
mathematics

Article

Metamaterial Acoustics on the (2 + 1)D Einstein Cylinder †

Michael M. Tung

����������
�������

Citation: Tung, M.M. Metamaterial

Acoustics on the (2 + 1)D Einstein

Cylinder. Mathematics 2021, 9, 2079.

https://doi.org/10.3390/math9172079

Academic Editor: Ignatios Antoniadis

Received: 28 July 2021

Accepted: 26 August 2021

Published: 28 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera, s/n,
46022 Valencia, Spain; mtung@mat.upv.es
† This paper is an extended version of my paper published in the Proceedings of the Conference Mathematical

Modelling in Engineering & Human Behaviour, 16–18 July 2018, Valencia, Spain.

Abstract: The Einstein cylinder is the first cosmological model for our universe in modern history.
Its geometry not only describes a static universe—a universe being invariant under time reversal—
but it is also the prototype for a maximally symmetric spacetime with constant positive curvature.
As such, it is still of crucial importance in numerous areas of physics and engineering, offering a
fruitful playground for simulations and new theories. Here, we focus on the implementation and
simulation of acoustic wave propagation on the Einstein cylinder. Engineering such an extraordinary
device is the territory of metamaterial science, and we will propose an appropriate tuning of the
relevant acoustic parameters in such a way as to mimic the geometric properties of this spacetime
in acoustic space. Moreover, for probing such a space, we derive the corresponding wave equation
from a variational principle for the underlying curved spacetime manifold and examine some of
its solutions. In particular, fully analytical results are obtained for concentric wave propagation.
We present predictions for this case and thereby investigate the most significant features of this
spacetime. Finally, we produce simulation results for a more sophisticated test model which can only
be tackled numerically.

Keywords: relativistic analogue models; wave equation; applications of differential geometry;
applications of PDEs on manifolds; variational principles; Lagrangian mechanics

MSC: 83-10; 83C80; 35L05; 53Zxx; 58J90; 70H30; 70Hxx

1. Introduction

Shortly after concluding with the formulation of the general theory of relativity in 1916,
Einstein moved on to devise relativistic models of the universe, applying his new theory
to the realm of physical cosmology. Assuming uniformity and isotropy for a universe
on a very large scale was a natural assumption for his time, and he produced a simple
cosmological model of a finite, static universe with constant spherical curvature, currently
called the Einstein cylinder [1–3].

Such spaces of constant curvature represent maximally symmetric geometries. This
property explains its fundamental importance in many physics and engineering applica-
tions, e.g., in the description of uncharged, perfect relativistic fluids [4] and other standard
cosmological models [5] (p. 59). Moreover, in the past years, quantum mechanical phenom-
ena in spaces of constant curvature have attracted the focus of intense investigation [6],
raising critical questions beyond their possible experimental verification. Nonetheless, the
simulation of acoustic phenomena [7] in such spaces has so far been vastly neglected.

In this work, we explore the possibilities of simulating acoustics on the Einstein
cylinder with the help of acoustic metamaterials—materials which enable researchers and
engineers to contrive extraordinary devices with exceptional properties, exceeding the
limits established by nature. These metamaterials offer researchers and engineers unique
opportunities to design and build novel artificial devices with exceptional characteristics
(see, e.g., [7–10]). For recent remarkable advances in this field of metamaterials acoustic,
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we refer to [11], where a special type of multifunctional acoustic lens is designed by only
using isotropic material parameters. Furthermore, in [12], acoustic metamaterial devices
are constructed that are reconfigurable by using untethered physical stimuli, i.e., avoiding
mechanisms such as compression or pneumatic actuators.

Modeling acoustic wave propagation with particular geometries can be shown to
result from a simple variational principle for the acoustic potential, a framework developed
in [13] and then extended to various other spacetime geometries [14–18]. This approach
yields a wave equation in the form of a partial differential equation for the acoustic potential,
connected to a harmonic time dependence and to a Sturm–Liouville problem for the radial
isotropic coordinates, which then can be treated analytically.

The same framework also permits one to determine the acoustic parameters corre-
sponding to the postulated spacetime via the so-called constitutive equations [13]. It is
this acoustic fine-tuning which exactly implements the acoustic wave propagation for the
curved background spacetime under consideration.

The paper is organized as follows: Section 2 introduces the essential differential-
geometric framework for setting up and working with the spacetime at hand. In the last
part of the same section, the geometric features of the Einstein cylinder are linked to the
physical properties and conditions of this spacetime. This formalism is also required to
derive the corresponding wave equation for the acoustic analogue model.

Section 3 briefly details the prescription on how to implement the spacetime geometry
of the (2 + 1)D Einstein cylinder in its acoustic analogue space. In this process of metama-
terial tuning, the relevant acoustic parameters (the scalar bulk modulus and the density
tensor) have to be selected appropriately in order to engineer in the laboratory a suitable
device which mimics the geometric features of the Einstein cylinder acoustically.

Section 4 centers on the actual wave propagation on this curved spacetime. We
show how a general variational principle on the (2 + 1)D Lorentzian manifold derives the
relevant wave equation for the acoustic scalar field. In order to examine the significant
features of this acoustic analogue space, monochromatic (i.e., having fixed frequency) and
concentrically traveling test waves are used to probe the metamaterial. In this case, fully
analytical results are obtained—specifically for the non-trivial radial dependence of the
wave propagation. Another interesting example presents entirely numerical estimates. It
describes a test scenario with an asymmetric wave distribution from the very beginning of
the laboratory setup.

Section 5 concludes this discussion, offering a very short summary with an outlook.

2. Spacetime Geometry of the Einstein Cylinder

For this model, we consider the special case of constant positive curvature, a > 0,
for two dimensions. Naturally, it will be the 2-sphere S2(a), which we then embed into
(2 + 1)D spacetime with Lorentzian signature. This is the prototype model of a homoge-
neous and isotropic spacetime. The (2+ 1)-dimensional Einstein cylinder, M = R+ × S2(a),
is defined in local coordinates by the following metric tensor (see, e.g., [3]):

g = −(cdt)⊗ (cdt) + (adΩ2)⊗ (adΩ2), (1)

where Ω2 denotes the familiar solid angle for S2. Therefore it is dΩ2 ⊗ dΩ2 = dϑ⊗ dϑ +
sin2 ϑ dϕ⊗ dϕ, where ϑ and ϕ are the polar and azimuthal angles, respectively. Furthermore,
the time coordinate comes with constant speed c > 0, and the fixed value a > 0 intrinsically
represents a natural scale factor for length. Observe that the symbol ‘⊗’ in Equation (1)
denotes the conventional tensor product (see [3] (Section I.3)).

At this point, it is convenient to use isotropic radial coordinates, which are quite
commonly used in the description of spherically symmetric spacetimes. They are defined
by introducing the radius r = a sin ϑ, so that 0 ≤ r < a for 0 ≤ ϑ < π/2. Additionally, as
usual, the azimuthal angle takes values 0 ≤ ϕ < 2π. Now, with this choice of isotropic
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radial coordinates, the original metric of Equation (1) is straightforwardly recast into the
more suitable form

g = −
(
cdt
)
⊗
(
cdt
)

︸ ︷︷ ︸
θ0

+
dr√

1− r2/a2
⊗ dr√

1− r2/a2︸ ︷︷ ︸
θ1

+
(
r dϕ

)
⊗
(
r dϕ

)
︸ ︷︷ ︸

θ2

, (2)

where the local coframe with dual base θµ ∈ T∗p M (µ = 0, 1, 2) is then given by

θ0 = cdt, θ1 =
dr√

1− r2/a2
, θ2 = r dϕ. (3)

By construction, this frame (θ0, θ1, θ2) possesses local flatness. Moreover, orthogonality
holds, such that η = −θ0 ⊗ θ0 + θ1 ⊗ θ1 + θ2 ⊗ θ2, where η is the Minkowski metric.

In the following, we will employ Cartan’s structure equations as an efficient mathe-
matical formalism which facilitates the calculation of the corresponding curvature tensors
in pseudo-Riemannian geometry. The final results for curvature are well-known but not
presented this way in the literature, so that here we proceed with a brief derivation (brief
within this formalism) for illustrative purposes and completeness of the exposition.

Cartan’s first structure equations involve the computation of the exterior covariant
derivatives of the basis 1-forms given in Equation (3) by using the wedge symbol ‘∧’ for the
product of exterior calculus (see [3] (Section I.3)). The requirement for vanishing torsion,
Dθµ = 0, immediately yields

Dθ2 =

√
1− r2/a2

r
θ1∧ θ2 + ω2

ν ∧ θν = 0, (4)

so that the corresponding connection 1-forms, ωµ
ν, for the given orthogonal frame (Equation (3))

are

ω2
1 =

√
1− r2/a2

r
θ2 = −ω1

2. (5)

All other connections ωµ
ν are zero. Next, Cartan’s second structure equations serve to

determine the curvature 2-forms Ωµ
ν. With Equation (5), the only relevant contribution is

Ω1
2 = dω1

2 = − ∂

∂r

(√
1− r2/a2

r

)
dr ∧ θ2 −

√
1− r2/a2

r
dθ2 =

1
a2 θ1∧ θ2. (6)

Identifying Ω1
2 = dω1

2 = 1
2 R̂1

2µνθµ∧ θν, it is straightforward to observe that the only
non-zero and independent component of the Riemann curvature tensor in the coframe is

R̂1
212 =

1
a2 . (7)

Accordingly, in the same frame, the components of the Ricci tensor, R̂µν, and the
curvature scalar, R, are given by

R̂00 = 0, R̂11 = R̂22 =
1
a2 , R =

2
a2 . (8)

Now, we are in a position to connect the geometric properties, that is, the curvature of
the manifold M = R+ × S2(a), to the physical features of the underlying spacetime. It is
the Einstein tensor with its field equation which precisely provides this link.
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Using Equation (8) in Ĝµν = R̂µν − 1
2 ηµνR, the only non-vanishing component of the

Einstein tensor, Ĝµν, is the 00-component:

Ĝ00 =
1
a2 = G00. (9)

Note that the result is the same in the local coframe and coordinate frame, denoted by
G00. This is true because it is θ0 = cdt, and also Ĝµν = 0 for all components except Ĝ00.

Substituting Equation (9) into the Einstein field equations immediately implies for the
energy-matter density ρ0:

G00︸︷︷︸
1/a2

=
8πG

c4 T00︸︷︷︸
ρ0c2

⇒ ρ0 =
c2

8πGa2 > 0, (10)

where G is the gravitational constant. Thus, a universe filled uniformly with energy-matter
will implement the static model of a (2 + 1)D Einstein cylinder. In the following section,
we will discuss how to implement this model within metamaterial acoustics, the gravity
analogue model which investigates analogues of general relativistic spacetimes in acoustics
(see, e.g., [7–10]).

3. Acoustic Space and Metamaterial Tuning

The prescription for a constant energy–matter density throughout the Einstein cylinder,
viz., Equation (10), in the general theory of relativity has its counterpart in acoustic theory.
More precisely, there exists a one-to-one correspondence between the metric of a given
spacetime metric and the acoustic parameters of the metamaterial which will display
analogous properties. This relationship was derived in [13].

Accordingly, the acoustic engineer who wishes to implement a spacetime (M, g) in the
laboratory environment (physical space) has to fine-tune the mass-density tensor $ and bulk
modulus κ in such a manner that it will produce the desired acoustic wave propagation in
the corresponding acoustic space (virtual space).

In explicit form, both spaces—physical and virtual space—are linked by the constitutive
relations [13], and in the case of the Einstein cylinder, a straightforward calculation shows
that the bulk modulus κ and the density tensor ρ have to be

κ =
1√

1− r2/a2
, ρ0 ρij =

√
1− r2/a2

(
1 0
0 1/r2

)
, (11)

where 0 < r < a and i, j = r, ϕ. Recall that
√

1− r2/a2 = cos ϑ, and the variables are
restricted to a domain without coordinate singularities.

The constitutive equations, Equation (11), describe the acoustic model at hand and
provide the corresponding bulk modulus and the full symmetric matrix of density of the
metadevice. As such, they fully encapsulate the structure of the underlying metamaterial
for acoustics on the (2 + 1)D Einstein cylinder. For a general approach to retrieving all
effective acoustic properties of an acoustic fluid material (the scalar bulk modulus and all
n(n + 1)/2 components of the density tensor in n spatial dimensions) see [19].

4. Wave Propagation and Its Simulation

The fundamental law which governs acoustic wave propagation within a curved
spacetime background is dictated by a variational principle, similar to Fermat’s principle
of least time in theoretical optics (see, e.g., [20] (Appendix I, Example 11)).
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According to this principle, for a given spacetime M with metric g, the action is
stationary with respect to variations of the acoustic potential φ : M→ R, such that [13]:

δ

δφ

∫
Ω⊆M

dvolg g(∇φ,∇φ) = 0. (12)

The spacetime domain Ω ⊆ M is bounded, and dvolg is its differential volume form.
The covariant derivative∇, acting here on the acoustic scalar field φ, is just the conventional
partial derivative, so that in local coordinates ∇φ = gµνφ,µ ∂ν, where all ∂µ ∈ Tp M form a
basis (see, e.g., [21] (Section 1.2.3)). As usual, spacetime indices such as µ or ν which are
preceded by a comma stand for partial derivatives with respect to xµ or xν, respectively.

As a consequence of Equation (12), the corresponding physical propagation law will
have its equivalent in equations of motion with self-adjoint differential operators acting on
the related field variables [22] (p. 351). This produces separable partial differential equations
which are Sturm–Liouville problems for one of the field variables supplying analytical or
at least semi-analytical solutions. ( Here, semi-analytical solutions are separable solutions
where some functional dependencies of the variables under consideration can be factored
out in analytical form.) In fact, Equation (12) corresponds to the Euler–Lagrange equation,
∆Mφ = 0, which contains the Laplace–Beltrami operator ∆M = dδ + δd on manifold M
acting on the acoustic scalar field φ. Here, d denotes the exterior derivative and δ its adjoint
operator (see, e.g., [23] (Section 4.2)). In local coordinates, the Euler–Lagrange equation
takes the following form:

∆Mφ =
1√−g
(√
−g gµνφ,µ

)
,ν = 0 (13)

where g = det g < 0. The Einstein summation convention for repeated upper and lower
indices is implied.

For acoustic wave propagation on the Einstein cylinder, we use the spacetime metric
introduced by Equation (2), such that Equation (13) converts to

− 1
c2

∂2φ

∂t2 +

[(
1− r2

a2

)
∂2

∂r2 +
1
r

(
1− 2r2

a2

)
∂

∂r

]
φ +

∂2φ

∂ϕ2 = 0. (14)

This is exactly the wave equation which governs acoustic wave propagation on the Einstein
cylinder, engineered and enforced by the acoustic parameters determined by Equation (11).

Next, we turn to solutions of Equation (14) in order to probe the spacetime properties
of the Einstein cylinder. For this purpose, we will choose concentric radial waves moving
away from the origin:

φ(t, r, ϕ) = A+eiωtφ1(r). (15)

The amplitude is A+ > 0, and the frequency is ω > 0. Function φ1(r) represents the
radial dependency in the full expression of the acoustic potential

φ(t, r, ϕ) = φ0(t) φ1(r) φ2(ϕ). (16)

Applying the separation of variables method as the standard procedure, it is straight-
forward to recognize that the time dependence in Equation (16) displays a simple harmonic
behavior, i.e., φ0(t) = eiωt. Because of the radial symmetry of the concentric prototype
waves, the angular factor φ2(ϕ) in Equation (16) is just a constant which can be absorbed
into the amplitude A+ in Equation (15).

Hence, after substituting into the wave equation, Equation (14), the expressions
Equations (15) and (16) with conditions ∂φ/∂ϕ = 0 and ∂2 ϕ/∂t2 = −ω2φ, we readily
arrive at (

1− r2

a2

)
φ′′1 +

1
r

(
1− 2r2

a2

)
φ′1 +

ω2

c2 φ1 = 0. (17)
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Thus, ultimately, all of the non-trivial behavior for the wave propagation will be con-
tained in the radial contribution φ1(r). An elementary analysis shows that the second-order
linear differential equation determining φ1(r), Equation (17), has three regular singu-
lar points at r = 0, a, and ∞. The canonical forms for differential equations with such
characteristics are either Gauss’s differential equation or the generalized hypergeometric
equation [24,25].

A suitable transformation rule for converting Equation (17) into canonical form is
given by 

φ1(r) = y(x)
∣∣
x=r2/a2 ,

φ′1(r) =
2r
a2 y′(x),

φ′′1 (r) =
2
a2

(
2r2

a2 y′′(x) + y′(x)
)

,

(18)

which after some simplification produces

x(1− x)y′′ +
(

1− 3
2

x
)

y′ +
a2

4
ω2

c2 y = 0. (19)

Now, comparing Equation (19) with Gauss’s equation defined by

x(1− x)y′′ +
[
γ− (α + β + 1)x

]
y′ − αβy = 0 (20)

yields the solution in terms of the hypergeometric function

2F1

(
α β

γ

∣∣∣∣∣ x

)
, with α, β, γ ∈ R,

(see [26] (p. 207, Theorem 9.3)). In the case of Equation (19), the parameters are
α = 1

4

(
1 +

√
1 + 4a2 ω2

c2

)
,

β = 1
4

(
1−

√
1 + 4a2 ω2

c2

)
,

γ = 1.

(21)

This completes the computation of the first solution.
In order to find the second independent solution, we now consider the generalized hy-

pergeometric equation defined by the following homogeneous linear differential equation
of degree: max(p, q), p, q ∈ N:[

(−1)px
p

∏
i=1

(
x

d
dx
− ai + 1

)
−

q

∏
j=1

(
x

d
dx
− bj

)]
G(x) = 0, (22)

which has the subsequent Meijer G-function as solution (see [25] (p. 13, Section 1.5) or [27]
(p. 867, Equation (12)))

G(x) = G2,0
p,q

(
a1 a2 · · · ap
b1 b2 · · · bq

∣∣∣∣ x
)

. (23)

To obtain a second-order equation, we choose p = q = 2 and further assume that
b1 = b2 = 0. After some lengthy but straightforward calculation, Equation (22) reduces to

x(1− x)G′′ +
[
1− (3− a1 − a2)x

]
G′ −

(
1− a1 − a2 + a1a2

)
G = 0. (24)
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The comparison with Equation (19) yields, for the parameters of the solution Equation (23)
with p = q = 2, the explicit values

a1 = 1
4

(
3 +

√
1 + 4a2 ω2

c2

)
,

a2 = 1
4

(
3−

√
1 + 4a2 ω2

c2

)
.

(25)

This completes the computation of the second solution.
In summary, the individual solutions provided by Equations (21) and (25) for the

hypergeometric function 2F1 and the Meijer G-function G2,0
2,2 , respectively, add up, giving

the following general solution for the radial dependence φ1 of the concentric prototype
waves, Equation (15), in fully analytic form:

φ1(r) = C1 2F1

 1
4

(
1 +

√
1 + 4a2 ω2

c2

)
1
4

(
1−

√
1 + 4a2 ω2

c2

)
1

∣∣∣∣∣∣ r2

a2

 (26)

+ C2 G2,0
2,2

 1
4

(
3 +

√
1 + 4a2 ω2

c2

)
1
4

(
3−

√
1 + 4a2 ω2

c2

)
0 0

∣∣∣∣∣∣ r2

a2

.

Both hypergeometric and Meijer G-functions are well defined functions, implemented
with high precision on many mathematical software systems.

Given the precise analytical result for concentric wave propagation, viz., Equation (15)
with Equation (26), we may now proceed with numerical wave simulations to further
explore the properties of the underlying acoustic space possessing all analogue features
of the spacetime of the Einstein cylinder R+ × S2(a). Apart from the time-harmonic
dependence of the wave potential, only the non-trivial radial dependence is of interest.

For the numerical evaluation of φ1(r), we normalize the amplitude A+ = 1 and
choose the fixed frequency ω = 1/2π, as well as a length scale a = 100 and a constant
speed c = 1. In the graphical representations, Figure 1, we select several distinct boundary
conditions, allowing for different configurations to exhibit the propagation behavior for
the concentric prototype waves traveling on the Einstein cylinder. The radial dependence
will be examined in the interval from r = 0 to r = a = 100. Thus, the boundary conditions
are conveniently chosen on the radial positions r = 1 and r = 99 in order to avoid the two
singular points at r = 0 and r = a of the underlying differential equation, Equation (17).

Figure 1a assumes the boundary conditions φ1(1) = 1, meaning that the starting
amplitude is assigned a unit value. The second condition is φ′1(99) = 0. The particle velocity
of the acoustic wave is vvv = ∇∇∇φ, where the boldface nabla symbol refers to the classical
spatial gradient, so that∇∇∇φ = gijφ,i ∂j, with i, j = 1, 2 (see [13,28]). This latter condition
physically enforces a vanishing velocity as the wave reaches the characteristic length. In
Figure 1b, we allow the wave to launch with initial velocity φ′1(1) = 1. As a direct result
of this adjustment, the wave amplitude now modulates considerably more than before
over the given test interval. Figure 1c maintains the initial velocity φ′1(1) = 1 but starts off
at a zero amplitude. Clearly, a change in amplitude appears to qualitatively preserve all
features of the previous configuration with different initial amplitude. Ultimately, Figure 1d
completely alters the acoustic setup by considering a wave which travels inwards with
unit amplitude from the outer radial position r = 99 having velocity φ′1(1) = −1.
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Figure 1. Representation of the non-trivial radial behavior φ1(r) for concentric wave propagation on the Einstein cylinder
with length scale a = 100. The amplitude A+ and the speed c are both normalized to unity. The frequency is always
ω = 1/2π. For illustrative purposes, different boundary conditions are chosen, and they are individually given in the
legend of all subfigures. In cases (a–c), a characteristic wave damping is observed. Case (d) shows a wave traveling inwards
from the equator to the origin.

In the first three cases of Figure 1a–c, we observe an essential damping of the wave
amplitude. Physically, this is explained by the stretching of the coordinate scale related to
θ1 (see Equation (2)), which occurs as the isotropic radius approaches the equator at r = a.
On the other hand, in the case of Figure 1d, where the wave is traveling inwards—traveling
from the equator to the origin—a significant amplification of the wave materializes.

As the last example, we will consider the boundary-value problem by imposing the
set of conditions for the acoustic potential given in Figure 2. The objective is to perform a
full wave simulation. For this purpose, we carry out a finite element analysis (FEA) for the
complete potential, directly using the wave equation, Equation (14).

The initial wave distribution at t = 0 is an exponential “blob” represented by

φ(0, r, ϕ) = e−10(r−2)2−20(ϕ− π
2 )

4
,

which evidently makes an analytical treatment intractable. Again, the constant speed is
c = 1. The characteristic length is now a = 4 in order to improve the graphical visualization,
and the time interval ends at T = 4π. The two remaining boundary conditions require
that the acoustic pressure either vanishes at instant t = 0 or at position r = a. Note that
the acoustic pressure is determined by p = ρ0 ∂φ/∂t, where ρ0 > 0 is the ambient density
(see [13] (Equation (3)) and [28] (p. 13)). The actual numerical implementation, coded in
MATHEMATICA [29], requires no further assumptions—symmetry obviously is violated,
and the sound waves in general possess variable frequency.
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∆R+×S2(a)φ = 0∆R+×S2(a)φ = 0∆R+×S2(a)φ = 0 on R = [0.1, a]︸ ︷︷ ︸
r

× [0, 2π[︸ ︷︷ ︸
ϕ

, t ∈ [0, T]

initial wave distribution φ(0, r, ϕ) = e−10(r−2)2−20(ϕ− π
2 )

4
φ(0, r, ϕ) = e−10(r−2)2−20(ϕ− π

2 )
4

φ(0, r, ϕ) = e−10(r−2)2−20(ϕ− π
2 )

4

vanishing acoustic pressure
∂φ

∂t
(0, r, ϕ) =

∂φ

∂t
(t, a, ϕ) = 0

physical constants a = 4, T = 4π, c = 1

Figure 2. Boundary-value problem for a full simulation of acoustic wave propagation on the Einstein
cylinder R+ × S2(a), using the characteristic length scale a = 4, speed c = 1, and running over the
time interval t ∈ [0, T], with T = 4π. The initial wave configuration represents an exponential “blob”.
Two further conditions set the acoustic pressure, p = ρ0 ∂φ/∂t, to zero. No further assumptions on
symmetry are made.

Figure 3 directly shows in graphical form the numerical results for the boundary-value
problem of the wave equation on the Einstein cylinder, Figure 2. With final time T = 4π, the
snapshots which examine the waves during the time [0, T] are computed at each multiple
of T/50. Figure 3 depicts the nine frames 9, 10, 11, . . . , 17.

A graphical animation (using 50 frames in total, similar to Figure 3) is available for down-
load at [https://drive.google.com/file/d/1bR06XZAMxqz5sh4o1BKi2WRTHPUwsxNC/
view?usp=sharing]. Accessed date is 28 July 2021. The video visualizes damping of the
amplitude as the waves approach the equator at r = a. The effect becomes more pronounced
as the waves reach this limit.

In the first examples, Figure 1a–d, fully analytical results were derived and then applied
for numerical computation, concentrating on the relevant non-trivial dependence of the
isotropic radial coordinate and exploiting symmetry for probing the underlying acoustic
spacetime. The last example implements entirely numerical scenarios by direct integration of
the partial differential equation, Equation (14), the equation (together with its boundary/initial
conditions) which controls all wave properties on R+ × S2(a). Of course, other numerical
scenarios are conceivable and may be tackled by diverse numerical integrator software.
Alternatively, in a different approach, software such as COMSOL Multiphysics r [30] may be
used for physically simulating all wave phenomena with finite-element methods in a virtual
laboratory by only using the necessary acoustic parameters provided in Equation (11).

https://drive.google.com/file/d/1bR06XZAMxqz5sh4o1BKi2WRTHPUwsxNC/view?usp=sharing
https://drive.google.com/file/d/1bR06XZAMxqz5sh4o1BKi2WRTHPUwsxNC/view?usp=sharing
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Figure 3. Simulation of the wave propagation for the boundary-value problem posed in Figure 2
implemented in MATHEMATICA. The numerical results are obtained by carrying out a finite element
analysis (FEA). The nine snapshots are taken at t = 9

50 T, 10
50 T, 11

50 T, . . . , 17
50 T, with T = 4π. The full

graphical animation is available at [https://drive.google.com/file/d/1bR06XZAMxqz5sh4o1BKi2
WRTHPUwsxNC/view?usp=sharing]. Accessed date is 28 July 2021.

5. Conclusions

In this work, we presented an analysis of acoustic wave propagation on the Einstein
cylinder. This spacetime geometry stands out by being maximally symmetric and having
constant positive curvature. For this reason, it was our candidate of choice for modeling
within metamaterial acoustics.

In order to engineer such an analogue spacetime with the tools of metamaterials, we
provided the corresponding acoustic parameters for future implementations in a laboratory
setting, thus making it subject to challenging experiments.

For a concise description and derivation of all wave properties on this curved space-
time manifold, we built up a differential-geometric formalism, which eventually allowed
us to derive the central wave equation from a variational principle.

Next, using concentric waves for probing significant features of this spacetime, a detailed
study led us to fully analytic results. In this case, we found that the non-trivial radial
dependence of the wave propagation may be expressed in terms of hypergeometric functions
and Meijer G-functions. Various different scenarios served as an illustration—in particular,
we observed an appreciable damping as the waves approach the equator, i.e., as the waves
reach the characteristic length scale of the Einstein cylinder with respect to the origin. As
another interesting test case, we examined the evolution of a wave with an initial asymmetric
configuration, namely an exponential “blob”. This entirely numerical simulation again
demonstrates the typical damping for outwards traveling waves. Conversely, for inwards
traveling waves, an amplification of their amplitude is detected.

It is our hope that the variational approach for simulating metamaterials within trans-
formation acoustics, and that the application of the corresponding constitutive relations for
engineering analogue acoustic devices, will prove themselves as valuable tools in this area
of research.
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