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Abstract

Many planning domains have to deal with temporal features that can be expressed
using durations that are associated to actions. Unfortunately, the conservative model of
actions used in many existing temporal planners is not adequate for domains which require
more expressive models. This paper presents a temporal planning approach that combines
the principles of Graphplan and TGP and uses the information calculated in the planning
graph to deal with a non-conservative model of actions that include local conditions and
effects. In this approach, we propose two strategies for search. The first one is based on the
Graphplan backward search. The second one is based on a least-commitment and heuristic
search, and it attempts to overcome the main limitations of a chronological backtracking
search when dealing with large temporal problems. This search has proved to be beneficial
in the scalability of the planner and the experiments show that a planner using this new
search is competitive with other state-of-the-art planners w.r.t. the plan quality1.

1. Introduction

There has been an impressive growth in the use of AI Planning algorithms in the last
decade (Blum & Furst, 1997; Bonet & Geffner, 2001; Long & Fox, 2002; Weld, 1999).
Many problems which were unsolvable a few years ago are now easily solved by current
state-of-the-art planners. However, classical planning assumes some simplifications which
are not always acceptable in real world planning problems. These simplifications prevent the
planners from dealing with more realistic features, such as temporal and metric capabilities,
explicit management of resources, more expressive domain definition languages, problems
with uncertainty, optimisation criteria, etc. (Do & Kambhampati, 2001; Fox & Long, 2001;
Garrido et al., 2002; Gerevini & Serina, 2002a; Haslum & Geffner, 2001; Hoffmann, 2002;
Smith & Weld, 1999). Solving these simplifications imposes challenges on current planning
research in order to extend and improve the functionalities of planners.

This paper deals with three of the previous functionalities: i) planning with temporal
features (actions with duration), ii) more expressive domain definition languages (non-
conservative model of actions of PDDL2.1, Fox & Long, 2001), and iii) plan optimisation
(makespan). On one hand, it is clear that real planning problems that deal with time cannot
assume that actions have the same duration (Garrido, Onaind́ıa, & Barber, 2001; Smith &
Weld, 1999). For instance, in a logistics domain, the action fly(plane,London,Moscow) is

1. This article is an extended and revised version of the papers (Garrido, Fox, & Long, 2002; Garrido &
Onaind́ıa, 2003) that have been published at ECAI–2002 and IJCAI–2003, respectively.
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longer than fly(plane,London,Paris). Discarding the assumption that actions have the
same duration implies a more complex problem because the number of possible execution
times for actions is vastly increased. On the other hand, temporal planners appearing in the
recent literature, such as parcPLAN, TGP, TP4 or LPG1.0 (El-Kholy & Richards, 1996; Smith
& Weld, 1999; Haslum & Geffner, 2001; Gerevini & Serina, 2002a) have had some success
in dealing with actions with duration. However, these planners have adopted a conservative
model of actions which is a modest extension of the one used by non-temporal planners.
This means that two actions cannot overlap in any way if they have conflicting preconditions
or effects. This makes it possible to produce reasonable plans in some planning domains,
but there exist other domains that require a richer model of actions and in which better
quality plans can be found. The new version of PDDL (McDermott, 1998), called PDDL2.1
(Fox & Long, 2001), provides a level 3 with a more permissive (non-conservative) model of
durative actions which subsumes the conservative model of actions. Level 3 includes local
conditions/effects and allows actions to overlap even when their preconditions or effects refer
to the same propositions, achieving a more accurate exploitation of action concurrency in
which better quality (shorter makespan) plans can be found. Consequently, guaranteeing
the plan that minimises the global makespan is an important issue in temporal planning,
and the application of heuristics to find good plans is becoming more and more important.

In this paper, we describe our experiences with a Temporal Planning SYStem (from
now on TPSYS, Garrido et al., 2001, 2002; Garrido & Onaind́ıa, 2003) to manage the non-
conservative model of durative actions provided in level 3 of PDDL2.1. This paper is based
on previous works on temporal planning and tries to integrate them into one temporal
planning approach based on Graphplan (Blum & Furst, 1997). First, we discuss how actions
with duration can be handled in a Graphplan approach (Garrido et al., 2001). Technically,
this involves extending the mutual exclusion reasoning as presented in TGP (Smith & Weld,
1999). Second, we describe the way to extend and modify the Graphplan algorithm to deal
with a non-conservative model of actions (Garrido et al., 2002). Third, we propose a new
search method based on least-commitment and heuristic search to improve the performance
of the planning algorithm and overcome the main inefficiencies of the Graphplan backward
search. These inefficiencies are especially relevant in temporal settings (Garrido & Onaind́ıa,
2003). Hence, the main contributions of this paper are:

• An analysis of how non-conservative durative actions (level 3 of PDDL2.1) can be
managed in a Graphplan-based approach. A non-conservative model of actions implies
fewer constraints on the execution of actions, providing more opportunities to the
planner for selecting actions and finding shorter makespan plans.

• An extension of the analysis of mutual exclusion relations to include local condi-
tions and effects based on the work of TGP. TPSYS introduces a mutex classifica-
tion into static and dynamic mutex (action/action, proposition/action and proposi-
tion/proposition, Garrido et al., 2001, 2002), which is now more precise and provides
new ways of overlapping actions.

• An explanation of how a temporal planning graph can be generated, without no-op

actions. The extension of this temporal graph now contains some subtle details due
to the local conditions and effects of non-conservative actions.
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• A description of two (optimal and non-optimal) search approaches and the way they
obtain a temporal plan. Consequently, both approaches can solve problems of the
type “obtain a plan of makespan that is shorter than a given value Dmax”.

– The first approach guarantees the properties of completeness and optimality
w.r.t. makespan and follows the same strategy as Graphplan, extracting a plan
through the temporal graph. However, the traditional directionality of Graphplan

is broken due to the combination of local effects and conditions of the actions.

– The second approach performs a search stage based on least-commitment and
heuristic techniques, but it is neither complete nor optimal-preserving. This
approach is motivated by the inefficiencies of the first approach and solves them
by means of an incremental generation of plans: the algorithm generates a relaxed
plan from the temporal graph which is used as a skeleton of the final plan. New
actions are then heuristically selected and inserted into the plan to support the
unsolved (sub)goals. This way the search is better guided and its behaviour is
more scalable.

• Some experimental results showing the comparison between the two search approaches
and the comparison of the least-commitment approach with other state-of-the-art
temporal planners.

This paper is organised as follows. In the next section, we present the motivation for
dealing with a non-conservative model of actions. In section 3, we introduce the action model
and terminology used throughout the rest of the paper, presenting some of the difficulties
that local conditions and effects may have on planning. Section 4 introduces TPSYS, its
three stage structure, and the problem formalisation. The first stage of TPSYS is presented
in section 5, along with the definition of static mutex. The second stage is presented in
section 6. This section describes the formalisation of dynamic mutex and the extension of
the temporal planning graph. Section 7 presents the search of a temporal plan and analyses
two search approaches. The former is based on Graphplan and also discusses several methods
for improving the search, such as temporal memoization and heuristic search to reduce the
search space. The latter is based on least-commitment and heuristic techniques; it reviews
the main inefficiencies of the Graphplan backward search and proposes a new search approach
to overcome these inefficiencies. Section 8 includes the experimental results of the two search
approaches in some benchmark problems used in the International Planning Competitions
and makes some comparisons with state-of-the-art temporal planners. In section 9, we
discuss two alternatives for transforming non-conservative actions into conservative actions
to be directly used in classical planners. Finally, section 10 presents our conclusions through
related work as well as some directions for future work.

2. Motivation for a Non-Conservative Model of Actions

In real problems, the motivation for dealing with actions with duration is clear: actions
usually have widely different durations (Smith & Weld, 1999). Although the motivation
for dealing with a non-conservative model of actions is also clearly justified, it requires a
more detailed analysis. Unlike conservative models of actions in PDDL, non-conservative
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actions of PDDL2.1 allow the modelling of temporal planning domains to achieve a fuller
exploitation of concurrency. PDDL2.1 extends PDDL to include not only duration of ac-
tions, but also local conditions and effects. This involves a more precise modelling of the
state transitions undergone by different propositions within the durative interval of the ac-
tion. In particular, the traditional preconditions of the starting point of the action need not
necessarily be maintained throughout the interval. There may be preconditions of the final
effect of the action that can be achieved concurrently with the action rather than main-
tained throughout the duration of the action. Hence, it becomes necessary to distinguish
invariant from non-invariant conditions depending on whether they can be affected during
the interval of execution or not. Furthermore, there might be initial effects at the starting
point that can be exploited by concurrent actions. All these distinctions give rise to quite
sophisticated opportunities for concurrent actions in a PDDL2.1 plan.

Let us consider the conservative action fly(plane,origin,destination). This action
requires the proposition at(plane,origin) to be true before executing the action, and
asserts the propositions ¬at(plane,origin) and at(plane,destination) at the end of
the action. This implies that the location of the plane is inaccessible until the end of the
action, preventing concurrent actions (for instance, those that require the plane not to
be in the origin) from being executed in parallel with fly(plane,origin,destination).
As Fox and Long (2001) suggest, this may exclude many valid plans. In PDDL2.1, this
situation can be avoided by simply asserting ¬at(plane,origin) as an initial effect and
at(plane,destination) as a final effect. In addition, if we want to know that the plane is
flying during the action fly, it would be enough to assert the proposition flying(plane)

as an initial effect and ¬flying(plane) as a final effect. In the conservative model, the
action equivalent to this fly action would not represent the fact of being flying due to
the inability to express the proposition flying(plane) and ¬flying(plane) as initial and
final effects, respectively. Therefore, it is impossible to work with more realistic actions
that require this proposition, such as a possible refuel-during-flight action. Although
this limitation could be overcome in a conservative model of actions by splitting each non-
conservative action into three conservative actions, this makes the size of the problem larger
as we will discuss in section 9.

Even though in real problems instantaneous actions are never really instantaneous, there
are some cases in which these actions could be useful for modelling purposes. Level 3 of
PDDL2.1 also allows the definition of these actions, i.e. traditional actions with no dura-
tion. Since PDDL2.1 intends to provide physics instead of advice of the planning problem,
instantaneous actions could be useful in order to obtain a valid plan for different executive
agents when the duration of the action is very small (or even unknown) to be considered
by the planning agent. More generally, the domain engineer might choose to model the
domain at a level of abstraction at which it is not interesting to capture the durations of
practically instantaneous actions. That is, the engineer might choose to emphasise the du-
rations of some actions but not of others. These modelling choices do not lead to conflict
with the semantics presented by Fox and Long (2001) because, at level 3 of PDDL2.1, it is
possible to express an instantaneous action as an action with barely measurable duration.
This duration is epsilon, an amount so small that it makes no sense to split it. This means
that non-interfering actions that take epsilon time can happen in parallel but they cannot
be interleaved. This epsilon is so small that it never changes the sequence of actions in the
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Figure 1: Components of a durative action.

plan. Epsilon has to be chosen appropriately for a given domain and problem, because it
represents a discretisation of the time-line into indivisible units, the end points of which
mark the points at which actions can be initiated or terminated.

3. Action Model and Terminology

Non-conservative durative actions of PDDL2.1 can require more conditions to be guaranteed
for the success of the action than traditional actions of PDDL. Durative actions not only
have effects that hold at their conclusions, but they also have effects that must be asserted
immediately after the actions start.

Definition 1 (Components of a durative action in PDDL2.1) Let a be a durative
action which starts at time s and ends at time e, being executed throughout the interval
[s..e] (see Figure 1). The components of a are the following:

• Conditions. The three types of local conditions of a durative action are: i) SCond(a),
the set of conditions to be guaranteed at the start of the action (time s); ii) Inv(a),
the set of invariant conditions to be guaranteed over the execution of the action (time
[s..e]); and iii) ECond(a), the set of conditions to be guaranteed at the end of the
action (time e).

• Duration. The duration of the action is a positive value represented by dur(a) ∈ R+.

• Effects. The two types of effects of a durative action are: i) SEff(a)= {SAdd(a)∪
SDel(a)}, with the positive and negative effects respectively to be asserted at the start
of the action (time s); and ii) EEff(a)= {EAdd(a)∪EDel(a)}, with the positive and
negative effects respectively to be asserted at the end of the action (time e).

Durative actions involve other difficulty: there exist some effects (SEff(a)) which can
be obtained before the action a ends. Hence, it might occur that an initiated action could
not end because its end conditions (ECond(a)) are not satisfied in the future. Because
PDDL2.1 semantics guarantees the entire execution of an action, in this case, all the start
effects (and the actions which are dependent on them) should be invalidated. We call
these kinds of actions conditional actions because their execution is provisional and it is
dependent on the fulfillment of the end conditions.
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Definition 2 (Conditional action) An action a is a conditional action iff (SEff(a) 6=
∅) ∧ (ECond(a) 6= ∅) holds. This way, the set of propositions SEff(a) of a conditional
action a only becomes valid when all propositions in ECond(a) are satisfied.

Conditional actions usually occur in domains where some effects of durative actions are
achieved when actions start, required throughout the duration of execution of that action
and probably deleted when the action ends. Such initial effects cannot be exploited as
end effects because they do not persist beyond the end of the action. Furthermore, the
successful termination of a durative action (end conditions) must be confirmed even if a
goal is achieved before the end of its durative interval. This is because durative actions
promise to terminate initiated actions in a stable state. If anything in the plan prevents
this stable termination, then the plan must be considered invalid. Richer specifications
might allow one to consider exogenous events (Smith & Weld, 1999) and conditions/effects
which come into play at a specific point in time and must persist only over finitely bounded
intervals (Do & Kambhampati, 2001). However, PDDL2.1 does not yet support this.

Definition 3 (Conditional proposition) A proposition p is conditional iff all the ac-
tions {ai} which achieve p are conditional and they have not yet ended their execution.

Intuitively, if p is only achieved by conditional actions {ai}, p will be conditional until
at least one action ai ends successfully, which implies both SCond(ai) and ECond(ai) are
satisfied. Once this happens p is valid (no longer conditional).

As we have seen in the previous section, instantaneous actions are allowed in level 3
of PDDL2.1. This does not represent a serious inconvenience because a straightforward
correspondence rule can transform an instantaneous action into a durative action. This
way, all the instantaneous actions present in the planning domain can be managed in the
same way as durative actions.

Definition 4 (Correspondence rule Rai 7→ad) The correspondence rule maps an instan-
taneous action ai, with Pre(ai), Effs(ai) = {Add(ai)∪Del(ai)} into a durative action ad
in the following way:

SCond(ad) =ECond(ad) =Inv(ad) =Pre(ai)

SAdd(ad) =EAdd(ad) =Add(ai)

SDel(ad) =EDel(ad) =Del(ai)

dur(ad) = 0

An example of the definition of durative actions of PDDL2.1 is depicted in Figure 2. This
figure represents some actions of the satellite domain used in the IPC–20022. According
to Definition 1, the actions have at start, over all and at end conditions with the conditions
to be satisfied right at the beginning of the action, during its execution and at the end of

2. More information on the domains and problems of the International Planning Competition 2002 in:
http://www.dur.ac.uk/d.p.long/IPC
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(:durative-action switch_on

:parameters (?i - instrument ?s - satellite)

:duration (= ?duration 2)

:condition (and (at start (power_avail ?s))

(over all (on_board ?i ?s)))

:effect (and (at start (not (calibrated ?i)))

(at start (not (power_avail ?s)))

(at end (power_on ?i))))

(:durative-action calibrate

:parameters (?s - satellite ?i - instrument ?d - direction)

:duration (= ?duration 5)

:condition (and (at start (pointing ?s ?d))

(over all (on_board ?i ?s))

(over all (calibration_target ?i ?d))

(over all (power_on ?i)))

(at end (power_on ?i)))

:effect (at end (calibrated ?i)))

(:durative-action turn_to

:parameters (?s - satellite ?d_new - direction ?d_prev - direction)

:duration (= ?duration 10)

:condition (and (at start (pointing ?s ?d_prev))

(over all (not (= ?d_new ?d_prev))))

:effect (and (at start (not (pointing ?s ?d_prev)))

(at end (pointing ?s ?d_new))))

(:durative-action take_image

:parameters (?s - satellite ?d - direction ?i - instrument ?m - mode)

:duration (= ?duration 1)

:condition (and (over all (calibrated ?i))

(over all (on_board ?i ?s))

(over all (supports ?i ?m))

(over all (power_on ?i))

(over all (pointing ?s ?d))

(at end (power_on ?i)))

:effect (at end (have_image ?d ?m)))

Figure 2: Definition of some durative actions for the satellite domain. This domain is
inspired by space-applications, which involve planning and scheduling a collection
of observation tasks between multiple satellites.
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the action, respectively. Analogously, the at start and at end effects are the effects to be
asserted at the beginning and the end of the execution of the action.

At first glance, an extension of a Graphplan-based planner to deal directly with level 3
durative actions would seem quite easy. However, it implies important changes in the way
the temporal graph is generated and in the way the search for a plan is performed. All
these new requirements are presented in section 4.

4. TPSYS: a Temporal Planning SYStem

TPSYS copes with temporal planning problems under a non-conservative model of actions
by combining the ideas of Graphplan (Blum & Furst, 1997) and TGP (Smith & Weld, 1999).
This means that TPSYS incrementally extends a temporal planning graph, performs a
backward search through that graph and extracts a feasible, optimal temporal plan.

4.1 Problem Formalisation

In TPSYS, a temporal planning problem is specified as the tuple {I s,A,Fs,Dmax}, where
Is and Fs represent the initial and final state as two sets of propositions, respectively. A
represents the set of ground durative actions in the domain. Unlike conservative actions,
durative actions present more conditions to be satisfied in order to guarantee the success of
the action (SCond(a), Inv(a) and ECond(a)). In addition, durative actions have two types
of local effects (SEff(a) and EEff(a)). Finally, Dmax stands for the maximum duration
allowed by the user. Time is modelled by R+ and their chronological order. Although
PDDL2.1 can define different metrics to be used as optimisation criteria, TPSYS always
tries to minimise the makespan.

4.2 Structure of TPSYS

TPSYS consists of three consecutive stages, as indicated in Figure 3. Briefly, these three
stages are:

• The first stage. This stage performs a reachability analysis to discard as much irrele-
vant information (propositions and actions) as possible. This simplifies the planning
process because it reduces the real size of the problem. It then calculates the static
mutex relations, i.e. the mutex which always hold because they only depend on the
problem definition. This stage is not present in either Graphplan or TGP, and it is
only executed at the beginning of the process.

• The second stage. This stage incrementally extends a temporal planning graph, alter-
nating proposition and action levels. All the information about action/action, propo-
sition/action and proposition/proposition dynamic mutex is propagated through the
temporal graph. The extension continues until all the problem goals are non-pairwise
mutex and the actions which support them have successfully terminated.

• The third stage. This stage extracts a temporal plan, as an acyclic flow of actions,
through the temporal planning graph. TPSYS implements two different approaches
for the search. In the search based on Graphplan (see section 7.1), the second and

8
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Figure 3: Structure of TPSYS.

third stages are executed in an interleaved way until either a plan is found (success)
or the makespan of the plan exceeds the value Dmax (failure). In contrast, in the
search based on least-commitment and heuristic search (see section 7.2), the second
and third stages are not executed in an interleaved way.

5. First Stage. Calculus and Analysis of Static Mutex

The first stage of TPSYS performs two important tasks: i) the operator instantiation from
the domain operators, and ii) the calculus of the static mutex, which always hold. The
more permissive model of actions of PDDL2.1 makes the calculus of mutex significantly
more expensive. Local conditions and effects allow the simultaneous execution of actions,
even when those actions refer to the same propositions. For instance, two actions with
interfering propositions will never be executed in parallel in a conservative model. However,
in a non-conservative model, those actions may not start or end together, but they can still
be executed in parallel. Therefore, the additional cost in the calculus of mutex requires an
exhaustive analysis (and filtering) of the actions to be instantiated in order to discard any
irrelevant action in the planning process.

5.1 Reachability analysis

Complex domains include many operators which are necessary in real planning problems.
However, such operators are not always reachable or useful in all the problem instances
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for that domain. For instance, let us suppose the operator fly(?p,?c1,?c2) that requires
that both city ?c1 and ?c2 have an airport for the plane ?p to fly to and from. Obviously,
if city1 does not have an airport, any action fly with city1 as origin or destination will
never be part of a feasible plan, and the only consequence of that action will be to degrade
the planner’s performance. Although detecting such a situation seems a trivial task, its
generalisation to domain-independent planning is not easy. In addition, other situations that
arise indirectly are more difficult to detect. If no plane ?p can be used in city1, any action
for loading (load(?package,?p,city1)) or unloading (unload(?package,?p,city1)) will
be irrelevant, no matter what the values of ?package and ?p are. Furthermore, there are
many actions that are applicable but have no influence while calculating the plan. For
instance, if the problem goal consists of transporting package1, any action applicable to
the rest of packages is irrelevant and its analysis would degrade the planner’s performance.

Reachability analysis techniques to discard irrelevant information in planning processes
are not new and have been studied in recent literature (Fox & Long, 1998; Nebel, Dimopou-
los, & Köehler, 1997). One of the most outstanding works has been presented by Nebel
et al. (1997) in the IPP planner. This work combines a backward and a forward search
process and discards information which is likely to be unnecessary in the plan. Nebel et al.
use non-admissible heuristics to remove as much information (facts and operators) as pos-
sible. However, in some cases this leads to discarding information that is necessary for the
planning process. Detecting the information that is strictly necessary for a plan tends to
be as difficult as generating the entire plan. Therefore, we use an intermediate approach to
discard irrelevant information in an efficient, solution-preserving way (i.e. our reachability
analysis does not remove information that is necessary for a feasible plan).

Figure 4 describes the algorithm for the reachability analysis performed in the first stage
of TPSYS. The algorithm does not use any estimation or heuristic function as in (Nebel
et al., 1997). However, there is a specific distinction between the information (propositions
and actions) that is reachable from the initial state and information that is reachable from
the final state. The algorithm consists of two simple loops: i) forward from I s (steps 1–9),
and ii) backward from F s (steps 10–21). Finally, the algorithm marks the propositions and
actions reachable in both directions (steps 22–24) as globally reachable discarding all the
information that is irrelevant to the planning process.

The reachability analysis performed in the algorithm of Figure 4 reduces the amount of
irrelevant information in the problem, solving the problems introduced above. Although this
algorithm does not remove all the irrelevant information, the advantages are important: the
actions that will not be part of a feasible plan are removed, as well as the static, artificial
propositions which are only necessary for the instantiation of the actions (Fox & Long,
1998). For instance, the fact that there is an airport in a city, a link between two cities, etc.
is useful for checking whether an action can be instantiated, but not during the planning
process. This reachability analysis can also detect many unsolvable problems when the
problem goals are not reachable in both directions. This analysis also provides an initial
estimation of the cost (in terms of actions or time) to achieve either a proposition or an
action. This information can be very valuable for the heuristic estimations used in modern
planning approaches.
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1. //Reachability analysis from Is

2. reach props IS← Is

3. reach acts IS← ∅
4. repeat
5. forall ai | {SCond(ai)∪Inv(ai)} ⊆ reach props IS

6. if ai /∈ reach acts IS then
7. reach acts IS← reach acts IS ∪ {ai}
8. reach props IS← reach props IS ∪ {SAdd(ai)∪EAdd(ai)}
9. until reach acts IS are not modified in the iteration

10. //Reachability analysis from F s

11. reach props FS← F s

12. reach acts FS← ∅
13. goals← F s

14. while goals 6= ∅
15. forall gi ∈ goals

16. goals← goals \ {gi}
17. forall ai | (gi ∈ {SAdd(ai)∪EAdd(ai)} ∧ ai ∈ reach acts IS)
18. reach props FS← reach props FS ∪ {gi}
19. if ai /∈ reach acts FS then
20. reach acts FS← reach acts FS ∪ {ai}
21. goals← goals ∪ {SCond(ai)∪Inv(ai)∪ECond(ai)}

22. //Global reachability analysis (both directions)
23. reach props← reach props IS ∩ reach props FS

24. reach acts← reach acts IS ∩ reach acts FS

Figure 4: Algorithm for the reachability analysis.
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5.2 Definition of static mutex in a non-conservative model of actions

Most Graphplan-based planners do not establish any difference between the nature of the mu-
tex relations, calculating the same mutex repetitively during the generation of the planning
graph (Halsey, 2002). However, in most problems, there is a set of mutex that always hold.
For instance, it is clear that fly(plane,city1,city2) and fly(plane,city2,city1) us-
ing the same plane will be always mutex and they will never be executed in parallel. TGP

first introduced a classification of mutex as eternal and conditional mutex in a Graphplan

approach. In the same way, TPSYS performs a classification of mutex as static and dy-
namic mutex. Static mutex never change and are time-independent. These mutex are
static because they only depend on the operators of the planning domain. Therefore, it is
not necessary to postpone their calculus to the extension of the temporal planning graph.
This also allows us to speed up the rest of the stages in the planning process.

When handling non-conservative actions, the mutex calculus must distinguish between
different ways of overlapping actions. The conflicts which prevent actions from being exe-
cuted in parallel are due to the action synchronisation and the conditions/effects which are
contradictory (Fox & Long, 2001; Long & Fox, 2001). Non-conservative actions have more
conditions and effects than conservative actions, so it is obvious that new types of mutex
must be introduced.

Definition 5 (Static action/action mutex (AA mutex)) Non-conservative actions
have four types of static mutex, (see Table 1):

1. Case 1 (AAstart−start) represents the situation when two actions cannot start together
because: i) initial effects are contradictory, or ii) initial effects and conditions are
contradictory.

2. Case 2 (AAend−end) represents the situation when two actions cannot end together be-
cause: i) final effects are contradictory, or ii) end effects and conditions are contradic-
tory3.

3. Case 3 (AAend−start) represents the situation when one action cannot end when an-
other action starts because the final effects of the former are contradictory with the
conditions/effects of the latter. This mutex (which does not appear in Graphplan)
might seem to be a stronger requirement than is really necessary, but it takes into ac-
count the fact that simultaneity can never be relied upon in the real world —it cannot
be guaranteed that the action requiring the at start condition will definitely happen
after the achievement of that condition at execution time4.

4. Case 4 (AAduring−during) represents the situation when one action cannot start/end
during the execution of another action because the effects of the former are contradic-
tory with the invariant conditions of the latter.

3. Clearly, when two actions have the same duration, AAend−end mutex implies AAstart−start mutex, and
vice versa.

4. In order to simplify the calculus of this case, TPSYS takes the correctness-preserving assumption of
including an epsilon (ε > 0) between the action which ends and the action which starts, thus solving the
problem of simultaneity. The value of ε is so small that it does not negatively affect the soundness of
the algorithm.
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Case Condition for the mutex Type of mutex Relation

(SAdd(a)∩SDel(b) 6= ∅) ∨ (SAdd(b)∩SDel(a) 6= ∅)
1 ((SAdd(a)∪SDel(a)) ∩ (SCond(b)∪Inv(b)) 6= ∅) AAstart−start

((SAdd(b)∪SDel(b)) ∩ (SCond(a)∪Inv(a)) 6= ∅)
(EAdd(a)∩EDel(b) 6= ∅) ∨ (EAdd(b)∩EDel(a) 6= ∅)

2 ((EAdd(a)∪EDel(a)) ∩ (ECond(b)∪Inv(b)) 6= ∅) AAend−end

((EAdd(b)∪EDel(b)) ∩ (ECond(a)∪Inv(a)) 6= ∅)
((EAdd(a)∪EDel(a)) ∩ (SCond(b)∪Inv(b)) 6= ∅)
((EAdd(b)∪EDel(b)) ∩ (SCond(a)∪Inv(a)) 6= ∅)

3
(EAdd(a)∩SDel(b) 6= ∅) ∨ (EDel(a)∩SAdd(b) 6= ∅)

AAend−start

(EAdd(b)∩SDel(a) 6= ∅) ∨ (EDel(b)∩SAdd(a) 6= ∅)
(Inv(a)∩SDel(b) 6= ∅) ∨ (Inv(b)∩SDel(a) 6= ∅)

4
(Inv(a)∩EDel(b) 6= ∅) ∨ (Inv(a)∩EDel(a) 6= ∅)

AAduring−during

Table 1: Conditions for the AA static mutex relationships between actions a and b.

Definition 6 (Static proposition/action mutex (PA mutex)) One proposition p is
statically PA mutex with action a iff p ∈ {SDel(a)∪EDel(a)}.

As an example of the analysis of static mutex calculated at this stage, we will as-
sume a simple example defined on the satellite domain of Figure 2. Let phenomenon1,
phenomenon2 and phenomenon3 be three phenomena which represent the directions for the
satellite to point to. Let satellite1 be the only satellite, initially pointing to phenomenon0

and with instrument1. turn to(satellite1, phenomenon1, phenomenon0) is AAstart−start

with calibrate(satellite1, instrument1, phenomenon0) due to the contradiction in propo-
sition pointing. take image(satellite1, phenomenon1, instrument1, thermograph0) and
switch on(instrument1, satellite1) are AAend−end due to the proposition power on.
Finally, the actions take image(satellite1, phenomenon1, instrument1, thermograph0)
and turn to(satellite1, phenomenon0, phenomenon1) are AAduring−during because the in-
variant condition pointing is deleted (it does not point to phenomenon1). These three
situations prevent the actions from starting, ending and being executed together.

6. Second Stage. Extension of the Temporal Planning Graph

The second stage of TPSYS extends the temporal planning graph. Unlike Graphplan, the
extension of the temporal planning graph is not as regular and symmetric: actions have
different durations and this breaks the original symmetry of the planning graph. Now, the
levels are not equidistant and the effects can extend through several levels. Therefore, the
actions which are mutex with an action a might be mutex at not only time t, but also at
all the levels between t and t+dur(a). This requires some changes in the extension of the
planning graph; those changes are analysed in the following sections.

6.1 The temporal planning graph

The temporal planning graph of TPSYS consists of a directed, layered graph which alter-
nates proposition levels (P[t]) and action levels (A[t]) with the propositions and actions,

13
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respectively, which are present in time t. Each level represents a real time stamp (action
durations are real values) instead of representing a simple planning step as in Graphplan.
Consequently, time is explicitly stored in the levels of the graph which are chronologically
ordered by their value.

Non-conservative actions that start at one level t may require and insert propositions
at that level. In order to simplify the extension of the temporal planning graph, we have
split each level into two parts: end -part and start -part. The end -part (start -part) analyses
all the actions that end (start) at that time and all their conditions/effects. Actions that
end (start) at an action level A[t] are stored in A[t]end (A[t]start). Analogously, propositions
achieved as final (initial) effects are stored in P[t]end (P[t]start).

6.2 Formalisation of dynamic mutex

The dynamic mutex to be calculated in time t in the temporal planning graph are the ac-
tion/action mutex (AA[t]), the proposition/action mutex (PA[t]) and the proposition/propo-
sition mutex (PP[t]). We use the notation AA[t], PA[t] and PP[t] for the dynamic mutex
which are time-dependent and can disappear through the extension of the graph, whereas
AA and PA are used for the static mutex which always hold. On one hand, the mu-
tex to be calculated in the end -part are: AA[t]end−end (actions that are mutex ending in
t), PA[t]end−end (propositions that are mutex with actions ending in t), and PP[t]end−end

(propositions that are mutex in t after the ending of their supporting actions). On the
other hand, the mutex to be calculated in the start -part are: AA[t]start−start (actions that
are mutex starting in t), AA[t]end−start (mutex between actions which end and start in
t), PA[t]start−start (propositions that are mutex with actions starting in t), PP[t]end−start

(propositions that are mutex in t and are generated by actions which end/start in t), and
PP[t]start−start (propositions that are mutex in t after the starting of their supporting ac-
tions). Although this classification of mutex might seem excessive, the main reason for
breaking down these mutex relationships into end -part and start -part is to make their
calculus simpler, as can be seen in the following definitions:

Definition 7 (Dynamic AA[t]end−end mutex) Two actions a, b are end-end mutex in t if
one of the following holds: i) a, b are AAend−end, ii) ECond(a),ECond(b) are PP[t]end−end,
or iii) a, b are AA[t−min(dur(a),dur(b))]start−start.

Definition 8 (Dynamic PA[t]end−end mutex) Let p, a be a proposition and an action,
respectively. For each action bi supporting p in t, let Υi[t] be the condition under which
bi is mutex with the persistence of p in t, i.e. Υi[t] = [(p, bi are PA) ∨ (p,ECond(bi) are
PP[t]end−end)]. Proposition p and action a are end-end mutex in t if the following condition
holds:

∧

i[Υi[t] ∧ (a, bi are AA[t]end−end)].

Definition 9 (Dynamic PP[t]end−end mutex) Let p, q be two propositions and {ai}, {bj}
be two sets of actions that support p and q in t, respectively. Propositions p, q are end-end
mutex in t if the following conditions hold: i) ∀bj : p, bj are PA[t]end−end, and ii) ∀ai : q, ai
are PA[t]end−end.

Definition 10 (Dynamic AA[t]start−start mutex) Two actions a, b are start-start mutex
in t if one of the following holds: i) a, b are AAstart−start, or ii) SCond(a),SCond(b) are
PP[t]start−start.
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Definition 11 (Dynamic AA[t]end−start mutex) Two actions a (ending in t) and b (start-
ing in t) are end-start mutex in t if one of the following conditions holds: i) a, b are
AAend−start, or ii) ECond(a),SCond(b) are PP[t]end−end.

Definition 12 (Dynamic PA[t]start−start mutex) Let p, a be a proposition and an action,
respectively. For each action bi supporting p in t, let Ψi[t] be the condition under which bi
is mutex with the persistence of p in t, i.e. Ψi[t] = [(p, bi are PA) ∨ (p,SCond(bi) are
PP[t]start−start)]. Proposition p and action a are start-start mutex in t if the following
condition holds:

∧

i[Ψi[t] ∧ (a, bi are AA[t]start−start)].

Definition 13 (Dynamic PP[t]end−start mutex) Let p be a proposition firstly supported
in t by the set of actions {ai} which end in t. Analogously, let q be another proposition firstly
supported in t by the set of actions {bj} which start in t. Propositions p, q are end-start
mutex in t if the following condition holds: ∀ai, bj : ai, bj are AA[t]end−start.

Definition 14 (Dynamic PP[t]start−start mutex) Let p, q be two propositions and {ai},
{bj} be two sets of actions which support p and q in t, respectively. Propositions p, q are
start-start mutex in t if the following conditions hold: i) ∀bj : p, bj are PA[t]start−start, and
∀ai : q, ai are PA[t]start−start.

Intuitively, AA[t] mutex indicates the impossibility of two actions ending, starting or
abutting together at the same time t. PA[t] mutex indicates the impossibility of hav-
ing a proposition and an action starting or ending at time t. PP[t] mutex indicates the
impossibility of having two propositions together at time t. This calculus of the mutex
relationships obtains the same mutex as Graphplan. Thus, it provides very useful infor-
mation for improving the search process by avoiding combination of actions, propositions
and propositions/actions which cannot be satisfied simultaneously, thus reducing the search
space.

As can be observed in the previous definitions, the calculus of the mutex relationships in
the end -part and start -part are nearly identical. The only difference consists of recovering
and storing the information in different structures. However, in some cases the structures
can be the same, reducing the storage requirements. For example, we only keep one structure
PP[t] to store the information PP[t]end−end, PP[t]end−start and PP[t]start−start.

6.3 Extension of the temporal planning graph

The temporal planning graph is incrementally generated by means of the same forward
chaining process of Graphplan. Specifically, the process consists of generating all the actions
{ai} in action level A[t] of the graph as soon as their start and invariant conditions are
non-pairwise mutex in the proposition level P[t], generating their start and end effects in
the proposition levels P[t] and P[t+dur(ai)], respectively.

An important point to be considered when dealing with non-conservative actions in a
Graphplan-based approach is the condition to finish the extension of the temporal graph. In
Graphplan, this condition holds once all the propositions of the final state are non-pairwise
mutex. Non-conservative actions may assert start effects which might satisfy goals in the
final state before these actions end. In the case of conditional actions (see Definition 2),
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Figure 5: Two situations where conditional actions/propositions make it necessary to ex-
tend the termination criterion of the temporal graph.

however, this implies that the temporal graph extension might end in a level in which it is
impossible to find a feasible plan because one of the propositions in the final state is still
conditional (see Definition 3).

Figure 5 shows two examples that require extending the termination criterion of the
temporal graph. Let us assume that in both cases F s = {q} and that all the final conditions
(ECond) hold when required. In Figure 5-a, the goal is satisfied at time t = 5 by the start
effect of a. However, the extension of the temporal graph cannot end until t = 15 (when
a ends). This situation prevents proposition q from being valid until the termination of a.
The situation becomes more complex when more actions and propositions are involved. In
Figure 5-b, the goal is satisfied at time t = 9 when b ends, but the extension of the temporal
graph cannot end until t = 15. In this case, proposition p, which is required by action b, is
achieved at t = 5, but it is conditional until t = 15 when a ends. This information must be
propagated through the graph to all the actions/propositions dependent on p, and it makes
the effect q of action b invalid until t = 15, when the graph extension can finally terminate.

In order to avoid an incomplete extension of the temporal graph which prevents the
planner from finding a feasible plan, some information on the instant of validity of the
propositions must be propagated. The strategy for this propagation follows the same dis-
junctive mechanism as Graphplan. This mechanism calculates the instant of time when
propositions are valid and, therefore, the temporal graph extension can terminate.

Definition 15 (Instant of validity of a proposition) Let {ai} be the set of actions that
support proposition p and test(ai) the earliest start time of each action ai. The instant of
validity of a proposition p, Instv(p), is given by the value min(αi), where:

αi =

{

0 if p ∈ Is

max(Instv(SCond(ai)∪Inv(ai)),Instv(ECond(ai)),test(ai)+dur(ai)) if p /∈ Is

and the value of the expression Instv({pi}) on a set of propositions {pi} is defined as
max(Instv(pi)).

Figure 6 describes the algorithm for the extension of the temporal graph in TPSYS. The
algorithm starts at time t = 0 (step 1) and incrementally generates new proposition and
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1. t← 0
2. A[0]end ← ∅
3. P[0]end ← Is

4. while ((F s /∈ PP[t]end−end ∨ Instv(Fs) > t) ∧ t ≤ Dmax)

5. //end-part of the level
6. forall ai that can end in A[t]end

7. A[t]end ← A[t]end ∪ {ai}
8. P[t]end ← P[t]end ∪EAdd(ai)
9. calculate mutex AA[t]end−end, PA[t]end−end and PP[t]end−end

10. //start-part of the level
11. forall bj that can start in A[t]start

12. A[t]start ← A[t]start ∪ {bj}
13. P[t]start ← P[t]start ∪ SAdd(bj)
14. calculate mutex AA[t]start−start, AA[t]end−start, PA[t]start−start, PP[t]end−start and

PP[t]start−start

15. t← next level in the temporal graph

Figure 6: Algorithm for the temporal graph extension.

action levels: end -part (steps 5–9) and start -part (steps 10–14). Intuitively, the algorithm
generates all the levels where actions can end/start and mutex can disappear, i.e. levels
which may be relevant in order to achieve a feasible plan. Note that the algorithm does
not need to consider no-op actions through the extension because of the richer calculus
of the mutex. However, this does not entail any inconvenience for the persistence of the
propositions/actions which implicitly persist in time: if one proposition/action is present
at time t, it will be present at any time t′ > t.

As can be observed, the extension terminates at time t when all propositions in F s are
not dynamically mutex and valid. This termination condition guarantees that a feasible
plan will never be shorter than t. Although this termination condition is necessary for
finding a plan, it is still not sufficient as also occurs in Graphplan.

Lemma 1 (The extension of the temporal graph is complete) The algorithm for the
temporal graph extension generates a complete planning graph, where all the relevant levels
in which actions can end/start are present. This way, if the algorithm terminates at a level
t, there is not an intermediate level t′ | 0 < t′ < t where an action that is relevant for finding
an optimal plan can start/end.

Proof The proof is direct by the definition of the algorithm and the incremental generation
of the graph. Given an action level A[t], the algorithm generates all the actions {ai} that
can start at that level. Consequently, all the levels A[t+dur(ai)] and P[t+dur(ai)] are also
generated. This guarantees the completeness of every level, and incrementally, of all the
levels present in the graph.

Let us suppose that a proposition level P[t′′], which is not generated in the graph,
is included between two consecutive levels P[t] and P[t′] present in the graph (obviously
t < t′′ < t′). The level P[t′′ ] is not relevant in the temporal graph because it does not store
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relevant information: no relevant actions end/start at time t′′ and, therefore, no mutex can
disappear (level t′′ would keep the same mutex information as level t). Consequently, level
t′′ will not be used when finding a feasible plan.

6.4 An example of a temporal planning graph

In this section, we will illustrate the extension of the temporal planning graph for a problem
of the satellite domain defined in Figure 2. Let us assume the duration 10, 5 and 1 for
actions of type “turn to”, “calibrate” and “take image”, respectively. In the initial
state Is there exists one satellite satellite1 pointing to phenomenon0 with an instrument
instrument1 which is switched on and ready to be calibrated. The problem goals (F s)
consist of taking images of phenomenon1, phenomenon2 and phenomenon3. Figure 7 shows
a part of the temporal planning graph, whose extension terminates at time t = 27.

The actions in the graph start when their start and invariant conditions are present and
they are non-pairwise mutex. Although the conditions for actions of type “take image” are
present at t = 10, they do not start until t = 15 (when their conditions are non-pairwise
mutex). In consequence, all the problem goals of F s are independently achieved at t = 16.
However, TPSYS continues the extension until t = 27 when the problem goals are non-
pairwise mutex and valid. This indicates to us that there is no feasible plan shorter than
27 and it acts as a lower bound of the makespan of the plan.

This example also illustrates the increase in the complexity of the temporal planning
graph w.r.t. the number of levels. The temporal graph has 16 levels, whereas the equivalent
classical Graphplan planning graph (with no duration on actions) has only 5 levels. Now, the
degree of concurrency between actions is higher and this forces the algorithm to explicitly
generate more levels. In addition, the number of levels depends on the duration of the
actions and their dispersion5, and it can completely change when the duration of any action
changes.

7. Third Stage. Search of a Temporal Plan

The third stage of TPSYS performs the search of a temporal plan from the temporal graph
generated in the second stage. In TPSYS we have analysed two different approaches to
perform this search:

• The search approach based on Graphplan. In this approach, the third stage follows
the same strategy as Graphplan. However, the right-to-left directionality of Graphplan

or TGP search might be broken due to the fact that durative actions provide two
alternatives to support the goals (final and initial effects) and they may require final
conditions. The search is based on an iterative deepening and chronological back-
tracking that extracts the plan through the levels of the planning graph. This means
that the second and third stage are executed in an interleaved way until a plan is
found or the value Dmax is exceeded.

5. The number of levels of the temporal graph grows when the actions have widely different durations.
Specifically, the worst case happens when the greatest common divisor of the durations is 1. If the
gcd = 1, the algorithm must generate the maximum number of levels, thus increasing the complexity of
the second stage.
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Figure 7: Part of the temporal planning graph for the example of the satellite domain.
Although the real graph of TPSYS is more complex (it contains 18 actions and 13
propositions), only the most relevant information is represented. For simplicity,
the graph does not show the explicit separation of each level into end -part and
start -part.
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• The search approach based on least-commitment and heuristic techniques. In this
approach, the third stage is divided into two new stages. First, a relaxed plan is
generated in a backward chaining way. Second, this relaxed plan is used as a skeleton
to generate the temporal plan and as the basis for calculating heuristic estimations
in a forward chaining way. Now, the original second and third stages are no longer
executed in an interleaved way. Consequently, the third stage extends the temporal
graph as much as necessary until finding a plan or exceeding the value Dmax.

7.1 Search based on Graphplan

The Graphplan search consists of a simple regressive process, planning the necessary actions
to support the problem (sub)goals. However, when handling actions with local condi-
tions/effects, there are different ways of achieving the goals, not only by the at end effects
but also by the at start effects. Consequently, planning such an action commits a plan to
satisfying the start, invariant and end conditions. This makes the regressive process trickier,
as shown in the following example.

Let t be the instant of time when proposition p must be satisfied during the extraction
of a plan. Let us suppose that conditional action a achieves p as a start effect (p ∈SAdd(a))
at time t. The usual strategy after planning a is to satisfy all its initial and final conditions.
Initial conditions must occur at time t, but final conditions must occur at time t ′ = t +
dur(a). Obviously, t′ > t and this forces the search algorithm to revisit a previously visited
instant of time t′. This situation is new in a Graphplan approach and involves a right-to-left
and left-to-right strategy until all the problem goals are supported.

7.1.1 Extraction of a temporal plan

The algorithm for extracting a temporal plan is shown in Figure 8. TPSYS uses two basic
structures indexed by an instant of time t: GoalsToSatisfy[t] and P lan[t]. GoalsToSatisfy,
which is initialised with the propositions in F s (step 2), stores the goals to be satisfied at
each level. P lan stores the actions committed at each level and is initialised empty (step
3). The search process is repeated while GoalsToSatisfy[t] is not empty. Step 12 extracts
a proposition p to be satisfied at time t. Proposition p might already be supported in P lan
because actions in P lan are planned at different levels and not always in a right-to-left order
(step 13). If p is not supported, step 14 selects the action to be planned (backtracking
point). All the actions supporting p at time t must be considered in order to guarantee the
completeness of the algorithm. This includes any action a, starting at s and ending at e,
with local effects supporting p (p ∈ {SAdd(a)∪EAdd(a)}). Step 15 checks the compatibility
of a with the actions in P lan, thus guaranteeing the correctness of the plan. This requires
making sure that a is not conflicting with already planned actions (AA and PA static
mutex and AA[s]end−start, AA[s]start−start, AA[e]end−end and AA[e]end−start dynamic mutex).
In addition, it is necessary to make sure that a is not mutex with the goals to be satisfied in
GoalsToSatisfy[s] (PA[s]start−start dynamic mutex), and GoalsToSatisfy[e] (PA[e]end−end

dynamic mutex). If a is compatible, then the structures P lan[s] and GoalsToSatisfy[s/e]

are updated (steps 16–18). Finally, when GoalsToSatisfy gets empty, P lan contains all
the committed actions of the plan with optimal makespan. Otherwise, it is necessary to
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1. t← time when the temporal graph extension finished at the second stage
2. GoalsToSatisfy[t] ← Fs

3. P lan← ∅
4. while (t ≥ 0)
5. if t = 0
6. if GoalsToSatisfy[t] ⊆ Is

7. success // Plan found
8. else
9. failure // Backtracking
10. else
11. while GoalsToSatisfy[t] 6= ∅
12. extract p from GoalsToSatisfy[t]

13. if p is not supported in P lan
14. select 〈a,s, e〉 which supports p in t // if 6 ∃a then backtracking
15. if a is compatible in P lan
16. P lan[s] ← P lan[s] ∪ {a}
17. GoalsToSatisfy[s]← GoalsToSatisfy[s] ∪ SCond(a)∪Inv(a)
18. GoalsToSatisfy[e]← GoalsToSatisfy[e] ∪ECond(a)∪Inv(a)
19. else
20. goto step 14 and select another action
21. t← e // the time when a ends (this breaks the Graphplan directionality)

Figure 8: Algorithm for the extraction of a temporal plan.

extend a new level of the temporal planning graph (second stage) and repeat the search
process from the new level in the same interleaved way as Graphplan.

7.1.2 Properties of the search process

The algorithm for the extraction of a temporal plan in TPSYS has properties which are iden-
tical to Graphplan because both are based on the same chronological backtracking search.
The non-conservative model of actions that TPSYS handles does not entail any inconve-
nience to guarantee the properties of correctness, completeness and optimality.

Correctness In TPSYS, the correctness of the algorithm is based on two important points:
i) all the problem goals are supported and all the local (initial, invariant and final) conditions
are supported when they are required; and ii) all the actions must be executed with no
conflicts in the plan.

The previous points are always guaranteed in TPSYS by the definition of the search
algorithm itself. First, the algorithm does not terminate until all the problem (sub)goals
are supported (GoalsToSatisfy[t] = ∅ in every level t). Second, when an action is planned,
the algorithm guarantees its executability without conflicts by checking the compatibility
of that action with the rest of actions in the plan.

Completeness The search strategy based on chronological backtracking used in the al-
gorithm explores all the alternatives to support each goal. Consequently, if there exists a
plan which solves a problem, the search algorithm always finds it.
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Lemma 2 (The search algorithm is complete) If there exists a plan with makespan t
and the algorithm performs the search from level t, the plan is found.

Proof The proof is trivial and relies on the completeness of the extension of the temporal
planning graph (see Lemma 1) and on the chronological backtracking of the search process.
Given a plan with makespan t, the completeness of the temporal graph guarantees that
the actions of that plan start/end in the levels of the temporal graph of size t. In addition
to this, the search algorithm considers all the actions supporting each goal (backtracking
point). Therefore, all the feasible alternatives for finding a plan are considered from time t
before generating a new level with time t′ > t.

Optimality The search algorithm is optimal w.r.t. makespan. This can be guaranteed
due to the chronological extension of the temporal graph and the complete search performed
from each level.

Theorem 1 (The search algorithm is optimal) The first plan the algorithm extracts
from the temporal planning graph is a plan of optimal duration.

Proof By contradiction, let P t be the first plan (of makespan t) the algorithm extracts. We
will assume this plan is not optimal, so there exists an alternative plan P ′

t′ (of makespan
t′ < t) which is optimal but has not been found. This implies one of the following cases: i)
the level t′ has not been generated in the second stage and consequently no search has been
performed from that level, or ii) the level t′ has been generated but the search algorithm has
not found the plan P ′

t′ . The first case is false by Lemma 1 which claims the completeness
of the temporal graph extension where all the relevant levels for a plan are present in
the graph. The second case is also false by Lemma 2, which claims the completeness of
the search algorithm that explores all the feasible actions that can end at level t ′. This
contradicts the initial choice of the existence of plan P ′

t′ and, consequently, the first plan
Pt extracted by the algorithm is a plan of optimal makespan.

7.1.3 An example of the extraction of a temporal plan

In this section, we will illustrate the extraction of a temporal plan for the problem defined
in section 6.4 on the satellite domain (see Figure 2). Let us assume that the problem
goals (Fs) consist of taking images of phenomenon1, phenomenon2 and phenomenon3. The
search starts from time t = 27 when the temporal graph extension has terminated (see
Figure 7) and performs the following steps:

1. Initially, P lan is empty and GoalsToSatisfy[27] = Fs

2. The actions that support the goals are the actions of type “take image” that start
at t = 26. When one of these actions is planned, the action is inserted into P lan and
its conditions into GoalsToSatisfy. In these actions, the invariant conditions must
be held throughout the action execution and final conditions must be satisfied at the
end of the action execution. This makes it necessary to support the final condition
power on(instrument1) at the level in which the action ends. In this case, it is not
necessary to plan new actions because power on(instrument1) is present in the initial
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state. Therefore, the algorithm tries to satisfy the rest of the conditions of the action,
moving to the levels where they are required. As can be observed, this search follows
the same chronological backtracking process as Graphplan; i.e. planning one action,
inserting its conditions as goals to be satisfied and so on.

3. Finally, the search algorithm proves the impossibility of finding a plan of makespan
27, extending the level t = 28 and repeating the search. This process is repeated,
interleaving the extension of a new level and the search from it until level t = 38. At
this level, the algorithm finds the optimal plan shown in Figure 9.

0.001: calibrate(satellite1,instrument1,phenomenon0) [5]

5.006: turn_to(satellite1,phenomenon1,phenomenon0) [10]

15.016: take_image(satellite1,phenomenon1,instrument1,thermograph0) [1]

16.017: turn_to(satellite1,phenomenon2,phenomenon1) [10]

26.027: take_image(satellite1,phenomenon2,instrument1,thermograph0) [1]

27.028: turn_to(satellite1,phenomenon3,phenomenon2) [10]

37.038: take_image(satellite1,phenomenon3,instrument1,thermograph0) [1]

Figure 9: Optimal temporal plan with the solution to the satellite problem. The time
stamps for the starting point of the actions include a small value which is necessary
to avoid the synchronisation problems in the validation of PDDL2.1 plans (Fox
& Long, 2001; Long & Fox, 2001).

7.1.4 Memoization in temporal planning

The completeness of the chronological backtracking strategy used in the third stage of
TPSYS has a serious inconvenience when the same goals are considered at the same levels
of the graph in successive iterations during the search. For instance, after one failed stage of
search from level t, the algorithm resumes the search from a new level t′ > t where it repeats
part of the same search (and failures) performed at level t. Moreover, this inconvenience can
also occur at the internal levels of the temporal graph. This situation, which vastly degrades
the performance of the chronological backtracking, also appears in Graphplan. However, the
impact is greater in a temporal planning approach where the planning graph contains more
levels: the same unfruitful search is repeated more times.

Graphplan copes with this problem by means of a memoization technique during the
search (Blum & Furst, 1997). If a set of goals {pi} to be satisfied at level t cannot be
solved, Graphplan memoizes {pi} as unsolvable at level t. This memoization prevents the
algorithm from repeating the same failures in the future. Kambhampati (1999, 2000) effi-
ciently extends Graphplan memoization by means of CSP techniques, including Explanation-
Based Learning (EBL) and Dependency-Directed Backtracking Capabilities (DDB). The
EBL technique extracts information on the real origin of the conflicts, whereas the DDB
technique propagates information on the failure to avoid an entire chronological backtrack-
ing process. Kambhampati’s experiments using these techniques show spectacular improve-
ments in the performance of the search, maintaining the properties of completeness and
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(a) - Memoization in classical planning (b) - Memoization in temporal planning

Figure 10: Memoization in classical planning vs. memoization in temporal planning. Dot-
ted lines between actions represent mutex between them. For simplicity, only
the relevant levels for the example are represented.

optimality. In consequence, the application of EBL and DDB techniques seems promising
in a temporal setting based on Graphplan. However, the application of such techniques in a
temporal setting is not as direct as in classical planning, as can be seen in Figure 10.

Figure 10 illustrates the differences between memoization in classical planning (Graphplan

& EBL+DDB) and memoization in temporal planning (TPSYS). In Figure 10-a, the set of
propositions to satisfy at level P[5] is {p1, p2, p3, p4}. In the example, there is no feasible
combination of actions {a1, a2, a3, a4} at level A[4] supporting P[5] because a2 and a4 are
mutex. Consequently, Graphplan memoizes {p1, p2, p3, p4} as an unsolvable goal set in P[5].
This memoization is sound, but there clearly exists a more precise goal subset ({p2, p4})
which is unsolvable. Kambhampati’s EBL technique detects that neither p1 nor p3 takes
part in the resolution of the rest of goals and the minimal goal subset which is memo-
ized at level P[5] is {p2, p4}. The fact of memoizing the minimal goal subset increments
the opportunities to discard bad choices in future searches (i.e. any combination of goals
containing {p2, p4} will be unsolvable at P[5]). Moreover, the DDB technique allows us a
better guidance of the chronological backtracking, thus avoiding the entire exploration of
the search space. In Figure 10-a, propositions {p1, p2, p3, p4} can be solved iff {p2, p4} are
solved, and any assignment of actions to propositions p1 and/or p3 is useless. The DDB
technique avoids these assignments which are not successful when solving the real conflict.

In Figure 10-b, actions {a2, a4} are no longer mutex. Consequently, the set of propo-
sitions {p1, p2, p3, p4} is now solvable at P[5]. However, when dealing with actions with
duration that can be executed throughout several levels, an action can conflict with actions
planned at other levels. This happens in Figure 10-b, where action a4 (duration 1) is mutex
with action a0 (duration 3). In this case, propositions {p1, p2, p3, p4} are again unsolvable
at P[5], but they cannot be memoized because the origin of the conflict depends on action
a0 which is already present in the plan. This indicates an important difference between
memoization in classical and temporal planning: in temporal planning, the possibility for
memoization may depend on actions that are already planned. In the example, the mem-
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oization of {p1, p2, p3, p4} at P[5] could be wrong because it depends on the presence of a0
in the plan, and the propositions will become feasible if a0 is not in the plan.

TPSYS extends the memoization based on EBL+DDB introduced by Kambhampati in
order to be applicable in a temporal planning setting. This requires some modifications in
the algorithm presented in Figure 8. Now, the algorithm is divided into two new algorithms:
Extract Temporal Plan (Figure 11) and Satisfy Goals (Figure 12), which are recursively
invoked. The search starts with the first algorithm and it is invoked at each level of the
planning graph where there are goals to satisfy. The second algorithm is invoked to satisfy
such goals, assigning one action to each goal. Once the set of goals to be satisfied at
one level gets empty, Extract Temporal Plan is invoked again to continue the search from
another level.

1. Extract Temporal Plan → {boolean}
2. t← longest level t′ of the temporal graph where GoalsToSatisfy[t′] 6= ∅
3. if ∃M ∈Memo[t] |M ⊆ GoalsToSatisfy[t]

4. failure and return {TRUE} // goals already memoized as unsolvable at level t
5. else
6. Invoke Satisfy Goals(GoalsToSatisfy[t], t, ∅) → {CC

′, is memo possible′}
7. if Satisfy Goals fails
8. if is memo possible′ =TRUE
9. Memo[t] ←Memo[t] ∪ {CC

′} // memoization of the conflict set
10. failure and return {is memo possible′}
11. else
12. success and return {is memo possible′}

Figure 11: Algorithm for the extraction of a temporal plan using memoization.

Extract Temporal Plan returns a boolean value which indicates whether or not the mem-
oization of the goals is possible. If the goals to be satisfied at level t are memoized as
unsolvable in Memo[t], the algorithm ends with failure (step 4). This condition preserves
the properties of completeness and optimality, because that search will not lead to a feasible
plan. If the goals are not memoized, step 6 invokes Satisfy Goals. If Satisfy Goals fails,
returning a conflict set with the propositions which cannot be solved and the memoization is
possible, step 9 memoizes the conflict set in Memo[t], and Extract Temporal Plan ends with
failure (step 10). If Satisfy Goals is successful, Extract Temporal Plan ends successfully
(step 12).

Satisfy Goals requires as input the goals to be satisfied (GTS) at level t and the set of
actions (A) planned to solve the goals in GTS. Now, it is necessary to establish a difference
between the actions present in P lan and the actions in A to solve goals at the current level
t. The output is the proposition conflict set (as a subset of GTS) and a boolean value
which indicates whether the memoization is possible at level t. The algorithm includes the
structure CC to store the conflict set and the flag is memo possible. Satisfy Goals checks
whether GTS can be solved at t = 0, terminating with success or failure (steps 2–6). When
GTS gets empty, the search is done at another level by invoking Extract Temporal Plan
(steps 7–12). Step 14 extracts the proposition p to be satisfied and, if it is not already satis-
fied in P lan (steps 15–19), step 21 extracts an action ai to support it. If ai is incompatible
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1. Satisfy Goals(GTS:goals,t:level,A:actions} → {conflict set, boolean}
2. if t = 0
3. if GTS ⊆ Is

4. success and return {∅, FALSE} // plan found
5. else
6. failure and return {GTS, TRUE} // backtracking and recursion
7. else if GTS = ∅
8. Invoke Extract Temporal Plan → {is memo possible′} // search in another level
9. if Extract Temporal Plan fails
10. failure and return {∅, is memo possible′}
11. else
12. success and return {∅, FALSE}
13. else
14. extract p from GTS
15. if p is not satisfied in P lan
16. CC← {p}; is memo possible←TRUE
17. Ap ← {〈ai,si, ei〉} with actions supporting p

18. if Ap = ∅
19. failure and return {CC, is memo possible}
20. else
21. extract 〈ai,si, ei〉 from Ap

22. if ai is incompatible with any action b ∈ A
23. pb ← proposition which forced the choice of action b; CC← CC ∪ {pb}
24. goto step 18 and select another action
25. else if ai is incompatible with any action c ∈ P lan
26. is memo possible← FALSE // memoization at this level is no longer possible
27. goto step 18 and select another action
28. else
29. P lan[si] ← P lan[si] ∪ {ai} // action ai can be planned
30. GoalsToSatisfy[si] ← GoalsToSatisfy[si] ∪ SCond(ai)∪Inv(ai)
31. GoalsToSatisfy[ei] ← GoalsToSatisfy[ei] ∪ECond(ai)∪Inv(ai)
32. A← A ∪ {ai} // ai planned at this level
33. Invoke Satisfy Goals(GTS, t, A) → {CC′, is memo possible′}
34. is memo possible← is memo possible∧ is memo possible′

35. if Satisfy Goals fails
36. if p ∈ CC′

37. CC← CC ∪ CC′ // union of the conflict sets
38. goto step 18 and select another action
39. else
40. failure and return {CC′, is memo possible} // no chronological backtracking

Figure 12: Algorithm for the satisfaction of goals using memoization.
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with any action in A, the conflict set CC is updated with the proposition which made that
action be selected (steps 22–24). This detects the origin of the conflict that makes the goals
unsolvable, as the technique EBL proposes. The set CC is incrementally updated with all
the conflicting propositions (though the memoization in the current level is still possible).
However, if one selected action is incompatible with actions in P lan, the memoization at the
current level is no longer possible because it depends on the actions planned in other levels
(steps 25–27). Otherwise, if ai can be planned, the structures P lan, GoalsToSatisfy and
A are updated in steps 29–32, and Satisfy Goals is invoked with the rest of goals to satisfy
in GTS (step 33). Steps 34–40 are based on the DDB technique to avoid having to explore
the entire search space. If proposition p is present in CC′, it means that the resolution of p
is in conflict with the resolution of another proposition in GTS. In this case, step 37 joins
the conflict sets CC and CC′. If p /∈ CC′, then p does not take part in the conflict set and
any new re-assignment to p can be omitted, breaking the chronological backtracking and
improving the search performance.

In a temporal planning approach, the temporal memoization reduces the search space
and improves the behaviour of the chronological backtracking, especially in the situations
where the goals are unsolvable as a result of actions planned at other levels. In chronological
backtracking, all the possible assignments of actions to propositions are studied (complete
exploration). In contrast, the temporal memoization and the application of the DDB tech-
nique forbids any new assignment until backtracking to the level at which the real conflict
arises. However, the mutex between actions of different levels can prevent the algorithm
from doing a significant number of memoizations. This makes the conditions to memoize a
conflict set stricter than in Graphplan. Therefore, the benefits of temporal memoization in
TPSYS are not as spectacular as the memoization in Graphplan, as will be shown in section
8.1.

7.1.5 Heuristic search in temporal planning

The Graphplan search is similar to a CSP resolution process (Kambhampati, Lambrecht, &
Parker, 1997; Kambhampati, 2000). Consequently, the application of CSP heuristics to a
Graphplan approach seems to be a straightforward result. Kambhampati applied heuristics
for variable (propositions) and value (actions to satisfy propositions) orderings in Graphplan

(Kambhampati, 2000; Kambhampati & Sanchez Nigenda, 2000). Although his experimen-
tal results showed some improvements in the performance, there still exists an important
drawback: a complete exploration of all the levels of the graph must be done before find-
ing a plan. Therefore, the precise ordering of actions/propositions is only relevant at the
last level of the graph and does not greatly reduce the search space. This demonstrates
the difficulty of finding domain-independent admissible heuristics for Graphplan (Nguyen,
Kambhampati, & Nigenda, 2002). Consequently, it seems more promising to focus on non-
admissible heuristics that achieve reasonable quality solutions in most domains.

In TPSYS we have applied two types of heuristics to reduce the search space (see Figure
13). The first one reduces the number of levels to be explored in the temporal graph, thus
reducing the search depth. The second one reduces the number of actions to be explored
while supporting each proposition, thus reducing the branching factor.
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Figure 13: The search space reduction can be tackled by: i) reducing the search depth, and
ii) reducing the branching factor.

Reduction in the search depth The search stage in TPSYS is done through the tem-
poral graph, so any reduction in the size of that graph will speed up the search. We have
implemented three methods to avoid the exploration of levels which might be irrelevant in
the search.

Method 1 (Reduction in the number of levels generated in the 2nd stage) Each
level A[t]start of the temporal graph generates all the actions {ai} that can start at time
t. This involves generating as many levels t′ = t + dur(ai) as actions with different
durations in A[t]start. However, there are some levels which do not include new actions
or propositions and, consequently, they might be irrelevant in the graph. If one level t
does not contain any new action ai, this method will generate only one level with the
time t′ = t + max(dur(ai)),∀ai∈ A[t]start instead of generating all the intermediate lev-
els t′ = t+ dur(ai).

Method 2 (Reduction in the number of levels explored in the 3rd stage) When
all the goals to satisfy at level t are the result of planning no-op actions to keep the per-
sistence, this method postpones the satisfaction of these goals to a previous level. This
postponing mechanism holds until a level where one action starts or ends is achieved and,
therefore, its initial, invariant and final conditions must also be satisfied.

Method 3 (Skipping levels in the 3rd stage after a failed search) After one failed
search from level t, the algorithm extends a new level in the temporal graph. Instead of
resuming the search from that level, this method continues extending the temporal graph
(without performing any search) until achieving one level t′ ≥ t + max(dur(ai)),∀ai that
supports Fs, where the search is resumed again.

Intuitively, Method 1 avoids the generation of all the reachable levels. This reduces the
number of levels in the graph, especially when the greatest common divisor of the duration
of the actions is 1. The benefits of this method are twofold: i) the temporal graph extension
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requires less effort, and ii) the search space in the extraction of a plan is smaller. Method
2 tends to tilt the achievement of the (sub)goals to the extreme levels (start and ending) of
the action execution. This reduces the overhead when studying the actions that support the
goals and avoids an exhaustive analysis of all the levels of the graph, thus making the search
less dependent on the number of the levels in the graph. Method 3 prevents the algorithm
from searching from the immediate level(s) after a failed search, by skipping and ignoring
them. This increases the opportunities for the actions that support the problem goals to be
executed without conflicts. This method also increases the number of levels between two
consecutive search stages, thus reducing the negative effect due to a high number of levels
in the graph. The main drawback of these three methods is, however, that they are neither
complete nor optimal-preserving.

Reduction in the branching factor The complete search in TPSYS analyses all the
combinations of actions that satisfy the goals at each level. For instance, at a level with 3
goals that are supported by 2 actions each, the number of combinations to study is 23, which
involves a high branching factor per level. We have implemented two types of heuristics
that discard actions in the goal satisfaction. Heuristics H1–H3 only rely on the definition of
the action to decide whether the action will be used to satisfy each proposition. In contrast,
heuristics H4–H5 are based on the set of propositions (current state) to be satisfied at each
level in order to determine whether the action will be used to satisfy each proposition.

Heuristic 1 (min-duration) This heuristic selects an action a to satisfy a proposition p

iff dur(a) = min(dur(ai)),∀ai that supports p.

Heuristic 2 (min-EET) Let EET (a) be the earliest end time of a in the temporal graph.
This heuristic selects an action a to satisfy proposition p iff EET (a) =min(EET (ai)),∀ai
that supports p.

Heuristic 3 (max-conds-IS) Let num conds IS(a) be the number of conditions of a that
are present in the initial state. This heuristic selects an action a to satisfy one proposition
p iff num conds IS(a) =max(num conds IS(ai)),∀ai that supports p.

Previous heuristics select an action according to its duration, its earliest end time or
the number of conditions that are present in the initial state, respectively. This requires
a selection criterion based on invariable information, that does not rely on the level and
state (set of propositions to be satisfied). Therefore, if the set of actions {a, b} is selected to
satisfy proposition p, those actions will always be used (in any level of the graph) to satisfy
p. This allows us to take the decision prior to the search stage (for instance, in the first
stage). However, if a wrong selection for an action is made, that decision could lead to the
loss of feasible plans. In order to overcome this limitation, the following two heuristics rely
on the state’s information and estimation from a relaxed plan, avoiding the fixed selection
of an action for a proposition. The idea of a relaxed plan consists of ignoring the negative
effects of actions as in most of the current planners.

Heuristic 4 (min-duration-plan) Let GTS be the set of propositions to be satisfied at
one level and dur plan(a, GTS) be the duration of the relaxed plan of shortest duration
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that supports the state (set of propositions) after the application of a to support GTS.
This heuristic selects an action a to satisfy a proposition p∈ GTS iff dur plan(a, GTS) =
min(dur plan(ai, GTS)),∀ai that supports p.

Heuristic 5 (min-acts-plan) Let GTS be the set of propositions to be satisfied at one
level and num acts plan(a, GTS) be the number of actions of the relaxed plan with the
lowest number of actions that supports the state (set of propositions) after the application
of a to support GTS. This heuristic selects an action a to satisfy a proposition p∈ GTS iff
num acts plan(a, GTS) = min(num acts plan(ai, GTS)),∀ai that supports p.

The two previous heuristics tend to find the plan that simplifies the complexity (duration
or number of actions) in order to satisfy any state. This allows a different selection of an
action depending on the level to be applied. These heuristics are regressive (Bonet &
Geffner, 1999), because they use the best relaxed plan as an estimation to reach the current
state from the initial state. The main advantage of these heuristics is a more precise
estimation than heuristics H1–H3, but their calculus is more time consuming and cannot
be done before search.

In addition to the previous heuristics, we have included a heuristic that randomly selects
the action to be used to satisfy a proposition. This heuristic makes the decision very quickly
(as heuristics H1–H3) and provides a different selection of actions (as heuristics H4–H5).
The main drawback is that the decision does not take into account any kind of information
and it is non-deterministic.

Heuristic 6 (random) This heuristic selects an action a to satisfy a proposition p with a
given probability.

7.2 Search based on least-commitment and heuristic techniques

The Graphplan backward search based on chronological backtracking has some inefficiencies
that impose serious limitations when dealing with large problems (Fox & Long, 1999a; Zim-
merman & Kambhampati, 1999), which are more relevant in temporal problems (Garrido
& Onaind́ıa, 2003). In this section, we present a new search process for temporal planning
to overcome these inefficiencies. This search uses the information of a planning graph to
improve the scalability of the planner and is competitive with other state-of-the-art planners
w.r.t. the plan quality.

7.2.1 Motivation. Main inefficiencies of the Graphplan backward search

Backward search in TPSYS preserves the same properties of completeness and optimal-
ity as Graphplan, but it entails the most costly stage of TPSYS. Additionally, this search
presents some inefficiencies —inherited from Graphplan— which impose severe limitations
on its performance, thus reducing the scalability of the planner when solving large temporal
problems.

One of the most noticeable inefficiencies appears in problems with a high degree of
symmetry since the Graphplan search makes a lot of unsuccessful attempts to plan nearly
identical actions. Let us consider the problem defined in section 6.4 on the satellite do-
main. The optimal plan for this problem contains seven actions (1×calibrate, 3×turn to
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A9-take_image(satellite1,phenomenon3,instrument1,thermograph0)

A8-turn_to(satellite1,phenomenon3,phenomenon2)

A7-take_image(satellite1,phenomenon2,instrument1,thermograph0)

A6-turn_to(satellite1,phenomenon2,phenomenon1)

A5-take_image(satellite1,phenomenon1,instrument1,thermograph0)

A4-turn_to(satellite1,phenomenon3,phenomenon0)

A3-turn_to(satellite1,phenomenon2,phenomenon0)

A2-turn_to(satellite1,phenomenon1,phenomenon0)

A1-calibrate(satellite1,instrument1,phenomenon0)

Actions

P9-have_image(phenomenon2,thermograph0)

P8-have_image(phenomenon1,thermograph0)

P7-pointing(satellite1,phenomenon3)

P6-pointing(satellite1,phenomenon2)

P5-pointing(satellite1,phenomenon1)

P4-calibrated(instrument1)

P3-power_on(instrument1)

P2-pointing(satellite1,phenomenon0)
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Figure 14: Outline of the temporal planning graph for the satellite problem (based on
the temporal graph of Figure 7). Shaded propositions represent the prob-
lem goals, non-pairwise mutex at time 27. Mutex relations between propo-
sitions are represented by thick lines. For simplicity, inverse actions of
turn to (for instance, turn to(satellite1,phenomenon0,phenomenon1) or
turn to(satellite1,phenomenon0,phenomenon2)) are not represented.

and 3×take image) and has a makespan of 38 time units (see outline of the temporal plan-
ning graph in Figure 14). During the second stage, the planning graph is extended until
time 27, when all the problem goals are present and non-pairwise mutex. At this point,
the third stage starts the plan extraction. In this problem all possible pairs of actions are
mutex and, consequently, only one action can be planned at each level (for simplicity we
will assume actions are selected in increasing order starting with A1). The first selected
action is A5 at time 26 to satisfy P8. Next, TPSYS plans actions A2 and A1 to satisfy the
conditions of A5. Afterwards, TPSYS attempts to plan A7 for goal P9, but no feasible plan
is found. The backtracking process then attempts to plan A9 for goal P10 but, again, unsuc-
cessfully. Therefore, because no feasible plan can be found when A5 is planned at level 26,
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the search process backtracks to time 26 and attempts all possible permutations of actions
A5, A7 and A9. This is the first indication of inefficiency: a lot of effort is wasted planning
nearly identical actions. It is clearly irrelevant the order in which the phenomenon images
are taken in this problem. Furthermore, regardless of the order of the phenomenon images,
it is impossible to find a feasible plan of duration 27.

Since no plan is found at level 27, the planning graph is extended until level 28 and
the search is restarted from scratch. This is the second indication of inefficiency: actions
planned in previous search iterations are not reused in this new search iteration. Specifically,
it would be very advantageous if the subplan for taking one phenomenon image was reused
in the new search iteration without having to compute the subplan once again. For example,
if the planner would fix the set of actions {A1,A2,A5} for phenomenon1, then A7, A9 and
so on, the problem would be much simpler to solve as long as new search iterations are
executed. However, TPSYS does not take advantage of previous planned actions, which
makes it commit the same search failures but at a search level that is one level deeper.

Following our analysis, we can find a third indication of inefficiency due to chronological
backtracking: when a proposition is no longer true at a level, the algorithm discards that
choice and simply backtracks (there is no any attempt to support that condition through
the insertion of new actions). The main inconvenience of this behaviour is that correct
plans might be discarded and a lot of effort wasted. In our example, let us suppose that
satellite1 is required to point at phenomenon2 after taking an image of phenomenon1. In
this case, it would be preferable to plan turn to(satellite1,phenomenon2,phenomenon1)

—extending the graph if necessary— rather than discarding the actual plan and backtrack-
ing.

In summary, the first inefficiency forces the consideration of all possible permutations
of actions to satisfy the goals at each level. The second and third inefficiencies force us
to restart a blind search from scratch from each new level (again taking into account all
possible permutations of actions). Although these inefficiencies are not exclusive to TPSYS,
and also occur in Graphplan-based search planners, their influence is more noticeable in a
temporal planning approach. In the previous example, the Graphplan search would only
reach level 7 in the graph, whereas search in TPSYS reaches level 38, thus repeating the
same inefficiencies over and over at each level.

7.2.2 Outline of the new search method

We present a new search that works in two stages (see Figure 15). First, a backward search
generates an initial relaxed plan from the information of the planning graph to be used as a
skeleton of the final plan. Second, a forward-chaining process allocates the execution time
of the actions in the relaxed plan by means of a non-complete heuristic process. During this
second stage, actions are only definitively allocated in the plan when they are applicable
and are not mutex with each other. This search can be outlined as follows:

• Stage 3.1 progressively creates a relaxed plan extracting actions from the temporal
planning graph that results from the second stage. Actions in this relaxed plan, which
can be mutex, support all the problem goals. However, they are not allocated in time,
so there is not yet a commitment on their execution time.
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Figure 15: New structure of TPSYS when using a least-commitment heuristic search in the
third stage.

• Stage 3.2 allocates the actions of the relaxed plan in time. This stage performs a
progressive heuristic process over the relaxed plan and the information contained in
the planning graph. Throughout the allocation process, subgoals may become unsup-
ported, in which case new actions are planned to support the goals again and repair
the mutex interactions. Inserting new actions in the plan usually implies increasing
the total plan duration, so it becomes necessary to extend the planning graph. Un-
like the search based on Graphplan, where the graph is extended at the second stage,
the graph is extended when required in this stage in this new search method. This
modifies the third stage of TPSYS, which is no longer executed in an interleaved way
with the second stage (see Figure 15).

7.2.3 Stage 3.1. Generation of an initial relaxed plan

This stage generates an initial relaxed plan from the information of the temporal planning
graph to be used as the basis of the final plan.

Definition 16 (Relaxed plan) A relaxed plan Π is defined as a partially ordered set of
actions in which both the problem goals and action conditions hold. It is called relaxed
because neither mutex relationships nor commitment on their start time are considered.

A relaxed plan always contains two fictitious actions with no duration called IS and
FS, which represent the first and the last action of the plan, respectively. IS achieves the
propositions of the initial state, whereas FS requires the problem goals. Π is generated
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similarly to the relaxed solution plan in the FF planner (Hoffmann, 2000; Hoffmann &
Nebel, 2001) with the exception that our planner handles durative actions.

1. GTS ← Fs // obligatory propositions
2. Π← {IS ∪ FS} // obligatory actions
3. while GTS 6= ∅
4. extract p from GTS
5. if p is not satisfied in Π
6. a←arg min(number of mutex that ai imposes in Π),∀ai that supports p
7. if p is an obligatory proposition ∧ a is the only action supporting p

8. mark a as obligatory in Π
9. mark {SCond(a)∪Inv(a)∪ECond(a)} as obligatory in Π
10. Π← Π ∪ {a} // no commitment on the start time of a yet
11. GTS ← GTS ∪ {SCond(a)∪Inv(a)∪ECond(a)}

Figure 16: Algorithm for the generation of an initial relaxed plan Π.

Figure 16 describes the algorithm for the generation of an initial relaxed plan. The algo-
rithm uses the data structure GTS to store the subgoals to be satisfied. GTS is initialised
with the problem goals (step 1). The algorithm inserts actions to support the goals of GTS
starting from the last level of the temporal graph. Step 6 selects the action which imposes
the lowest number of mutex in Π. In problems with multiple resources, this selection tends
to homogeneously use as many resources as are available, provides more information to the
relaxed plan and allows us to improve the plan quality by overlapping a higher number of
actions. Finally, the action is inserted into Π (step 10) and its conditions into GTS (step
11) while the algorithm continues until GTS gets empty. There are two interesting concepts
introduced in the algorithm: obligatory proposition and obligatory action.

Definition 17 (Obligatory proposition) A proposition p is obligatory iff p holds in any
solution plan for the problem.

Definition 18 (Obligatory action) An action a is obligatory iff a is the only action that
supports an obligatory proposition.

These two concepts are very helpful when constructing the plan as they determine which
propositions and actions must always be present in a plan. The presence of obligatory
propositions/actions in the plan will never be affected by the modifications produced in the
plan, that is, by the insertion or deletion of other actions. Obviously, F s, IS and FS are
obligatory. The verification of obligatory propositions and actions is done in step 7 of the
algorithm, where a and its conditions are marked as obligatory if a is the only action that
supports an obligatory proposition p (steps 8–9).

One important property of Π is that if there is no mutex between overlapping actions,
all actions in Π form a feasible, optimal plan. The proof of this is straightforward and
relies on the complete extension of the temporal graph (see Lemma 1). The level in which
the temporal graph extension ends indicates the minimal time in which the goals can be
achieved by non-pairwise mutex actions. Thus, this level provides a minimal bound of the
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1. set of plans← Π, generated in Algorithm of Figure 16
2. while set of plans 6= ∅
3. extract the lowest cost plan Πi from set of plans

4. if (Fs is satisfied in Alloci ∧Relaxi = ∅)
5. success // plan found
6. else
7. if ∀aj ∈Alloci | ∃pj ∈ {SCond(aj)∪Inv(aj)∪ECond(aj)} that is not satisfied
8. insert new plans into set of plans to satisfy pj
9. else
10. a← arg max(allocation priority),∀aj ∈ Relaxi to start in time of executioni
11. if a is mutex in Alloci
12. if a is non-obligatory
13. remove a from Relaxi

14. else
15. postpone start time of a in Relaxi

16. else
17. if a is applicable
18. allocate a in Alloci at time of executioni

19. else
20. insert new plans into set of plans to make a applicable
21. update time of executioni

Figure 17: Algorithm for planning and allocating the actions.

makespan for a feasible plan and, if no mutex between actions holds, the plan is not only
feasible but also optimal. Unfortunately, this is not a very common situation and mutex
relations break the plan relaxation. This requires postponing the allocation of actions,
and/or planning new actions to solve the unsupported (sub)goals.

7.2.4 Stage 3.2. Planning and allocation of actions

This stage performs two tasks: i) allocating the actions of the relaxed plan, and ii) planning
new actions to solve unsupported goals. This is done incrementally, generating the plan in
a forward way. We use a structure called set of plans, with the search space formed by all
the generated plans {Πi}. Actions in each Πi are divided into two disjunctive sets: Relaxi

and Alloci. Relaxi contains the actions which have not yet been allocated, and so they can
be removed from Πi. Alloci contains the actions which have been allocated in time and will
never be removed from Πi. Initially, Relaxi contains all the actions in Πi (the initial Πi is
the relaxed plan computed in stage 3.1) and Alloci is empty. This stage ends once Relaxi

gets empty, obtaining the actions of the plan which support all the problem goals in Alloci.

The intuitive idea is to move forward in time, simulating the real execution of Π i, and
progressively taking care of the actions which can start their execution (see algorithm in
Figure 17). The current time of execution in Πi, time of executioni, is initialised to 0.
The algorithm always selects the plan Πi of lowest cost from set of plans (step 3). If
all the problem goals are supported and Relaxi is empty, the algorithm terminates with
success (steps 4–5). If any action in Alloci has unsatisfied conditions, the algorithm inserts
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new actions (steps 7–8), generating new plans (branching point). Once all the conditions
in Alloci are supported, the algorithm studies the actions in Relaxi.

The algorithm selects the action a with the maximal priority to be allocated in time
(step 10). If a is mutex with actions in Alloci and it is non-obligatory, a is removed from
Relaxi (step 13), delaying the achievement of its goals to a future time of execution. The
reason for removing a non-obligatory action is that it could be a bad choice for the plan.
If a is obligatory, it is not removed but its start time is postponed (step 15). If a is not
mutex and applicable, a is allocated in time (step 18). Although there exist alternative
actions to a, if a can be allocated, those actions are not considered in Πi. This step is the
first indication of loss of completeness. Finally, if a is not applicable, the branching point
of step 20 inserts new actions, generating new plans, to make a applicable.

The branching points of the algorithm are in steps 8 and 20, where it becomes necessary
to insert new actions in new plans to support unsatisfied conditions. For each new action
aj supporting a condition, a new plan Πj with action aj marked as obligatory in Πj is
generated (and inserted into set of plans). Note that action aj is not allocated in time,
but inserted with its earliest start time extracted from the temporal graph. This is part
of the least-commitment technique performed in the allocation of actions when they are
inserted into the plans.

The algorithm has two important points of selection: steps 3 and 10. Step 3 selects the
plan Πi with the lowest cost from set of plans, where the cost is heuristically estimated
as follows:

cost(Πi) = cost(Alloci) + cost(Relaxi)

cost(Alloci) = α · unsup(FS, Alloci) + β · dur(Πi)

cost(Relaxi) =
∑

∀a∈Relaxi

γ · unsup(a, Alloci) + ζ · offset(a, Alloci) + δ · add(a, FS) +

θ · del(a, FS) + λ · PA mutex(a, FS) + µ · dur(a)

The cost of a plan Πi consists of the sum of the cost due to Alloci and Relaxi. These
costs are calculated from the following factors:

• unsup(a, Alloci) is an estimation of the number of actions necessary to solve the
unsupported conditions of a in Alloci at the current time of executioni. This value
is calculated from the information of the temporal graph, ignoring the delete effects
of the actions (as in the FF heuristic).

• offset(a, Alloci) is an estimation of the temporal offset necessary for action a to be
executed without mutex in Alloci. This value is calculated from the information of
Alloci, checking the earliest start time at which a can be allocated without conflicting
with other allocated actions. Intuitively, offset gives us an idea about the complexity
of allocating each action in Alloci.

• add(a, FS) indicates the number of conditions of FS that a supports.

• del(a, FS) indicates the number of conditions of FS that a deletes.
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• PA mutex(a, FS) indicates the number of mutex between the conditions of FS and
action a. This value is calculated from the information about mutex stored in the
temporal graph. Intuitively, PA mutex(a, FS) represents the impossibility of simulta-
neously having the conditions of FS and a.

• dur(Πi) and dur(a) indicate the duration (makespan) of plan Πi and action a, respec-
tively.

The coefficients α, β, γ, ζ, θ, λ, µ ≥ 0 because they have a positive impact on the cost of
the plan. On the contrary, δ ≤ 0 because it has a negative impact on the cost6.

The point of selection in step 10 selects the action a with the maximal priority to
be allocated in Relaxi at the current time of executioni. This priority is heuristically
estimated as follows:

prio(a) = ρ · unsup(a, Alloci) + σ · succ(a, Relaxi) + τ ·meetsucc(a, Relaxi) +

ψ · dur(a)

The allocation priority of action a depends on the following local factors:

• unsup(a, Alloci) and dur(a) are defined as above.

• succ(a, Relaxi) indicates the number of direct successors of a in Relaxi. This value
is calculated from the actions in Relaxi. Intuitively, succ indicates the number of
actions that depend on a because these actions require any effects of action a (causal
links).

• meetsucc(a, Relaxi) indicates the number of director successors of a in Relaxi that
can start immediately after a ends; i.e meets relation. This value is calculated from
the actions in Relaxi.

The factors succ and meetsucc indicate the importance of a to its successor actions in
Relaxi. Intuitively, the more successors action a has, the more relevant a is in the plan.
Similarly, the successor actions that meet with a indicate the number of actions that can
be executed without mutex after a. Note that succ and meetsucc only consider direct
successors and discard indirect successors that might not be executed in the plan. The
coefficients σ, τ ≥ 0 because they imply the selection of an appropriate action. On the
contrary, ρ, ψ ≤ 0 because they imply that the action is not yet promising enough to be
allocated7.

The previous evaluation functions can have many more heuristic factors, but according
to our experimental analysis they are general enough for most temporal planning problems.

6. The values of the coefficients are used to normalise the estimations. The values experimentally calculated
and currently used in TPSYS are: α = 2.75, β = 0.001, γ = 2.5, ζ = 0.001, δ = −2.5, θ = 2.5, λ = 2.75
and µ = 0.001. Clearly, the values of the coefficients that deal with number of actions, propositions or
mutex are higher than the values of the coefficients that deal with durations, because durations can be
high.

7. The values of the coefficients are again used to normalise the estimations. The values currently used in
TPSYS are: ρ = −1.5, σ = 0.5, τ = 0.5 and ψ = −0.05.
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Figure 18: Plans for the satellite problem. The first (a) picture is the initial relaxed plan
(values in brackets represent the earliest start times from the temporal graph).
The second (b) picture is the solution plan (values in brackets represent the real
start time of execution). Shaded actions represent obligatory actions.

In addition, as in other approaches of local search such as LPG (Gerevini & Serina, 2002a),
we can implement different heuristic methods by setting the values of the coefficients, which
in our case are statically calculated. Although the values of the coefficients can influence
the search, their precise value is not as relevant as in other heuristic approaches based on
local search such as LPG. For instance, the static cost of inserting an action in LPG is based
on the number of unsupported conditions, which cannot represent the real complexity of
solving each condition. On the contrary, in our heuristics, the coefficient unsup deals with
that complexity because it estimates the real cost of supporting it in the temporal graph.
Therefore, LPG mainly focuses its estimations on the value of the coefficients, whereas our
heuristic focuses on the estimation of the factors. The real values of the coefficients are
simply used to normalise each factor.

This algorithm allows plans to be incrementally generated without discarding allocated
actions and with no redundancy due to symmetry. Although algorithm of Figure 17 ex-
plores the complete space of actions to make actions applicable, the allocation priority
imposes an order of execution and discards the rest of the feasible orderings (second indica-
tion of loss of completeness). For instance, in the satellite problem, when studying the
actions “take image” {A5, A7, A9}, the algorithm allocates one action and postpones the
others. This avoids the complete exploration of all the permutations of A5, A7 and A9, thus
preventing the planner from generating symmetric plans.

7.2.5 An example of the incremental generation of a temporal plan

In order to illustrate the behaviour of the new search process, we will use the satellite

problem. The search (stage 3.1) starts at time t = 27 when the extension of the temporal
graph terminates (see Figure 14), and it generates the relaxed plan which is shown in Figure
18-a. Actions {IS,FS,A1,A5,A7,A9} are obligatory because they are necessary in any
plan to take images of phenomenon1, phenomenon2 and phenomenon3. Actions {A2, A3, A4}
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are non-obligatory because it is possible to turn from phenomenon0 towards any other
phenomenon. This relaxed plan prevents the planner from starting from an empty plan and
provides a good outline of the final plan. In fact, in this problem, 5 out of the 7 actions in
the relaxed plan are present in the final plan.

Stage 3.2 starts with the relaxed plan Πi in Figure 18-a and time of executioni = 0.
Let us suppose that the action to be instantiated (and inserted into Alloci) from the set
{A1,A2,A3,A4} is A1. Consequently, non-obligatory actions {A2,A3,A4} which can be exe-
cuted at time 0 are removed from Relaxi because they are mutex in Alloci. The following
time of executioni in Relaxi when actions can be instantiated is 15. Let us suppose that
action A5 is selected. A5 is not applicable (its condition pointing(satellite1, phenomenon1)
is unsupported). Instead of discarding the current plan and studying the nearly identical
actions A7 and A9 with similar unsupported conditions, the algorithm tries to solve that con-
dition by generating as many new plans as actions supporting the condition. These actions
are inserted into the new plans as obligatory actions and with their earliest start time. One
of the plans Πj will contain action A2 which can start at time 0. A2 is mutex in Allocj , but
it is obligatory. Therefore, A2 is not removed but postponed until time of executionj = 5
when it is finally allocated. Then, in time of executionj = 15, action A5 is allocated into
Allocj (and the first problem goal is achieved at time 16). The remaining actions {A7,A9}
are allocated in a similar way in times 27 and 37, respectively. The incremental generation
of the plan continues until all the problem goals (conditions of action FS) are supported.
This situation happens in time 38, achieving the plan depicted in Figure 18-b (the same
optimal plan detailed in Figure 9).

8. Experimental Results

In this section we present the experimental results on the planning approach of TPSYS.
First, we evaluate the original Graphplan-based search vs. the search extended with temporal
memoization. Second, we study the impact of the different heuristics presented in section
7.1.5 to reduce the search space. Third, we compare the original Graphplan-based search
vs. the search based on least-commitment and heuristic techniques presented in section 7.2.
Finally, we compare the search based on least-commitment and heuristic techniques with
other state-of-the-art temporal planners.

All the experiments belong to different problems which were used in the International
Planning Competitions (IPC–19988, IPC–20009 and IPC–200210). The problems belong
to the domains blocks, ferry, gripper, bulldozer, elevator, logistics, driverlog,
depots, zenotravel, satellite, rovers, etc. Specifically, we selected 40 problems for
IPC–1998, 50 for IPC–2000 and 62 for IPC–2002, which are grouped together in the fig-
ures. The problems of IPC–1998 and IPC–2000 were redefined to fit them into the non-
conservative model of PDDL2.1. Obviously, this redefinition does not entail any lack of
expressiveness because PDDL2.1 subsumes PDDL. All the experiments were run on a Pen-
tium IV 2GHz with 512Mb of memory and censored after 300 seconds.

8. IPC–1998 domains are available in ftp://ftp.cs.yale.edu/pub/mcdermott/domains

9. IPC–2000 domains are available in http://www.cs.toronto.edu/aips2000

10. IPC–2002 domains are available in http://www.dur.ac.uk/d.p.long/IPC
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Figure 19: Comparison of the execution time of TPSYS vs. TPSYS with temporal memo-
ization (tm) in problems of IPC–1998 and IPC–2000.

8.1 Evaluation of temporal memoization in the Graphplan-based search

The experiments of this section focus on the evaluation of the performance of TPSYS when
finding optimal plans w.r.t. makespan. Therefore, we will compare the original version of
TPSYS with an extended version that uses the implementation of the temporal memoization.
Figure 19 shows the results of this comparison.

The results indicate that the temporal memoization reduces the search space, that helps
solve problems faster in IPC–1998 and IPC–2000, and solves more problems in IPC–2000.
In the simplest problems, the search improvements are nearly inappreciable because the
overhead in the memoization hardly compensates the redundancy in the search. However,
in larger and more complex problems of IPC–2000, the improvements due to memoization
are more significant, solving problems which were previously unsolvable (see Figure 19-b).

In general, the temporal memoization improves the behaviour of the search. However,
the amount of information memoized when handling actions with duration is more lim-
ited than in a classical planning approach because the existence of mutex between actions
planned at different levels prevents the algorithm from doing the memoization. This reduces
the information memoized in temporal planning, making the improvements in a temporal
approach less spectacular than in Graphplan.

8.2 Evaluation of heuristics to reduce the search space

8.2.1 Analysis of the methods for the reduction in the search depth

The three methods presented in section 7.1.5 are: M1 (Reduction in the number of levels
generated in the 2nd stage), M2 (Reduction in the number of levels explored in the 3rd
stage), and M3 (Skipping levels in the 3rd stage after a failed search). The three of them
allow us to reduce the number of levels available in the search. Figures 20 and 21 show the
comparison of these methods in problems of IPC–1998 and IPC-2000, respectively. These
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Figure 20: Comparison of the heuristic methods M1, M2 and M3 implemented in TPSYS

in IPC–1998.

methods affect the number of levels explored and, consequently, the number of backtrackings
in the search.

Method M1 usually explores the lowest number of levels (see Figures 20-a and 21-a).
This has direct consequences in the number of backtrackings (see Figures 20-b and 21-b).
As a result, method M1 solves problems in better execution times (see Figures 20-d and
21-d). However, the makespan of the plans is better in methods M2 and M3 (see Figures
20-c and 21-c). The reason for this is quite simple: the temporal graph does not contain
enough levels where mutex can end. This increments the distance between the expansion
levels, postponing the execution of the actions and incrementing the makespan of the plans.
Method M2 provides the best tradeoff between the makespan of the plan and the execution
time. In IPC–2000 (see Figure 21), such a method solves many problems which were
unsolvable by the other methods. Unlike M1, M2 performs the search in a temporal graph
that contains all the reachable levels, so the makespan of the plan tends to be shorter.
Method M3 solves the lowest number of problems, especially in IPC–2000. However, the
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Figure 21: Comparison of the heuristic methods M1, M2 and M3 implemented in TPSYS

in IPC–2000.
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makespan of the plans is similar to plans of M2. It relies on the complete temporal graph
which helps action mutex end earlier, thus reducing the makespan of the plans. Finally, we
have combined the three methods in the version TPSYS+M1+M2+M3. This combination
is very useful and provides good execution times in most of the problems, especially in
IPC–2000. Moreover, the combination of the three methods solves problems that no other
method can solve. The main drawback of this combination relies on the makespan of the
plans, which is now worse (similarly to method M1 because the number of levels in the
temporal graph is the same).

8.2.2 Analysis of the heuristics for the reduction in the branching factor

The six heuristics defined in section 7.1.5 are: H1 (min-duration), H2 (min-EET), H3 (max-
conds-IS), H4 (min-duration-plan), H5 (min-acts-plan) and H6 (random). They allow us
to reduce the branching factor by selecting the actions to satisfy the goals at each level.
Unlike methods for reducing the search depth, these heuristics hardly modify the number
of levels to explore. Therefore, Figures 22 and 23 only show the makespan of the plans
and the execution times. Figures 22-a,b and 23-a,b show the results for the heuristics H1–
H3 based on invariable information of the actions, whereas Figures 22-c,d and 23-c,d show
the results for the heuristics H4–H6. These heuristics provide different choices of action
selection depending on the state where they are applied.

Heuristics H1–H3 show no significant differences which indicates that one heuristic out-
performs the others. Although heuristics H4 and H5 are more expensive to calculate, they
are more precise and solve more problems. Heuristic H6 obtains the longest makespan
plans. However, it is important to highlight that H6 has short execution times and solves
problems which are unsolvable by the other heuristics.

8.2.3 Comparison of the heuristic approaches to reduce the search space

Table 2 shows the number of problems solved for each method/heuristic. The methods
for reducing the search depth solve more problems, and the alternative which solves the
greatest number of problems is the combination of M1+M2+M3. Although M2 solves the
greatest number of problems, M1 has the best execution times. Moreover, M1 is useful in
any temporal approach which constructs a temporal planning graph. This allows us to apply
this method also in the heuristic search based on least-commitment presented in section 7.2.
As for the reduction in the branching factor, the heuristics based on information about the
state of search (H4 and H5) behave better than the heuristics based on invariable information
(H1–H3). Although the random heuristic H6 generates plans that are longer than the rest
of the heuristics, it solves more problems and, generally, with the best execution times.

Since none of the heuristic approaches is complete-preserving, the safest approaches are
the methods that reduce the search depth. The methods M1–M3 discard some levels in the
search, but they do not discard any action in the goal satisfaction. On the contrary, the
heuristic functions H1–H6 discard some actions when satisfying the goals. Consequently, if
the search starts from one level where a plan can be found, any of the methods M1–M3 will
find it, but the heuristic functions H1–H6 might not find it.
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Figure 22: Comparison of the heuristic functions H1–H6 implemented in TPSYS in problems
of IPC–1998.

Reduction in the search depth Reduction in the branching factor
Problems M1 M2 M3 M1+M2+M3 H1 H2 H3 H4 H5 H6

IPC–1998 36 36 33 39 20 25 24 24 24 27
IPC–2000 40 47 35 50 31 29 29 32 32 33

Total: 76 83 68 89 51 54 53 56 56 60

Table 2: Number of problems solved for each heuristic (40 problems in IPC–1998 and 50 in
problems of IPC–2000).
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Figure 23: Comparison of the heuristic functions H1–H6 implemented in TPSYS in problems
of IPC–2000.
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8.3 Evaluation of Graphplan-based search vs. search based on
least-commitment and heuristic techniques

In this section, we will compare the original search of TPSYS based on Graphplan and the
search based on least-commitment and heuristic techniques (from now on TPSYS-LC) to
evaluate the benefits of the new search.

8.3.1 Impact of the symmetry in TPSYS-LC

This experiment studies the viability of the least-commitment search of TPSYS-LC to over-
come the main inefficiencies of the Graphplan backward search presented in section 7.2.1.
We have used the well-known domains ferry and gripper from IPC–1998, and elevator

and logistics from IPC–2000. These domains impose a high degree of symmetry and re-
dundancy when handling cars, balls, passengers and packages, respectively. Moreover, the
permutation of these objects provokes a combinatorial explosion which negatively affects
the search.

Figures 24-a,b show the results of the comparison between TPSYS and TPSYS-LC in
the ferry and gripper domains, respectively. Although it is not surprising that the least-
commitment search (TPSYS-LC) is faster than the Graphplan backward search (TPSYS), it
is worth mentioning that TPSYS-LC scales up much better than TPSYS, especially in the
gripper domain. TPSYS has difficulties in solving problems with more than 6 balls, but
TPSYS-LC can easily solve problems with more than 50 balls. Moreover, TPSYS-LC found
optimal plans without backtracking for all the problems. Figures 24-c,d show analogous
results for the elevator and logistics domains. Again, TPSYS-LC solves more problems
and the execution time is more scalable, especially in the elevator domain.

8.3.2 TPSYS-LC in more generic problems

This experiment deals with some problems of the SimpleTime track of IPC–2002. The
complexity of IPC–2002 problems depends on several factors: exploitation of parallelism
among actions, problem symmetry, number of problem goals, alternative solutions, etc.
Figure 25 shows the results, depicting that TPSYS-LC solves 38 problems, while TPSYS only
solves 10 problems. This indicates that both approaches still have difficulties in solving all
the problems. On one hand, the difficulties of the Graphplan backward search arise as a result
of the redundancy in the complete, blind search process. On the other hand, the difficulties
of the least-commitment search arise as a result of: i) the heuristic greedy approach, which
can lead to the wrong path in the search, and ii) the non-complete preserving search.
Currently, this is one of the main limitations of the least-commitment search.

8.4 Comparison of the search based on least-commitment and heuristic
techniques with other state-of-the-art temporal planners

In this section, we focus on the quality of the plans generated by the least-commitment
search vs. other planners in some problems of the SimpleTime track of IPC–2002. Although
in temporal planning the most important criterion for quality is the makespan, we will also
consider the number of actions of the plan as an additional criterion for the plan quality.
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Figure 24: Impact of the symmetry in the search approaches of TPSYS and TPSYS-LC in
different domains.
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We have compared the quality of the plans of TPSYS-LC with other (both domain-
independent and domain-dependent) temporal planners, such as LPG1.011 (Gerevini & Se-
rina, 2002a), Mips12 (Edelkamp, 2002), SHOP2 (Nau, Cao, Lotem, & Muñoz Avila, 1999;
Nau, Muñoz Avila, Cao, Lotem, & Mitchell, 2001), TALPlanner (Kvarnstrom & Doherty,
2000), TLPlan (Bacchus & Kabanza, 2000) and VHPOP (Younes & Simmons, 2002). We
have rerun the problems again in both LPG1.0 and Mips, while, for the rest of planners, we
have used the results provided in IPC–200213.

Figures 26-a,b and 26-c,d show the results of this comparison for the domain-independent
and domain-dependent planners, respectively. In general, the quality of the plans gener-
ated by TPSYS-LC is equivalent, and even better, than the rest of the domain-independent
planners. Moreover, if we analyse the number of actions, TPSYS-LC generates plans with
even fewer actions. The results when comparing TPSYS-LC with domain-dependent plan-
ners are similar, with the only exception of TLPlan, which usually generates shorter plans.
In consequence, this shows that the least-commitment search implemented in TPSYS-LC

is competitive with other state-of-the-art planners, both domain-independent and domain-
dependent ones (Garrido & Onaind́ıa, 2003).

If we focus only on domain-independent planning, Figure 27 shows a more detailed
comparison of TPSYS-LC, LPG1.0 and Mips14 w.r.t. the makespan of the plan and its
execution time in problems of driverlog, zenotravel and satellite domains. Figure
27-a shows the results in the driverlog domain. Here, the plans produced by TPSYS-LC

are slightly longer than LPG1.0 and Mips plans. However, in the zenotravel and satellite

domains (see Figures 27-c,e) the makespan of the plans of TPSYS-LC is shorter than LPG1.0

and Mips. As Figures 27-b,d,f show, both LPG1.0 and Mips are clearly faster than TPSYS-

LC (they solve more problems in 300 s). Thus, the most important property of TPSYS-LC

is its tradeoff between the quality of the plan generated and its execution time.

Evaluation of a search process in an anytime search The tradeoff of TPSYS-LC

between plan quality and execution time is important, especially when it is compared with
LPG, which has some similarities w.r.t. local and heuristic search. The main advantage
of LPG is its speed, but its main disadvantage is its non-deterministic behaviour, which
can generate very dispersing plans for the same problem. This drawback could be solved
by means of an anytime search: the search is maintained beyond finding a plan, which is
used as a lower bound while searching for other plans. Following this line, we have fixed
a deadline of 300 s. for the execution time and selected the best plan of TPSYS-LC and
LPG. The results of this experiment are depicted in Figure 28. This figure compares the

11. LPG is based on a non-deterministic local search and, consequently, it would not be fair to work
with the plan from only one execution. In our experiments with LPG we have run each prob-
lem ten times and extracted the median values. We used the LPG1.0 version as provided in:
http://prometeo.ing.unibs.it/lpg

12. We used the Mips version as provided in: http://www.informatik.uni-freiburg.de/~mmips
13. Although Sapa (Do & Kambhampati, 2001), TP4 (Haslum & Geffner, 2001) and IxTeT (Ghallab &

Laruelle, 1994) also participated in IPC–2002, we do not have enough results in the SimpleTime track
to be included in the comparison.

14. We have chosen these two planners as they handle temporal features and showed distinguished perfor-
mance in the last IPC–2002.
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Figure 26: Comparison of the quality (makespan and number of actions) of the plans gen-
erated by TPSYS-LC and other temporal planners in problems of IPC–2002.
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IPC–2002.
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Figure 28: Comparison of the quality of the best plans generated by TPSYS-LC and the
two versions of LPG in problems of IPC–2002.

best plans of TPSYS-LC with the best plans of LPG1.0 and LPG1.115 (Gerevini & Serina,
2002b). The main conclusions we can extract from Figure 28 are:

• The first plan that TPSYS-LC finds is the best plan found in 300 s. in most cases.
Specifically, only 25% of the plans could be improved in 300 s. in TPSYS-LC. On the
contrary, nearly 98% of the plans could be improved within the 300 s. deadline in
both LPG1.0 and LPG1.1.

• LPG1.1 is still faster than TPSYS-LC, but when they generate plans of similar quality
this difference is not so significant and TPSYS-LC is faster in a few problems (see
Figure 28-b).

• The best plans of LPG1.1 are generally better than the plans of LPG1.0. This demon-
strates that dealing with a non-conservative model of actions allows to improve the
plan quality. However, LPG1.1 is slightly slower than LPG1.0 in some problems, which
demonstrates that having a graph with temporal capabilities increases the cost of the
planning algorithm.

The main disadvantage of an anytime search is that selecting an adequate deadline for
the execution time tends to be quite difficult. Therefore, achieving a good tradeoff between
plan quality and execution time is essential, and the way in which TPSYS-LC works seems
to be quite appropriate in a temporal planning approach.

15. Unlike LPG1.0, LPG1.1 handles the non-conservative model of actions of PDDL2.1 internally (taking
advantage of the initial conditions/effects) and it uses an enriched planning graph with temporal features,
thus improving the calculus of its estimation functions.
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Figure 29: Division of a non-conservative durative action into three conservative actions.

9. Discussion

The temporal planning system described in this paper represents an approach for dealing
explicitly with the non-conservative model of actions of PDDL2.1 in a Graphplan-based
approach. However, other different alternatives could preprocess the planning domain,
transforming it into a conservative model of actions or even into a classical model of actions
without duration. Both alternatives are based on splitting each durative action into a
collection of actions to handle at start and at end conditions/effects.

The first alternative splits each durative action into two instantaneous actions (which
represent the start and end points of the durative action) and one action with duration
(which represents the course of the action) as indicated in Figure 29. Therefore, the problem
could be solved by a temporal planner with the ability to manage instantaneous actions.
These three new actions will have neither at start effects nor at end conditions. Thus, a
durative action a is divided into:

• a1, with Pre(a1) = {SCond(a)∪Inv(a)}, Add(a1) = {SAdd(a) ∪ ef a1}, Del(a1) =
SDel(a) and dur(a1) = 0.

• a2, with Pre(a2) = {Inv(a)∪ ef a1}, Add(a1) = {ef a2}, Del(a2) = ∅ and dur(a2) =
dur(a).

• a3, with Pre(a3) = {Inv(a)∪ECond(a) ∪ ef a2}, Add(a3) =EAdd(a), Del(a3) =
EDel(a) and dur(a3) = 0.

The inclusion of the artificial effects ef a1 and ef a2 of actions a1 and a2, respectively,
guarantees that a2 will be generated after a1, and a3 after a2, simulating the behaviour
of the original action a. This way, during the search, action a3 can only be planned if a2
has been previously planned, and analogously, a2 can only be planned after planning a1.
Although this transformation rarely modifies the behaviour of the temporal planner, the
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main drawback is the 3× increment in the number of actions and 2× in the number of
propositions in the domain, which by itself may be prohibitive in large domains. Moreover,
if one goal of the problem is satisfied by a1 (i.e. SAdd(a)), only the action a1 would be
planned (without needing to plan a2 nor a3), which would lead to an unreal situation in
which only a part of the indivisible action a is executed. Consequently, the planner needs
to include additional constraints to guarantee the execution of a1, a2 and a3 in an atomic
way.

The second alternative is based on the semantic mapping described by Fox and Long
(2001) and consists of splitting each durative action into a collection of simple actions
without duration16. Therefore, the problem could be solved by any classical planner. The
collection of actions includes two instantaneous actions (which represent the start and end
points of the durative action) and a number of identical monitoring actions responsible for
confirming the maintenance of invariants (Long & Fox, 2003). The monitoring actions can
be achieved by requiring the no-op actions corresponding to the invariants of an action
to be active in the interval between the start and end points of that action. Now, during
search it is necessary to maintain the link between the actions representing the start and
end points of a durative action, because none of them can be exploited without the other. In
addition, it is necessary to manage the temporal constraints implied by the durations of the
actions. As in the first alternative, the main drawback relies on doubling up the number
of actions. However, this alternative can take advantage of the recent techniques used
to improve the behaviour of Graphplan-based planners (Lopez & Bacchus, 2003; Sanchez
Nigenda & Kambhampati, 2003; Zimmerman & Kambhampati, 2003).

In order to prevent the artificial explosion in the number of actions, we have opted
to adapt the planner to deal explicitly with a non-conservative model of actions. This
adaptation requires some modifications which have been presented throughout the paper,
such as a more precise reasoning on mutex, an extension in the termination criterion for
the temporal planning graph and other features that are dependent on the search approach
used.

10. Conclusions through Related Work

Researchers in planning have made a great effort to extend and improve the capabilities
of planners. If we focus on temporal planning, the last decade has seen many new works:
O-PLAN (Currie & Tate, 1991), which integrates both planning and scheduling processes
into a single framework, ZENO (Penberthy & Weld, 1994), IxTeT (Ghallab & Laruelle, 1994)
and parcPLAN (El-Kholy & Richards, 1996), which cope with temporality on actions and
temporal constraints, etc. Graphplan success has allowed the development of more modern
temporal planners: TGP (Smith & Weld, 1999), whose ideas are very valuable in tempo-
ral environments, TP4 (Haslum & Geffner, 2001) and Sapa (Do & Kambhampati, 2001),
which handle concurrent durative actions and use heuristic metrics to deal with resources
in planning, LPG (Gerevini & Serina, 2002a) and Mips (Edelkamp, 2002). Both LPG and

16. This is the strategy that follows LPGP (Long & Fox, 2003). LPGP automatically transforms each non-
conservative action into instantaneous actions, generates a classical planning graph as in STAN (Fox &
Long, 1999b), and then searches a plan by means of a linear programming solver which guarantees the
temporal constraints on the duration of the actions and the atomicity of the collection of actions.
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Mips showed an outstanding performance in the last International Planning Competition,
demonstrating that heuristic and local search are very useful in planning and especially
in temporal planning. Least-commitment techniques have also been widely used in (par-
tial order) planning, relying on the consistency of temporal constraints (IxTeT and HSTS,
Muscettola, 1994), postponing the assignment of values to variables or the order of exe-
cution of actions, etc. (Weld, 1994). Moreover, Graphplan has also been augmented with
least-commitment techniques by Cayrol, Reginer, and Vidal (2001). In Cayrol’s work, the
definition of mutex relationships between classical actions is relaxed, which allows for the
achievement of the problem goals earlier in the planning graph.

The planner TPSYS presented in this paper builds on several of the previous works.
First, TPSYS is inspired by the ideas of Graphplan and, specifically by TGP, and examines
the general question of dealing with the non-conservative model of actions of PDDL2.1 in a
Graphplan approach. However, the differences between TGP and TPSYS are important: i)
TPSYS calculates the action/action and proposition/action static mutex in a preprocessing
stage which allows the speed up of subsequent stages; ii) TPSYS explicitly stores all the
levels where actions or propositions may appear (the temporal graph is complete and more
informed), which makes the size of the planning graph of TPSYS larger than in TGP; iii)
unlike TGP, the search in TPSYS finds a plan as an acyclic flow of actions throughout
the temporal graph; and iv) TPSYS handles a more precise, non-conservative model of
actions which implies fewer constraints on the execution of actions and a larger search space.
On the other hand, our least-commitment approach for overcoming the limitations of the
Graphplan backward search basically postpones the allocation in time of actions until they
become non mutex and applicable. Thus, the algorithm generates a relaxed plan similar
to FF, to be used as a skeleton of the plan. Next, it allocates actions in time according to
their mutex relations and to several local heuristic criteria in the line of LPG. The critical
difference with LPG relies on several points. First, the planning graph is temporal and
moves chronologically in time instead of planning steps. Although this planning graph
involves a high level of complexity, it provides valuable information for estimating the
times for actions and propositions. Second, the temporal graph is not only used to extract
heuristic information but also to generate a relaxed plan (which may include obligatory
actions), preventing TPSYS from starting the search from an empty plan. Third, this
plan is repaired in a progressive, forward chaining direction, and, unlike LPG, the allocated
actions are never removed. Fourth, the heuristics exploit better the structure of the plan
and the real importance of each action in the plan. Finally, TPSYS uses a deterministic,
systematic approach which, unfortunately, reduces its scalability in very large problems.

For simplicity, the main conclusions of this paper can be organised in terms of the three
stages of our temporal planning system:

Calculus and analysis of static mutex

• A simple algorithm to perform reachability analysis prevents the planner from rea-
soning on actions and propositions that are irrelevant to the plan, thereby reducing
the planning effort. This can also easily detect cases when the problem is unsolvable.

• The inclusion of a preprocessing stage to calculate the static mutex which always hold
becomes very useful, especially in a non-conservative model of actions which imposes
a more complex calculus of mutex (action/action and proposition/action).
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Extension of the temporal planning graph

• A temporal planning graph is a generalisation of the classical Graphplan planning
graph. Persistence of the propositions can be handled by a more precise calculus of
mutex, without the need for no-op actions. In addition, the different durations of the
actions break the initial symmetry of the planning graph as the levels are no longer
equidistant, thus increasing the size of that graph.

• The propagation of the dynamic mutex when dealing with a non-conservative model of
durative actions becomes more complex. Moreover, the combination of initial effects
and final conditions of PDDL2.1 forces the modification of the termination criterion:
the planner must guarantee the successful termination of all the actions involved in
the plan.

Search of a temporal plan

• The original Graphplan right-to-left directionality of the search is broken when dealing
with actions of PDDL2.1 (due to the combination of local conditions and effects), and
now a right-to-left and left-to-right strategy is necessary to support all the goals.

• A process of temporal memoization is very useful for improving the performance of the
search. However, memoization in temporal planning implies taking into consideration
the actions which have already been planned in order to calculate the conflict set of
propositions and actions. EBL/DDB techniques proposed by Kambhampati (1999,
2000) are also applicable in a temporal setting, helping reduce the complexity of the
search.

• The Graphplan search space can be reduced by reducing the depth or the branching
factor. We have evaluated several methods and heuristics to do this and have shown
that the safest approaches are the methods for reducing the search depth.

• Least-commitment and heuristic local search techniques can be applied in a temporal
(or even classical) Graphplan-based approach. The substitution of the backward search
by a two-stage search allows us to overcome some of its main inefficiencies. The
new search creates an initial relaxed plan that is subsequently repaired by means
of a progressive heuristic process, which combines the information calculated in the
planning graph with a greedy search process, eliminates redundancy in the search
and increases the planner scalability. The search process is guided by two estimation
functions which use local features to select the next action or plan to be considered.
The advantage is that the planner can exploit a higher level of action concurrency,
which leads to plans that are highly competitive with other state-of-the-art planners
under a deterministic approach. The main disadvantage, however, is that the search
is not complete preserving.

The algorithm for least-commitment and heuristic search still has some limitations. Our
current work focuses on the refinement of the heuristic functions to improve the quality of
the plans, the performance of the planner and to avoid some of the inconveniences of the
greedy search. In addition to this, we are also working on the increment in the expressiveness
of the model of actions to deal with numeric values which allow the planner to reason on
resource utilisation and to use multicriteria optimisation functions.
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