars(), initializes the star field using the Fibonacci sphere algorithm.

• renderStars(), this method renders the starfield surrounding the terrain. For that, each

frame renders points of different brightness. It has a computational complexity of θ(n)

being n the total number of points.

• renderLightsAndShadows(), this method provides the lighting and increases the detail

of the terrain by adding the shadows.

• createStaticFrame(), similar to renderField, but instead of rendering each frame the

terrain constructing the triangle strips as renderField does, this function makes use of

the Processing function createShape to construct a static shape of the terrain in a

particular moment. For this project was very important to accomplish an infinite world in

which the user could move and explore. As the number of vertices increases and so

the detail of the terrain the performance decreases drastically, to solve this, was

developed this method along with the utility of increase or decrease the level of detail.

When an interesting landscape is generated, the user could increase the level of detail

as much as desired for then “freeze” the terrain constructing this shape and rendering it

with the Processing shape() function.

As mentioned before, the alterHeight function can modify the overall shape of the terrain

according to the mapping function such as the billowy, ridged, and mpi. Is important to consider

the overall changes that these modification produces in the terrain in order to understand them

and know when they are ideal to use.

 Figure 20 Comparison of the terrain with Billowy noise modification applied with water rendered(right) and without it(left).

As it can be seen in Figure 20, the billowy modification alters the terrain in such a way that the

overall shape tends to look less eroded, mountains are less sharp with more continuous

changes, and the valleys now fall and are meet in sunken structures. These results can make

the surface look a bit strange and may be interpreted as different layers of terrain intersecting

with each other (especially as can be seen in Figure 20 left), but, when a water surface is

added to the terrain at an arbitrary height (here the water level is calculated with the height of

the lowest vertices of the terrain plus a percentage of the maximum height allowed) structures

similar to rivers are formed. In the generations chapter other river implementation ideas will be

presented and discussed, but, considering that the majority of those ideas brings an extra

 34

computational complexity and the fact that they will be calculated if and only if the terrain is

static, means that those ideas, or at least the majority of them couldn’t be implemented in this

infinite terrain idea. The fact that this modification recreates rivers and lakes kind of structures

makes the billowy modification more than interesting. Also, this sunken structure could be

interpreted as a representation of oceanic trenches formed by the movement of part of the

lithosphere when sinking into a subduction zone because of the collide with other parts of the

lithosphere.

One of the benefits of this modification is the fact that these lower vertices which can create

rivers and resemble oceanic trenches tend to have noise values of almost 0 (considering that

the billowy modification is obtained with the absolute value of the noise function and therefore,

it has a range of values between 0 and 1). This produces the situation that when using the

billowy noise not as the final collection of noise values, but as a mask, it can be multiplied with

other noise modifications using it as a base to form more complex landscapes and to preserve

those river structures.

The rigid noise on the other hand is the opposite. It brings those sunken structures up to form

more sharp structures. Changes in shape of the mountains are now a bit more pronounced,

peaks and mountain ranges emerge from what were the lowers points in the billowy

modification as can be seen in Figure 21 left. Valleys can appear, zones where the terrain is

flatter. These zones tend to be near the mountains. In a way, this terrain seems to be more

eroded. Rivers are still able to spawn but different to the billowy ones if in the billowy

modification the rivers where thin, curvier, and in occasions, several ones could join in the luck

of affluent, now with the rigid modification, they tend to be more width and less curvy.

Figure 21 Comparison of the terrain with rigid noise modification applied with water rendered(right) and without it(left).

In addition to the previous, rigid noise take advantage of the valleys, and when the water

surface is rendered oceans can appear. Large masses of water in which sometimes could

spawn little island or even a system of these to form an archipelago, because of this when rigid

noise is implemented or other modifiers which share similar effects coasts, beaches, and river

mouths appear as can be seen in Figure 21 right, letting the developers work on shaders and

textures which consider sand, very eroded rocks, and other similar components.

Overall rigid noise works just fine for the majority of the applications in which sharp and eroded

mountains must appear. It can be used as a mask, like the billowy modification, or even used

in a pondered sum of different noise functions to add more roughness to the terrain.

 35

Unfortunately in some cases the level of detail or the imperfections on the terrain could feel

missing, getting a terrain that though looks fine, does not look natural and organic enough. In

order to solve this, different approaches can be followed: First as mentioned, rigid noise can

be combined in several ways with other noise functions or modifications to correct the artifacts

and make them more natural. Other alternatives use this kind of modifications as a base to let

other algorithms much more complex to work and get a more sophisticated landscape, some

examples of these algorithms could be the hydroerossion kind, the downside is that like the

rivers implementation algorithms that were introduced before, these hydroerossion algorithms

add much more computational complexity and only works for static landscapes. Finally, the

mpi modification is a mix of all the previous concepts. It was achieved after several tries and

numerous modifications. The idea was to get a modification for the Perlin noise values that

could be able to create sharp mountains as the rigid noise, with the possibility of having

different kind of mountain like the billowy, and valleys near to the mountains which were flat

enough to resemble a decent level of erosion. On top of all of this, this modification must

provide both rivers and large water masses, and finally being able to be applied on an infinite

terrain on the fly just as the billowy and rigid does.

Figure 22 Comparison of the terrain with mpi noise modification applied with water rendered(right) and without it(left).

As it can be seen in Figure 22 left, all of the previous requirements were accomplished. This

modification not only provides mountain ranges but also produces craters, volcanoes-like

structures, and normal mountains. In addition, valleys are flattered, changing the water level

they can be appreciated or turned into large masses of water.

To accomplish this result a few steps were required: First, two noise values were needed. One

with eight octaves which were called eightOctavesNoise, and one with four octaves called

fourOctavesNoise, both of them used the same scale, persistence, and coordinates in order to

obtain coherent values. The eightOctavesNoise was converted into an angle just by multiplying

its value with two times PI, that angle was then used as an input in the equation shown below.

This equation is indeed the rigid noise one, but with the change that the billowy modification is

now the absolute value of the angle’s sinus. As can be seen in Figure 14, this function returns

values between 0 and 1 which are sharper in the peaks and flatters in the lower points. Finally,

the result of this mpi modification will be the pondered sum of this function and the

fourOctavesNoise. The reason behind this is that the fourOctavesNoise is being used as a

 36

control with which the final result will have a variety of mountains. Sharper where the angle

function values are higher and less eroded where the fourOctavesNoise predominates.

 θ = eightOctavesNoise * 2.0 * π 0 ≤ θ ≤ 2 π

 f(θ) = 1.0 - | sin (θ) | 0 ≤ f(θ) ≤ 1.0

mpi = f(θ) * 0.55 + fourOctavesNoise * 0.45 0 ≤ mpi ≤ 1.0

To the question is any of these modifications better than the others? The answer is complex.

For this particular work, none of these modifications seems better than the others, each one has

its pros and cons, perfection is a complicated if not impossible term to achieve when trying to

simulate or recreate natural structures. In the end, nature presents different kinds of patterns

depending on multiple factors, because of that, the idea of using the three of them depending

on different variables like x and y coordinates, biomes, etc. seems to be the most reasonable

option. The mix of these different modifications and the gradients needed to make smooth

transitions from one to another, among with the conditions with which decide what type of

terrain render are let for future updates.

5.2.5 Spherical terrain developed methods

Considering that this work is just an implementation of a set of theoretical concepts, the

spherical terrain implementation will be simpler and more straightforward. Of course, the

complexity of the spherical noise implementation could be much more, but it will be let for future

updates. Here is the list of functions developed for the spherical noise implementation for this

work:

• generateCube(), this method creates and initializes the data structure which contains

the 6 faces of the cube, and transforms it into the sphere. Each one is stored in an

array similar to the plain terrain. As the cube is indeed the unit cube all the coordinates

for each vector will be between -1 and 1. Considering that a cube has 6 faces, each

one has n2 number of points, being n the width or height of the face (regular faces).

The total number of vertices or points will be 6 n2. The computational complexity of this

function is θ(n2) as all the faces are filled at the same time.

• alterCubeMagnitudes(), similar to alterHeight function for the plain terrain. This

function applies the Perlin noise algorithm to each vector of the cube sphere. For this

implementation, there is a modification to the Perlin noise algorithm similar to the mpi

for the plain terrain, but not as detailed and much less complex. The maximum height

achievable for any given point has been capped in order to increase the feeling of a

planetary scale. This algorithm has a computational complexity of θ(6 n2) being n the

width or height of the faces.

• render(cube), using the position of the camera, this algorithm determines which face of

the sphere cube is nearest to it and renders only that face. This is a decision taken

after considering the number of points to render, if instead the plain terrain method

was applied (rendering the 6 3D meshes correspondents to each face) the

performance will be more than insufficient. Another change in respect of the plain

 37

terrain renderField algorithm was to use the QUAD_STRIP parameter for the

Processing beginShape function, this is due to the fact that using the

TRIANGULAR_STRIP increased the number of artifact in the face’s unions. The

coloring technique is simpler compared to the plain terrain one. This algorithm has a

computational complexity of θ(6 n2) being n the width or height of the faces.

• createStaticRender(cube), similar to the plain terrain function createStaticFrame, this

method is able to create a solid shape from the sphere cube for later rendering it using

the Processing shape function. Taking into account that for the spherical case, there is

no need for an infinite terrain, this method increases the overall performance of the

application considerably. The downside is that it will not be suitable for a dynamic level

of detail. This algorithm has the same computational complexity as the render

functions but it is called just once instead of each frame.

• generateStars(), initializes the star field using the Fibonacci sphere algorithm.

• renderStars(), this method renders the starfield surrounding the cube sphere. For that,

each frame renders points of different brightness. It has a computational complexity of

θ(n) being n the total number of points.

• renderAtmosphere(), in order to increase the detail of the planet, these methods

render its atmosphere as can be seen in Figure 24, this is composed of 4 different

shapes. 3 of these shapes are semitransparent sphere with different colors, simulating

the refraction that the atmosphere particles does when interacting with different light

wavelength. The last shape corresponds to another sphere with a cloud texture

applied with a rotation to simulate a cloud movement around the planet. It is also

possible to recreate clouds in a more detailed and complex way using the complex

clouds system which will be explained later.

Figure 23 Spherical terrain with oceanic bottom and a water layer(left) and without oceanic bottom and smooth ocean(right).

In summary, the spherical implementation was a bit trickier compared to the plain one. As

pointed out before there have been a couple of changes from the plain terrain, for instance: The

water could be rendered now in two ways, in the first is rendered as a smooth sphere

independent to the planet, with blue color and without using the 3D Perlin noise, compared to

the plain terrain is less convincing as water but more efficient. This way, an oceanic bottom

 38

exists and it can be explored. With the second way the water surface is now not an independent

blue sphere but the planet terrain itself, for all the vectors which form the planet, if any has a

magnitude less than arbitrary quantity (the sea level), then the magnitude of that vector will be

forced to be the radius of the planet. With this the ocean is completely smooth, the oceanic

bottom disappears and the performance increases even more. Another change is that the Perlin

noise modification is simpler and thought to achieve a more planetary scale look, making the

terrain look separated in continents. Finally, the textures and shaders although are still

procedural are simpler compared to the plain terrain.

Even with those changes, the final result seems pleasant enough to satisfy the needs of this

work. The results displayed in Figure 23 shows how an Earth-like planet is obtained with the

parameters used, changes in these parameters along with other Perlin noise modifications

could lead to the possibility of generating new planets with different biomes and more exotic

looks.

Figure 24 Comparison of the spherical terrain with the atmosphere rendered (left) and without it (right).

Before moving into the data structures and the technical decisions taken for this work, the last

implementations did (in terms of models and noise implementations) was: First, the complex

clouds system. This system is although not perfect, much better than the simple clouds

implemented in the renderAtmosphere function. Instead of using a simple png, with this method,

the clouds are rendered procedurally in real-time, suffering from different deformations as time

passes, and being stacked once upon each other simulating the different layers of clouds that

are present on the earth. The more clouds are stacked the more opaque’s they turned blocking

the light as they would do on a planet. The downside of this method is the performance, this

method is far from ended and as a direct consequence is not optimized yet. A comparison

between the two methods can be seen in Figure 25. The second is the atmosphere rendering,

as introduced in the spherical terrain functions list. This method simulates an atmosphere with a

set of semitransparent spheres with combinations of red, green, and blue colors simulating the

different light wavelengths which refract on a real atmosphere. Both the clouds and the

atmosphere are far from accurate, the ideal way of doing this would be through particle systems

interacting with simulated light rays with techniques like raycasting or raymarching, these ideas

would increment the quality and detail of the final result would be let for future updates.

Notice that the collection of algorithms that are able to render these more sophisticated clouds,

 39

use 3D Perlin noise with the third component as the time, eight octaves, and the typical

persistence and lacunarity, in a similar way as how the plain terrain water works, the most tricky

and complicated part was how to use the texture generated in a 2D context to wrap a 3D

invisible sphere avoiding artifacts in the final image. The key was to try to make the texture

symmetrical to avoid the artifacts and then mix different layers of clouds to increase the

randomness and create a more complex-looking system. It was not only interesting but very

instructive to see how simple algorithms can represent nature or at least, provide similitudes

with it.

The list of algorithms to implement this cloud system is:

• generateTexture(offset), creates a 2D texture to apply over a surface. Using

getColorOnPxl to decide what color is each pixel and Processing functions such as

createImage, loadPixel, updatePixels and color().

• getColorOnPxl(i), this algorithm determines the opacity and density of a cloud on a

given point based on an index i. It uses Perlin noise in 3D, with 8 octaves.

Figure 25 Comparison of the spherical terrain with the complex clouds(left) and simples (right).

5.3 Data structures involved

By definition, a data structure is a data organization, management, and storage format that

enables efficient access and modification. In addition, a data structure is a collection of data

values, the relationships among them, and the functions or operations that can be applied to the

data. In this work, there are four data structures defined: The plain terrain, the spherical one,

the clouds, and the heightfields. About the plain terrain there are a couple of structures to

defined and to comment on, for instance:

• One-dimensional arrays, these structures store vectors which are used to represent

points in a 3D space, the terrain field, sea field, and the star system are stored in

separated arrays. As it has been mentioned before, given a width and height of the

terrain field defined by a level of detail the length of the terrain and sea field would be

 40

equal to detail2. In order to represent and access those points, there has to be a logic

to treat the one-dimensional array as if it was a matrix or two-dimensional array, this Is

because although the one dimensional kind of array allows a more efficient way to

store data values, at the moment of rendering the field, joining the points, etc. the two-

dimensional arrays are easier to use. To accomplish this and still use the one-

dimensional arrays the logic to use is as easy as, to access points to the right or left of

a given point just add or subtract one to the index, and to access points above or

below add or subtract detail to the index (always considering the boundaries of the

structure).

• PShapes, as it has been commented, PShape is the Processing data structure used

to create, store and render user custom shapes among the primitive ones. These

shapes are incredibly important to increase the performance of the program.

The spherical case takes advantage of the concepts used in the plain terrain and uses it,

developing and implementing this spherical terrain turns evident that there is space for

improvement in terms of optimization for both memory consumption and computational

efficiency, again the scope of this works is a more practical study of some of the theoretical

concepts explained in the theoretical part, but this could be an interesting factor to fathom and

investigate about in future improvements. Some of the data structures used for the spherical

terrain are:

• A one-dimensional arrays, similar to the plain terrain, but taking into account that the

sphere which is used to render the planet is formed from a cube and therefore there

will be six one dimensional arrays, one for each face of the cube. Also in the spherical

case, the one-dimensional arrays are used to store the color palettes which are used

to give color to the terrain, in this case, the arrays store not vectors but hexadecimal

values.

• HashMap, a HashMap is a particular data structure which stores object based on a

key-value relation, where the items stored are not accessed by an index as it could be

in a typical array but with a unique key. For instance, in this case, each face of the

cube is stored with a string key which stores the axis associated with the face (the

most to the right face will be identified with the key “positive_x” the most to the left with

“negative_x” etc.). In order to store these six faces of the cube, several approaches

could have been followed. It could be another array, making the global structure a 6 *

detail2 matrix, or a linked list kind of structure like an ArrayList, etc. In this case, for

reasons related to the one-face rendering, the HashMap turned to be the more

convenient and comfortable data structure to use. This HashMap system is associated

with a one-dimensional array of vectors called facesMainsVectors, this array will store

six vectors (<0,0,1>, <0,0,-1>, <0,1,0>, etc.) it is used to check which of those vectors

the camera position is nearest, knowing this the algorithm is able to identify which face

of the cube needs to be rendered.

 41

The clouds system is stored in a new data structure which is nothing else than an object-

oriented class. This is due to the ease of organizing the variables and methods needed to

render and store the clouds separated from the spherical code. The inner structures of the

clouds class are:

• PShapes, same as the plain terrain, in this case, the shape is generated with the

processing primitive SPHERE, which is based on the polar sphere.

• PImage, PImage is the Processing data structure to store and render images, in this

case, the image is created from a heightfield generated with Perlin noise and it is

applied as a texture to the sphere shape.

The most evident performance issue of this work is due to the lack of GPU acceleration for part

of Processing. This causes that everything has to be calculated and rendered with the use of

the CPU, because of this things like rendering a 3D mesh of a million points each frame

(without the use of createStaticRender or createStaticField can be unthinkable (for most of the

Figures shown in this work the terrain is formed with 409600 points in the case of the plain and

540000 for the spherical).

Another problem is the noise performance, as mentioned Perlin noise is an expensive algorithm

in terms of computational complexity. For the plain terrain, the Perlin noise algorithm is

calculated several times with changes in the number of octaves, persistence, etc. (It is used for

the terrain itself, for the shader, and the sea field), and in the case of the spherical case,

although the planet could always be rendered as a static render, the complex clouds system

uses a 3D Perlin noise to create an image and apply it as a texture to a shape each frame.

Solving these performance issues is not an easy task, and several approaches could be

followed:

• Decrease calculations, the easiest way of doing fewer calculations could be to decrease

the number of times that the Perlin Noise function is called or decrease the number of

points in which the noise function is applied. Although easy this solution will come with

a quality downgrade and will not be a technical solution but luck of fix.

• Parallel processing, due to the fact that the sea field of the complex clouds is

independent of the plain or spherical terrain an optimization process could be to let

those algorithms run in a parallel way in respect to the terrains. Also, the terrain heights

calculations could be parallelized as well, but several considerations will be needed and

could be not as easy as the previous ideas.

• Data structure optimization, it has already mentioned that several approaches could be

used in the way that the values, data, and information is stored and used in the terrains.

Other approaches like changing the HashMap for arrays or matrices could increase the

overall performance.

• Using less the Perlin noise function, as mentioned Perlin noise is expensive in terms of

computations, things like the sea field could be calculated using other algorithms like a

Gaussian distribution for water reflections, this could make the overall quality or level of

detail be maintained and at the same time save computational complexity.

 42

5.4 Shaders and textures

5.4.1. Introduction

Processing offers a set of tools to work in the creation and implementation of shaders and

textures in 2D (using the 2D renderer, P2D) and for 3D (using the 3D renderer, P3D). Although

these tools are not as powerful or flexible as others engines could bring (like unity or unreal

engine), they are powerful enough for the scope of this work. One thing that is need for

consideration is that Processing renders shaders and textures using the CPU, because of this

sometimes when the shader needs a lot of calculations (like the complex clouds) several

performance problems appear. Once again this kind of problems are not considered a very

important problem taking into account that this work is just a couple of theoretical concepts put

into practice to visualize them. Nonetheless is important to remark that moving the code to other

engines like the ones mentioned before could bring both, performance and quality upgrades.

5.4.2 Plain terrain shader

For the plain terrain, a more complex and sophisticated shader has been developed, looking for

details in the surfaces, vegetation, snow on the top of the mountains, and sand near the water

surfaces. For the spherical terrain, the shader is much simpler, it will not be especially difficult to

implement a shader similar to the plain terrain but, on one hand this simpler shader doesn’t

present unpleasant results and it was found ideal for a planetary scale, and in the other hand

using both shaders brings the possibility of comparing them, looking for pros and cons, and

allows to explain the difficulties or ease on both of them.

The plain terrain shader was as mentioned before designed looking for details and a more

organic view. As it has been said, imitate nature is nothing but a very complex task, and

because of that usually, simplifications or assumptions are made, this case is not the exception.

Here the main concepts are the followings: When a surface tends to have a lot of inclination is

because that surface is more eroded and therefore the amount of vegetation that can grow

there is less, contrary when a surface is flat enough, much more vegetation is able to grow and

extend. The taller is a given point compared to the rest, the more possibilities of snow forming

are. Lastly, the sand is formed near the water surfaces because of the erosion that the water

produces on the rocks.

With these ideas established the first task was to determine the amount of inclination of a given

point in the terrain with respect to the others. Taking into account that the geometry of the

terrain allows to given a point (vertices) found its neighbors (the vertices that are surrounding it)

instantly, it is possible to calculate an average inclination of those vertices. Then if the

difference between the point being evaluated and the average is less or more than a constant (

in this case it was called the flatness constant) is possible to determine if for that point it has to

be painted with vegetation tonalities or with rocky ones. To make better gradients and have a

smooth transition between vegetation and rocky terrain, the colors are blend together using the

value of the difference between the point height and the neighbors average to determine the

percentages used in this blend operation. The last consideration was to alter the percentages

used in the blend operation according to the height of the point. This is because the higher one

 43

goes in real life, the less vegetation will be found.

Figure 26 For a given point (red) its height is calculates (h1) and compared to its neighbors (blue) points (in this case the

neighbors have all the same height (h2), the average then will be calculated as h1 + h2*3 / 4. Finally the difference h1 – (h1 +

h2*3 / 4) will be compared to the Flatness constant .

For the others attributes of the terrain (sand, snow, etc.) similar procedures were used.

Blending color between rocks and sand, sand and vegetation, rocks and snow, vegetation and

snow, and so on. One important thing to remark is that all of this blending is done as mentioned

using a difference between the height of a given point and its neighbors. Happens that when

increasing the number of vertices (without changing the measurements of the terrain) these

vertices are more grouped, and therefore the difference between the height of a given point and

its neighbors decreased, for that reason the flatness constant has to change dynamically with

the number of vertices, for that the following expression was used:

Flatness dividend = level of detail / 128.0

Flatness constant = 1.6 / Flatness dividend

As it was mentioned in previous points, the detail of the plain terrain can increase or decrease

according to the user needs, but it does in jumps of 128 vertices, being the default 256. With the

inclination and blending task solved, the next step was to determine how the sand and snow will

be formed. As both sand and snow are things that could be described with the position, the

approach followed was to first declare an arbitrary height for both of them to spawn and then

alter that quantity with the Perlin noise function to increase the randomness and give a more

organic view (this noise was calculated with a bigger scale, typical persistence and two

octaves). The height for the sand to appear was calculated using a percentage of the lower

point of the terrain plus the water level, to make the sand appear very close to the water. For

the snow, it was determined that any point above a percentage of the maximum height

achieved in the terrain will be a possible spawn for it. Due to the fact that the terrain tends to be

flatter near the water and sharper near the top of the mountains, the Flatness constant needs to

be adjusted according to it, letting the expression like:

Flatness constant sand = 0.8 / Flatness dividend

Flatness constant snow = 1.2 / Flatness dividend

 44

Figure 27 Different captures of the plain terrain surface with the shader applied. In both the terrain is formed with 409600

vertices (640x640) and altered with the mpi modification.

As it can be seen in Figure 27 left, the amount and distribution of the sand and snow are

unpredictable and natural-looking. At the same time in Figure 27 right is easier to appreciate

how depending on the inclination and height there is more or less vegetation.

To conclude the plain terrain shader there are two more things to present: The light system, and

the water system. Although the complexity of the main shader or the details achieved on the

terrain thanks to the Perlin noise function and the modifications, without lights and shadows

these details will not be appreciated. These effects are the ones that bring depth and texture to

the terrain. To being able of rendering those lights and shadows the Processing functions

ambientLight() and directionalLight() were used. First, it was necessary to capture the mouse

movements in order to map the position of the light source, then use those movements to

recreate a 3D position vector (where the z component was fixed to a determined height) allows

the lights to have different angles using the directionalLight(). Finally, ambienLight() was used to

have a generic ambient light. In this light system exists 3 different kinds of light: Day, evening,

and night mode as it can be seen in Figure 28. Each one modifies in a certain way the color of

the light rays produced with directionalLight().

The water system is simple, independent of the plain terrain, exists a sea field that covers all

the water masses large or smalls. This sea field is created with very similar properties as the

plain terrain does, it is formed with the same number of vertices (to increase the detail of the

sea at the same time that the terrain does). It is joined using the Processing beginShape() and

endShape() functions with the TRIANGULAR_STRIP attribute. The Perlin noise function used

on this water surface has a big scale (to increase the number of irregularities that the surface

will have), using three octaves with a typical persistence and it is a 3D Perlin noise instead of a

2D as the plain terrain one was. Using the 3D Perlin noise, the water receives a third

component treated as time, this allows the water to change independently similar to the

complex clouds system does. It receives two new parameter called xOffsetSea and yOffsetSea.

With these two new parameters, the user is able to establish the direction of the wind,

reproducing the irregularities caused by an airstream into the water surface. This kind of water

simulations are expensive in computational complexity terms, other options could be a

Gaussian distribution for a refractive water surface.

 45

Figure 28 Different captures of the plain terrain surface with the three day modes, from left to right day, evening, night.

5.4.3 Spherical terrain shader

The spherical terrain shader is divided into two sections: terrain shader, and atmosphere

shader. As it has been said earlier the main spherical terrain shader (terrain shader). It was

designed to be simpler and much less sophisticated in order to compare it with the plain terrain

one. This terrain shader consists of two colors palettes: Earth palette, which will be applied for

all the terrain above the sea level (it must be remembered that the sea level value is an

arbitrary constant determined with the maximum height achieved), and the sea palette which is

applied to the terrain below the sea level (consider that if the planet is being rendered with the

option of making the water surface smooth this sea palette will be not applied and instead a

plain blue color will be used to paint all the sea surface).

Both palettes are stored in separated arrays, with a set of colors related to each other by a

gradient. For instance, the earth palette has the first color a light yellow to represent the sand,

then it turns into green for the hills, after brown for the mountains, and finally white for the snow.

In order to apply them when a given point is evaluated, its height (which is calculated with the

vector magnitude minus the sphere radius) is compared to the maximum and minimum height

achieved in the planet, knowing this two values, the shader determines which position (color) of

the palette must be applied to that point. This procedure is the same for the sea palette.

This way of determining a color for a given point is much less expensive in computational

complexity compared to the plain terrain one, however, two new data structures are needed to

store those colors increasing the memory complexity (although this increment is in terms of

bytes). Lastly one of the options is to render the water in a similar way as the plain terrain does,

without the sea surface being smooth the oceanic bottom is appreciable and the water surface

is replaced with a semi-transparent sphere with a radius equal to the planet radius plus the sea

level. This way of implementing a sea surface is rather simple, and much more efficient

compared to calculating a 3D Perlin noise each frame for a whole new set of points as happens

in the plain terrain, however, the complexity and detail are not comparable.

 46

Figure 29 Spherical terrain with shader applied complex clouds and smooth sea.

For the atmosphere shader, a couple of assumptions were made: First, it was acceptable to not

simulate the refractions of light rays through a dense particle system, and second, it was

admissible for the clouds to don’t have depth but to be 2D surfaces. These decisions were

made in order to decrease the challenging difficulties associated with those ideas. Independent

of the difficulties associated, it must be considered that Processing does not use a GPU

acceleration as other IDE’s (for instance Unity) could do, this fact has also influenced the

simplification decisions.

Then as it has been introduced in previous points, the atmosphere system is composed of the

atmosphere and the clouds. For the atmosphere itself, three consecutive semi-transparent

spheres are stacked, each one with the colors red, green, and blue so they can simulate how

different light wavelengths interact with it. Then the clouds can be simple or complex. The

simple is just a png texture generated with climatological data applied over a sphere that

surrounds the planet. The complex is made with an image that is created for each frame with a

heightmap calculated using 3D Perlin noise with the third component as time. Then the pixels of

the heightmap with values less than a threshold are set transparent, this allows the clouds to

appear and disappear gradually, to change their shape and simulate clouds with different zones

with more or less density.

At the comparison moment, it results evident that the plain terrain shader looks better, more

organic, sophisticated, and complex, but also more expensive to render and calculate. It also

presents different implementation difficulties which are avoided in the spherical case, as it was

said in the spherical geometry comparison there is not a better neither perfect method, but

instead each one is suitable for different scenarios. For instance, the spherical shader could be

used in space exploring games as the first shader of the planet when it appears in the vision

range of the player, for later when the user camera gets closer to the planet, the spherical

shader can be replaced with a more sophisticated one, saving computational power.

 47

Figure 30 Spherical terrain, shader applied and complex clouds, with smooth sea (left) and with oceanic bottom(right).

 5.5 Generations

5.5.1 Hydroerossion

Hydroerossion is the process where the terrain is eroded by the effect of water movements

such as rivers, cascades, waves, rain, etc. The majority of hydroerossion systems simulate in

a very decent level of detail these natural effects over the terrain. It usually comes with two

major problems: First, it must be considered that this hydroerossion needs to be calculated in

a non-real-time system, in other words, it can not be applied in this work. The reason for this is

because all the hydroerossion systems are performed in an iterative way, where, given a 3D

mesh (the terrain) a set of thousands of droplets fall into it. As the rain would normally do in

real life, these simulated droplets drag a certain amount of sediment from the terrain, falling

from one point to a lower one, depositing on their way certain sediment quantity’s (and

increasing the terrain elevation in that point) until they evaporate or a minimum local point is

reached. This process is repeated in an iterative way up to tens of thousands of steps. From

this short explanation, the second problem could be easily deduced: Computational

complexity. These kind of algorithms are incredibly slow and very expensive in terms of power,

although the results could be astonishing as it can be seen in Figure 31, the mpi noise

modification provide somehow similar results (taking into account that the hydroerossion

algorithms present much more quality to the final result and the hydroerossion obtained from

the mpi modification is just luck of erosion) where the slope of the mountains resemble the

kind of patterns generated by the water erosion and the valleys tend to be flat. Considering

that the mpi is applicable to an infinite terrain and is calculated in a real-time system, it has

been discarded to implement a proper hydroerossion algorithm for this work. As the plain and

spherical terrain systems provide through the createStaticField and createStaticRender

functions a 3D mesh in form of PShape objects, it could be a very interesting feature to be

added in the future.

 48

Figure 31 Hydroerossion system (left) by Sebastian Lague (Lague. 2021), and mpi modification (right).

 5.5.2 Vegetation

One of the most common ways of implementing vegetation is through a shader in a similar way

as to how the plain terrain shader does. Evaluating the height of a given point in respect to its

neighbors, but in addition, is very common to see some vegetation sprites placed on the zones

where the vegetation could spread. These sprites can be divided into two types: The first one

are the prerendered ones, a collection of images or 3D models which are placed in determined

zones according to some rules. The other are the procedurals or real-time rendered. At first,

these were the type of vegetation which were going to be implemented in this work. In order to

implement this vegetation, the approach was oriented to an L-System (Lindenmayer system).

Whit this kind of system, different types of plant-like structures could be achieved through a

recursive algorithm, which substitutes a text string following a set of rules and axioms. The

result is typically a 2D structure as can be seen in Figure 32 (although some L-Systems are

able to work in 3D) which then can be used to create a 3D structure through a convolution.

After several reconsiderations, this vegetation system based on procedural or real-time

rendered vegetation has been discarded, the reason is that although this structure can have

different results when a noise function is applied to the main algorithm and therefore could be

another good example of the uses of the Perlin noise function, it adds more computational

complexity to the project without contributing too much to it.

For future updates and improvements, this vegetation system could be explored in more detail

or even implemented looking for the 3D L-Systems. For now, the shader results present a

decent level of detail in the general result of this work which provides a pleasant render.

 49

Figure 32 Examples of L-System structures made for this work.

5.5.3 Rivers and lakes

Typically the river generation systems have been divided into cheap and expensive

computational methods. The cheap ones don’t make a high use of the CPU or GPU and are

able to achieve river-like structure through methods like the one presented with the billowy

noise. As it has been mentioned and commented on before, these methods use one or several

layers of billowy/rigid noise as a mask to alter the terrain making the river channels. They are

quick, efficient (in comparison to the expensive group) and provides a decent result. The

expensive computational methods on the other hand are, as its name suggests, a set of

algorithms with high computational complexity and therefore provides much more rich and

detailed results.

In July 2013 SIGGRAPH article 143. “Terrain generation using procedural models based on

hydrology” presented by Jean-David Génevaux, Eric Galin, Eric Guérin, Adrien Peytavie, and

Bedrich Benes, it was presented a new way to recreate rivers based on a hyper-graph, which

grows in a similar way as the L-Systems does based on a grammar system. Other expensive

methods like the ones based on hydrology or hydroerossion systems are also capable of

achieving astonishing results.

As it has been common in this work, the majority of these expensive methods that provide

richer details are though for non-real-time terrain simulators, heightmap editors, etc. therefore,

they are not suitable for an infinite terrain implementation. However, they don’t stop being

interesting and a future implementation which could improve the overall quality of the work,

being implemented similarly as the hydroerossion update, using the createStaticRender or

createStaticField methods to work with a 3D mesh object (the terrain itself).

Considering all said previously about rivers, for this work was considered important the

possibility of render rivers dynamically, based on noise functions and modifications such as the

billowy noise. The problem with the billowy modification is that it was too simple, and it doesn’t

present the complexity level desired for this work rivers.

 50

To accomplish a decent amount of detail in the rivers, without using static techniques like the

hydroerossion systems, the solution was as follows:

• First, for each point in the terrain, use a similar mpi noise modification mixing four and

eight octaves noise (same scale and persistence as the terrain for movement

coherence).

• Both the four and eight octaves noise has to be calculated as the complement of the

main terrain equations. This way the rivers will pass near to the mountains falling to the

valleys.

• With the height map obtained, a white mask was applied. A white mask is a technique

used in the noise context to create a threshold. This threshold was used to determine

which values of the heightmap use and which others discard. An example of a white

mask can be seen in Figure 33.

• Finally, in the getColor function, the value returned from this process will be evaluated

deciding if a given point must be painted as a river component or no. The higher the

point the more “frozen” will be the river.

• The given point will not have its height modified, it will only be painted with a shade of

blue.

This way the terrain can show decent quality rivers as can be seen in Figure 34. Obviously,

hydroerossion simulations, or any kind of simulation where particles play a role, and a sediment

deposition logic is applied will show much better results. But this shows another of the Perlin

noise uses in the procedural textures generation. The rivers equations are:

 eightOctavesNoise = PerlinNoise(x, y); Where noise parameters are 8 octaves 0.45 persistence.

 fourOctavesNoise = PerlinNoise(x, y); Where noise parameters are 4 octaves 0.45 persistence.

Mask1 = | sin (2 * π * (eightOctavesNoise * -2.0 + 1.0)) |

Mask2 = Mask1 * 0.35 + fourOctavesNoise * 0.65

Paint as river if Mask1 < 0.25 or Mask2 < 0.2

Figure 33. example of white mask. Only the noise value above a determined threshold are shown in white.

 51

Figure 34 Different rivers generated for the terrain using similar techniques to the mpi modification.

As has been pointed out the results obtained with this method are pleasant enough to be added

to the project, but they are not perfect. The main problem of this approach is the intrinsic nature

of procedural-generated systems. These systems can (and eventually will) present artifacts,

undesired structures which are very hard to detect, predict or fix. An example of these artifacts

can be seen in Figure 35. For this work, a river-like structure was considered correct if it was

complex enough. In order to determine if a structure was complex enough to be identified as a

river, it must have more than two bifurcations, otherwise, it was considered an artifact. The idea

behind this distinction is to exclude from the rivers the structures which form an ellipsoid path.

These artifacts among the possibilities for a river to spawn on a given point are, as said, hard to

patch or fix since it is something intrinsic to the methodology itself. Nonetheless is important to

remark these problems in order to consider them, analyze if the methodology is suitable for a

given implementation, or even think about some method to prevent or improve these ideas.

 52

Figure 35 Comparison of an artifact (left) and a complex river structure (right).

 6 Conclusion

 6.1 Future updates

The possibilities of different topics to implement in this work and improve it are exciting and

challenging at the same time, as it has been pointed out several times, this work was just

about the implementation of a set of theoretical concepts such as the Perlin Noise function, its

implementation and the different uses it could have, but there is space for better and more

complex results, for that here is a list of possible future upgrades:

• For the plain terrain, the mix of these different modifications and color gradients
needed to make smooth transitions from one biome to other, among the conditions with
which decide what type of terrain to render.

• Although that it has been said that the noise complexity of the spherical terrain is set
according to a planetary scale and that’s fine, different complexity and quality
optimizations could be done, for instance, a dynamical level of detail according to the
camera position would be a great implementation to aim for.

• In a similar direction, the atmosphere has more aesthetic than from a simulation, to
improve it, a raycasting or raymarching system should be implemented among a
particle system, both will create a refractive real-time atmosphere much more
interesting than the one currently implemented.

• Finally, the river and vegetation system could be improved by adding functionality that
once the terrain has been converted to a static render, generate an hydroerossion
procedure, which will both improve the overall terrain and determine the zone for the
vegetation to grow. This vegetation will be among the shader vegetation a set of 3D
trees and plants, generated with a 3D L-system.

 53

6.2 Conclusions

 The different aspects and milestones pursued this work had been achieved, from the

construction of the 3D meshes to the development of different shaders, passing through the

implementation and reviewing of different algorithms and modification techniques to generate a

pleasant terrain. As it has been pointed out previously, there is space for upgrading and

improving this work, but the overall result obtained is although not perfect, far from mediocrity.

For the plain, terrain the mountains, and valleys present complex structures which in some

cases resemble the natural erosion of the stone. The ocean can be explored presenting

complexity under the water surface. Rivers and lakes can lead to large water masses

presenting natural behavior. The vegetation can grow and spread following logical conditions as

the flatness of the terrain or the height. The terrain obtained is virtually infinite, letting the user

advance with the certainty of never achieving an end. Multiple variables can be tuned to modify

the general view such as scale, width, height, noise modification, day mode, detail, snow, sand,

vegetation grow limits, water level, water movement through wind direction, and more.

The spherical terrain is able to create continental landmasses. Presents a decent level of detail

for a planetary scale. Present also a good performance, especially with the simple clouds

system. Provides pleasant and satisfactory views when rendering with the star system the

atmosphere and the complex clouds. It also has tones of variables to be tuned and through this

tuning process creates and present different planets with different biomes.

For more than 8 years when I started to study computer science, I’ve always been fascinated by

the procedural generation and always wanted to create or participate in a project where it was

used. We live in a moment in time where projects like star citizen, a game that wants to bring

the possibility of exploring star systems, or even galaxies is one of the most ambitious projects

ever (in videogame and procedural content) but also one of the most desired and supported by

the community. This thesis has allowed me to work on these concepts, learning and practicing

these ideas into something tangible and if I may say, beautiful. I’m now a bit more satisfied with

my career, my work, and myself.

 54

List of references

A. Mastin et al, 1987. Gary A. Mastin, Peter A. Watterberg, John F. Mareda. Fourier synthesis

of ocean scenes. IEEE Computer Graphics and Applications. Vol 7, Issue 3.

Ahrens et al, 2019. Jan-Philipp Ahrens, Baris Istipliler, Andrew Isaak, Dennis M. Steininger. Dec

2019. The Star Citizen phenomenon & the "ultimate dream management" technique in

crowdfunding. Krcmar, Helmut. AlSel, Atlanta, GA.

Albersmann. et al, 1999. Albersmann, F., Zabel, A., Muller, H., & Weller, F. 1999, February.

Efficient direct rendering of digital height fields. In CSI International Conference on Visual

Computing (ICVC’99) Goa, India, Febr (pp. 23-26).

Aran D. Images available at http://www.arendpeter.com/Perlin_Noise.html

Archer, 2011. Travis Archer. Procedurally Generating Terrain, article for Morningside College,

Sioux City, Iowa.

B. Mandelbrot, 1982. Benoit B. Mandelbrot. Jan 1982. The fractal geometry of nature. Times

Books Editorial, New York City, U.S.A.

Barmore, 2002. Barmore, F. E. 2002. Portraits of the Earth: A Mathematician Looks at Maps.

Focus on Geography, 47(2), 36. New York Vol 47, N.º 2.

Bradbury et al, 2014. Bradbury, G. A., Choi, I., Amati, C., Mitchell, K., & Weyrich, T. November

2014. Frequency-based controls for terrain editing. In Proceedings of the 11th European

Conference on Visual Media Production (pp. 1-10).

C. Duncan, 2019. Sean C. Duncan. October 2019. Minecraft, Beyond Construction and

Survival, Journal Contribution posted for Carnegie Mellon University.

De Carpentier & Bidarra, 2009. De Carpentier, G. J., & Bidarra, R. April 2009. Interactive GPU-

based procedural heightfield brushes. In Proceedings of the 4th International Conference on

Foundations of Digital Games (pp. 55-62).

Feldmann & Hinrichs, 2012. Feldmann, D., & Hinrichs, K. (2012). GPU Based single-pass ray

casting of large heightfields using clipmaps. In Proceedings of Computer Graphics International

(CGI).

Fournier et al, 1982. A. Fournier, D. Fussel, and L. Carpenter. June 1982. Computer Rendering

of Stochastic Models. Communications of the ACM. Vol 25, Issue 6.

Garland & Heckbert, 1995. Garland, M., & Heckbert, P. S. 1995. Fast polygonal approximation

of terrains and height fields. Article for the Carnegie Mellon University.

Green, 2005. Simon Green. GPU Gems 2, Chapter 26. Implementing Improved Perlin Noise,

NVIDIA Corporation. Second printing. U.S. Corporates and Government Sales. Matt Pharr &

Randima Fernando.

 55

Gustavson, 2005. Stefan Gustavson. Mar 2005. Simplex noise demystified. Article for the

Linköping University, Sweden.

J.P. de Carpentier, 2008. Giliam J.P. de Carpentier. July 2008. Effective GPU-based synthesis

and editing of realistic heightfields. Final master Thesis for the Faculty of Electrical Engineering,

Mathematics and Computer Science. Delft University of Technology.

Kim et al, 2018. Joon-Seok Kim, Hamdi Kavak, Hamdi Kavak, Andrew T Crooks, Andrew

Crooks. November 2018. Procedural city generation beyond game development. SIGSPATIAL

Special Vol 10, Issue 2.

Lague, 2021. Sebastian Lague. 2021, web blog available at https://sebastian.itch.io/

Libnoise. Libnoise noise module documentation, Perlin class reference available at:

https://hackage.haskell.org/package/Noise-

1.0.1/src/libnoise/noise/doc/html/classnoise_1_1module_1_1Perlin.html

McDonald, 2021. Nicholas McDonald. 2021, web blog available at

https://weigert.vsos.ethz.ch/about/

Perlin, 1985. Ken Perlin. July 1985. An image synthesizer. ACM SIGGRAPH Computer

Graphics, Vol 19, Issue 3.

Perlin, 2002. Ken Perlin. July 2002. Improving noise. SIGGRAPH '02: Proceedings of the 29th

annual conference on Computer graphics and interactive techniques 2002 Pages 681–682.

PlanetSide, 2021. PlanetSide official webpage, available at https://planetside.co.uk/

POV-RAY. POV-RAY online documentation, heightfields chapter, available at:

https://www.povray.org/documentation/view/3.6.1/279/

R Tait & L Nelson, 2021. Emma R Tait, Ingrid L Nelson. March 2021 Non scalability and

generating digital outer space natures in No Man’s Sky. Article for University of Vermont.

R. KRTEN, 2001. Robert Krten. Jul 2001. Generating Realistic Terrain. In Dr. Dobb’s Journal:

Software Tools for the Professional Programmer.

Reas & Fry, 2014. Casey Reas and Ben Fry. Dec 2014. Processing: A Programming Handbook

for Visual Designers, Second Edition. Published December 2014, The MIT Press, Cambridge,

Massachusetts.

S. Ebert et al, 2003. David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, Steven

Worley. , July 1998. Texturing & Modeling A Procedural Approach Second Edition. Morgan

Kaufmann publishers. Burlington, Massachusetts.

Schneider & Boldte, Rudiger Westermann, 2006. Jens Schneider, Tobias Boldte, Rudiger ¨

Westermann. 2006. Real-Time Editing, Synthesis, and Rendering of Infinite Landscapes on

GPUs. Article for Computer Graphics & Visualization Group Technische Universitat¨ München.

 56

Smith, 2014. Gillian Smith. April 2014. Understanding procedural content generation: a design-

centric analysis of the role of PCG in games. CHI '14: Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems. Pages 917-926.

StackOverflow.2016. Image available at https://stackoverflow.com/questions/36628064/perlin-

noise-block-grid.

Tegel & Mengotti, 2013. Rene Tegel and Tiziano Mengotti. May 2013. GPU, Framework

Extensions for the Distributed Search Engine and the Terragen Landscape Generator. Pages

2,14.

Tezuka, 2012. Shu Tezuka. Dic 2012. Uniform Random Numbers: Theory and Practice Japan.

Springer Science & Business Media. Page 2.

Tracy & Reindell. 2012. Sean Tracy, Paul Reindell. Sept 2012. Cryengine 3 Game

Development: Beginner's Guide. Packt Publishing LTD. Page 40.

Wang et al, 2010. Hong-Rui Wang; Wei-Lei Chen; Xiu-Ling Liu; Bin Dong. An improving

algorithm for generating real sense terrain and parameter analysis based on fractal. Published

in 2010 International Conference On Machine Learning and Cybernetics. Qingdao, China.

IEEE.

Wang et al, 2011. Zhen Wang, Meng Yang, Shi Long Xiao. May 2011. The Study on Three-

Dimensional Terrain for 3D Game Design. Ran Chen and Wenli Yao. Advanced Materials

Research (Volumes 230-232). Pages 798-803.

Yalcin, M. A., & Capin, T. K, 2009. M. Adil Yalcin & Tolga K. Capin. September 2009. Editing

heightfield using history management and 3D widgets. In 2009 24th International Symposium

on Computer and Information Sciences (pp. 442-447). IEEE.

Zábský, 2011. Matěj Zábský. GeoGen – Scriptable generator of terrain height maps. Charles

University in Prague Faculty of Mathematics and Physics. Computer Science thesis. Retrieved

in 7.9.2011.

 57

Appendix 1 Plain terrain results

The following images are being rendered with the mpi modification. The Perlin noise settings

were 8 and 4 octaves with a persistence value of 0.45. Scale of 0.0019. 409600 vertices (640 x

640). The day mode was set to day. The water noise parameters was stablish with 3 octaves.

A persistence value of 0.5. lastly the water noise scale was set as 0.25.

 58

 59

Appendix 2 Spherical terrain results

The following images are being rendered with an altered mpi modification. The Perlin noise

settings were 8 with a persistence value of 0.65. Scale of 0.025. 540000 vertices (300 x 300 x

6). The day mode was set to day. The water noise parameters was stablish with 3 octaves. A

persistence value of 0.5. lastly the water noise scale was set as 0.25. The complex clouds noise

was stablish with 8 octaves. A persistence value of 0.64. The scale was set to 0.0175. The

opacity of the clouds was calculated using a threshold of 0.8 (any value less than 0.8 will be

interpreted as transparent).

 60

	1 Introduction
	2 Basics of terrain generation
	3.3 Perlin noise
	3.4 Other noise algorithms
	Although algorithms like Diamond-Square or Perlin noise are the most visible ones when discussing about procedural textures, they are not the only ones. Other options as the Poisson faulting or the Fourier synthesis are based on more abstract conce...
	3.4.2 Fourier Synthesis
	3.5 Tessellation
	3.6 Heightmaps
	3.6.1 Height maps over a plane
	3.6.2 Height maps on a sphere
	3.7 Parameters that influence the terrain
	3.7.2 Strength
	3.7.3 Noise scale
	3.7.4 Persistence
	3.7.5 Lacunarity
	3.7.6 Octaves
	3.7.7 Noise coordinates
	3.7.8 Mapping
	● Conversion of values.
	4 IDE approach
	5 Use case: Procedural terrain generation system
	6 Conclusion

