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Abstract

Document Layout Analysis, applied to handwritten documents, aims to automat-
ically obtain the intrinsic structure of a document. Its development as a research
field spans from the character segmentation systems developed in the early 1960s to
the complex systems designed nowadays, where the goal is to analyze high-level
structures (lines of text, paragraphs, tables, etc) and the relationship between them.

This thesis first defines the goal of Document Layout Analysis from a probabilistic
perspective. Then, the complexity of the problem is reduced, to be handled by
modern computing resources, into a set of well-known complementary subproblems.
More precisely, three of the main subproblems of Document Layout Analysis are
addressed following a probabilistic formulation, namely Baseline Detection, Region
Segmentation and Reading Order Determination.

One of the main contributions of this thesis is the formalization of Baseline
Detection and Region Segmentation problems under a probabilistic framework,
where both problems can be handled separately or in an integrated way by the
proposed models. The latter approach is proven to be very useful to handle large
document collections under restricted computing resources.

Later, the Reading Order Determination subproblem is addressed. It is one of
the most important, yet underestimated, subproblem of Document Layout Analysis,
since it is the bridge that allows us to convert the data extracted from Automatic
Text Recognition systems into useful information. Therefore, Reading Order Deter-
mination is addressed and formalized as a pairwise probabilistic sorting problem.
Moreover, we propose two different decoding algorithms that reduce the computa-
tional complexity of the problem.

Furthermore, different statistical models are used to represent the probability
distribution over the structure of the documents. These models, based on Artificial
Neural Networks (from a simple Multilayer Perceptron to complex Convolutional
and Region Proposal Networks), are estimated from training data using supervised
Machine Learning algorithms.

Finally, all the contributions are experimentally evaluated, not only on standard
academic benchmarks but also in collections of thousands of images. We consider
handwritten text documents and handwritten musical documents as they represent
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the majority of documents in libraries and archives. The results show that the pro-
posed methods are very accurate and versatile in a very wide range of handwritten
documents.
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Resumen

El Análisis de la Estructura de Documentos (Document Layout Analysis), aplicado a
documentos manuscritos, tiene como objetivo obtener automáticamente la estructura
intrínseca de dichos documentos. Su desarrollo como campo de investigación se
extiende desde los sistemas de segmentación de caracteres desarrollados a principios
de la década de 1960 hasta los sistemas complejos desarrollados en la actualidad,
donde el objetivo es analizar estructuras de alto nivel (líneas de texto, párrafos,
tablas, etc.) y la relación que existe entre ellas.

Esta tesis, en primer lugar, define el objetivo del Análisis de la Estructura de
Documentos desde una perspectiva probabilística. A continuación, la complejidad
del problema se reduce a un conjunto de subproblemas complementarios bien cono-
cidos, de manera que pueda ser gestionado por medio de recursos informáticos
modernos. Concretamente se abordan tres de los principales problemas del Análisis
de la Estructura de Documentos siguiendo una formulación probabilística. Específi-
camente se aborda la Detección de Línea Base (Baseline Detection), la Segmentación
de Regiones (Region Segmentation) y la Determinación del Orden de Lectura (Reading
Order Determination).

Uno de los principales aportes de esta tesis es la formalización de los problemas
de Detección de Línea Base y Segmentación de Regiones bajo un marco probabilístico,
donde ambos problemas pueden ser abordados por separado o de forma integrada
por los modelos propuestos. Este último enfoque ha demostrado ser muy útil para
procesar grandes colecciones de documentos con recursos informáticos limitados.

Posteriormente se aborda el subproblema de la Determinación del Orden de
Lectura, que es uno de los subproblemas más importantes, aunque subestimados, del
Análisis de la Estructura de Documentos, ya que es el nexo que permite convertir los
datos extraídos de los sistemas de Reconocimiento Automático de Texto (Automatic
Text Recognition Systems) en información útil. Por lo tanto, en esta tesis abordamos
y formalizamos la Determinación del Orden de Lectura como un problema de
clasificación probabilística por pares. Además, se proponen dos diferentes algoritmos
de decodificación que reducen la complejidad computacional del problema.

Por otra parte, se utilizan diferentes modelos estadísticos para representar la
distribución de probabilidad sobre la estructura de los documentos. Estos modelos,
basados en Redes Neuronales Artificiales (desde un simple Perceptrón Multicapa
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hasta complejas Redes Convolucionales y Redes de Propuesta de Regiones), se
estiman a partir de datos de entrenamiento utilizando algoritmos de aprendizaje
automático supervisados.

Finalmente, todas las contribuciones se evalúan experimentalmente, no solo en
referencias académicas estándar, sino también en colecciones de miles de imágenes.
Se han considerado documentos de texto manuscritos y documentos musicales
manuscritos, ya que en conjunto representan la mayoría de los documentos presentes
en bibliotecas y archivos. Los resultados muestran que los métodos propuestos son
muy precisos y versátiles en una amplia gama de documentos manuscritos.
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Resum

L’Anàlisi de l’Estructura de Documents (Document Layout Analysis), aplicada a
documents manuscrits, pretén automatitzar l’obtenció de l’estructura intrínseca
d’un document. El seu desenvolupament com a camp d’investigació comprén des
dels sistemes de segmentació de caràcters creats al principi dels anys 60 fins als
complexos sistemes de hui dia que busquen analitzar estructures d’alt nivell (línies
de text, paràgrafs, taules, etc) i les relacions entre elles.

Aquesta tesi busca, primer de tot, definir el propòsit de l’anàlisi de l’estructura
de documents des d’una perspectiva probabilística. Llavors, una vegada reduïda la
complexitat del problema, es processa utilitzant recursos computacionals moderns,
per a dividir-ho en un conjunt de subproblemes complementaris més coneguts.
Concretament, tres dels principals subproblemes de l’Anàlisi de l’Estructura de
Documents s’adrecen seguint una formulació probabilística: Detecció de la Línia Base
(Baseline Detection), Segmentació de Regions (Region Segmentation) i Determinació de
l’Ordre de Lectura (Reading Order Determination).

Una de les principals contribucions d’aquesta tesi és la formalització dels prob-
lemes de la Detecció de les Línies Base i dels de Segmentació de Regions en un entorn
probabilístic, sent els dos problemes tractats per separat o integrats en conjunt pels
models proposats. Aquesta última aproximació ha demostrat ser de molta utilitat
per a la gestió de grans col·leccions de documents amb uns recursos computacionals
limitats.

Posteriorment s’ha adreçat el subproblema de la Determinació de l’Ordre de
Lectura, sent un dels subproblemes més importants de l’Anàlisi d’Estructures de
Documents, encara així subestimat, perquè és el nexe que permet transformar en
informació d’utilitat l’extracció de dades dels sistemes de reconeixement automàtic
de text. És per això que el fet de determinar l’ordre de lectura s’adreça i formalitza
com un problema d’ordenació probabilística per parells. A més, es proposen dos
algoritmes descodificadors diferents per reduir la complexitat computacional del
problema.

Per altra banda s’utilitzen diferents models estadístics per representar la dis-
tribució probabilística sobre l’estructura dels documents. Aquests models, basats
en xarxes neuronals artificials (des d’un simple perceptron multicapa fins a com-
plexes xarxes convolucionals i de propostes de regió), s’estimen a partir de dades
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d’entrenament mitjançant algoritmes d’aprenentatge automàtic supervisats.
Finalment, totes les contribucions s’avaluen experimentalment, no només en

referents acadèmics estàndard, sinó també en col·leccions de milers d’imatges. S’han
considerat documents de text manuscrit i documents musicals manuscrits, ja que
representen la majoria de documents presents a biblioteques i arxius. Els resultats
mostren que els mètodes proposats són molt precisos i versàtils en una àmplia
gamma de documents manuscrits.
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Preface

The main goal of this thesis is to provide theoretically sound, efficient, practical
and robust models and algorithms to obtain parts of the intrinsic structure of a
handwritten document with an unknown layout. Those parts of the document layout
will always be defined keeping in mind that they will be used by some Automatic
Recognition System will use them to obtain as much information as possible from
the documents.

In order to explain and evaluate the methods proposed, the thesis has been
organized into eight chapters and two appendices. We encourage the reader to
follow this document in sequential order. Nevertheless, some chapters can be
skipped or read in a different order, depending on the singular interest of the reader.
In that case, we believe the diagram of dependencies between chapters shown in
Figure 1 will help the reader to navigate this thesis.

In Chapter 1, we introduce the problem and motivation of Document Layout
Analysis on handwritten documents. Then, in Chapter 2, we provide an overview of
the theoretical background on which we base our proposed methods and algorithms.
This chapter can be skipped if the reader is familiar with the subject.

Chapter 3 provides an overview of the history, main definitions, and common
terms related to Document Layout Analysis. This chapter should not be skipped in
order to ensure a common vocabulary and understanding of the topic.

Chapter 4 covers the definition and formalization of the proposed probabilistic
methods that aim to address the Baseline Detection problem. Also, we provide an
overview of the Text Line Segmentation and Text Line Extraction tasks.

Chapter 5 presents the definition and formalization of the proposed probabilistic
methods that aim to address the Region Segmentation problem. Moreover, in this
chapter, we extend the proposed methods to address the Baseline Detection and
Region Segmentation problems in an integrated way. Consequently, we strongly
suggest reading this chapter after Chapter 4.

Chapter 6 describes the method designed to address the Reading Order Deter-
mination problem. This chapter can be read independently of the previous two
chapters. However, we encourage the reader to follow a sequential order of these
three chapters in order to procure a global vision of the problem and the proposed
solutions.
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2. Fundamentals

B. Databases

4. Document Page Level Analysis

3. Document Layout Analysis
Overview

1. Introduction

6. Reading Order Determination

5. Document Text-line Analysis

7. Experiments

8. Coclusions and Perspectives

C. Extended Results

A. Numerical Examples on the Reading Order

Figure 1: Dependency diagram between the chapters of this thesis.

Afterward, Chapter 7 contains all the experimental evaluations of all proposed
methods and algorithms. The experiments are presented in the same order as
the task they aim to address were given. For the sake of brevity, we consign the
description of the databases to Appendix B, while only a brief summary of them is
provided in Chapter 7. Moreover, we restrict the results presented in this chapter to
the main metrics and models. Nevertheless, in Appendix C, we offer an extended
set of results.

Finally, Chapter 8 summarizes the contributions of this work, including the
scientific publications, generated databases and open-sourced software resulting
from this work, followed by an outlook of interesting future lines of research in the
field.
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1Introduction

During the long existence of humankind, one of our major needs is to preserve,
enhance and share the knowledge acquired by one individual to the others in
society. It does not matter the complexity of the knowledge, from essential pieces
of knowledge like which plants we can eat and which ones are poisonous, how to
make fire, or where to look for shelter on a cold day, to very complex knowledge
such as how to build a precise clock or harvest power from nuclear fusion. Once this
knowledge is obtained, we (as a society) do not want to lose it; we need to preserve
it, share it with other individuals and use it to enhance our lives and generate more
knowledge.

For thousands of years, the information needed to preserve that knowledge was
shared from one individual to another using face-to-face methods (verbal messages,
hand signs, etc.), but this method is very slow and susceptible to errors. So then,
information sharing evolves to the use of pictograms, so they can be preserved for
generations with less degradation (even today, we can see several pictograms in
prehistoric caverns around the world). However, regardless of the improvement to
preserve the information obtained with pictograms, it is clear that it is challenging
to share it with others.

Later on, the invention of writing and afterward the use of alphabets (2000 BCE)
revolutionized it by providing a lasting method to preserve information that can be
read and spread easily. Equally important is the use of different materials to write,
specifically light materials like papyrus, leather and many kinds of paper, making it
possible to share the information from one place to another.

Writing on light materials became the primary vehicle to preserve and share
information until the invention of digital systems such as the radio, the TV, digital
computers and the Internet. In the current digital era, information can be recorded,
stored and shared more cheaply and reliably than ever before. A great example
is the Internet, where anyone connected to the network can retrieve or share any
piece of information available, even if the physical medium where it is stored is
placed on the other side of the world. Despite the improvements in the digital era,
it is estimated that the amount of original information recorded in manuscripts
and printed documents, since he invention of writing to our days, is greater than
the original information recorded in digital systems. For this reason, the need to
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1. Introduction

digitize the collections of documents available in libraries and archives arises, so
the information recorded in those can be accessed, analyzed and preserved, taking
profit of the advantages of the digital systems.

In this direction, in the late 1950s, a new research area called Optical Charac-
ter Recognition (OCR) made significant progress in the transcription of printed
documents. An image of a document is processed segment by segment (initially
containing only a word and later a complete line of text) to obtain the set of char-
acters present on each fragment and encoded using modern digital formats like
ASCII or Unicode. More recently, during the 1970s and 1980s, given the advances
in OCR, scientists started to apply the ideas of OCR to handwritten documents.
Nevertheless, given the complexity and variability of handwritten documents, the
development of new methods became more complex and specific for the task, to the
point that they were grouped in a new research area by its own called Handwritten
Text Recognition (HTR).

Despite both research areas diverge at the beginning because the documents they
aim to address are different, nowadays, given the success of HTR methods on very
complex documents[Qui+18a; Sán+19], they are widely used on printed documents
as well.

Although both OCR and HTR technologies have evolved to provide good tran-
scripts, these solutions are currently not capable of providing transcripts with the
necessary structure to convert them into information. Typically, OCR and HTR
need a previous step to extract the structure of the document and segment it in
meaningful fragments that can be processed.

This previous step is called Document Layout Analysis (DLA). It does not only
provide the document fragments to Automatic Text Recognition (ATR) systems
(OCR, HTR, etc) but also the structure of the data present in those documents.
Hence, after the transcription process, the transcripts can be rearranged according to
the original layout. So the information in the document can be fully extracted (e.g.,
even if the transcription of several text-lines is perfect, they do not make sense until
they are arranged in the correct order; also, the position of the text in the original
document can give to the reader a lot of information that is not explicitly written
down in words).

Precisely, this has been one of the main motivations driving the development
of this thesis. That is, to improve and develop new technology that allows the
extraction of the structural information of the documents and, together with ATR
technologies, allows libraries and archives to preserve and share the information and
knowledge stored in their collections of documents efficiently and robustly using
modern digital technologies.

In particular, in this dissertation, we focus on addressing three of the main
subproblems of DLA. First, we address the problem of Baseline Detection from a
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probabilistic point of view. To that end, two main approaches are explained and
evaluated experimentally on textual and musical handwritten documents.

Then, we address the Region Segmentation problem, as explained in Chapter 5,
which is a fundamental step to consolidate the information extracted from a docu-
ment in its correct context. We also formalize two probabilistic approaches to address
this problem, and evaluate then on textual and musical documents. Moreover, taking
into account the high computational resources employed by the proposed methods,
we extend and evaluate the proposed methods in an integrated approach, on which
both Baseline Detection and Region Segmentation tasks are addressed together by
the same model.

Finally, in order to offer cohesion to the information to be extracted from the
processed documents, we address the Reading Order Determination problem. Deter-
mining the reading order of the layout elements in a document offers us the ability to
contextualize the extracted information (e.g., the transcripts of several text lines) and
assemble it in a meaningful way. To that end, we propose and formalize the Reading
Order Determination problem as a pairwise probabilistic sorting problem, where
instead of predicting the absolute position of some layout element in an ordered
set, we aim to obtain the most probable position given the relative relationship
between such element and any other layout element in the document. Accordingly,
we formalize and evaluate empirically two different decoding algorithms used to
obtain the most probable reading order from a set of local relationships between
elements.

3





2Fundamentals

This chapter provides an overview of several fundamental techniques, methods and
algorithms used throughout this dissertation. The most important characteristics of
each one are introduced here. However, it is not intended to be exhaustive. Instead,
we will refer the interested reader to the publications in the bibliography for further
reference.

2.1 Image Processing

As stated in the previous chapter, we aim to obtain information from documents that
are digitized into images. Hence, classical image processing techniques will play an
important role in most methods developed towards its analysis. Nevertheless, in this
dissertation, we will restrict the use of deterministic image processing techniques
as pre-processing or post-processing tools, while the analysis itself is consigned to
probabilistic techniques.

The following techniques will be proven very useful across this dissertation.

2.1.1 Connected Components Labeling

Connected Component Labeling (CCL) is defined by [Sha96] as the operation over a
binary image “that groups the pixels into regions, such that adjacent pixels have the
same label, and pixels belonging to distinct regions have different labels”. That is,
in a binary image, two adjacent pixels are defined to belong to the same regions if
they both share the same value (e.g., both are equal to 1), and each different region
is known as a Connected Component (CC).

Several efficient algorithms have been developed for CCL, for those we refer the
reader to [Gra+16] for a comprehensive benchmark on the topic.

Notice that each CC can represent a layout element in a page image. Hence, it is
convenient to use a border following algorithm, like the one presented in [SA85], to
extract the contour of the CCs found and represent them by a set of polygons.

5



2. Fundamentals

2.1.2 Geometric Image Transformations

Geometric transformations modify the spatial relationship between pixels in an
image. For instance, an image can be rotated, scaled, translated or sheered with
respect to some point or axis.

It consists of two basic operations. First, a spatial transformation of coordinates
is performed, for example, an affine transformation (see Section 2.1.2.1) or an elastic
transformation (see Section 2.1.2.2). Then, an intensity interpolation operation, like
nearest-neighbor interpolation or bilinear and bi-cubic algorithms, is applied to
assign intensity values to the spatial transformed pixels [GW08].

2.1.2.1 Affine Transformations

Affine transformation [Wol94] is one of the simplest yet powerful spatial coordinate
transformations. It has the general form:

[
i j 1

]
=
[
v w 1

]
T =

[
v w 1

] t1,1 t1,2 0
t2,1 t2,2 0
t3,1 t3,2 1

 (2.1)

where v, w are pixels coordinates in the original image, and i, j are the corresponding
coordinates in the transformed image.

It is important to notice that depending on the values of T, this transformation
can perform the rotation, scale, translation and sheer operations simultaneously.

2.1.2.2 Elastic Transformations

Affine transformations perform a constant spatial transformation, where all points
in the image are transformed by the same matrix T. Instead, Elastic transformations
perform a different spatial transformation for each point.

A common elastic transformation is defined in [SSP03] as a set of soft random
displacements as: [

i j
]
=
[
v w

]
+
[
δv δw

]
?N ((δv, δw), σ) (2.2)

where δv, δw are selected randomly from a uniform distribution in the interval [−1, 1],
and N (·, σ) is a Gaussian filter with standard deviation σ.

2.2 Machine Learning

Machine Learning (ML) is a field of computer science and applied statistics that
uses and develops computer systems that are able to learn and adapt complicated
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functions [GBC16] without following explicit instructions by using algorithms and
statistical models to analyze and make predictions from patterns in data.

ML algorithms all aim to learn and improve their accuracy from data (experience).
According to [Mit97], “A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E”.

One common way to classify the ML algorithms is by what kind of experience
(data) they are allowed to have during the learning process [GBC16]. In fact, two
of the most known categories of ML are: unsupervised or self-supervised learning
algorithms, where the learning algorithm experiences only a dataset containing
training samples, and supervised learning algorithms that experience a dataset con-
taining training samples but each sample is associated with the label or target that
the algorithm aims to predict.

In this dissertation, we focus on supervised methods, where a previously labeled
dataset (called training data) is used to learn the parameters of a probabilistic model
by means of an ML algorithm. Then, the same model is used to predict the layout of
some new previously-unseen page document (called test data or evaluation data).

One of the main issues in ML is the uncertainty of the data to be analyzed, as
most of the time the data is ambiguous and incomplete, which makes it virtually
impossible to design a deterministic framework general enough to address the
problem in all documents and collections. For instance, it is implausible to have an
example of all the possible layouts a page could have, even in the case of a single
handwritten collection, the number of layout elements is huge (e.g., different number
of paragraphs per image, different number of text lines per paragraph, different
shapes of the layout elements, etc).

Probability Theory (PT) [Kol56] provides a consistent framework for the quantifi-
cation and manipulation of uncertainty [Bis06], which makes it a powerful tool for
ML problems. PT allows us to make predictions given all the information available
to us, while uncertainty is addressed naturally.

As we mentioned in the previous chapter, we are dealing with scanned document
images where DLA can be interpreted as a form of ML problem1 on which the intrin-
sic structure of the data in the documents is unknown. Hence, under probabilistic
formulation, we want to obtain the layout that is most likely to explain the structure
of the data recorded in such images.

This is, a supervised ML learning algorithm attempts to train a probabilistic
model to estimate the probability distribution P(y | x) according to some optimiza-
tion criterion (e.g., maximizing the likelihood function, minimizing the least square

1Formally, DLA can be also interpreted as a form Pattern Recognition (PR) problem, but, as many
authors [Bis06], in this setting we consider ML and PR as synonyms.

7



2. Fundamentals

error, etc). Then, Decision Theory (DT) [Bis06] is used over the trained model to
predict the most probable target y from some input sample x.

2.3 Artificial Neural Networks

During the last decade, Artificial Neural Networks (ANNs) have become the de
facto standard to model many ML problems. In particular, Convolutional Neural
Networks (CNNs) are widely used to model image-related problems.

An ANN is fundamentally composed of interconnected units called artificial
neurons. An artificial neuron, similarly to the real cells present in biological organisms,
is interconnected to other neurons and produces an output that is dependent on the
given inputs from the other neurons.

The term “neural network“ has its genesis in the work of [MP43], where it is
defined as a parametric linear combination of the inputs and a non-linear activation
function σ. Figure 2.1a shows a diagram of the mathematical model as a single
artificial neuron with inputs xi, parameters wij and activation function σ. Typically,
these parameters are called weights and neurons also could have a constant input
called the bias2.

In 1958 the first algorithm to adjust the weights of the neurons (typically called
learning algorithm), was introduced by [Ros58] for binary classifiers. Later on, the
back-propagation algorithm was introduced by [RHW86] as a general algorithm to
help to adjust the parameters to minimize a measure of the difference between the
actual output of the network and the desired output (see Section 2.3.1 for details).

A single neuron is useful to solve small problems. But, in order to solve complex
problems, the neurons are grouped into layers and each layer is connected to other
layers. In general, the layers connected to the input and output signal are called
input and output layers, respectively, while the layers connected to neither are called
hidden layers. Figure 2.1b shows a diagram of a multilayer neural network with one
hidden layer. This kind of network is called a fully connected multilayer network,
since each neuron in a layer is connected to all the neurons in the next layer. Also,
this kind of network is widely known as Multilayer Perceptron (MLP), although it is
not composed of perceptrons but layers of logistic regression models.

One of the most important design decisions about ANNs is the activation function
σ. It has been proven that for several activation functions used with a multilayer
neural network the universal approximation theorem holds. This means that a
multilayer neural network can represent a wide variety of interesting functions when
given appropriate weights and activation functions. For instance, it was proven

2In this work we omit the bias for clarity on the notation.
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Figure 2.1: Diagram of an artificial neuron (Figure 2.1a) and of a multilayer neural
network (Figure 2.1b) with three input neurons, one hidden layer and one output
neuron.

by [Cyb89] for sigmoid activation functions, which is defined as:

σ(z) =
1

1 + exp(−z)
(2.3)

Furthermore, different activation functions can be used to obtain different results.
For instance, the hyperbolic tangent (Equation (2.4)) is often used in regression
problems, while other functions such as the Rectifier Linear Unit (called ReLU
and denoted by R, Equation (2.5)) [Jar+09] and Leaky ReLU (denoted by La, Equa-
tion (2.6)) [MHN13], were designed to help the learning algorithm to perform better
in practice. These latter functions are normally used only in the input or hidden
layers of the ANN.

tanh(z) =
exp(z)− exp(−z)
exp(z) + exp(−z)

(2.4)

R(z) = max(0, z) (2.5)

La(z) =

{
z if z > 0
a · z otherwhise

(2.6)

In the case of classification problems, the output of the ANN is trained to
represent the posterior probability of a label (i.e., the class) given the input data. For
this kind of problem the softmax function [Bri90] is used:

yi = φ(z1, . . . , zn) =
exp(zi)

∑n
j=1 exp(zj)

(2.7)

where yi is the i-th output neuron of the ANN.
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2. Fundamentals

2.3.1 Training Process

ANNs, like many other ML algorithms, can be trained simply by combining an
specification of a dataset, a cost function, an optimization procedure and a model (i.e.,
its parameters). Moreover, since any of these components are mostly independent of
the others, we can use a broad range of training algorithms [GBC16].

One of the most common combinations of these components includes the use
of Stochastic Gradient Descent (SGD) [BB08] to minimize a cost function J(θ) pa-
rameterized by a model’s parameters θ by updating the parameters in the opposite
direction of the gradient of the cost function ∆J(θ) w.r.t. the parameters. It is
usual to combine SGD with the back-propagation algorithm [RHW86]. While SGD is
used to update the parameters with respect to the gradient, back-propagation allows
the information from the cost function to flow backward through the network to
compute the gradient.

SGD, like many other optimization procedures, relies on the cost function to
determine the optimization process. Hence, it is of significance to define a cost
function aligned with the goal of the model and that it facilitates the optimizer’s
work as much as possible (globally continuous and differentiable). Since most of the
time it is not possible to define a cost function with all the desirable mathematical
properties, the affinity of the selected function should be evaluated empirically.

For instance, in the case of a binary classification problem3, let Φ(x, θ), Φ : Rd →
(0, 1) be the output of an ANN, whose activation function on the output layer is a
logistic sigmoid. Then, Φ(x, θ) can be interpreted as the conditional probability of
the target y ∈ {0, 1} given the input x ∈ Rd, restricted by the model parameters θ.
Moreover, we want to estimate the set of parameters θ that minimize the expected
dissimilarity between the empirical distribution, defined by the training data, and the
model distribution measured by the Kullback-Leibler (KL) divergence. Nonetheless,
it can be demonstrated [Bis06] that minimizing this KL divergence corresponds
exactly to minimize a cross entropy cost function between those distributions, defined
as:

J(θ) = −
N

∑
n=1

yn log(Φ(xn, θ)) + (1− yn) log(1−Φ(xn, θ)) (2.8)

where N is number of samples of the training set X = {x1, x2, . . . , xN} with target
values Y = {y1, y2, . . . , yN}.

Furthermore, in the case where we have M independent4 binary classifications
(i.e., yn = {yn,1, yn,2, . . . , yN,M}) to perform over the same input xn, then we can

3In this chapter, we focus on discriminative models. Nonetheless, we refer the reader to [Bis06; DHS01;
GBC16] for a comprehensive analysis on discriminative and generative models.

4Or at least assumed independent
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have an ANN having M outputs (all with logistic sigmoid activation functions), and
the corresponding cross entropy cost function becomes:

J(θ) = −
N

∑
n=1

M

∑
m=1

yn,m log(Φm(xn, θ)) + (1− yn,m) log(1−Φm(xn, θ)) (2.9)

where Φm(·) is the output of the network for the classifier m.
Finally, if we consider the classical multinomial classification problem, where

each input is assigned to one of K mutually exclusive classes, and softmax activation
function is used in the output layer of the ANN. Then, a similar analysis to the
binary setting can be carried out to obtain the following cross entropy cost function:

J(θ) = −
N

∑
n=1

M

∑
m=1

K

∑
k=1

yn,m,k log(Φm,k(xn, θ)) (2.10)

where yn,m ∈ {0, 1}K is a one-hot representation of the target variable, and Φm :
Rd → [0, 1]K.

Nonetheless, as the optimization process does not change when we rescale
the cost function, it is very common to normalize the cost function in terms of the
number of samples (N) and predictions performed (M), which lead us to a version of
the optimization criterion expressed as an expectation with respect to the empirical
distribution defined by the training data [GBC16]. For instance, Equation (2.10)
becomes:

J(θ) =
−1
N

N

∑
n=1

1
M

M

∑
m=1

K

∑
k=1

yn,m,k log(Φm,k(xn, θ)) (2.11)

Furthermore, we refer the reader to [Bis06] for a detailed analysis on training
neural networks on regression problems as well.

As mentioned before, ANNs have performed remarkably well on many ML tasks.
However, they tend to over-fitting5 the training data which can be avoided by using
big amounts of data. Unfortunately, many applications do not have access to the
required amount of labeled data. As a result, several regularization techniques
have been proposed [KGC17] to discourage learning a very complex model and
avoid over-fitting. For instance, it is usual to combine the cost function with a
regularization term [GBC16], also to circumvent the limited access to training data,
data augmentation [SK19] techniques such as affine transforms (see Section 2.1.2.1)
and elastic transforms (see Section 2.1.2.2) are very common.

5Over-fitting happens when the models had fitted so much to the training data that it is unable to
provide accurate predictions for new data from the same distribution.
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2.3.2 Convolutional Neural Networks

Although the capacity of MLPs is well-established and proved, in practice, its
potential is restricted for high-dimensional data. Since all neurons in a layer are
connected to all neurons in the next layer, the number of parameters is very high,
which becomes a problem for training purposes as we need a model with a finite
number of parameters. Furthermore, since each input unit would be connected to all
pixels in the input image, we would need n2 parameters for an input of size n. This
makes the fully connected layers slow when processing high dimensional data, and
highly overparameterized, which may create or aggravate the problem of over-fitting.

A basic solution to this dilemma is to manually define a set of features using
a non-linear transformation of the input data to reduce its dimensionality, hoping
those features to be a good representation of the data, so with fewer layers and units,
an ANN could make good predictions. Nevertheless, it is challenging to design
those features manually.

Another approach, used in data with grid-like topology (like images), is to
replace some hidden layers in an ANN with convolutional layers and let the network
to automatically learn those features, those ANNs are called Convolutional Neural
Networks (CNNs) [LeC89].

Convolutional layers are similar to fully connected layers, but each neuron is
only connected to the neighbor units from the previous layer instead of to all of
them. Additionally, all units share the same parameters, which is a crucial property,
as the number of parameters does not depend on the size of the input data but only
on the size of the neighborhood around each unit (i.e., the receptive field).

Formally, a convolutional layer is simply a layer that makes use of the convolution
operator (typically denoted as ∗) to obtain a shift-invariant [LeC89] representation
of the input data. Let x to be a two-dimensional input signal, a convolutional layer
will learn a set of parameters w ∈ θ (called a kernel) and generates an output signal
y (called feature map), as depicted in Figure 2.2, by convolving x and w:

y = x ∗w = F−1(F (x)�F (w)) (2.12)

where F (·) is the Fourier transform and � the point-wise product. Furthermore, in
the case of two-dimensional images6, along with a two-dimensional kernel:

yi,j = (x ∗w)i,j = ∑
m

∑
n

xi,jw(i−m),(j−n) = ∑
m

∑
n

x(i−m),(i−n)wi,j (2.13)

where m and n range in the size of w, and the last equality holds due to the
commutative property of the convolution operator.

6In practice, images are typically a multi-channel tensor (e.g., RGB), in that case the same formulation
holds, but another sum must be added to Equation (2.13) to take into account that new dimension.
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Figure 2.2: Diagram of the two-dimensional convolution operator. The two-
dimensional input signal x is convolved with the weights matrix w to obtain the
output signal y.

Although the commutative property of the convolution operator arises natu-
rally from the definition, during implementation it involves flipping the kernel
relative to the image, which is computationally expensive but irrelevant to the CNN.
Consequently, many neural networks libraries implement a related function called
cross-correlation (?), which is similar to the convolution but without flipping the
kernel:

yi,j = (x ? w)i,j = ∑
m

∑
n

x(i+m),(i+n)wi,j (2.14)

Notice that for pixels in the border of x, the convolution operator would need
some “pixels” laying outside the input data (e.g., the red regions in Figure 2.2). For
those cases, two main approaches are very common in practice, first, those pixels in
the border are just ignored, this approach will lead to an output signal y smaller
than the input signal, which in many applications is desired. The second approach
is to use a padding value for those “pixels” laying outside (usually 0) which has the
advantage of using all the values of the input signal and could keep the size of the
output signal equal to that of the input.

Very often it is desired to use convolutional layers to obtain an encoded repre-
sentation of the input signal with reduced size (dimensionality). To that end, several
strategies can be used, for instance using padding smaller than half of the kernel size,
or more commonly using a pooling layer [LeC+90]. Also, the convolution operator
can be seen as a sliding dot product, with a stride of one data point at the time,
between the input signal and the kernel, hence, increasing the stride (commonly to
2) will produce smaller volumes spatially.
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2.3.2.1 Transposed Convolutional Layer

As the convolution operator has proven to be useful to obtain a good representation
of the input signal, the next logical step is to obtain an inverse of that representation,
so we can obtain the original signal (or at least a similar one). But, obtaining it is
not trivial, for instance, in the example of Figure 2.2 there are infinity number of
input signals x that when convolved with that specific kernel w they generate the
output signal y.

For this reason, rather than using the inverse of the convolution operator, it is
useful to use another operator that goes in the opposite direction of the convolution
operator,i.e., from y to something with the same size and shape of x, while maintain-
ing a connectivity pattern that is compatible with said convolution. This operation
is called transposed convolution7, and it does not guarantee to recover the input
itself, but gives us the formal framework to obtain a signal with the same shape as
the input.

To understand the transposed convolution (?) it is useful to go back to the
convolution operator and rethinking it in its matrix form. If we unroll the kernel w
from left to right, top to bottom, it could be represented as a sparse matrix c. For
instance, in the case of Figure 2.2:

c =


w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2 0 0 0 0 0

0 w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2 0 0 0 0
0 0 0 0 w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2 0
0 0 0 0 0 w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2



=


−1 0 1 0 −2 0 2 0 −1 0 1 0 0 0 0 0
0 −1 0 1 0 −2 0 2 0 −1 0 1 0 0 0 0
0 0 0 0 −1 0 1 0 −2 0 2 0 −1 0 1 0
0 0 0 0 0 −1 0 1 0 −2 0 2 0 −1 0 1


(2.15)

Similarly, by flattening the input signal x we obtain:

x′ =
[

x0,0 x0,1 x0,2 x0,3 x1,0 x1,1 x1,2 x1,3 x2,0 x2,1 x2,2 x2,3 x3,0 x3,1 x3,2 x3,3
]T

=
[

0 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3
]T (2.16)

Then the convolution can be seen as the multiplication between those matrices:

y′ = cx′ (2.17)

where y can be obtained by de-flatten y′.
Now, it is straightforward to see that if we multiply both sides of Equation (2.17)

by the transposed version of c we can recover the shape of the input signal (x′′ = cTy′).
Note that using this transposed convolution with cT does not guarantee to

recover the input itself, as it is not defined as the inverse of the convolution, but
rather just returns a feature map that has the same size and shape [DV18]. For this

7 Also called fractionally strided convolution or deconvolution. Although the therm deconvolution is
formally incorrect and it should be avoided.
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reason, instead of using cT directly, it is very common to allow the CNN to learn the
values of the transposed kernel in the same way as it learns the values of the original
kernel. Consequently, we can obtain a new kernel that best fits the requirements of
the task we aim to solve.

In Figure 2.3, we depict the process of implementing the transposed convolution,
where we use y as the input of the transposed convolution and x as its output for
consistency with the convolution operator, although normally in the literature it is
common to see the transposed convolution independently of the convolution and
use x as input and y as output.
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Figure 2.3: Diagram of the two-dimensional transposed convolution operator. The
input signal y is processed along with the weights matrix w to obtain the signal x.

For a comprehensive explanation of convolution and transposed convolution
operators and how they are used in Deep Learning, we refer the reader to Dumoulin
and Visin’s guide to convolution arithmetic [DV18].
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2.3.3 Region Proposal Network

In many applications it is common to have more than one region of the input
signal where we are interested in making some predictions. For instance, in image
segmentation, we aim to obtain as many predictions as objects are present in the
input image.

One approach to obtain several predictions is to split the input image into a set
of smaller regions and use an ANN to obtain a prediction of each one. Although
this may be useful in some specific applications, in general it is difficult to split the
input image in a useful way.

Searching for a “’useful way” to split an image is a huge problem. For instance, a
Brute Force algorithm should check for ∑n

k=1 (
n
k) possibilities, where n is the number

of pixels in the input image. Consequently, several methods have been developed to
alleviate this issue. First, sliding window algorithms, like [VJ01], have been proposed
to cope with the complexity of the problem, but still requires to process a lot of
regions per image (in the order of 106 for multi-scale predictions). Then, object
proposal algorithms have emerged, often reducing the number of regions by merging
them [San+11] or by filtering out undesirable regions based on some score [ADF10].
However, it is very difficult to define a general merging or scoring procedure.
Therefore, new methods aim to train an algorithm to automatically propose a set
of regions where it is more probable to make a meaningful prediction [Erh+14;
Ren+16].

There is a large literature on object proposal methods [Hos+16], however, here
we focus on the Region Proposal Network (RPN) architecture [Ren+16] due its
demonstrated versatility and relatively low computational requirements.

A RPN is a CNN that scans the feature maps generated by a previous CNN
(called the backbone) by a sliding window, simultaneously regressing region bounds
and scoring the membership of each region to a set of object classes8. On each
location of the sliding window, k region proposals are predicted, parameterized
relative to a set of k reference boxes or anchors. Typically, anchors span a range of
scales and aspect ratios (e.g., 32, 64, 128 and 1 : 1, 1 : 2, 2 : 1).

Then each region proposal is filtered by its scores and a non-maximal suppression
algorithm is used to handle overlaps. Finally, the region proposals that remain are
called Regions of Interest (RoIs) and passed to the next stage.

8Membership is usually understood as a binary variable that is 1 if the region proposed belongs to
an object in the image or 0 if it belongs to the background.

16



3Document Layout Analysis Overview

Informally, DLA is the problem of searching for the intrinsic structure of the docu-
ments. It aims to extract every structural element of the document and the relation-
ships that exist between them. For instance, we want to know the distribution of the
information across the pages of a document: where the lines of text are, how they
are arranged into groups (e.g., paragraphs), if there is an illustration and how that
illustration is related to the surrounding text, etc. Even informal, this definition help
us to understand the complexity of the problem.

Specifically, on handwritten documents, the structure varies from document to
document and follows no strict rule but the art of the writer and the circumstances of
the time. Also, the physical document is exposed to different degradation processes
for many (sometimes hundreds) years. As an illustration, think of a customs officer
in the crowded port of Saint Mary in Cadiz, Spain, circa 1770. One of their main
duties was to take note of all the goods that were transported by hundreds of ships
from America to Spain. They recorded all that information under a lot of pressure,
buried in a maze of merchandise, ships and bustling sailors. So, fast writing was
the norm, acronyms were frequently used and a clean straight line of text was not
imperative. In the Figure 3.1 a page of that time is presented, probably it was written
very fast and then exposed to the elements for hundreds of years.

Furthermore, once the document is in our hands, we as humans tend to be
inconsistent at defining the layout of a document. For example, when two users are
asked to draw the contour of some text line in a document, probably they will end
with two different contours, as, for instance, the definition of the border between
one text line and the next one is fuzzy. Consequently, for the same document we
can obtain several layouts with small differences, and all of them are considered as
correct by the users.

For these reasons, a deterministic approach will not be enough to handle the
DLA problem in a general and efficient manner. As a matter of fact, a system
that aims to address the DLA problem on handwritten documents must be general
enough to handle several types of documents (one column, two columns, with
a variable number of paragraphs per page, etc.) without having to re-define the
proposed solution each time. Also, it should be able to handle the uncertainty of
the document structure and the fuzziness of the definition of a “correct” layout.
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3. Document Layout Analysis Overview

Figure 3.1: Example of a page written circa 1770 in Cadiz, Spain. Severe degradation
can be observed, including moth holes and ink bleed-through.

Fortunately, statistical methods provide a framework for expressing such uncertainty
in a precise and quantitative manner [Bis06].

As the title of this thesis suggests, we address DLA as a statistical pattern
recognition problem. Given a set of digitized document pages, we want to predict
—under a probabilistic formulation—which structure is most likely to explain the
layout of such documents. To that end we apply ML techniques to, in a supervised
manner, train a model to learn the probabilistic distribution of the layout given the
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documents. Finally, Decision Theory (DT) is used to make optimal1 predictions
based on that probabilistic representation.

3.1 A Note to Clarify Some Concepts

During the execution process of this work, we found some concepts that sometimes
are fuzzy or even contradictory in the bibliography of this research area. Here we
list some of them and provide the definition we will use throughout this work. We
hope this helps to avoid ambiguities or confusion to the reader.

Layout element: we call layout element to any object that is part of the layout of
some document. For instance, a line of text, a paragraph, an illustration, etc.

Text Baseline: is the imaginary line upon which the line of text rest. It is normally
called just “baseline”.

Detection: is the process to identify if a layout element is present or not in a
document. However, for historical reasons, we will use “baseline detection” to define
the process to obtain the Piecewise Linear Curve (PLC) that best fits the text baseline,
although it should be called “baseline segmentation”.

Segmentation: is a process similar to detection, but we go further and obtain a
2D representation of the layout element. For instance, “region segmentation” is the
process of obtaining a polygon (or a mask) that defines where an object is and its
shape.

Extraction: is the process from which a layout element is separated from the
document. For instance “Text -Line Extraction” refers to the process to extract all the
text lines defined in the layout of a document image and generate a set of sub-images,
each one containing only a line of text.

3.2 Problem Definition

Document Layout Analysis is well-defined by Cattoni [Cat+98] in 1998 as:

... [DLA] is a mix of the so-called geometric and logical layout analysis. The
geometric layout analysis aims at producing a description of the geo-
metric structure of the document. This phase involves several processes:

1Under some assumptions and according to appropriate criteria.
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some preprocessing steps and the page decomposition step. This last step
aims at decomposing the document image into maximal homogeneous
regions whose elements belong to different data types (text, graphics,
pictures, ...) [...]. The logical layout analysis aims at identifying the
different logical roles of the detected regions (titles, paragraphs, captions,
headings) and relationships among them.

Although the problem is defined in two steps, it is clear that they depend on
each other. Furthermore, we can express the DLA as the solution to an optimiza-
tion problem, where we want the most probable layout structure h that explains
the intrinsic structure of some collection of documents X = {x1, . . . , xn}. Under
Maximum a posteriori probability framework, this is:

ĥ = arg max
h∈H

P(h | X ) (3.1)

where H is the set of all possible layout structures. Also, each layout h encompasses
both geometrical and logical information, and h can be represented in several ways (a
graph, a tree, a list of elements, ...) as will be explained in detail in Section 3.3.

Notice that this is a general definition that can be applied to any kind of collection,
but this same generality carries the complexity of the collection with it, making
the problem very difficult or unsolvable in most cases. Given that, simplifying the
problem by using informed assumptions is a de facto rule in the field.

In general, in this thesis we will follow a discriminative approach to estimate
the posterior probabilities involved in Equation (3.1). Indeed, discriminative models
such as ANNs have become the de facto standard for classification problems in the
last decade.

Nonetheless, it is important to notice that explicit prior information about the
layout h, P(h), could be useful to address the problem. For instance, modeling the
problem in a generative way instead of discriminative will allow us to make explicit
use of the prior distribution (e.g., modeled by frameworks similar to N-grams [Bos20]
or Probabilistic Context-free Grammars [Alv+13]). However, a generative approach
is considered to be more complex than the discriminative [Bis06], and the generative
approach tends to have a higher asymptotic error (as the number of training samples
become large) [NJ02]. Consequently, although here we focus in the discriminative
setting, a hybrid approach such as the ANN/Hidden Markov Model (HMM) [Blu15]
commonly used in ATR should be considered in a future work.

3.3 Taxonomy of Document Layout Analysis

Although DLA problem is well-defined, its complexity forces scientists to make
some assumptions about the problem to simplify it. Dividing it into several specific
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sub-tasks that can be more easily addressed than the general problem. Normally,
the evolution of these sub-tasks is strongly related to the development of new ATR
technologies.

Even though those assumptions are key in order to handle the problem under
circumscribed resources, we cannot forget that they become with a price. As Hunt
wisely points out in [Hun75]:

... Statistical methods are powerful ones which depend on strong as-
sumptions. When these assumptions can be made, they should be. On
the other hand, it is important that the nature of the assumptions to
be understood, for when they are unwanted their use may lead to very
misleading results.

In order to organize and understand DLA methods, we follow a Problem Taxonomy
that seeks to classify the different methods based on the sub-problem of DLA that
they aim to solve (and the assumptions made). As a guide, in Figure 3.2 we provide
the hierarchical structure of the taxonomy. For instance, Text-line Analysis focuses
mainly on text-line segmentation and text-line extraction, hence its output is defined
at the text-line level.

Collection

Page Page . . .

TextRegion TextRegionNon-TextRegion . . .

text-line text-line . . .

word word . . .

symbol symbol . . .

Linking
A

nalysis

Character Level Analysis

Word Level Analysis

Text-Line Analysis

Page Level Analysis

Inter-page Analysis

Topology levels Physical and logical collection hierarchy

Figure 3.2: Illustration of the structure of the Problem Taxonomy. Each taxonomy
level represents a different class. Each of the levels focuses on a physical or logical
collection level, except Linking Analysis that could focus on one or more levels.

In the following sections, we analyze each of the taxonomy levels, along with the
State-of-the-Art (SOTA) methods developed on each one.
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3. Document Layout Analysis Overview

3.3.1 Character Level Analysis

This task (also called Character Segmentation) aims to split a previously extracted
(normally manually or using a very strict template) fragment of text into a set of
smaller fragments, each of them containing a single character (see Figure 3.3). Such
systems were developed mainly to provide input to early OCR systems based on
symbol-level classifiers. We refer the reader to [CL96] for a detailed survey on the
topic.

In this case, h is just a list of coordinates where the input text fragment has to be
spitted, as shown in Figure 3.3. Also, each image is assumed to be independent of
any other image, and any character independent of the others around it.

Figure 3.3: Character level segmentation process. Most of the process is done manu-
ally, where only words are automatically divided into characters to be recognized.

Although important at the time, this problem is considered solved [Nag00] due to
the evolution of ATR methods towards recognition at higher levels where linguistic
and syntactic context is available.

3.3.2 Word Level Analysis

Similar to the previous case, in this case, each of the smaller fragments should
contain a single word, instead of a character (for this reason it is also called Word
Segmentation). Again, a human needs to previously split the input image into a
set of lines of text. In this case, the assumptions are relaxed, and even though each
image is still assumed to be independent, now the relationship between characters
is taken into account.

Most of the process is still handled manually, as shown in Figure 3.4. But, there
is no need anymore to segment each word into the characters that compose it.

Most works in ATR published before 1995 assumes that words are previously
isolated from the lines of text, or they argue that the process to obtain those words
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Figure 3.4: Word level segmentation process. Most of the process is done manually,
except lines that are automatically divided into words to be recognized.

is trivial [KG98] since words are separated by clear spaces. Which was proven to be
false for handwritten text documents, where, in some cases, that “space” does not
physically exist or is so small that even humans found it tough to split the words
correctly.

Nevertheless, the most common automatic approach to word separation, from
those years until now, is based on the following steps: (i) determine the CCs in
a given line of text, (ii) compute the distance between pairs of adjacent compo-
nents [SC94; MN95; KG98], (iii) classify those distances into inter-word gaps and
inter-character gaps [KG98; VB05; Lou+09]. Finally, inter-word gaps are assumed to
be word separation points.

Although word segmentation is still an active research area, its efforts are ad-
dressed to specific applications like some specific Key Word Spotting (KWS) sys-
tems [Gio+17], while general ATR applications are moved forward to higher levels
like text line or even full page recognition.

3.3.3 Text-line Analysis

This is the most common DLA task performed nowadays, mainly because it allows
the ATR systems to process a complete line of text, taking into account the context
of each word.

In the literature, it is very common to name the task of searching for the text
lines in a document as text-line segmentation, while the process of physically divide
the input image into a new digital file for each text line is called text-line extraction.

At this level, the input image can be a full page of text or a pre-segmented
paragraph, see Figure 3.5. Also, the relationship between words is taken into
account, but each line of text is assumed independent of the others.
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Figure 3.5: Text-line level segmentation process. The main goal is to split each
paragraph of text into a set of text-lines, where each paragraph is assumed to be
previously segmented.

Nowadays it is very common to handle the text-line segmentation problem as a
Baseline Detection problem [Die+17; Die+19]. Baseline Detection aims to detect not
the polygon that surrounds a line of text but the imaginary line upon which the line
of text rest. This baseline is normally represented by a Piecewise Linear Curve (PLC)
composed of few vertices, which makes it a very useful representation to handle
manual labeling.

Several methods have been developed to handle the text-line segmentation prob-
lem. We can divide those methods into deterministic and probabilistic approaches.
First, deterministic methods address the problem as a Computer Vision (CV) prob-
lem, using classical CV techniques to (under several assumptions and constraints)
segment the input images. Because of the deterministic nature of those approaches,
they are designed to work well on documents that comply with the hard-coded
underlying set of assumptions and rules that dictate the type of layouts they can
be applied to [Bos20], but they are not general enough to handle the diversity of
documents we can found on libraries and archives. A very extensive survey on this
kind of method is presented in [LZT07], and most recently by [EGO17].

On the other hand, most modern approaches tend to address the problem from
a probabilistic point of view. In most of the cases—even if they do not explicitly
define it in that way—the goal is to obtain the most probable layout given the input
image. For instance, in [BTV12] they train a HMM along with an n-gram Language
Model (LM) to estimate the most probable sequence of vertical tokens (line, interline,
blank-line, non-text) in an input image. Furthermore, this approach is followed by
Moysset et al. in [Moy+15], where they train an ANN to estimate the most probable
sequence of “line” and “interline” tokens in a paragraph, where paragraphs are
assumed to be previously segmented. Despite its applicability to single-column
documents or pre-segmented paragraphs, they cannot handle complex layouts.

24



Taxonomy of Document Layout Analysis

Furthermore, in recent years, with the widespread use of CNNs, several methods
were proposed by us in [Qui+18a; QTV19] and similarly by others [Ren+18; Fin+18;
ASK18; Grü+19], to address the baseline detection problem as a two-stage method.
In the first stage, a CNN is used to obtain a probability map of each pixel in the
input image to be part of a baseline, while in the second stage this probability map
is used, in conjunction with a set of heuristics, to detect the set of PLCs that best
represents the baselines present in the document.

Those systems assume that each layout element (text-line, baseline) is indepen-
dent of each other in an image, and that each image is independent of any other in
the collection. Notice that, although none of them formalize their approach under
PR and DT frameworks, those probabilistic methods aim to solve a sub-problem
defined from Equation (3.1) as:

ĥ = arg max
h∈H

∏
x∈X

∏
e∈h

P(e|x) (3.2)

where e is an element in the layout h (in this case lines of text or baselines) of each
page image x. We will formalize this probabilistic approach in Chapter 4 and analyze
its performance in Chapter 7.

Notice that even though those DLA systems are developed to extract all the lines
of text on a page, most of the time the reading order or any other kind of relationship
between them is left out of the scope of the system. We will also introduce the
reading order problem for text lines in Section 3.3.5.1 and formalize a solution to it
in Chapter 6.

3.3.4 Page-level Analysis

This task aims to split the page into a set of elements of interest (called region
segmentation), taking into account not only the text related elements (paragraphs,
page-number, marginalia, etc) but any other kind of region like images, drawings,
stamps, or any other kind of data present in the page, see Figure 3.6.

In contrast to the previous task, in this case not only geometric layout is performed
(segmentation of the page into a set of regions of interest) but to some extent logical
layout as well (in the form of region labeling). However, the relationship between
elements is not taken into account. With this in mind, h becomes not only a set
of polygons but a set of polygons with a class attribute h = {e1, e2, . . . , eK} and
ek = {p, c}, where p ∈Nd is the shape definition (i.e., the polygon) and c its class.

Notice that elements defined here (ek) could be also lines of text as in the
previous case so that regions and lines of text can be segmented together by the
same formulation. In addition, this sub-problem is commonly addressed using the
same formulation as in Equation (3.2), taking into account that ek is more complex
in this case.
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Figure 3.6: Page level segmentation process. The main goal is to split each page into
a set of elements of interest. However, the relationship between elements is ignored.

Traditionally, region segmentation and region labeling have been addressed
separately. For instance, classical CV methods have been used to address the
segmentation problem [CW09], as well as methods based on some kind of pixel-
level classifier (MLP [BI11; Wei+13], Gaussian Mixture Models and Support Vector
Machines [Wei+13]) whose input is a set of handcrafted features from the input
images (Gabor filters, Kalman filters, Connected Components, Multi-scale images,
etc). Others aim to provide an interactive framework to review the results of the
segmentation algorithm [Qui+17]. On the other hand, some methods aim to provide,
to some extent, the correct label to each region previously segmented. Some of them
focus only on separating text from non-text regions [ZC15; Wei+13], while others
were designed to handle several region types [Coh+13].

Nowadays, it is common to handle region segmentation and region labeling
as a single problem, for instance in [FT12] they use Conditional Random Fields
(CRFs) along with relative location features to segment the document into three
different regions, in [LCC08] they use a multi-resolution strategy to segment up to six
different regions. Furthermore, with the extended use of ANNs, more methods aim
to address the region segmentation and labeling as a classification problem [ASK18;
Qui+18a; QTV19] and using RPNs [Pru+19; SMJ19; Stu+19; ZTY19].

In Chapter 5 we formalize a probabilistic approach to the region segmentation
and labeling problem. As they are nowadays addressed together, in this dissertation
we will refer to region segmentation as the union of both problems and make
no further differentiation between them. Furthermore, we propose to handle this
problem, along with baseline detection, in an integrated manner. That is, using a
single model to handle both problems at the same time. We provide experimental
evidence of its performance in Chapter 7.
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3.3.5 Linking Analysis

Linking analysis can be understood as the process to find all the possible relations
between layout elements, for instance, name entity, link prediction (caption, figure,
reference in text), reading order, table analysis, hyphenation analysis, etc...

Here e ∈ h is interpreted as a multi-valued set e = {p, c, l}, where p ∈Nd is the
shape definition of e, c its class, and l the set of relationships between the element e
and any other element e′ ∈ h.

In this work, we analyze the reading order, which is one of the most important
relationships between elements in a document, since it defines the meaning of the
data recorded in a document. For other linking analysis tasks, we refer the reader
to [Bor+20; MH16] for name entity, to [JET19] for link prediction, to [Gao+19] for
table analysis, and to [VT21] for hyphenation analysis.

3.3.5.1 Reading Order Determination

As commented before, many sub-tasks assume that each element of the document is
independent of any other. This is a very hard assumption that prevents ATR systems
to fully use the context of the elements to improve document recognition and to
present the data in the correct order and structure.

One of the most basic and useful relationships between elements that can be
established is the most common order2 in which we read a document, which is
normally called reading order (see Figure 3.7).

Figure 3.7: Example of a simple reading order. The red line follows the most
common order in which each element in the document should be read.

2Notice that the way a document can be read is not unique, but normally there is a way that is more
common than the others.
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The Reading Order Determination is the definitive step that joins the data
extracted by an ATR system and converts it into information. In this case, the layout
structure h becomes more complex, because its elements must be ordered following
the reading order, hence any independence assumption between elements must be
carefully analyzed.

That is, h is restricted by the relationship r ∈ l, where r defines the most common
reading order such that the probability that some element e′ is read before other
element e is greater than the opposite, this is:

p(r = 1 | e′, e) ≥ p(r = 0 | e′, e) ∀e′, e ∈ h, e′ 6= e (3.3)

where r = 1 when e′ must be ordered before e and r = 0 otherwise. Note that e′ and
e are not interchangeable in p(r | e′, e); that is e′, e should not be seen as conventional
conjunction of two individual conditions but as a single condition by itself.

Notice that this task can be applied to any of the previous tasks, where h can be
a set of baselines (Section 3.3.3), regions of interest (3.3.4), pages (Section 3.3.6), or
any other layout element. Also, it differs from general linking analysis because in
the general case we can have several relationships between elements, but here we
aim to extract only one of them.

To the best of our knowledge, we are the first ones to address the Reading Order
Determination problem for handwritten documents specifically [QV21]. In contrast,
research in the document Reading Order Determination task has a relatively long
tradition for printed documents.

Lee et al. [Lee+02] proposed a system to translate an image of a printed document
into a hyperdocument (in HTML format). While the success of the system is very
dependent on the extraction of the structure of the input document, only a set of
handcrafted rules are used to estimate the reading order. As a result, the system
depends on specific domain knowledge.

A similar collection of rules were used in [Bre03] as a set of pairwise constraints, at
the text-line level, to define a partial order between elements. Afterward, topological
sorting is applied to extend this partial order to a total order of all elements in the
document.

A different approach is given in [MCB08], where instead of defining the rules,
they are automatically learned from training data using first-order logic theory.
Then, a directed graph is built using all elements in the document as nodes, and the
edges are defined by the learned rules. Finally, the reading order is extracted using
a custom algorithm over the graph.

Recently, a new solution has been proposed for this problem as a byproduct of
a more general DLA approach. In [NNC19] digitized newspapers are segmented
into articles by means of the Viterbi decoding algorithm based on a 2D Markov
Model. Although the advantage of an integrated approach is very clear, the size
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of the state space grows exponentially with the number of elements which makes
the method computationally expensive for DLA at text-line level or documents with
many blocks.

Like in the previous case, in [PDM19] they focus on table analysis, but it has
been foreseen that the reading order can be obtained as a byproduct of the process.
The problem is modeled as an edge categorization problem over a graph, where
the nodes represent text lines (baselines) and the edges the geometric relations
between them. While the graph representation has many advantages for this task,
it suffers from the complexity associated with the number of nodes and edges. In
that case, they use a set of assumptions to make the problem tractable. A reduced
graph is built with edges only in the neighborhood of each node instead of a fully
connected graph. Those assumptions should be revised and updated for each kind
of document.

In Chapter 6 we formalize the Reading Order Determination problem as a sorting
problem, where the order-relation operator is probabilistically estimated and learned
from examples. Then, we analyze its performance experimentally in Chapter 7.

3.3.6 Inter Page Analysis

Many times we can found collections of documents where an element of interest is
spread over two or more pages. For example, a piece of news in a newspaper can
begin on one page and end on another. This task aims to recognize those elements
and establish the relationship between them so the information can be presented
and processed in the correct way.

Formally, the input images cannot straightforwardly be assumed independent
anymore, hence the complexity of the task grows significantly. For this reason,
it is very common to carefully assume that, at first, all elements and images are
independent and perform Page-level Analysis, then further methods are developed
to address the inter-image elements.

For instance, in [Bos20; Pri+20] they split a collection of documents into “records”,
by detecting, at the image level, any possible beginning, middle and end of a “record”
in a page, then all the data between the beginning of a “record” and the next end
found is supposed to define a “record”.

Although we present no direct contribution at this taxonomic level, it is straight-
forward to extend the formal methods developed in this dissertation to address
problems at this level. We will formalize it in future work. That is, we want to obtain
the elements e of the layout h, but restricted to all the collection X :

ĥ = arg max
h∈H

∏
e∈h

p(e|X ) (3.4)
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4Document Text-line Analysis

Text-line analysis is one of the major sub-task in the DLA research area. Mainly
because of its direct applicability to Automatic Text Recognition (ATR) systems such
as HTR, KWS and OCR. Most SOTA ATR systems are able to recognize only one
line of text at a time [GFG06; Pui18], which means that in order to recognize the text
in a document, a DLA system must extract those text lines from the document first.

Text-line analysis is commonly divided into two main sub-tasks: text-line seg-
mentation, which aims to obtain the placement of each text line in a page image, and
text-line extraction (discussed in Section 4.3), which aims to split the input image
into a set of smaller images that correspond to the segmented text lines.

In general, text-line segmentation can be handled in three main ways. First, the
DLA system is designed to determine a polygon that best surrounds the text written
down in a specific text line (see Figure 4.1a and Figure 4.1b). This kind of systems
are very expensive to train and test since the manual labeling of the text lines is
a cumbersome process and the border between two text lines could be fuzzy on
handwritten documents. For instance, Figure 4.1a and Figure 4.1b are both valid
segmentation options, however it is unclear which one is better.

In the second way, the DLA system is designed to extract only a sketchy polygon
around the text line, while detailed detection of the polygon is handled to a second
system, or —as in most of the modern cases—it is assumed that the ATR system
is able to ignore the parts that are not strictly part of the text line (see Figure 4.1c).
This approach has the advantage that the sketchy polygon can be defined by a few
points (at least 4).

In the third way, the text-line segmentation problem is further simplified to
detect only the baseline (the imaginary lines upon which the lines of text rest). Then,
the text-line itself is extracted by another process (see Figure 4.1d). Nowadays this
is the most common way to address the problem; because the labeling process is
inexpensive. In fact, in most cases, a baseline can be defined by only two or three
points.

In this work, we focus on baseline detection, because the process of manual
labeling to create a ground-truth and further revision of the DLA is easier and
cheaper. Also, it has been experimentally demonstrated that modern ATR systems
are robust to noise [Rom+15], so a rough text line extracted from the baselines is
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(a) (b)

(c) (d)

Figure 4.1: Example of different ways to define the polygon that best surrounds
the text line. a) a cumbersome detailed polygon, b) a detailed polygon, that is still
cumbersome, c) an easy to define sketchy polygon, d) a simple polygon defined
from the baselines.

enough for most of those systems (see Section 4.2). Nevertheless, for the sake of
completeness, in Section 4.2 and Section 4.3 we refer the reader to key works on
text-line segmentation and text-line extraction.

Baseline detection is still a difficult problem to solve. For this reason, we work
over the following assumptions across this chapter:

• Page independence: we assume that each page x ∈ X is independent of any
other in the same set. This assumption allows us to avoid the computationally
cumbersome process of analyzing all images together, instead, a single image
is analyzed at a time. In general, this assumption is reasonable for the baseline
detection problem due to the fact that no baseline extends to more than one
page at a time.

• Element independence: we assume that each element e ∈ h is independent
of any other in the layout h. Although this is a hard assumption (e.g., the
existence of a baseline depends on the fact that another one does not exist in the
same place), it allows us to address the problem under limited computational
resources.
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In Section 7.3 we provide experimental evidence that supports that competitive
results can be obtained under those assumptions.

4.1 Baseline Detection

As mentioned before, a baseline is the imaginary line upon which each line of text
rests. It is commonly represented by a Piecewise Linear Curve (PLC), as shown in
Figure 4.2.

Figure 4.2: Example of a baseline represented by a PLC, where each blue point
represents a vertex of it.

Although this representation is compact and convenient for human labeling,
it is difficult to be handled by ANNs, because its dynamic and structured nature
(variable number of vertexes by baseline and variable number of baselines per page)
makes the training process computationally expensive or even unstable if only few
training samples are available.

Keeping in mind that we want to model the posterior probability of the baselines
in the layout given the input image (P(h | X)) employing an ANN, two different
approaches are analyzed. The first one, which we call Map-based approach (Sec-
tion 4.1.1), is based on the key idea of transforming the layout h of a document
image into a simpler map, and then it is used to solve the problem instead of using
h directly.

The second one is a Direct approach where h is modeled directly, but under
the assumption that each part of h is independent. This approach is presented in
Section 4.1.2.

4.1.1 Map-based Approach

Instead of using directly the PLC that defines a baseline, an intermediate representa-
tion can be used to train a probabilistic model (ANN, CRF, etc.). In this work, we
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focus in ANN models due to their demonstrated versatility and capabilities.
In order to model P(h | X) using an ANN, a key idea is to transform the layout

into a simpler map of labels. For instance, let x ∈ Rd by a document image and
F : H →Nd′a function that maps h ∈ H, the layout associated to x, into a matrix of
labels1 m ∈Nd′ . This map m is a representation of the layout h that can be directly
learned by an ANN.

If we assume that each point in the map m, in the same position as the point
p ∈ N2 in x, is independent of any other, we can write down the conditional
probability of a map m giving an image x:

P(M = m | X = x) *
= ∏

p∈x
P(Mp = mp | X = x) (4.1)

This model assigns a label to each pixel in the image. In the case of Baseline
Detection problem, the label is 1 if the pixel belongs to the baseline representation or
0 otherwise.

A simple map F is defined by us in [Qui+18a; QTV19] and similarly by [Grü+19;
ASK18] for each point p ∈ N2 in x as defined in Equation (4.2) and depicted in
Figure 4.3.

mp = Fp(h) =

{
1 if ∃ e | d(p, e) < δ, e ∈ h
0 otherwhise

(4.2)

where d(p, e) is the minimal Euclidean distance between the point p and any point
in the PLC defined by e, and δ is a hyperparameter defined for each dataset as the
maximum value that generally leads to not overlaps in m.

To define the layout h as a function of the distribution over the labeled pixels of
the image, we use marginalization:

P(h | X) =

∑
m

P(h, M = m | X = x) =

∑
m

P(M = m | X = x)P(h | M = m, X = x) =

∑
m:F−1(m)=h

P(M = m | X = x)

(4.3)

where the last equality holds due to the fact that F−1(·) is a function (i.e., a
deterministic process), then P(h | M = m, X = x) is simply a Dirac delta function

1Here we use d′ to denote the dimension of m ∈ because it is inherited from the dimension d of x.
Specifically, the width and height of m is equal to the width and height of x, but the number of channels
can differ based on the type of image.
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h m

Figure 4.3: Example of a map m generated using the function F applied to a layout
h. Here, h is defined as a set of baselines defined by PLCs (in blue).

whose value is 1 for the map that generates the reference set of baselines h and 0 for
the rest.

Notice that this implementation is optimal if and only if F is bijective or at least
an injective non-surjective function. In any other case, h cannot be unequivocally
recovered from m. For instance, in the case of Equation (4.2) the restriction d(e, e′) >
2δ ∀e, e′ ∈ h must hold and the number of vertexes in the reference baseline e must
be minimal2 in order to recover h.

As in Equation (3.2), the best layout ĥ of some image x is defined by:

ĥ = arg max
h∈H

P(h | x) (4.4)

where we are assuming that each image x ∈ X is independent of the others. Hence,
from Equation (4.3) we can obtain h in terms of the map m as:

ĥ = arg max
h∈H

∑
m:F−1(m)=h

P(M = m | X = x) (4.5)

and from Equation (4.1):

ĥ = arg max
h∈H

∑
m:F−1(m)=h

∏
p∈x

P(Mp = mp | X = x) (4.6)

4.1.1.1 Training Process

Once we have a way to efficiently compute the posterior probability of the baselines
given the image (Equation (4.3)), we will follow the training criteria explained in

2A minimal PLC is such that, in addition to the start and end vertex, a new vertex is added only if
there is a change in the direction of the line.
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Section 2.3.1. Specifically, from Equation (2.9) and Equation (4.3) the cross entropy
cost function takes the form:

J(θ) =
−1
N

N

∑
n=1

1
d′ ∑

p∈xn

mn,p log(Φp(xn, θ)) + (1−mn,p) log(1−Φp(xn, θ)) (4.7)

where d′ is the size of m, mn,p ∈ {0, 1} is the map label of the sample n at point p,
and Φp(xn, θ) ∈ Φ, Φ : Rd → (0, 1)d′ is the output of the ANN at point p.

Furthermore, gradient-descent algorithms are often used (see Section 2.3.1) to
(iteratively) minimize the cost function. Since all components in ANNs and CNNs
are differentiable3, we can compute the gradient of the cost function with respect to
the network parameters. Therefore, back-propagation is used to efficiently compute
the gradients and update the parameters.

4.1.1.2 Inference

Once the P(m | x; θ) distribution is learned by our model, one can now obtain a
prediction of the layout of any new previously unseen image.

From Equation (4.6), the best layout ĥ is the one that maximizes the sum of the
probability over all the maps that can generate that layout. However, under the
assumption that F is bijective or at least an injective non-surjective function, the
inverse function F−1(m) is unique. Hence, the most probable layout

∗
h is defined by

the most probable map m. As DT states (see Section 2.2), the most probable map ∗m,
given a new input image x, can be obtained by taking the most probable value for
each point p as:

∗mp =

{
1 if Φp(x) > 0.5
0 otherwise

(4.8)

Finally, the most probable document layout can be retrieved from the most
probable map given by the model as:

∗
h = F−1(

∗m) (4.9)

where F−1(·) is the inverse function of Equation (4.2). Notice that the inverse of
Equation (4.2) is equivalent to search for all points p that belongs to an element
e ∈ h. That is, p ∈ e if all the elements if m inside a circle of radius δ centered
on p are equal to 1 (i.e., tp = 1 (Equation (4.10))), and p belongs to the connected
components neighborhood of e.

3 Some activation functions could be not completely differentiable, but it is empirically proven that it
has no adverse impact in the model. See Section 2.3 for details.
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tp =

{
1 if mj = 1∀j | d(p, j) ≤ δ

0 otherwise
(4.10)

As explained in Section 3.2, the layout of a document is not unique. Consequently,
different layouts can be interpreted by a human user to be correct, while from a
formal point of view only the one equal to the reference is correct (i.e., ĥ =

∗
h). Also,

in most cases, the baselines are not minimal PLCs. Furthermore, formally F−1(·)
is not flexible enough to handle the uncertainty characteristic of a probabilistic
model like an ANN. For instance, the inverse is very sensitive to false-negative
errors,e.g., if in some hypothesis ∗m a point k in the neighborhood of radio δ of p ∈ e
is miss-classified, then mk = 0 =⇒ tp = 0, and the point p will not be added as
part of the element e as expected.

For those reasons, although it is possible, searching for the formally correct layout
it is most of the time cumbersome and unnecessary. Instead, several approximations
could lead to solutions that are feasible and also correct given the fuzziness of the
problem.

Based on the fact that ∗m can be interpreted as a binary image of the same size
of x, in [Qui+18a] we presented a solution based on a well-known computer vision
algorithm used to compute the CCs in a binary image followed by the algorithm
defined in [PV94] to optimally reduce the number of vertexes of a PLC.

This algorithm is presented in Algorithm 1, where the ConnectedComponents

procedure is implemented using the algorithm developed by Suzuki et al. [Suz+85],
and the GenBaseline procedure, presented in Algorithm 2, uses each of the extracted
CC as a guide to search for the baseline in the image x. The main steps of this
procedure are depicted in Figure 4.4. In addition, it is important to notice that the
ReducePolygon procedure is very robust to outliers (see [PV94] for details), which
makes the procedure helpful not only to reduce the number of vertexes, but to
remove outliers.

Algorithm 1 Approximation of F−1(·) based on CC for the baseline detection
problem.

Require: m is a binary map, x is an image, k the number of vertexes of each baseline
1: procedure GenLayout(m,x)
2: h← {∅} .The layout
3: Γ← ConnectedComponents(m) . One baseline per CC will be generated
4: for all $ ∈ Γ do
5: h← h ∪GenBaseline($, x, k) .From Algorithm 2
6: end for
7: return h
8: end procedure
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4. Document Text-line Analysis

Algorithm 2 Baseline detection in a restricted region

Require: x is an image, $ is a contour, k is the number of vertexes of the output PLC
1: procedure GenBaseline($, x, k)
2: I← Crop(x, $) .Crop of the image inside $.
3: Y← Otsu(I) .Binarize I using Otsu algorithm.
4: α← MainDirection(Y) .Get Y’s main direction. α = 0 if horizontal or α = 1 if vertical).
5: r, c← size(Y) .Number of rows r and columns c of Y
6: l ← 0
7: if α == 0 then
8: for j = 0, j < c, j ++ do
9: for i = r− 1, i ≥ 0, i−− do

10: if Yi,j == 1 then
11: e[l ++] = (i, j) .Add the point i, j to the bulk PLC e.
12: l ← l + 1
13: endloop
14: end if
15: end for
16: end for
17: else
18: for i = 0, i < r, i ++ do
19: for j = 0, j < c, j−− do
20: if Yi,j == 1 then
21: e[l ++] = (i, j) .Add the point i, j to the bulk PLC e.
22: l ← l + 1
23: endloop
24: end if
25: end for
26: end for
27: end if
28: if len(e) > k then
29: e← ReducePolygon(e, k) .Reduce the number of vertexes to k using Perez et al. [PV94]

algorithm.
30: end if
31: return e
32: end procedure

The main advantage of this algorithm, along with its simplicity, is that it uses the
input image to be more robust against false-negative errors in ∗m. In contrast, it is
sensitive to false-positive errors. For instance, it cannot recover the correct layout in
cases where the expected baselines in ∗m overlap or at least touch each other.

In practice, this disadvantage can be mitigated by applying a morphological
erosion to the hypothesis ∗m.

4.1.2 Direct Approach

The previous approach cannot handle overlaps naturally. For instance, in some cases,
the text lines on a table are very close but separated by the cell boundary. In those
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2

3

7-27
28-30

Figure 4.4: Main steps followed by Algorithm 2, where the numbers at the side
of each arrow are the corresponding line number in Algorithm 2. First the image
defined by the contour $ (in red), predicted over the text line “Trigo de Indias”, is
cropped and assigned to I. Then, I is binarized (line 3 in Algorithm 2). Next, only
the “last” black pixels of each column are added to the baseline (red points, lines 7
to 27). Finally, the PLC defined by those points is reduced to k vertexes (blue line).

cases, it is impossible to select a hyperparameter δ big enough to produce a useful
map but small enough to avoid overlaps.

Instead, the called Direct approach can handle those overlaps naturally, where
P(h | X = x) is modeled under the assumption that each layout element (baseline) is
independent of any other:

P(h | X = x) *
=∏

e∈h
P(e | X = x) (4.11)

where each element e is composed of a bounding box be ∈ R4, with a class ce = {0, 1}
and a map me = 1 ⇐⇒ d(p, e) < δ, p v be. Here we abuse the notation and use
p v b to define that a point p is inside of the bounding box b. This map is indeed
the same defined before in Equation (4.2), but restricted to the bounding box of
the element e instead of the full image. Notice that ce and me are enough to fully
describe the layout element e, but we also define be so it could play an important
role (as detailed in Section 4.1.2.1) in training our probabilistic model.

Then Equation (4.11) can be re-written in terms of the joint probability of the
parts of each layout element as:

P(h | X = x) *
=∏

e∈h
P(be, ce, me | X = x) (4.12)

Furthermore, if we assume that each part of an element is independent of the
other parts, the Equation (4.12) can be simplified to:

P(h | X = x) *
=∏

e∈h
P(be | X = x)P(ce | X = x)P(me | X = x) (4.13)
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Therefore, P(h | X = x) can be modeled independently for each part of the
baseline e as a multi-task problem.

4.1.2.1 Training Process

Now that the Baseline Detection problem is formalized as a multi-task problem,
we handle it using an ANN, as we did in [QV21]. We define a three tasks network
Φ(x, θ), which consists of one regression task (bounding box estimator, Φb(·)) and
two classification tasks (a class estimator Φc(·), and a map estimator Φm(·)):

Φ(x, θ) = {Φb(x, θb, θs), Φc(x, θc, θs), Φm(x, θm, θs)} (4.14)

where θ = {θs, θb, θc, θm}, θs is a set of shared parameters, while the rest are local
parameters for each task.

Specifically, from Equation (4.13) we can use SGD optimizer and a cost function
composed of the weighted combination of three cost functions (one for each task).
Namely, binary cross entropy cost (Jc) for ce task, a Jb cost based on the L1 loss
function for the bounding box task and binary cross entropy cost (Jm) for the mask
prediction task.

Then, the total cost between the posterior probability of each part of the layout
elements and its correspondent approximations:

• P(be | x; θ)
def
= Φbe(x, θ), Φbe : Rd → R4

• P(ce | x; θ)
def
= Φce(x, θ), Φce : Rd → [0, 1]

• P(me | x; θ)
def
= Φme(x, θ), Φme : Rd → [0, 1]d

′
me , where d′me is the size of the

map me.

is defined as:

J(θ) = λb Jb + λc Jc + λm Jm

=
1
N

N

∑
n=1

(
λb

1
|hn| ∑

e∈hn

‖be −Φbe(xn)‖

+ λc
−1
|hn| ∑

e∈hn

ce log(Φce(xn)) + (1− ce) log(1−Φce(xn))

+ λm
−1
|hn| ∑

e∈hn

1
d′me

d′me

∑
k=1

me
k log(Φme ,k(xn)) + (1−me

k) log(1−Φme ,k(xn))


(4.15)
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where Φ∗e(·) implies that the model should generate hypotheses aligned to the
elements in the reference h. Normally, a Region Proposal Generator (RPG) is used
to generate a set of RoIs. Those RoIs are assigned to a reference element e if
IoU(be, bRoI) > 0.5 (see Section 2.3.3)

In order to optimize the RoIs generated by the RPG, different methods can be
used. In this work, we use an RPN generator (see Section 2.3.3) to obtain the optimal
number and placement of the RoIs. As mentioned in Section 2.3.3, a RPN is a kind
of ANN, which is differentiable. Therefore, we can compute the gradient of the loss
function of the proposed anchors (RoIs) with respect to the network parameters, and
include this cost function (JRPN) in the total weighted cost defined in Equation (4.15):

L(h, x) = λb Jb + λc Jc + λm Jm + λRPN JRPN (4.16)

4.1.2.2 Inference

Similarly to the Map-based approach, once the posterior distribution of each part
of the layout elements is learned by our model, one can obtain the most probable
layout

∗
h given a new input image x.

Let B = {β1, β2, . . . , βn} be the set of RoIs generated by an RPN. For each one
of them we obtain its bounding box

∗
bβ and its class ∗cβ from Equation (4.17) and

Equation (4.18) respectively.
∗
bβ = Φbβ(x) (4.17)

∗cβ = arg max
i∈{0,1}

Φcβ ,i(x) (4.18)

Similarly to the Map-based approach, one can obtain the vertexes of the PLC using
the GenBaseline(x, $, k) procedure (see Algorithm 2), where $ is the perimeter of
the most probable map ∗mβ obtained by Equation (4.19).

∗mβ
p = arg max

i∈{0,1}
Φmβ ,p,i(x) (4.19)

Finally, the most probable document layout can be retrieved from the most
probable set of RoIs using Equation (4.20) as the subset of B which has been
classified to belong to class 1 (i.e., baseline).

∗
h = {β ∈ B | ∗cβ = 1} (4.20)

4.2 Text-line Segmentation

Ultimately, the baseline detection problem main applicability is to provide a set of
delimited text lines to be processed by an ATR system. To that end, we need to
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obtain the polygon ρe ∈ R≥4 for each baseline e that best surrounds the text around
the baseline.

Given the fact that there are several good methods developed to obtain this poly-
gon from the baselines, we believe the problem is mature enough to be considered
out of the scope of this dissertation. However, in this section, we refer the reader to
some key works and methods to obtain the desired polygon.

It is not out of controversy how best is defined. For instance, one can define that
a polygon is best if it contains all the pixels in the input image that belong to the text
line and none of the background pixels. This definition will lead to a cumbersome
labeling process which —as empirically demonstrated by [Rom+15]—is needless for
modern ATR systems (see Figure 4.1a). Besides, some works like [MLF14; Bos+18]
have developed methods to obtain the polygon that best fits that definition.

On the other hand, in accordance with the empirical results obtained by [Rom+15],
the best polygon is allowed to enclose background pixels in order to keep it as simple
as possible. The level of complexity of the polygon depends on the complexity of
the document, but since some background is allowed the number of vertexes needed
are much lower (see Figure 4.1c). For instance, in [BTV12; Moy+15] the polygon is
defined by a few vertexes (normally less than 20), which makes it easier to be edited
by the user if necessary.

A minimal case can be carried out when the text is very homogeneous. A simple
parallel offset over the PLC is enough to segment the text line (see Figure 4.1d). This
polygon can be generated from e following Algorithm 3, where κ0 ∈N2 is an offset
to the left (top) side of the baseline and κ1 ∈ N2 is an offset to the right (bottom)
side.

Algorithm 3 Simple polygon generator around a baseline.

Require: e is a PLC, κ0 is the top offset, κ1 is the bottom offset.
1: procedure GenPolygon(e,κ0, κ1)
2: n← len(e) .Get the number of vertexes in e
3: e′ ← [(0, 0)]2n .New polygon e′ will have 2n vertexes.
4: for 1 ≤ i ≤ n do
5: e′i ← ei + κ0 .Upper part of the polygon.
6: e′n+i ← en+1−i − κ1 .Bottom of the polygon.
7: end for
8: return e′
9: end procedure

Generally, κ0 is defined as a vector of magnitude 1.5 times the average x-height4

and direction pointing to the upper part of the text, and κ1 is another vector with
magnitude 0.75 times the average x-height, and pointing to the bottom of the text.

4X-height refers to the height of the lowercase symbols.

42



Text-line Extraction

(a)

(b)

(c)

(d)

Figure 4.5: Example of different ways to extract the text line “Maizum” given a
segmentation. a) a segmentation of few lines where the text line is extracted as: b)
the straight bounding rectangle, c) the rotated rectangle with the minimum area,
and d) the masked rotated rectangle with the minimum area.

4.3 Text-line Extraction

Once text lines are detected and segmented, they are commonly used by some ATR
systems to recognize the data recorded on them. But, to the best of our knowledge,
all modern ATR systems require that the image of each text line must be a rectangle.
Hence, the polygon ρ that represents a segmented text line should be converted into
a simple rectangle γ ∈ R4 using, for instance, one of the following approaches:

• γ is the straight bounding rectangle of ρ. This rectangle is easily computed,
but in cases where e is rotated, γ may include data from other text lines. For
instance, in Figure 4.5b a bit of the letter “g” from the previous text line is
included in the rectangle.

• γ is the rotated rectangle with the minimum area that surrounds ρ (see Fig-
ure 4.5c).

• γ is the rotated or straight bounding rectangle of ρ, but the pixels that are
placed outside the polygon ρ and inside γ are set to a fixed value (normally
zero, see Figure 4.5d).

• ρ is transformed before converted into γ. In this approach, ρ is pre-processed
in several ways in order to improve the likelihood for an ATR system to
recognize the correct data. For example, it is common to apply warping
correction techniques [Pil01; ZT03], skew correction [GPC97] and slope/slant
correction [Ber+07; DC12].
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Most of the guides on writing advise that it is essential to divide the text into struc-
tured pieces that guide the reader towards a good understanding of the information
to be conveyed. For instance, for a news article, it is recommended to draw the
reader’s attention in the first paragraph, while stating the story’s who, what, when,
where, and why. Then, details are given in the following paragraphs, and finally,
in the last paragraph, the writer should end with a quote or a catchy phrase that
helps the reader to evoke and remember what the article was about easily. Equally
important is adding visual clues (graphs, photos, drawings, etc.) that compliment
the message and help the reader to understand it.

In the previous chapter, we proposed some ideas for obtaining the lines of text
present in a document so an ATR system can be used to obtain the transcription of
those. However, it is clear that the raw transcription obtained from those lines is
not enough to fully recover the information in a document. For instance, we should
consider how those lines are grouped (e.g., paragraphs), the logical meaning of
those groups (e.g., headers, marginalia) and, certainly, if there is any visual clue that
complements the message.

To that end, the methods discussed in this chapter aims to split the page into a
set of elements of interest, taking into account not only the text related elements
(paragraphs, page-number, marginalia, etc.) but any other kind of region like images,
drawings, stamps, or any other relevant structure present in the page. This problem
is commonly referred to in the scientific community as Region Segmentation.

5.1 Region Segmentation

It is not uncommon to find some works in the literature that understand Region
Segmentation as the problem of geometrically splitting a document into a set of
regions of interest (i.e., geometric layout). Although in this dissertation we prefer to
follow a broader definition of the problem, in which not only geometric layout is
performed, but to some extent logical layout as well (in the form of region labeling).

In general, the problem is defined as follows: Given an input document x, obtain
the set of layout regions that better explain the structure of the document, along with the
corresponding region label.
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With this in mind, the layout h of x becomes not only a set of polygons but a set
of polygons with a class attribute h = {e1, e2, . . . , eK} and ek = {ρ, c}, where ρ ∈Nv

is the shape definition (i.e., a polygon) and c ∈ Y is its class label from the set Y that
contains the labels assigned to each region type.

Like the PLC used to represent a baseline, a polygon is very useful for represent-
ing a region of interest. It is very compact and convenient for human labeling as
we can define any region with different levels of complexity (e.g., from a minimum
three vertex polygon or the familiar four vertex rectangle to a very complex shape).
However, it shares the same drawbacks for training to be handled by an ANN (see
Section 4.1).

Nevertheless, the same formulation presented in Chapter 4 for the Baseline
Detection problem can be extended to address the Region Segmentation problem.
Similarly to the previous chapter, here we develop the Map-based approach (Sec-
tion 5.1.1) and the Direct approach (Section 5.1.2) to help us to model the posterior
probability of the regions of interest in the layout (P(h | X)) using an ANN. Then, in
Section 7.4, we evaluate the proposed methods experimentally.

Furthermore, as the reader may notice, it is straightforward to extend the very
same formulation to handle both Baseline Detection and Region Segmentation
problems in an integrated way. Indeed, we do so in Section 5.2 and evaluate it in
Section 7.5.

5.1.1 Map-based Approach

Similarly to Section 4.1.1, the main idea is to transform the regions e ∈ h into a simple
map of labels. For instance, let x ∈ Rd be a document image and F : H → Nd′ a
function that maps h ∈ H, the layout associated to x, into a matrix of labels ξ ∈Nd′ .
This map ξ is a representation of the layout h that an ANN can learn directly.

Again, if we assume that each point in the map ξ, in the same position as the
point p ∈N2 in x, is independent of any other. Then Equation (4.1) holds for ξ in
the same way it does for m:

P(M = ξ | X = x) *
= ∏

p∈x
P(Ξp = ξp | X = x) (5.1)

This model assigns a label to each pixel in the image. In the case of the Region
Segmentation task, the label is conveniently defined as 0 if the pixel does not belong
to any region in the image (i.e., the background) or as c ∈ Y if the pixel belongs to a
region with class label c.

46



Region Segmentation

We define a simple map F in [Qui+18a; QTV19], and similarly by [ASK18], for
each point p ∈N2 in x as defined in Equation (5.2) and depicted in Figure 5.1.

ξp = Fp(h) =

{
ce if p v ρe, e ∈ h
0 otherwhise

(5.2)

where we abuse the notation and use p v ρe to denote that a point p is inside
the polygon that defines the shape of the element e, and ce ∈ Y is the class of the
element e.

F

h ξ

Figure 5.1: Example of a map function F applied to a layout h. Notice that F do not
avoid overlaps between different regions.

Furthermore, we define h in terms of ξ using marginalization, as we did in
Equation (4.3):

P(h | X) = ∑
ξ:F−1(ξ)=h

P(Ξ = ξ | X = x) (5.3)

where this equality holds due to the fact that F−1(·) is a function (i.e., a deterministic
process), then P(h | Ξ = ξ, X = x) is simply a Dirac delta function whose value is 1
for the map that generates the reference set of regions h and 0 for the rest.

Notice that this implementation is optimal if and only if F is bijective or at least
an injective non-surjective function. In any other case, h cannot be unequivocally
recovered from ξ. For instance, in the case of Equation (5.2) it is clear that overlaps
between two or more elements will lead to a case where not enough information
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remains to reverse the process and obtain unequivocally the region used to generate
some values in the map. Hence, any element e must not overlap or touch any other
region in order to fully recover h.

Please also note that, it could be an important limitation of the method, as
in many cases it is tough to manually label the document without any overlap,
especially in the boundary between different regions (see Figure 5.1). However, due
to the fuzziness of the problem (see Chapter 3), this limitation is negligible in many
practical cases.

Moreover, as in Equation (3.2), the best layout ĥ of some image x is defined by:

ĥ = arg max
h∈H

P(h | x) (5.4)

where we are assuming that each image x ∈ X is independent of the others. Hence,
from Equation (5.3) we can obtain h in terms of the map ξ as:

ĥ = arg max
h∈H

∑
ξ:F−1(ξ)=h

P(Ξ = ξ | X = x) (5.5)

and from Equation (5.1):

ĥ = arg max
h∈H

∑
ξ:F−1(ξ)=h

∏
p∈ξ

P(Ξp = ξp | X = x) (5.6)

5.1.1.1 Training Process

Following the same formulation as in the Baseline Detection problem (Section 4.1.1.1),
the posterior probability of h given an input image x is estimated by means of an
ANN. However, as a document could have many different types of regions, the
architecture and cost function must be redesigned as a multinomial classification
problem.

Specifically, from Equation (2.11) and Equation (5.3) we minimize the cross entropy
cost funtion in the form:

J(θ) =
−1
N

N

∑
n=1

1
d′ ∑

p∈xn

ξ′n,p log(Φp(xn, θ)) (5.7)

where ξ′n,p ∈ {0, 1}|Y|+1 is the one-hot representation of the target value ξn,p of the
sample n, Φp(·), Φp : Rd → [0, 1]|Y|+1 is the output of the ANN (softmax function)
at point p, and in general Φ : Rd → [0, 1]d

′×|Y|+1.
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5.1.1.2 Inference

Once P(ξ | x; θ) distribution is learned by our model, and assuming that F is bijective
or at least an injective non-surjective function, one can now predict the layout of any
previously unseen image.

Following Equation (5.6), the best layout ĥ is the one that maximizes the sum
of the probability over all the maps that can generate that layout. However, as we
assume that F is bijective or at least an injective non-surjective function, the inverse
function F−1(ξ) is unique. Hence, the most probable layout

∗
h is directly defined by

the most probable map ξ. As DT states (see Section 2.2), the most probable map
∗
ξ,

given a new input image x, can be obtained by taking the most probable value for
each point p as:

∗
ξp = arg max

i∈{c∈Y ,0}
Φp,i(x) (5.8)

where i = 0 represents the background, and Φp,i(·) is the estimated probability of
the point p to belong to the class i.

Finally, the most probable document layout can be retrieved from the most
probable map given by the model as:

∗
h = F−1(

∗
ξ) (5.9)

where F−1(·) is the inverse of Equation (5.2), which is equivalent to search for all CCs
in

∗
ξ. For instance, by means of a ConnectedComponents procedure implemented

using the algorithm presented by Suzuki et al. [Suz+85], then:

∗
h← ConnectedComponents(

∗
ξ) (5.10)

The main advantage of this algorithm is its simplicity. In contrast, it is sensitive
to false-positive errors. For instance, it cannot recover the correct layout in cases
where the expected layout regions in ξ overlap or at least touch each other, as they
will be merged into a single region by the ConnectedComponents procedure. In
practice, this disadvantage can be mitigated by applying morphological operations
to the hypothesis

∗
ξ.

5.1.2 Direct Approach

Similarly to Section 4.1.2, assuming that each layout region is independent of any
other in h, the Direct approach can be applied to layout regions as well as it is to
baselines:

P(h | X = x) def
=∏

e∈h
P(e | X = x) (5.11)
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where, in this case, e is a layout region described using the bounding box be ∈ R4

that best surrounds ρe, with a class ce ∈ Y and a map ξe = 1 ⇐⇒ p v ρe. Again,
we abuse the notation and use p v ρe to denote that a point p is inside the polygon
ρe that defines the shape of e. Notice that ρe is transformed to a new representation
defined by be and ξe, which is more convenient for ANNs.

Accordingly, Equation (5.11) can be re-written in terms of the joint probability of
the parts of each layout region as:

P(h | X = x) *
=∏

e∈h
P(be, ce, ξe | X = x) (5.12)

Furthermore, assuming each part of e is independent of the other parts, the
Equation (5.12) can be further simplified to:

P(h | X = x) *
=∏

e∈h
P(be | X = x)P(ce | X = x)P(ξe | X = x) (5.13)

Consequently, P(h | X = x) can be modeled independently for each part of the
layout region e as a multi-task problem.

5.1.2.1 Training Process

As we were able to formulate the Direct approach to the Region Segmentation
problem in the same terms as the Baseline Detection problem, the training procedure
is interchangeable. Furthermore, Equation (4.15) and Equation (4.16) can be re-
written using Region Segmentation variables and updated ANN output functions

(Φbe : Rd → R4, Φce : Rd → [0, 1]|Y|+1, Φξe : Rd → [0, 1]d
′
ξe ) as follows:

J(θ) = λb Jb + λc Jc + λm Jm

=
1
N

N

∑
n=1

(
λb

1
|hn| ∑

e∈hn

‖be −Φbe(xn)‖

+ λc
−1
|hn| ∑

e∈hn

1
|Y ′| c

′e log(Φce(xn))

+ λξ
−1
|hn| ∑

e∈hn

1
d′ξe

∑
k∈ξe

k log(Φξe(x)) + (1− k) log(1−Φξe(x))

)
(5.14)

J(θ) = λb Jb + λc Jc + λξ Jξ + λRPN JRPN (5.15)

where Y ′ = {Y , 0} is the set of all classes plus the background class, and c′e ∈
{0, 1}|Y|+1 is the one-hot representation of the target value ce.
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5.1.2.2 Inference

Like in Section 4.1.2.2, let B = {β1, β2, . . . , βn} be the set of RoIs generated by
an RPN. We can directly obtain its bounding box

∗
bβ and its class ∗cβ from Equa-

tion (5.16)1 and Equation (5.17) respectively for each of them.

∗
bβ = Φbβ(x) (5.16)

∗cβ = arg max
i∈{c∈Y ,0}

Φcβ ,i(x) (5.17)

On the other hand, the polygon that defines the shape of each predicted layout
element ρβ can be obtained by the same ConnectedComponents procedure defined
on the Map-based approach over the most probable element map

∗
ξβ.

Finally, the most probable document layout can be retrieved from the most
probable set of RoIs using Equation (5.18) as the subset of B which has been
classified to belong to any class c ∈ Y (i.e., not background).

∗
h = {β ∈ B | ∗cβ 6= 0} (5.18)

5.2 Integrated Approach

Having a system able to perform Baseline Detection and another that performs
Region Segmentation is very useful as we can obtain valuable data that can be
used to obtain accurate information from documents. However, from a practical
point of view, having two different models implies twice the effort to obtain such
valuable data (i.e., time to train the models, time to run inference, memory used,
etc.). Consequently, it is of interest to merge both systems into a single system that
reduces such effort as much as possible.

Indeed, as mentioned at the beginning of this chapter, it is straightforward to
extend the proposed formulation to handle both Baseline Detection and Region
Segmentation problems in an integrated way.

By an integrated way, we mean that both problems can be modeled by the same
statistical model (a.k.a an ANN) at the same time by sharing most of the model
parameters.

Under those circumstances, one can extend the proposed methods under the
Multitask Learning (MTL) framework [Car93], where each problem is considered a
task that may help the other as an inductive bias. Hence, the integrated model will
be trained to learn both tasks simultaneously (using a composed loss function).

1Notice that Equation (5.16) and Equation (4.17) are both the same equation, although we reproduce
it here for convenience.
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5. Document Page Level Analysis

5.2.1 Map-based Approach

In both Baseline Detection and Region Segmentation problems, the input to the
statistical models (ANNs) is the same, an image x, while the main difference is the
prediction layer. Then, it is very likely that the feature maps learned by the models
on the first layers would be very similar.

Following that idea, it is straightforward to merge both problems under the MTL
framework by keeping the first layers of the ANN as a set of shared layers, while
the prediction layers are defined as a separate branch for each task. This approach is
depicted in Figure 5.2, where the feature extraction layers are shared across tasks.
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Baseline detection model

Region Segmentation model

Integrated model

Figure 5.2: Integrated composition of the Map based approach model.

Of course, in order to train the integrated model, we use a composed loss
function that is defined as the sum of the loss function of each task (Equation (4.7)
and Equation (5.7)):

J(θ) =
1
N

N

∑
n=1

−1
d′

(
∑

p∈xn

mn,p log(Φ1
p(xn, θ)) + (1−mn,p) log(1−Φ1

p(xn, θ))

+ ∑
p∈xn

ξ′n,p log(Φ2
p(xn, θ))

)
(5.19)

where Φt
p is the output of the network at point p for task t, being t = 1 for

Baseline Detection and t = 2 for Region Segmentation; Φ1
p : Rd → [0, 1]d

′
and

Φ2
p : Rd → [0, 1]d

′×|Y|+1.
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Integrated Approach

Finally, once the integrated model is trained, the inference is made for each task
separately by the same formulation defined for each task in Section 4.1.1.2 and
Section 5.1.1.2, respectively.

5.2.2 Direct Approach

In the Direct approach, an integrated model is even more straight to obtain as it is
already defined as an MTL problem (i.e., each part of e is considered as a different
task). Indeed, the baselines can be seen as a layout region with a different class (for
instance, let us call it textline). Hence, a new set of classes Y ′ = {Y , textline} can
be used to train a single ANN to predict RoIs belonging those classes, with a map
defined as follows:

ξe =

{
me = 1 ⇐⇒ d(p, e) < δ, p v be, ce = textline
1 ⇐⇒ p v ρe, ce 6= textline

(5.20)

It is important to notice that, since we did not change the structure of the
statistical model but extend the types of regions of interest to be predicted, the loss
function defined in Equation (5.14), and therefore in Equation (5.15), holds for the
integrated approach as well.

Finally, during inference time, those RoIs predicted to belong to the class textline
are processed using the baseline detection procedure defined in Section 4.1.2.2, while
the others are still processed as a normal layout regions as defined in Section 5.1.2.2.

In Section 7.5 we experimentally evaluate this integrated approach on handwrit-
ten documents. Also, we compare this approach with to respect to the non-integrated
approaches defined in Section 4.1 and Section 5.1.
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6Reading Order Determination

Although modern ATR systems can obtain very good results at recognizing the text
that is written in a paper, most modern systems are designed to process only a
text line at a time. Hence, the data obtained from each layout element needs to be
arranged in order to obtain the full meaning of that data. The most common order
in which those layout elements should be ordered is called the reading order.

For instance, let us analyze the case of Figure 6.1, in which five layout elements
are depicted (baselines). At first glance, one might think that the correct way to read
the document is first A, then C, then B, then E and finally D, as in most Latin scripts
the tendency is to read from top-to-bottom-left-to-right (TBLR). However, a detailed
analysis of the text will lead us to read first A, then C, then E, then B and finally D,
since the elements {C, E} and {B, D} are related.

This is a common example of a document where following simple geometrical
rules (like TBLR) does not work, moreover, depending on how the distance between
elements is defined it could lead to different orders (e.g., A, B, C, D, E if we use the
center of each baseline as reference). In many handwritten text documents, the
correct reading order also depends on the type of region each text line belongs
to (paragraph, page-number, marginalia, etc.) and maybe other criteria which are

A
B

D
C

E

Figure 6.1: Example of text lines where a naive top-to-bottom-left-to-right order
would result in reading A before B before C before D before E, while the correct
reading order is A before C before E before B before D.

55



6. Reading Order Determination

heavily dependent on the types of documents considered. Clearly, in such cases, the
naive approach fails.

In our work, we adopt a novel viewpoint for this problem: to automatically sort
layout elements of handwritten documents into reading order, first, an order-relation
operator is learned from examples, then this operator is used to decode the unknown
reading order of new documents.

Remember that a layout element e will generally have a different representation
depending on the type of element. For instance, if the layout element is a baseline, it
will be represented by a PLC, or if it is a layout region it should rather be represented
by a polygon1.

Formally, let S = {e1, e2, . . . , en} be a set of n layout elements of a page image.
An order in S can be defined by a permutation, usually represented by a set z of n
pairs {(e, ν) : e ∈ S, ν ∈N}, where ν, called “index”, also satisfies νi 6= νj, 1 ≤ i, j ≤
n ∀j 6= i.

For instance, for the document in Figure 6.1, the permutation z′ = {(A, 1), (B, 2),
(C, 3), (D, 4), (E, 5)} represents a naive TBLR order in S, while the permutation
representing the correct reading order is ẑ = {(A, 1), (B, 4), (C, 2), (D, 5), (E, 3)}.

Our problem can be now stated as follows: Given a set of layout elements S, obtain
a permutation z of S that renders its elements in reading order.

In general, the best reading order z? is a solution to the following optimization
problem:

z? = arg max
z∈Z

P(z) (6.1)

where Z is the set of all possible permutations2 of S and P(z) is the probability that
z renders S in the correct reading order.

Regularly, it is useful to describe z in matrix form. To that end, z can be described
in terms of the absolute position of each element in the permutation, or in terms of
the relative position of each element with respect to the others. We found the latter
more suitable for further development.

Let ei, ej ∈ S be two layout elements. An order in S can alternatively be specified
by means of a binary order relation ≺ on S× S:

ei ≺ ej means ei “is placed before” ej (6.2)

which is assumed to fulfill all the properties of a strict total order [DP90].
For instance, for the permutation ẑ = {(A, 1), (B, 4), (C, 2), (D, 5), (E, 3)}, we can

state: A≺C, C≺E, E≺B, B≺D and also, A≺E, A≺B, A≺D, C≺B, C ≺D, E≺D.

1Several geometrical features can be extracted from those representations in order to feed any
statistical model. We provide mode details about those features in Section 7.2.2.3.

2Since |Z| = n! the complexity of the problem to rapidly increases with the size of S.
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Therefore, this binary order relation can be represented in matrix form as shown in
these examples:



A B C D E

A 0 1 1 1 1
B 0 0 0 1 0
C 0 1 0 1 1
D 0 0 0 0 0
E 0 1 0 1 0

 · · ·


A C E B D

A 0 1 1 1 1
C 0 0 1 1 1
E 0 0 0 1 1
B 0 0 0 0 1
D 0 0 0 0 0

 (6.3)

Note that these matrices represent the very same binary order relation ≺ (the one
associated with the correct order defined by ẑ). However, the left one is organized
with rows and columns ordered according to a naive order (given by z′), while
in the right one rows and columns follow the canonical sequential rendering of z,
which is always of the form 3 z = {(e1, 1), . . . , (en, n)}. In general, we call this matrix
Rz = [rz

i,j]
n×n, where rz

i,j is defined in terms of the indexes of z as:

rz
i,j =

{
1 if νi < νj , νi, νj ∈ z
0 otherwise

(6.4)

Notice that the indexes defining a permutation z can be straightforwardly com-
puted from the corresponding matrix by just counting the number of zeros of each
row, and its canonical form can be obtained by just sorting z in ascending numerical
order according to the indexes νi, 1 ≤ i ≤ n. We will capitalize on this observation
later to propose a very fast decoding algorithm to determine the reading order using
the results of learning ≺ from training examples.

We can re-write Equation (6.1) in terms of its matrix form Rz as:

z? = arg max
z∈Z

P(Rz) (6.5)

where P(Rz) can be expressed as the joint probability of all its elements, and applying
the chain rule of probability:

P(Rz) = P(rz
1,1)P(rz

1,2 | rz
1,1) · · ·P(rz

n,n | rz
1,1, . . . , rz

n,n−1) (6.6)

Now, we assume that the relationship between a pair of elements in S (i.e., rz
i,j) is

independent of the relationship between any other pair of elements:

P(Rz) ≈
n

∏
i=1

n

∏
j=1

P(rz
i,j) (6.7)

3Note that the sub-indexes of the elements ei in this expression do not express any order, they are
just an identifier of the element.
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6. Reading Order Determination

Remember that the elements of Rz satisfy ri,j = 1 − rj,i, 1 ≤ i, j ≤ n , i 6= j.
Therefore, Rz is completely defined by its upper triangular part:

P(Rz) ≈
n−1

∏
i=1

n

∏
j=i+1

P(rz
i,j)

2 (6.8)

Finally, form Equation (6.1) and Equation (6.8):

z? ≈ arg max
z∈Z

n−1

∏
i=1

n

∏
j=i+1

P(rz
i,j) (6.9)

where the square operator over P(rz
i,j) is dropped as it does not affect the maximiza-

tion process.
Notice that with respect to directly using Equation (6.7), using Equation (6.9)

reduces the number of required multiplications from n2 to (n2 − n)/2.
Now, we need to estimate P(rz

i,j) and efficiently decode z? from Equation (6.9).
To that end, in Section 6.1 a way to learn P(rz

i,j) from training samples is defined,
and in Section 6.2 two efficient decoding methods are presented.

6.1 Learning the Pairwise Binary Order Relation

The binary order relation ≺ defined in Equation (6.2) can be explicitly re-written
as a function Q : S× S→ {0, 1}. Therefore, learning to sort layout elements into a
correct reading order amounts to learn Q from training examples of its input pair
and binary output. To this end, we need training examples of page images with
correctly sorted layout elements, which are generally available as a byproduct of
annotating text images with their correct transcripts. Let z = {(e1, ν1), . . . , (en, νn)}
be the permutation corresponding to a correctly sorted set of layout elements of a
page image. From this permutation, we construct the training samples of Q for all
the possible pairs ei, ej as:

([ei, ej], y), y =

{
1 if νi < νj , 1 ≤ i, j ≤ n , i 6= j
0 otherwise

(6.10)

For example, given the document in Figure 6.1 with ground-truth reading order
ẑ = {(A, 1), (B, 4), (C, 2), (D, 5), (E, 3)}, the following set of training samples will be
generated:

([A, C], 1), ([A, E], 1), ([A, B], 1), ([A, D], 1),
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Learning the Pairwise Binary Order Relation

([C, E], 1), ([C, B], 1), ([C, D], 1),

([E, B], 1), ([E, D], 1),

([B, D], 1),

([C, A], 0), ([E, A], 0), ([B, A], 0), ([D, A], 0),

([E, C], 0), ([B, C], 0), ([D, C], 0),

([B, E], 0), ([D, E], 0),

([D, B], 0) (6.11)

This process is applied to the correctly sorted layout elements of all available
training images, resulting in a training set that will be referred to as D.

From D, a model is trained to estimate the conditional distribution P(Y = y |
ei, ej), where Y is a Boolean random variable such that Y = 1 iff ei ≺ ej, and ei, ej is
the value of a random variable corresponding to an ordered pair of layout elements.
Therefore, note that ei and ej are not interchangeable in P(y | ei, ej); that is ei, ej
should not be seen as a conventional conjunction of two individual conditions but
as a single condition by itself.

It may happen that this estimated distribution lacks some properties which
would be desired for a proper order-relation probabilistic model. For instance,
it may come about that P(Y = 1 | ei, ej) > 0.5 (from which we may infer that
ei ≺ ej), and also P(Y = 0 | ej, ei) < 0.5 (which suggests just the opposite, ej ≺ ei).
This problem is most likely caused by the fact that P(y | ei, ej) is only conditioned
by two specific layout elements, ignoring the rest of the layout elements of the
image. Ideally, for any ei, ej ∈ S, P(Y = 1 | e1, . . . , ei, ej, . . . , en) should be identical
to P(Y = 0 | e1, . . . , ej, ei, . . . , en). In our experiments, we have rather seldom
found that P(Y = 1 | ei, ej) and P(Y = 0 | ej, ei) are different. However, better
overall performance can be achieved if we enforce strict equality by heuristically
re-estimating the pairwise order probability as the average of P(Y = 1 | ei, ej) and
P(Y = 0 | ej, ei):

P̃(y | ei, ej) =
P(y | ei, ej) + 1− P(y | ej, ei)

2
, y ∈ {0, 1}, ei 6= ej (6.12)

And, obviously, P̃(Y = 1 | ei, ei) = 0, P̃(Y = 0 | ei, ei) = 1, ∀ei ∈ S. Correspondingly,
since P̃(Y = 1 | ei, ej) + P̃(Y = 0 | ei, ej) = 1 ∀ei, ej ∈ S, P̃(Y = y | ei, ej) can still be
properly interpreted probabilistically.

The values of P̃(Y = 1 | e, e′) can be arranged in matrix form, exactly as in the
examples of Equation (6.3). In fact, those matrices can be seen as the values of
P(Y = 1 | ei, ej), where probabilities only have the extreme values 0 or 1. Hence,
P(ri,j) can be estimated directly from Equation (6.12):

P(ri,j) = P̃(Y = ri,j | ei, ej) (6.13)
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6. Reading Order Determination

Moreover, Equation (6.9) can be re-written in terms of Equation (6.13) as:

z? ≈ arg max
z∈Z

n−1

∏
i=1

n

∏
j=i+1

P̃(Y = ri,j | ei, ej) (6.14)

Provided that, P̃(Y = ri,j | ei, ej) can be estimated by means of a binary classifier.
For instance, in [QV21] we estimate it using and MLP and a Random Forest Classifier
(RFC). Moreover, in Section 7.6 we experimentally estimate this probability for few
datasets.

A few illustrative examples of possible pairwise order relation probability matri-
ces for the five lines example of Figure 6.1 are given in Appendix A.

6.2 Decoding a Best Reading Order

Once the pairwise binary order-relation is estimated by some model, we discuss
how to obtain the reading order of the set of layout elements of any new, unseen,
text image.

The most straightforward decoding method is by brute force, that consists in
checking all the n! permutations 4 of S, which makes it intractable for most practical
scenarios. Hence, two decoding methods are presented below to cope with the huge
complexity of this problem.

6.2.1 Greedy Decoding

Since global optimization is too computationally expensive for most real cases, we
can resort to local optimization. A good approximation can be obtained by selecting
the best candidate as the most probable layout element at each position t, 1 ≤ t ≤ n,
using Algorithm 4.

Notice that this algorithm can generate a sub-optimal solution to the main
problem, as we demand the solution only to be locally optimal on each position of
the reading order.

By construction, Algorithm 4 ensures that the resulting permutation, z̃?, is proper.
However, this greedy method is sub-optimal and therefore the probability of z̃? is
just a lower bound of the probability of the optimal permutation, that is:

P(z̃?) ≤ P(z?) (6.15)

Nevertheless, according to our observations and results reported in Section 7.6,
the bound is fairly tight. Therefore, if P̃(Y = y | e, e′) is well estimated, good
approximations to the global optimum are generally retrieved.

4 A common page of a handwritten text document could range from few elements (e.g., n = 20,
n! = 2.4× 1018) to hundreds of elements (e.g., n = 200, n! = 7.8× 10374).
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Decoding a Best Reading Order

Algorithm 4 Greedy approximative algorithm to decode the most probable reading
order.

Require: a set of layout elements (S = {e1, . . . , en}), its pairwise probability
(P̃(Y = 1 | e, e′), ∀e, e′ ∈ S)

Output: locally optimum reading order (z̃?)
1: t = 1
2: z̃? ← {∅}
3: while t ≤ n do
4: b← 0
5: for e ∈ S do
6: c← ∏

e′∈S,e 6=e′
P̃(Y = 1 | e, e′) .Probability of the element e to be placed before

any other element e′ ∈ S.
7: if c > b then
8: s← e .keep the most probable element.
9: b← c

10: end if
11: end for
12: z̃? ← z̃? ∪ {(s, t)} .add the most probable element to the permutation z̃? at position t.
13: S← S \ {s} .remove the most probable element from the search space.
14: t ++
15: end while
16: return z̃?

In Appendix A we provide numerical examples of results obtained with this
method for the five lines ecample of Figure 6.1.

6.2.2 First Decide then Decode (FDTD) Decoding

Greedy decoding is useful to overcome the computational complexity of searching for
the global optimal solution. However, the decoding process can be further simplified
and the accuracy of results improved if we follow the observation mentioned at the
beginning of this chapter in relation to the example of Figure 6.1 and Equation (6.3).

Following Equation (6.7), an equation similar to Equation (6.14) can be written
without explicit permutation notation as follows:

R? ≈ arg max
R

n−1

∏
i=1

n

∏
j=i+1

P̃(Y = ri,j | ei, ej) (6.16)

where R = [ri,j ∈ {0, 1}]n×n, with ri,i = 0, 1 ≤ i ≤ n.
Notice that without any restriction of the relative values of the elements of R, a

straightforward solution to the optimization problem (Equation (6.16)) is achieved
for a matrix such that each individual factor of the product is maximum. This allows
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6. Reading Order Determination

us to solve Equation (6.16) by simply setting for 1 ≤ i, j ≤ n:

r?i,j = arg max
y={0,1}

P̃(Y = y | ei, ej) ≡
{

1 if P̃(Y = 1 | ei, ej) > 0.5
0 otherwise

(6.17)

That is, instead of decoding the best solution directly from Equation (6.16), we
first decide which element in S is to be placed before the other (Equation (6.17)).
Then, as mentioned at the beginning of this chapter, given R?, the indexes (ν?i ) of the
corresponding permutation can be obtained by just counting the number of zeros in
the i-th row of R?; that is:

ν?i =
n

∑
j=1

(1− r?i,j), 1 ≤ i ≤ n (6.18)

It is important to realize, however, that the permutation computed in this way
from a matrix R?, although optimal for Equation (6.16), may be improper.

Evidently, since P̃(y | e, e′) = 1− P̃(y | e′, e), the elements of R? satisfy r?i,j =
1− r?j,i, 1 ≤ i, j ≤ n, i 6= j, which is one of the conditions required for R? to represent a
proper permutation. Yet, this matrix may still fail to represent a proper permutation
for other more subtle reasons. For instance, since P̃(Y = y | ei, ej) does not take into
account the complete context of S, the following cases can arise:

• P̃(Y = 1 | ei, ej) > 0.5,

• P̃(Y = 1 | ej, ek) > 0.5,

• P̃(Y = 1 | ek, ei) > 0.5.

The first two are normal cases which imply that ei should be placed before ej and ej
before ek. However, the last one, implies that ek should be placed before ei, which
contradicts the transitivity property of a total order. As a result, Equation (6.17) leads
to ties in the number of zeros per row in R?, and Equation (6.18) yields repeated
values of ν?.

Clearly, if R? does not have ties, the corresponding permutation is an optimal
solution to Equation (6.9). Otherwise, note that the optimization problem 6.16 is
equivalent to a relaxed version of problem 6.9 where one of the restrictions has been
dropped. Therefore, the probability of Equation (6.8) computed for R? is an upper
bound of the maximum probability associated with the optimal z? of Equation (6.9).
That is:

P(R?) ≥ P(Rz?) (6.19)

Moreover, according to our observations and results reported in Section 7.6, the
bound is fairly tight. This suggests that, even in the cases where R? does not
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correspond to a proper permutation, we can still obtain a close to optimal (proper)
permutation by adequately breaking the ties in the number of zeros per row in R?.
While several heuristics can be used for this purpose, in Section 7.6 we just solve the
few ties observed arbitrarily, in order to keep the experimentation as comprehensible
as possible.

This approach is illustrated using numerical examples in Appendix A for the
five lines example of Figure 6.1.

6.3 Hierarchical Approach

Although the proposed model has been described at page level, it can be used in
any hierarchical approach, where Equation (6.12) and any suitable decoder will be
applied in each hierarchical level independently.

First, if there is no tacit interest in sorting all the layout elements of a document,
but, for instance, only the text lines inside the layout regions. This local sorting will
reduce the complexity of the problem as the number of elements inside a layout
region is expected to be lower than the number of elements at page level. Secondly,
as the problem complexity increases exponentially with the number of input pairs, a
hierarchical processing of the data will reduce the complexity as we solve several
small problems instead of a big one.

Nevertheless, beware that any error in a higher level will place all its sub-elements
in the wrong position, increasing the risk of obtaining an incorrect reading order.
However, this can also make the correction process simpler, since a single fix in a
given level may lead to correctly sort all the corresponding sub-elements in the lower
level.

In Section 7.6, experiments are provided in order to compare and analyze the
present approach at different hierarchical levels.
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7Experiments

In this chapter we will experimentally validate our probabilistic framework, algo-
rithms and models, described trough the previous chapters. In particular, some
main questions that we aim to answer trough the different proposed experiments
are:

• What is the performance of the Map-based approach and the Direct approach
to address the Baseline Detection problem on handwritten documents? We
examine this topic in Section 7.3.1 using textual and musical handwritten
documents.

• Whats is the performance of the Map-based approach and the Direct approach
to address the Region Segmentation problem on handwritten documents? This
topic is developed in Section 7.4.1, also for textual and musical handwritten
documents.

• How does the proposed systems perform under restricted amount of training
samples? This topic is examined in Section 7.3.2 and Section 7.4.2, when
addressing the Baseline Detection and Region Segmentation problems, respec-
tively.

• It is possible to handle both Baseline Detection and Region Segmentation
problems in an integrated way? What is the effect of the integrated setting in
the performance of the proposed models? Both questions will be addressed in
Section 7.5.

• How does the models proposed for Baseline Detection and Region Segmen-
tation problems perform on mixed datasets? This in an interesting topic for
production scenarios that we examine in Section 7.5.1.

• How the size of the input sample influence the behavior of the proposed
decoding algorithms for the Reading Order Determination problem? We
consider this issue from the computational complexity of the algorithms in
Section 7.6.1.
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• What is the performance of the proposed methods to address the Reading
Order Determination problem? This topic is examined in Section 7.6.2 using
textual handwritten documents.

• Is a hierarchical approach of the Reading Order Determination problem feasi-
ble? This question is addressed in Section 7.6.3, where we also compare it to
the non-hierarchical approach.

• How our proposed systems compares with SOTA works in the field? We
analyze this question for the Baseline Detection and Region Segmentation
problems in Section 7.3.3 and Section 7.4.3, respectively.

7.1 Experimental Setup

7.1.1 Databases

In order to compare our work to other approaches, we carried our experiments
on several publicly available databases whenever it is possible. In addition, when
there is no public database available with the necessary characteristics to evaluate
the proposed method, we create a new one (or enhance a public one) and make it
publicly available.

In this thesis, we do not limit ourselves to the very common textual handwritten
documents, but we also focus on musical handwritten documents. With this inten-
tion, we evaluate our methods in two main databases, namely Oficio de Hipotecas de
Girona (OHG), and Vorau Abbey library Cod. 253 (VORAU-253). Nonetheless, we
will also report results on other databases for completeness in the comparison with
previous SOTA works.

In the following paragraphs, we briefly introduce thse two databases. More
details and figures about the content of the documents can be found in Appendix B,
while we refer the reader to the corresponding publications for a detailed description
about the data collection and ground-truth preparation.

Oficio de Hipotecas de Girona (OHG) database was created by us due to the lack
of a publicly available database of handwritten text documents annotated at both
baseline and region level and with a coherent reading order.

The publicly available database [Qui+18b] is a portion of 596 pages from the
collection, from batch b001 to batch b012. OHG pages exhibit a relatively complex
layout, composed of six relevant region types; namely: pag, tip, par, pac, not,
nop, as described in detail in Appendix B.1.

The data is randomly divided into 298 images for training and 298 for test. An
example is depicted in Figure 7.1 and the main characteristics are summarized in
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Table B.2, from which we can extract that the number of lines per page is 39.9 [33, 66]

on average, distributed over an average of 4.8 [1, 11] layout regions per page.

Figure 7.1: Examples of pages with different layouts, belonging to the OHG database.
Cyan: pag, red: tip, green: pac, blue: par, violet: not, orange:nop.

Vorau Abbey library Cod. 253 (VORAU-253) database is a beautiful illuminated
musical manuscript originally labeled for the Handwritten Music Recognition (HMR)
task. Hence, only the transcript of some staff regions were annotated. Provided that,
we augmented the available ground-truth by labeling the layout of 228 images into
three different layout regions; namely: lyrics, staff and drop-capital, along
with the corresponding baselines of the text found in the lyrics regions. A detailed
description of the dataset is provided in Appendix B.2.

The dataset was randomly divided into 128 images for training and 100 for test.
An example is depicted in Figure 7.2 and the main characteristics are summarized
in Table B.3.

7.1.2 Evaluation Protocol

To the best of our knowledge, there is no common evaluation measure capable
of jointly evaluating the results obtained in all the tasks addressed in this thesis1.
Therefore, in the next subsections, we present a set of metrics for each task.

1 Due to the fact that the most common application of DLA is to feed some ATR system, it is possible
to indirectly evaluate the results obtained trough ATR results by computing the CER, WER [MV93],
BLEU [Pap+02] or any other metric at transcript level. Nonetheless, an indirect approach will lead
to many difficult challenges like the alignment between ground-truth and the hypotheses, the error
propagation trough DLA/ATR systems, etc.
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Figure 7.2: Examples of pages with different layouts, belonging to the VORAU-253
database. Blue: drop-capital, red: staff, green: lyrics.

When appropriate, we provide confidence intervals (CI) of the studied statistics
(e.g., precision, recall, Jaccard index, etc.). There are many ways to computing CI,
but they require making assumptions about the statistic’s distribution. However,
those assumptions are not trivial to define, which can lead to possibly ill-founded
approximations, and may not hold in may real scenarios. Provided that, we compute
the CI using non-parametric bootstrapping [Efr87; BN04], which has the advantage
that do not make any assumption about the distribution.

7.1.2.1 Baseline Detection Evaluation

We report P-value (P), R-value (R) and its harmonic mean (F1) measures as defined
specifically for this kind of problem in [Grü+17]. Henceforth, let G = {g1, . . . , gn} be
a set of given ground-truth baselines (represented by a PLC) and H = {e1, . . . , em}
be a set of hypothesis. The calculation of R and P for the two sets G and H follows
the following procedure.

• Normalize G and H, so that two adjacent vertexes are in the 8-neighborhood
of each other. From here we use G and H as their normalized versions.

• Define a tolerance value tg for each g ∈ G, such that baselines in the hypothesis
which are slightly different to the ground-truth are not penalized.

tg = 0.25 min(dg, d̄G) (7.1)

where dg is the minimum Euclidean distance from the vertexes of g to the
vertexes of any other baseline in G, and d̄G is the mean of all dg, g ∈ G.
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• Compute the coverage function C. This function counts the number of vertexes
of a normalized PLC for which there is a vertex of another normalized PLC
with a distance less than the given tolerance value.

• The R-value is dependent of G and H and calculated by:

R(G,H) =
∑g∈G C(g,H, tg)

|G| (7.2)

The R-value indicates the fraction of the ground-truth baselines that are de-
tected in the hypothesis within the tolerance value.

• The P-value should penalize segmentation errors, therefore an alignment
between ground-truth and the hypothesis is needed. In this case the baselines
are aligned based on the minimum distance between elements. LetM(G,H) ∈
G ×H to be the alignment between its elements, then P is calculated as follows:

P(G,H) =
∑(g,e)∈M(G,H) C(e, g, tg)

|H| (7.3)

• Finally, the harmonic mean (F1) can be computed as:

F1 =
2PR

R + P
(7.4)

We refer the reader to [Grü+17] for a description about the implementation and
further details. In this thesis, we use the implementation provided by the authors of
the metric2.

Given the normalization of G and H in the first step of the process, the values of
P, R and F1 cannot be longer interpreted in the classical way as related to the fraction
of relevant baselines. Instead, they are related to the normalized vertexes of each
baseline. For instance, classically P-value is understood as the fraction of baselines
in the hypothesis that are relevant given the ground-truth, so P = 35

40 is read as that
35 out of 40 baselines in the hypothesis are correct. But, due to the normalization,
it should be interpreted as the fraction of normalized vertexes (i.e., not the whole
baseline) in the hypothesis that are relevant. Hence, for the same P-value, it should
be read as that 35 normalized sections out of 40 in the hypothesis are correct, where
those 40 elements belong to one or more baselines. The same analysis should be
done for R-value and the harmonic mean.

Moreover, in all our experiments we allow tg to be estimated automatically
from the ground-truth data, as it is the de facto configuration used by the scientific

2https://github.com/Transkribus/TranskribusBaseLineEvaluationScheme
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community [Die+17; Die+19]. However, it is important to notice that, as pointed
out by [Bos20], the value of this parameter could influence the relationship between
the obtained results and the effect of that layout in further ATR systems. Hence, we
recommend caution when inferring information from this evaluation scheme.

7.1.2.2 Region Segmentation Evaluation

We report metrics from semantic segmentation and scene parsing evaluations as
presented in [LSD15]:

• Pixel accuracy (pixel acc.): ∑i ηii

∑i τi

• Mean accuracy (mean acc.):
1
|Y|∑i

ηii
τi

• Mean Jaccard Index (mIoU):
1
|Y|∑i

ηii
(τi + ∑j ηji − ηii)

• Frequency weighted Jaccard Index ( f .w.IoU): (∑c τc)−1 ∑i
τiηii

(τi+∑j ηji−ηii)

where ηij is the number of pixels of class i predicted to belong to class j, |Y| is the
number of different classes, τi the number of pixels of class i, and c ∈ Y . Notice that
there is no alignment between the target layout regions and the hypotheses hence
they are global page-level metrics.

These are easy to compute metrics that help us to get a quick idea of the
performance of the system as a pixel level classifier. However, as our goal is to
obtain the layout regions, not only the pixels that belong to those regions, they give
us a biased result, as they do not take into account if two or more layout regions
were merged or if a region is split. Still, we keep using these metrics as they are
very helpful to understand the performance of the statistical models used in the
Map-based approach.

On the other hand, in order to quantitatively evaluate the performance and
robustness of the proposed methods, taking into account the alignment between
each layout region, we resort on standard COCO Object Detection metrics [Lin+15].

COCO Object Detection metrics are based on the well-known precision, recall, mean
average precision (mAP) and the Jaccard Index (IoU). Forthwith, mAP is defined as:

mAP =
∫ 1

0
P(r)dr (7.5)

where r represents a recall value, P(r) denotes the precision value at which the r
value corresponds to, and the precision and recall values are computed using the
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standard formulas:

precision =
TP

TP + FP
(7.6)

recall =
TP

TP + FN
(7.7)

where TP (True Positives), FN (False Negatives) and FP (False Positives or false
alarms) values are computed using IoU as an alignment rule as follows:

• TP is the number of predicted elements (ej ∈ H) where IoU(ei, ej) > th for
some ground-truth element ei and threshold th, and cei = cej .

• FP is the number of predicted elements where there is no IoU(ei, ej) > th, ∀ei ∈
G (i.e., ej cannot be aligned to any element in the ground-truth).

• FN is the number of ground-truth elements where the is no IoU(ei, ej) >
th, ∀ej ∈ H (i.e., ei cannot be aligned to any predicted element).

Unlike mIoU , IoU is computed for each pair of layout elements (ei ∈ G, ej ∈ H)
independently, instead of globally:

IoU(ei, ej) =
ξei ∩ ξej

ξei ∪ ξej
(7.8)

In general, three sets of thresholds are used to compute mAP, namely3: AP, AP50
and AP75. AP refers to mAP computed by averaging over a set of thresholds, from
th = 0.50 to th = 0.95 with a step size of 0.05; AP50 refers to mAP computed using a
single threshold th = 0.50; similarly th = 0.75 is used in the case of AP75.

Following the same analysis, the mean average recall (mAR) can be defined in
terms of precision, recall and Equation (7.8). We refer the reader to [Lin+15] for
details about those metrics and its implementation. In this thesis, we use the official
implementation of the metric, provided by the organizers of the competition4.

7.1.2.3 Reading Order Evaluation

In order to evaluate the ordering returned by some automatic approach, a basic
metric such as the number of misplaced elements or precision-recall is not enough.
That kind of metrics will give us an idea of how many elements are misplaced but
does not take into account how far those elements are from the correct position or

3Since this metrics are averaged over all classes, this metrics should formally be called mAP, mAP50
and mAP75. However, it is common to assume that the difference is clear from context and AP versions
are preferred instead.

4https://github.com/cocodataset/cocoapi
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the estimated effort needed to manually correct any error. To that end, we resort
to metrics used in information retrieval, specifically we consider the normalized
Spearman footrule distance and the Kendall tau rank distance. Each metric is defined
at page level5 as follows:

Normalized Spearman footrule distance [KV10] is defined as the cumulative sum
of distances between pairs in two ordering indexes as:

ρ(t, ν) =
∑n

i=1 | ti − νi |
b 1

2 n2c
(7.9)

where t, ν are the ground-truth and the hypothesis ordering indexes for S, b 1
2 n2c is

the maximum cumulative distance possible between all pairs ti, νi, and 0 ≤ ρ(·) ≤ 1.
Normalized Spearman footrule distance gives us the insight of not only how

many elements are misplaced but how far are those elements from the correct
position.

Kendall Tau Rank Distance [Ken38] is a metric also called bubble-sort distance,
since it is equivalent to the number of swaps the bubble-sort algorithm would take
to transform the order defined by ν into the reference order defined by t.

Formally, the absolute value of this metric is defined as the number of discordant
pairs between t and ν:

K(t, ν) = |{(i, j) : i< j ∧ ((ti < tj ∧ νi >νj) ∨ (ti > tj ∧ νi <νj))}| (7.10)

Note that K(t, ν) help us to estimate the effort needed to fix any errors in the
hypothesis. It is an upper bound to the number of edit operations a human would
need to perform in order to obtain the correct reading order.

Hierarchical evaluation in a hierarchical approach, the previously discussed met-
rics can be straightforwardly used to assess the results obtained at each level of
the hierarchy. The resulting values will help to understand the effectiveness of the
method at each level individually.

Furthermore, to compare a hierarchical approach to its flat full-page counterpart,
the results obtained for the hierarchical ordering can be flattened into an order of
the lowest hierarchy elements (lines in our experiments) at the full-page level. Then,
the normalized Spearman’s footrule distance can be directly computed as in the
non-hierarchical case.

5Some datasets may have images that contains two or more pages, in those cases it is common to
evaluate all methods at “image level”. However, we use the term page level indistinctly as it is the most
common case.
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On the other hand, since any editing step (swap) in a higher level will update
its sub-elements in a lower level as well, the Kendall’s Tau rank distance should be
simply computed as the sum of the swaps needed at each hierarchical level.

7.1.3 Software

All the experiments described here were performed using the software developed by
us to that end based on the PyTorch library6. In all cases the software is available on-
line (see Section 8.4), so we hope it will help the research community to replicate our
experiments without the time-consuming (and normally underestimated) rewriting
task. More importantly, it is very common that many details necessary to replicate
the proposed methods and experiments in a given article are not comprehensively
described on it, and only the source code will provide all the details.

7.1.4 Hardware

As mentioned before, some statistical models used in this dissertation are very
complex and hardware demanding (both in memory and computation resources).
For that reason we found essential to use the same hardware configuration in all
experiments, so that they are comparable in that sense.

However, in some cases it is possible to improve the performance of a model
by allowing it to have access to more computation resources. In any case, we will
highlight that restriction when relevant for each experiment.

All experiments were carried on in the same hardware setup, a single NVIDIA
GTX-1080 GPU (8GB memory) along with an Intel(R) Core(TM) i3-6100 CPU at
3.70 GHz and 16GB of DDR memory.

7.2 Statistical Models

Most of the experiments described in this chapter have been conducted using ANNs
to estimate the different probability distributions specified in the previous chapters.
Therefore, we employ different ANN architectures such as MLP, CNN and RPN (see
Section 2.3) for each problem. Each proposed architecture is generally described in
the following subsections along with main hyperparameters and general details that
apply to all experiments.

If necessary, more details will be provided on the respective experiment.

6https://pytorch.org
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7.2.1 Hyperparameter Selection

Although ANNs are potent models that aim to learn from the data available with
minimal human intervention, there are still some hyperparameters that must be
tuned manually. For instance, the architecture of the network, the size of each
convolutional filter, the number of anchors in an RPN, etc.

To that end, we first use a validation sub-set to define a set of base hyperparame-
ters for each architecture, then we use the whole train set (validation set included)
to train the models and report results on the unseen test set. We try to use the same
parameters in all datasets for the same experiment in order to avoid an intricate
experimental section, helping in that way the clarity and readability of the document.
However, slightly better results can be achieved in some cases if the hyperparameters
are adjusted for each dataset, model and task individually.

7.2.2 ANN Architecture

As explained in Chapter 4, Chapter 5 and Chapter 6, each of the proposed methods
can be implemented by means of an ANN. However, each method have different
characteristics to be analyzed in order to design and choose a specific ANN. Hence,
in the following sections, we propose a different architecture for each method.

7.2.2.1 Map-Based Approach

As explained in Chapter 5, Baseline Detection and Region Segmentation problems
can be handled by the same formulation under the Map-based approach (separately
or integrated). Consequently, the same proposed ANN architecture will be used in
all experiments related to Map-based approach.

In this work, we base our network in the well-known UNet architecture [RFB15].
This architecture has shown very good results in several similar problems and is
very fast to train [Iso+17]. The UNet architecture is a fully convolutional network
that combines a contracting path (encoder) and an upsampling path (decoder), used
to capture the context in the image with numerous feature channels between the
contracting and upsampling paths. Those feature channels allow the network to
propagate context information to higher resolution layers [RFB15]. Moreover, we use
the slight modification to the UNet architecture, introduced in [Iso+17], where max-
pooling layers on the contracting path were removed, instead, the hyperparameters
of the convolutional layers are designed to reduce the size of the feature maps on
each layer.

The basic diagram of the Unet-based architecture, used in the experiments
of this dissertation, is shown in Figure 7.3. Each block in the encoding path is
composed of a convolutional layer, followed by a batch-normalization layer and
an activation function. Similarly, each block in the decoding path is composed of
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feature channel

encoder decoder classification

Figure 7.3: Basic diagram of the Unet-based architecture.

a transposed convolutional layer followed by a batch-normalization layer and an
activation function. The main parameters of those layers are defined in Table 7.1.

Finally, the classification block varies upon the task to be performed, as it is com-
posed of one output layer for each task (Baseline Detection, Region Segmentation)
and the number of filters depends on the number of classes on which classification
is performed.

Unless otherwise specified, in all Map-based approach experiments, the input
images are resized to 1024× 768 pixels and the batch size is set to eight images
per batch in order to comply with the hardware constrains. Also, δ, used to build
the map m, is set to 8 pixels (notice that m has the size of the resized image).
Moreover, each model is trained during 200 epochs, using mini-batch SGD and Adam
solver [KB15], with a learning rate of 0.001, and momentum parameters β1 = 0.5
and β2 = 0.999.

7.2.2.2 Direct Approach

The Direct approach requires and ANN a bit more complex that the Map-based
approach, because it not only requires to make a prediction at pixel level but also
to generate a set of RoIs in the input image where is highly probable that those
predictions make sense.

To that end many ANN architectures have been proposed to address similar prob-
lems [RF17; Ren+16; He+17]. However, we found Mask-RCNN architecture [He+17]
to better meet the requirements of this approach, since it is a multi-stage architecture
specifically designed for multi-task problems.

In Figure 7.4 a basic diagram of the architecture is presented. First, a backbone
network is used to extract a good feature representation of the input data. Then
a Region Proposal Network is used to generate a set of rectangle boxes which likely
contain objects of interest. Next, a RoI Pool layer is used to align the predicted
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Table 7.1: Architecture of the ANN used in experiments related to the Map-based
approach, where Conv. stands for Convolution and T. Conv. for Transposed
Convolution.

Configuration Value

Encoder block
Num. layers 8
Conv. filters {64, 128, 256, 512, 512, 512, 512, 512}
Conv. size 4× 4
Activation {{LeakyReLU}7, ReLU}
Batch normalization {no, yes, yes, yes, yes, yes, yes, no}
DropOut no

Decoder block
Num. layers 7
T. Conv. filters {512, 512, 512, 512, 256, 128, 64}
T. Conv. size 4× 4
Activation ReLU
Batch normalization {no, yes, yes, yes, yes, yes, yes}
DropOut {no, 0.5, 0.5, no, no, no, no}
Classification block
Num. Layers Num. Tasks
T. Conv. filters Num. output classes
T. Conv. size 4× 4

rectangle boxes between the input image and the feature maps. Finally, a Prediction
Heads network is used to perform a set of tasks on the objects of interest, for instance
classification, bounding box regression and mask generation.

Here we briefly describe Mask-RCNN architecture, while details are presented
in Table 7.2.

Backbone: The backbone network is composed of a CNN that extracts features from
the input image. Commonly, the backbone is composed of blocks of ResNet [He+16],
VGG [SZ14] or similar architectures that extract features at the scale of the input
image. Also, it can be combined with a Feature-Pyramid Network (FPN) [Lin+17] to
extract features at different hierarchical scales.

Indeed, in this work we use a combination of 4 ResNet-50 blocks along with
4 FPN hierarchical scales (normally called P2, P3, P4, P5 and P6), as detailed in
Table 7.2.
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Table 7.2: Architecture of ANN used in the experiments related to the Direct ap-
proach, where Conv. stands for Convolution and T. Conv. for Transposed Convolu-
tion

Configuration Value

Backbone
Steam Conv. size 7× 7
Steam Conv. stride (2, 2)
ResNet-50 stages {res2, res3, res4, res5}
FPN levels {P2, P3, P4, P5, P6}
FPN lateral Conv. size 1× 1
FPN output Conv. size 3× 3

RPN
Num. shared layers 1
Shared Conv. filters 256
Shared Conv. size 3× 3
Activation ReLU
Anchor size {32, 64, 128, 256, 512}
Anchor ratio [1 : 1, 1 : 2, 2 : 1]

RoI Pool
Algorithm RoIAlign [He+17]

Prediction Heads
RoIAlign size 7× 7
Shared FC. Head layers 2
Shared FC. Head units {1024, 1024}
Activation ReLU

Object Mask Head
RoIAlign size 7× 7
Num. Conv. layers 4
Conv. filters {256, 256, 256, 256}
Conv. size 3× 3
Num T. Conv. layers 1
T. Conv. filters 256
T. Conv. size 2× 2
T. Conv. stride (2, 2)
Activation ReLU
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Figure 7.4: Basic diagram of the Mask-RCNN architecture.

Region Proposal Network: It is another convolutional network that scans the
feature maps generated by the backbone by an sliding window, simultaneously
regressing region bounds and scoring the membership of each region to a set of
object classes. On each location of the sliding window, k region proposals are
predicted, parameterized relative to a set of k reference boxes or anchors. Typically,
anchors span a range of sizes and aspect ratios (e.g., 32, 64, 128 and 1:1, 1:2, 2:1).

Then each region proposal is filtered by its scores and a non-maximal suppression
algorithm is used to handle overlaps. Finally, the region proposals that remain are
called “regions of interest” (RoI) and passed to the next stage.

The details of the RPN are shown in Table 7.2, where it is important to notice
that each anchor size is applied to its respective FPN hierarchical scale.

Prediction Heads: also called Prediction Branches, are a set of neural networks
(convolutional or not) designed to generate a task specific prediction for each RoI
generated on the previous stage. For instance, the most common prediction heads
for object segmentation are region labeling (Object class head), region bounding box
regression (bbox regression head) and mask prediction (Object mask head).

Region labeling classifies each RoI into a set of “object classes”, for instance, in
DLA a set of classes could be text-line, paragraph and marginalia. On the other
hand, region bounding box regression maps each RoI to an adjusted box that better
circumscribe the detected object. This new bounding box could differ from the
anchor used to generate the RoI. Finally, the mask prediction head classifies each
pixel of the RoI as belonging or not to the silhouette (i.e., the mask) of the detected
object.

Unless otherwise specified, in all Direct approach experiments, the size of the
input images are restricted to 1333 pixels on the longest size and the batch size is set
to 4 images per batch, in order to comply with the hardware constrains. Also, the
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system is restricted to generate up to 1000 RoIs after the non-maximal suppression
filter at training time, and no more than 100 at test time. Moreover, each model is
optimized during 90, 000 mini-batch SGD iterations, with a learning rate of 0.02 with
a multi-step decay of γ = 0.1 at 60, 000 and 80, 000 iterations.

7.2.2.3 Reading Order MLP

As Reading Order Determination problem complexity can grow rapidly respect
to the size of the input document, it is important to keep the model as simple as
possible. In [QV21] we estimated this probability using different classifiers, and we
found the MLP model to be the most adequate (and faster) for the problem. The
main hyperparameters of the model are summarized in Table 7.3 where, as stated,
the number of units in the hidden layer varies depending on the size of the input
features (as different number of features are used to represent a baseline or a region).

Table 7.3: Architecture of ANN used in the experiments related to the Reading Order
Determination problem.

Configuration Value

MLP
Hidden layers 1
Units twice the number of input features
Activation ReLU

For each element we use a set of features extracted from its layout analysis
description, including both geometric and categorical attributes. Specifically:

• Text line (defined by its baseline PLC):

– The one-hot encoded value of the region type where the text line belongs
to.

– Normalized coordinates of the center of the baseline.

– Normalized coordinates of the leftmost baseline end.

– Normalized coordinates of the rightmost baseline end.

• Text Region (defined by its bounding polygon):

– The one-hot encoded value of the region type.

– Normalized area of the polygon.

– Normalized center of mass of the polygon.
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– Extreme left, right, top and bottom normalized coordinates of the polygon.

Notice that the memory demands during training could be huge since the number
of pairs generated per page is n2 − n, where n is the number of layout elements.
In order to reduce the memory footprint, instead of using all possible pairs of the
training set, a random set of pairs is generated on the fly directly from the training
samples (layout elements) in each epoch. The pairs are composed of the i-th layout
element in the training set and another element selected randomly from the same
page or region. In this way all the training samples are visited in each epoch, but
the memory required is linear with the number of samples.

Each ANN is trained during 3000 epochs, using Adam optimizer with learning
rate of 0.001. Also, the batch size is defined to 15000 samples.

7.2.3 Data Augmentation and Pre-trained Models

As mentioned in Section 2.3.1, data augmentation is one of the most common
techniques used to circumvent the lack of training data. Based on validation runs, in
our experiments we found convenient to use data augmentation in the form of affine
transforms (Section 2.1.2.1) and elastic transformations (Section 2.1.2.2) in the case
of experiments related to the Map-based approach. On the other hand, we found no
statistically significant improvement on using it in the case of the Direct approach,
hence, in this case we do not resort on those data augmentation techniques as it is
computationally expensive.

In all the Map-based experiments, data augmentation techniques are applied
randomly to each sample with 50% probability. Further details about the range of
application of each transformation parameter can be found in the source code that
accompanies this dissertation.

Respect to Reading Order Determination experiments, the coordinates of each
layout element are randomly translated up to 5% from its original position in both
vertical and horizontal directions, with a probability of 0.5.

Furthermore, ANN models can benefit from pre-training them on a different
task.

With this in mind, we also train and evaluate the aforementioned models by
initializing most of the network parameters using external data [GBC16]. To that
end, we resort into two different external datasets, namely: ImageNet [Den+09]
(composed of natural images) and PubLayNet [ZTY19] (composed of printed docu-
ments).

PubLayNet dataset was used to pre-train the models used in Map-base and Direct
approaches (in the PubLayNet task), then prediction layers were replaced by the
corresponding prediction layers for the Baseline Detection or Region Segmentation
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problem. Finally, the parameters of those prediction layers are initialized randomly
and the training procedure re-initialized as in the normal case.

In the case of ImageNet, the dataset is too big to be handled by the hardware
defined in Section 7.1.4. Hence, we relay in a public available pre-trained model 7

that uses the same backbone network that we employ in the Direct approach model.
As in the PubLayNet case, the prediction layers are replaced by the corresponding
layers of our model. In the case of Map-base approach we found no public pre-trained
model compatible with our architecture, hence we present no results using that
setting.

7.3 Baseline Detection Experiments

As explained in Section 3.3.3 and Chapter 4, Baseline Detection problem aims to
obtain the baseline of all lines of text present in a document. Then, those baselines
can be used to obtain the text region to feed some ATR system.

In this section we evaluate experimentally the proposed methods described in
Chapter 4. First, in Section 7.3.1, the Map-based approach and the Direct approach are
evaluated over OHG and VORAU-253 datasets. We select specifically those datasets
in order to evaluate the model not only in a textual dataset (which is the common
practice) but in a musical dataset as well.

Then, in Section 7.3.2, we attempt to establish experimentally how systems
respond to limited access to training data. Finally, in Section 7.3.3, we compare our
proposed systems with SOTA systems.

7.3.1 Basic Assessment

In this section we assess the proposed methods to address the Baseline Detection
problem. All models in this experiment are trained using all the data available for
each dataset (i.e., the training set), which is the standard scenario.

We have trained a model for each proposed approach and dataset, and evaluate
them on their respective test set. The corresponding F1 values are displayed in
Table 7.4 (the complete set of metrics can be consulted in Table C.1).

Using the Map-based approach we were able to obtain a 98.04% F1 value in the
OHG dataset, which is a very good result that may be used directly by some ATR
systems like KWS, where losing a few text lines is still acceptable. Similarly, the
Direct approach reaches 95.07% F1 value, which is very competitive but suffers from
the loss of many baselines (see R value on Table C.1), which makes it less suitable
than Map-based approach on this task and dataset.

7https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/MSRA/R-50.pkl
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Table 7.4: Baseline Detection F1 value obtained using the proposed methods and
different training strategies. Nonparametric Bootstrapping confidence intervals (CI)
at 95%, using 10000 repetitions.

Dataset method pre-trained F1 (%) [CI]

OHG

Map-based — 98.04 [97.82, 98.25]

Direct — 95.07 [94.30, 95.77]

Map-based PubLayNet 98.29 [98.11, 98.47]

Direct PubLayNet 97.02 [96.50, 97.48]

Direct ImageNet 97.22 [96.73, 97.66]

VORAU-253

Map-based — 96.22 [95.09, 97.26]

Direct — 96.45 [95.28, 97.48]

Map-based PubLayNet 95.34 [94.06, 96.52]

Direct PubLayNet 96.76 [95.64, 97.77]

Direct ImageNet 97.91 [97.07, 98.65]

In the case of VORAU-253 dataset, both models were able to obtain very good
results (96.22% and 96.45% respectively). Nonetheless, the difference between them
is not statistically significant. It is important to notice that, even though VORAU-253
dataset contains a lot of another layout elements (e.g., staff regions) that can be
considered as noise under the Baseline Detection problem, both proposed methods
are able to discriminate very well those regions from the text lines.

From a qualitative point of view, it is important to highlight that we found hardly
any predicted baseline in a background zone. Most baselines were predicted over
text regions, as expected, and errors are mainly related to missed, merged or splitted
baselines. This observation is important because the predicted baselines probably
will be used to feed some ATR system, where any baseline detected on a background
region will be a waste of time and resources by the ATR system. Conversely, merged
and splitted baselines still useful (although not ideal) for some ATR systems like
KWS where the main goal is to be able to search words or other tokens, instead of
retrieve the transcript of the document.

In Figure 7.5 and Figure 7.6, examples of the obtained results are shown for OHG
and VORAU-253 datasets respectively. In the interest of brevity, we show only two
cases that helps us to highlight the most common errors.

In both datasets, merging two or more baselines into a single one is the most
common error found using the Map-based approach. This kind of errors are due
to the fact that F (h) (Equation (4.2)) is assumed to be bijective, hence any pair of
touching or overlapping baselines cannot be fully recovered from the generated map
∗m using Algorithm 1.

82



Baseline Detection Experiments

a
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Figure 7.5: Example of Baseline Detection results obtained on the OHG dataset
using a) the Map-based approach and b) the Direct approach. The main errors are
highlighted by magenta arrows. Specifically, in the cases “a” and “b” the system
missed a baseline, in case “c” the system merged some baselines, and in “d” it
split a baseline into two parts. On the other hand, the system missed to predict the
baselines in cases “e”, “f” and “h”. Finally, in case “g” some part of the baselines in
the main paragraph extends over the baselines in the marginalia.
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a

b
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(a) Map-based

d

e

f

(b) Direct

Figure 7.6: Example of Baseline Detection results obtained on the VORAU-253
dataset using a) the Map-based approach and b) the Direct approach. The main
errors are highlighted by magenta arrows. Specifically, in the case “a” the predicted
baseline is not well-adjusted to the text, in cases “b” and “c” the system fails by
merging two baselines into a single one (in those cases black and red text are different
text lines). On the other hand, in the cases “d” and “e” the predicted baselines did
not fully cover the text line (missing the last and first letter respectively). Finally, in
“f” the system fails to detect a baseline.
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Conversely, in the case of the Direct approach, it is more common to miss baselines
than merging them. As explained in Section 4.1.2, one of the main advantages of the
Direct approach is to naturally handle touching and overlapping layout elements,
making merging errors less common. However, it can fail to generate an RoI that
matches some baselines, therefore, completely missing them.

In Table 7.4 we also provide the F1 values obtained using pre-trained models
(also, the complete set of metrics is provided in Table C.1).

Pre-trained models strongly increases Direct approach results, allowing it to
reach an 97.22% F1 value on the OHG dataset (where the difference respect to the
Map-based approach become very narrow) and even outperforming Map-based in
the case of VORAU-253 dataset, when pre-trained using ImageNet. Moreover, we
found no statistical difference between pre-training the model using ImageNet or
PubLayNet data, which is important to be noticed as PubLayNet data is expected to
be more related to our task that ImageNet data. Nonetheless, this behavior can be
explained by the fact that normaly the first few convolutional layers in a CNN will
learn generic filters that help the system to process common characteristics of the
input images (corners, lines, etc), hence, a huge dataset as ImageNet will provide a
better data distribution to learn those filters.

On the other hand, we found no statistical improvement using a pre-trained
model on the Map-base approach. Nonetheless, we found pre-trained models more
stable across SGD iterations (i.e., loss function decreases smoother than using
random initialization).

We attribute this results to the complexity of the models. For instance, the
RPN based ANN used in the Direct approach is more complex8 than the ANN
used in the Map-based approach. Hence, at the beginning of the training process,
it is expected to be more difficult to teach a complex model in the direction of the
intrinsic distribution of the data, making pre-training a very useful tool to overcome
such difficulty.

From the computational cost point of view, the Direct approach system requires
much more memory9 and computational resources than the Map-based approach.
In fact, on average the Direct approach takes around 20 times longer to train the
system, while, in contrast, the inference time is very similar in both cases.

7.3.2 Effect of Training-data Size

One of the main drawbacks in supervised ML algorithms is, of course, the need of
labeled training data to teach the models. DLA is not an exception, and the manual

8Here we understood model complexity in terms of the degrees of freedom (i.e., measured in terms
of the number of adjustable parameters).

9Remember that we have to restrict the batch size to 4 images in this case, while we can use 8 in the
Map-based approach.
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labeling of training data is a very expensive process. Therefore, here we analyze how
the size of the training data (i.e., number of available labeled samples) influence the
performance of the proposed models. Of course, a model that needs as few training
examples as possible is preferable.

To that end we train several models for each dataset, where only a portion of
the training data is available to them at training time. We start with as low as 50
samples and increase the training size in batches of 50 samples until we reach all the
data available in the dataset.

In the case of OHG dataset we train six different models for each proposed
approach (and pre-training setting). However, for the sake of clarity, in Figure 7.7 we
only present the F1 value obtained by each model without pre-training as the pre-
trained will only improve the results but the tendency is still the same. Nonetheless,
the results of all the models and settings can be examined in Figure C.1.

Similarly, in the case of VORAU-253 we train three different models (only 128
training samples are available) for each approach. In the Figure 7.8 we present the
F1 value obtained by each model using the same settings described before for OHG
dataset. Also, the results of all models and settings can be examined in Figure C.1.
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Figure 7.7: Effect of training data size on the F1 value for OHG dataset.

From Figure 7.7, we can observe that both approaches benefit from an increasing
number of training samples. Although in most cases the difference is not statisti-
cally significant, the tendency is clear to improve. For instance, in both cases the
improvement after 100 samples is nominal. Nonetheless, the Map-based approach is
still outperforming the Direct approach in this task for the OHG dataset.
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Figure 7.8: Effect of training data size on the F1 value for VORAU-253 dataset.

Conversely, in the case of VORAU-253 dataset (see Figure 7.8), the Direct approach
did not benefit much from the increasing number of training samples, obtaining
almost constant results from as low as 50 pages. On the other hand, the Map-based
approach starts with an inferior performance (F1 = 86.2%), but it improves up to
F1 = 96.2%, catching up with the Direct approach. It is important to notice that low
results obtaining when training using 50 samples are mainly related to the difficulty
of the system to differentiate between normal text and other kind of elements present
in the document (remember that VORAU-253 dataset contains textual and musical
information, which is a complexity that does not exist in the OHG dataset). For
example, as shown in Figure 7.9 the system mistakenly detects four baselines inside
the drop-capital letter “S”.

Figure 7.9: Example of a common error obtained on VORAU-253 dataset by the
Map-based approach when trained using only 50 samples. Four baselines were
mistakenly detected inside the letter “S”.
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7.3.3 Comparison with Other Published Works

To compare our systems with other published SOTA works on Baseline Detection, we
use three publicly available datasets, namely the Bozens Ratsprotokolle (Bozen), the
Competition on Baseline Detection in Archival Documents 2017 (cBAD-17) and the
Competition on Baseline Detection in Archival Documents 2019 (cBAD-19) datasets.
Further details about the datasets can be found in Appendix B. Nonetheless, it is
important to highlight that the Bozen is a common dataset where all pages belong to
the same collection, conversely, cBAD-17 and cBAD-19 are heterogeneous datasets
composed of a mix of documents from several collections.

We train our models using the default configuration explained on Section 7.2,
with the following modifications to address the specific datasets characteristics:

• Bozen: default configuration with no modifications in all cases.

• cBAD-17: in the case of the Map-based approach, due to the fact that the dataset
contains overcrowded pages with hundreds of text lines where separation
between text lines is very small, we increase the size of the input images to
1536× 1280 and reduce the hyperparameter δ to 5 (instead of the default 8).
As a result, we also have to reduce the batch size to 3 images to complain with
hardware constrains. On the other hand, the Direct approach is trained using
the default configuration with no modification.

• cBAD-19: in the case of the Map-based approach we follow the same config-
uration used for the cBAD-17 dataset. Conversely, in the case of the Direct
approach, because this dataset contains pages with up to 2452 text lines, the
number of RoIs generated by the RPN that survive after the non-maximal
suppression filter have been increased to 3000 at training time and 1000 at
inference time. Nonetheless, with this configuration the maximum number of
baselines to be predicted is only 1000, hence, losing several baselines in such
cases where the pages contain more than 1000 baselines. However, increasing
those hyperparameters more, heavily impacts the computational resources,
hence we are no longer able to train our models under the hardware constrains
described on Section 7.1.4. Moreover, we reduce the batch size to only 2 images
per batch in consideration of the new parameters and the images size.

In Table 7.5 we report the results obtained by our proposed models, along with
SOTA publicly available values.

In the cases of Bozen dataset the Map-based approach reaches a 96.82% F1 value
using the default configuration, which difference respect to the SOTA value reported
by [Grü+19] is not statistically significant. On the other hand, the Direct approach
is almost 4% below SOTA value. Nonetheless, when including pre-trained models
both systems reach SOTA results but again the difference between all of them is
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Table 7.5: Baseline Detection results on Bozen, cBAD-17 and cBAD-19 datasets,
compared to SOTA values. Nonparametric Bootstrapping confidence intervals (CI)
at 95%, using 10000 repetitions.

Dataset method pre-trained F1(%)[CI]

Bozen

[Grü+19] — 97.5 [96.6, 97.7]‡

Map-based — 96.82 [95.69, 97.84]

Direct — 93.83 [91.85, 95.51]

Map-based PubLayNet 97.98 [97.16, 98.73]

Direct ImageNet 97.91 [97.39, 98.36]

cBAD-17 complex

[Die+17] (winner) — 85.9
[ASK18] — 86.0
[Grü+19] — 92.23 [92.14, 92.30]‡

Map-based — 87.51 [86.66, 88.33]

Map-based PubLayNet 84.67 [83.70, 85.61]

Direct ImageNet 88.50 [87.68, 89.29]

cBAD-19

[Die+19] (winner) — 93.1
Map-based — 90.54 [89.70, 91.39]

Map-based PubLayNet 89.44 [88.54, 90.32]

Direct ImageNet 88.03 [87.17, 88.85]
‡ The number of repetition is not stated in the original publication, hence the confidence interval cannot
be fairly compared with ours.

not statistically significant. Of course, as SOTA value is over 97% there is very little
room for improvement 10.

On the other hand, when dealing with very heterogeneous datasets like cBAD-17
our systems surpass the F1 value obtained by the winner of the competition, without
many heuristics and hyperparameter tuning. Despite, better results were reported
by [Grü+19] with a similar approach to the Map-based system, but using a very
strong baseline estimation algorithm instead of our simple F−1(·) function.

Similarly, in the case of the cBAD-19 dataset, we obtain very competitive results11,
but they are still outperformed by SOTA, ranging from 2.5% to 4.8%. Nonetheless,
this experiments highlight one important limitation of the Direct approach, which
maximum number of predictions is limited by the available computational resources,
hence making it difficult to handle documents with hundreds or thousands of
layouts elements as in the cBAD-17 and cBAD-19 datasets.

10Nonetheless, slightly better results can be obtained by further tuning the network hyperparametres
specifically for the dataset, as those reported in [Qui18].

11Notice that slightly better results can be obtained by further tuning the network hyperparametres
specifically for the dataset, those were reported in [Die+19].
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7.3.4 Discussion

In this section we evaluate experimentally how the systems proposed in Chapter 4
respond to address the Baseline Detection problem on handwritten documents.

As seen in the reported results, both proposed methods obtain very good results
on textual and musical handwritten documents, where the only input to the system
is a digitized version of the page document (i.e., an image). Moreover, both methods
rely on probabilistic models to estimate the probability distribution of the input data
and make predictions based on it. Remarkably, all the process is carried out with as
minimum heuristics as possible, using them only when the computational resources
required in finding the optimal solution were unfeasible (see Section 4.1.1.2).

In addition, the main difference between the proposed systems is not its perfor-
mance but the computational resources required to train the probabilistic models.
Indeed, the Direct approach requires around 20 times longer to train its ANN and
used around twice the memory in the process. Not to mention that, when the
training process is complemented with pre-trained models, although no statistically
significant improvements were observed, the training process was more stable, which
is a very desirable feature.

This experimentation has clarified the impact that the number of training samples
has on the overall result of the Baseline Detection task. The results obtained allow
us to affirm that, although the global behavior can vary from one dataset to another,
in general the tendency is to improve as we add more training samples. Albeit, it is
important to analyze on each case when the improvement is too small compared
with the effort needed to generate the required ground-truth.

In addition, we compare our methods with SOTA systems on three different
datasets. On the standard Bozen dataset our methods reach SOTA results. Con-
versely, very heterogeneous datasets such as cBAD-17 and cBAD-19 help us to
highlight some limitations of out methods, specifically in documents with very
crowded text lines or where the number of those text lines is elevated. In those cases,
methods such [Grü+19] perform better.

7.4 Region Segmentation Experiments

Region Segmentation is a very important step of DLA. Given an image of a document,
the goal is to perform a decomposition of the document image into layout regions
(or regions of interest), assigning a relevant label to them in the process.

In this section we evaluate experimentally the proposed methods described in
Chapter 5 that aim to address the Region Segmentation problem. Similarly to the
previous section, first, in Section 7.4.1, the Map-based and Direct approaches are
evaluated over OHG and VORAU-253 datasets. Then, in Section 7.4.2, we attempt
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to establish experimentally how systems respond to limited access to training data.
Finally, in Section 7.4.3 we compare our proposed systems with SOTA systems.

7.4.1 Basic Assessment

In this section we assess the proposed methods to address the Region Segmentation
problem. All models in this experiment are trained using all the data available for
each dataset (i.e., the training set), which is the standard scenario.

We have trained a model for each proposed approach and dataset, and evaluate
them on their respective test set. The corresponding mean intersection over union
(mIoU), mean Average Precision (AP) and mean Average Recall (AR) values are
reported in Table 7.6 (the complete set of metrics can be consulted in Table C.2).

Table 7.6: Region Segmentation results obtained using the proposed methods and
different training strategies. Nonparametric Bootstrapping confidence intervals (CI)
at 95%, using 10000 repetitions.

Dataset method pre-trained mIoU (%)[CI] AP AR

OHG

Map-based — 83.06 [82.16, 83.91] 0.295 0.518
Direct — 83.15 [81.95, 84.28] 0.528 0.637
Map-based PubLayNet 82.55 [81.70, 83.39] 0.305 0.512
Direct PubLayNet 84.43 [83.32, 85.49] 0.573 0.669
Direct ImageNet 85.94 [84.98, 86.80] 0.610 0.695

VORAU-253

Map-based — 85.97 [84.60, 87.05] 0.582 0.686
Direct — 89.04 [87.79, 89.85] 0.696 0.777
Map-based PubLayNet 86.49 [85.42, 87.21] 0.616 0.707
Direct PubLayNet 89.39 [88.16, 90.21] 0.714 0.792
Direct ImageNet 89.96 [88.74, 90.75] 0.745 0.814

From the point of view of the mIoU metric, both methods perform very similar
when no pre-training is performed. Moreover, in the case of OHG dataset the
difference between the Map-based and Direct approaches, without pre-training, is not
statistically significant. Conversely, from the point of view of the AP and AR metrics,
the systems perform very different, being the Direct approach clearly superior.

In effect, this discrepancy between metrics is due to the fact that mIoU is a global
metric that does not perform any alignment between layout elements, instead it
only analyzes the global value (i.e., label) of each pixel. For instance, in Figure 7.10
and Figure 7.11 we present some cases where the systems fail to predict a perfect
layout. Specifically, in the cases “a” and “d” in Figure 7.10a, and cases “b” and “c”
in Figure 7.11a, the Map-based approach merged two or more layout regions of the
same class into a single one. However, mIoU fails to flag that merged region as an
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error, as all the pixels in the predicted region belong to the correct class. Instead,
AP and AR metrics would take into account that, in the ground-truth, those pixels
belong to different layout regions and penalize the merged region accordingly.

On the other hand, the incorporation of pre-trained models help in all cases to
improve the systems’ performance. Henceforth, Direct approach still outperforming
the Map-based approach on the Region Segmentation problem. In particular, the
Direct approach pre-trained on ImageNet data reaches a 85.94% mIoU value on OHG
dataset along with 0.610 AP and 0.695 AR. Nonetheless, as those metrics suggest,
we are still having errors similar to those shown in Figure 7.10b, mainly missing
layout regions.

Similarly, in the case of VORAU-253 dataset, the Direct approach outperforms
the Map-based approach by at least 2.9% in mIoU value. In like manner, AP and AR
values indicate that the Direct approach obtains a much better segmentation of the
input document, while as discussed before, the Map-based approach performance is
limited on documents containing touching or overlapping layout elements.

7.4.2 Effect of Training-data Size

Similar to Section 7.3.2, in this section we aim to experimentally evaluate the impact
of the number of training samples in the performance of the proposed models.

To that end, we train several models for each dataset, where only a portion of
the training data is available to them at training time. We start with as low as 50
samples and increase the training size in batches of 50 samples until we reach all the
data available in the dataset.

Again, in the case of OHG dataset we train six different models for each proposed
approach (and pre-training setting). However, for the sake of clarity, in Figure 7.12
we only present the mIoU and the AP values12 obtained by each model using the
Map-based and Direct approaches without pre-training. Moreover, all the models and
settings can be examined in Figure C.3.

Similarly, in the case of VORAU-253 we train three different models (only 128
training samples are available) for each approach. In Figure 7.13 we present the
mIoU and the AP values obtained by each model using the same settings described
before for OHG dataset. Furthermore, all the models and settings can be examined
in Figure C.4

In both, OHG and VORAU-253 datasets the Direct approach outperforms the Map-
based approach by a large margin (from the AP metric point of view), independently
of the number of samples used to train the models. Nonetheless, the tendency on
both models is to improve as more training samples were available to them.

12 AR value follows the same tendency as AP, hence for the sake of clarity we do not present it here.
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Figure 7.10: Example of Region Segmentation results obtained on the OHG dataset
using a) the Map-based approach and b) the Direct approach. The layout regions are
depicted in different colors and the main errors are highlighted by magenta arrows.
Specifically, in the cases “a” and “d” the system merged two par regions into a
single big one, in “b” the system missed a small nop region, while in the case “c”
the predicted boundary between the not and the pac regions was not well-defined,
so that some text from the not region invaded the pac region. On the other hand,
in the case “e”, the system missed a small nop region, while in “f”, the predicted
boundary between the not and the pac regions was not well defined.
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Figure 7.11: Example of Region Segmentation results obtained on the VORAU-253
dataset using a) the Map-based approach and b) the Direct approach. The layout
regions are depicted in different colors and the main errors are highlighted by
magenta arrows. Specifically, in the case “a” the system predicted a spurious region,
in cases “b” and “c” the system merged two lyrics regions, while in the case “d”
merging was between staff regions. On the other hand, in the cases “e”, “f” and
“g” the system missed the respective lyrics regions.
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Figure 7.12: Effect of training data size on the Region Segmentation metrics for OHG
dataset.
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Figure 7.13: Effect of training data size on the Region Segmentation metrics for
VORAU-253 dataset.
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In the case of Map-based approach the improvement is more pronounced, with
a global improvement over 10% on mIoU metric on OHG dataset and over 13% on
VORAU-253 dataset (same tendency is observed on AP metric).

On the other hand, the improvement observed using the Direct approach on the
OHG is linear in the first three iterations, and remains constant from that point.
Hence, we can obtain very good results in this dataset with only 150 samples.

On the other hand, the improvement observed is very narrow in the VORAU-253
dataset, where very good results can be obtained with as low as 50 training samples.
Regardless, the tendency is also to improve as more training samples are available.

7.4.3 Comparison with Other Published Works

There are some datasets labeled for the Region Segmentation problem and systems
available for comparison, but most of them are designed for pixel level classifica-
tion [Sim+16; Sim+17]. Although our proposed systems can perform pixel level
classification (actually, they do it as a first step) they are not intended for that task.
Hence, in order to perform a fair comparison, we only compare with works were
the final goal is to obtain a polygonal representation of the layout regions, not only
a pixel level classification.

Unfortunately, we were only able to obtain and compare our models using a
modified version of the cBAD-17 dataset [Ten+17]. Consequently, we compare
our proposed systems with SOTA works published on that dataset using the mIoU

metric 13.
The Region Segmentation task defined in [Ten+17] requires to obtain only the

four corners of the quadrilateral region that best fit the section of the image that
contains the document information (keeping out borders and any other part that
does not contain information). However, as we explained in Chapter 5, we found
more useful to obtain a polygon that is better suited in situations where the shape of
the page cannot be correctly defined by only four vertexes. Nevertheless, in Table 7.7
we directly compare the polygons obtained by our system to the quadrilateral regions
defined in the dataset ground-truth, along with the available SOTA methods.

In both cases very good results were obtained on the validation and tests sets.
Comparatively, the difference respect to SOTA methods is very small taking into
account the characteristics of the mIoU metric. Nonetheless, our methods achieve
similar results to human agreement.

Moreover, as depicted in Figure 7.14 most of the errors observed are related to
small discrepancies between the proposed region and the ground-truth, and in other
cases our systems predict a layout region over-adjusted to the textual information
available in the page (e.g., third case in Section 7.4.3).

13For the sake of comparability, mIoU values are computed using https://github.com/ctensmeyer/
pagenet implementation
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(a) Map-based apprach. Only small discrepancies are observed in the first two cases. Converselly, last two
cases are inaccurate because part of the page is not detected.

(b) Direct approach. Only small discrepances are observed in the first two cases. Conversely, in the second
and third examples the system predicts a smaller area according to the ground-truth. Nonetheless, all the
information in those pages still detected.

Figure 7.14: Representative examples of layouts obtained on the modified cBAD-
17 dataset. Green rectangles indicate the ground-truth pages and the blue ones
correspond to detections generated by our systems.
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Table 7.7: Region Segmentation results obtained on the modified cBAD-17 dataset.
Also, SOTA results are presented for comparison. Nonparametric Bootstrapping
confidence intervals (CI) at 95%, using 10000 repetitions.

Dataset method mIoU (%)[CI]

cBAD-17* val

[Ten+17] (human agreement) 97.8
[Ten+17] (automatic) 96.8
[ASK18] 98.0
Map-based 97.28 [96.55, 97.80]

Direct 97.21 [96.50, 97.69]

cBAD-17* test

[Ten+17] (human agreement) 98.3
[Ten+17] (automatic) 97.4
[ASK18] 98.0
Map-based 97.51 [97.18, 97.80]

Direct 97.14 [96.66, 97.52]

On the other hand, this is, by definition, a very hard problem for the Direct
approach, because there are many images without any textual information where
the system is expected predict a layout region (e.g., last image in Figure 7.14).
Remember that the Direct approach is trained to differentiate between background
and any layout region (see Equation (5.15)), but in those cases (ironically) most of
the background is defined as a layout region. Although, under those circumstances,
the system performs very well.

7.4.4 Discussion

In this section, we studied the performance of the proposed systems to address the
Region Segmentation problem in handwritten documents.

In contrast to the Baseline Segmentation results obtained in the previous section,
the results reported in this section suggest a clear superiority of the Direct approach
over the Map-based approach. This superiority is mainly related to the fact that
the Direct approach can handle touching and overlapping layout regions naturally.
Conversely, that is precisely the main limitation of the Map-based approach.

Moreover, our results have shown that the Direct approach is able to obtain
very good results even with as low as 50 training samples, which is very useful as
the manual process to generate labeled data to train the models is very expensive.
Nonetheless, it is important to take into account that the Direct approach is still more
expensive in terms of computational resources that the Map-based approach.

We also evaluate our methods on the modified cBAD-17 dataset, and compare our
results with SOTA methods. Nonetheless, given the very little room for improvement
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left by the SOTA results, both proposed methods obtain very competitive results on
that Region Segmentation task, reaching very similar mIoU to that of the reported
human agreement.

In general, both proposed systems were able to predict very accurate layouts,
using only a digitized version of the documents as input. However, our experimental
results avail the superiority of the Direct approach as it is able to handle touching
and overlapping regions.

7.5 Integrated Approach Experiments

Having two different models to address the Baseline Detection and Region Seg-
mentation problems is not completely necessary, what is more, in several cases it
is convenient to address both problems in an integrated manner, as explained in
Section 5.2.

In this section we evaluate experimentally the effect of addressing both problems
in an integrated manner. First, we explore the performance of the integrated models
in both tasks using OHG and VORAU-253 datasets. The F1 value and mIoU metric
are provided in Table 7.8. Moreover, the results obtained using the specific models
for each task is reproduced here as well for easy comparison. Furthermore, the
complete set of metrics for all models and settings can be examined in Table C.3 and
Table C.4.

In most cases, integrated models performance is not statistically different with
respect to the corresponding specific models for each task, but consumes near to half
the computational resources. This is an important result that directs us towards a
more efficient use of the available computational resources without any statistically
significant loss in the systems performance.

Specifically, in the case of OHG dataset, only in the case of Map-based approach
a significant difference is observed on the Baseline Detection task. However, the
difference is narrow (1.78% in the case without pre-training, and 2.21% when pre-
trained). Moreover, although that difference in F1 value is significant from the point
of view of DLA metrics, as pointed out by [Bos20], its significance is very likely to
be drastically lower when measuring the results obtained by a further ATR system.

On the other hand, the difference between results using the integrated and not-
integrated approaches on the Region Segmentation task is not statistically significant
in all cases. Accordingly, from that point of view an integrated model will be a
better option when possible.

7.5.1 Multi-dataset Setting Experiments

Many archives and libraries have a set of “mixed boxes” were several documents are
stored without any specific order or classification. It is common to have those boxes
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Table 7.8: F1 and mIoU obtained using the proposed methods in an integrated
manner on OHG and VORAU-253 datasets. Also, segregated results for Baseline
Detection (BD-only column) and Region Segmentation (RS-only column) are re-
produced here for easy comparison. Moreover, for simplicity, *-P entries means
a model was pre-trained on PublayNet, similarly *-I means it was pre-trained on
ImageNet. Nonparametric Bootstrapping confidence intervals (CI) at 95%, using
10000 repetitions.

Method F1 (%)[CI] mIoU (%)[CI]

integrated BD-only integrated RS-only

OHG

Map-based 96.26 [95.61, 96.86] 98.04 [97.82, 98.25] 80.54 [79.51, 81.54] 83.06 [82.16, 83.91]

Direct 94.29 [93.44, 95.06] 95.07 [94.30, 95.77] 81.36 [80.05, 82.62] 83.15 [81.95, 84.28]

Map-based-P 96.08 [95.46, 96.65] 98.29 [98.11, 98.47] 81.61 [80.66, 82.53] 82.55 [81.70, 83.39]

Direct-P 97.09 [96.60, 97.51] 97.02 [96.50, 97.48] 83.40 [82.20, 84.55] 84.43 [83.32, 85.49]

Direct-I 96.66 [96.14, 97.12] 97.22 [96.73, 97.66] 85.46 [84.49, 86.37] 85.94 [84.98, 86.80]

VORAU-253

Map-based 96.78 [95.65, 97.76] 96.22 [95.09, 97.26] 86.72 [85.63, 87.45] 85.97 [84.60, 87.05]

Direct 95.53 [94.19, 96.72] 96.45 [95.28, 97.48] 88.80 [87.54, 89.68] 89.04 [87.79, 89.85]

Map-based-P 96.30 [95.33, 97.20] 95.34 [94.06, 96.52] 86.65 [85.53, 87.47] 86.49 [85.42, 87.21]

Direct-P 95.94 [94.66, 97.09] 96.76 [95.64, 97.77] 89.69 [88.49, 90.48] 89.39 [88.16, 90.21]

Direct-I 96.01 [94.84, 97.07] 97.91 [97.07, 98.65] 89.99 [88.79, 90.75] 89.96 [88.74, 90.75]

filled with documents that belong to two or more collections, where each collection
may have a very different layout. Nonetheless, it is important to process those
documents as well, preferably without the time consuming process of classifying
them beforehand.

Accordingly, in this section we analyze how the proposed systems perform under
a multi-dataset setting. This is, we train our models, in an integrated setting, using
samples from dissimilar datasets and analyze how they perform in the respective
test set separately.

This setting differs from the common practice to merge several datasets into a
single one mainly in two reasons. First, we do not perform any homogenization of
the layout, for instance, it is common to group all layout regions with the same kind
of content into a single label, however we make no assumption on the content of the
document and preserve the original labels of each dataset. Secondly, we evaluate
each dataset separately, as we want to know how probable is that the system mixes
labels from different datasets (e.g., a sample in dataset “X” is labeled as l1, but l1 is
a label defined only for dataset “Y”).
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Henceforth, we use three dissimilar datasets in our experiment, namely OHG,
VORAU-253 and Bozen datasets. Those datasets are different enough to force the
systems to learn specific probability distributions for each one. Moreover, no label is
shared across datasets. Also, datasets with similar content, like a text paragraph in
the OHG dataset and a text paragraph in the Bozen dataset, have different labels
(e.g., par and paragraph).

Table 7.9: F1 and mIoU obtained using mixed datasets in an integrated manner on
OHG, VORAU-253 and Bozen datasets. Nonparametric Bootstrapping confidence
intervals (CI) at 95%, using 10000 repetitions.

Method F1 (%)[CI] mIoU(%)[CI] label-accuracy (%)

Mixed

Map-based 96.25 [95.75, 96.71] 82.17 [81.45, 82.85]

Direct-I 96.26 [95.74, 96.73] 84.93 [84.01, 85.82]

OHG

Map-based 96.80 [96.25, 97.28] 80.99 [80.03, 81.91] 99.15
Direct-I 95.85 [95.21, 96.43] 82.84 [81.49, 84.12] 99.89

VORAU-253

Map-based 95.82 [94.81, 96.75] 87.54 [86.42, 88.28] 99.97
Direct-I 95.44 [94.25, 96.56] 88.09 [86.88, 89.04] 100

Bozen

Map-based 93.75 [91.87, 95.45] 81.66 [80.42, 82.91] 100
Direct-I 95.86 [94.54, 96.95] 86.62 [85.09, 88.04] 100

Based on results presented on Table 7.9, both proposed systems perform very
well under the mixed dataset setting. Moreover, comparing this results with the
ones reported in Table 7.8 for OHG and VORAU-253 datasets using the integrated
approach, we found no statistically significant difference between them, indicating
that the mixed dataset approach did not negatively influence the performance on
each dataset individually.

Furthermore, in order to analyze the interference between datasets, we count
the number of layout regions were the proposed systems correctly classify a layout
region into a label that belongs to the dataset where it belongs. We report those
results in the column “label-accuracy” in Table 7.9.

Very few errors were found when using the Map-based approach. Specifically, in
the case of OHG dataset only 24 out of 2864 predicted regions were miss-labeled
(i.e., 99.15% accuracy), and in the case of VORAU-253 dataset only 1 out of 4260
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layout regions was miss-labeled (i.e., 99.97% accuracy). Finally, in the case of the
Bozen dataset we found no miss-labeled regions.

Likewise, using the Direct approach we found only 3 miss-labeled regions out
of the 2844 predicted in the OHG dataset. Furthermore, we found no errors in the
other two datasets.

In the light of those results, one can infer that not only both proposed systems
do not decay on a mixed dataset scenario as the one presented in this section. Also,
the results obtained can be very useful to perform a further classification of the
processed documents into the datasets they belong to (or in a real scenario to sort
out the documents mixed in a library box).

7.5.2 Discussion

In this section, we experimentally evaluate how the systems proposed in Chapter 4
and Chapter 5 perform under the integrated and mixed-dataset settings.

Regarding the Map-based approach, in most of the evaluated cases we found no
statistical difference between the integrated setting and the non-integrated coun-
terpart. Nonetheless, only in the OHG case we found a small deterioration of the
F1 value used to measure the performance of the systems in the Baseline Detection
problem. Besides, taking into account the benefits of the integrated setting in terms
of computational resources and the obtained results, we understand that in practice
the Map-based approach is very useful alongside the integrated setting.

More patently, results obtained on the Direct approach support that the system
is able to predict the layout of a document under the integrated setting with the
same level of performance obtained in the non-integrated setting, with the benefit of
using less computational resources, making it very useful in real scenarios where
the computational resources are limited.

Furthermore, we demonstrated empirically the versatility of the Map-based and
Direct approaches in a mixed dataset scenario. We found the proposed systems
very useful, not only to address the Baseline Detection and Region Segmentation
problems for a specific dataset, but additionally to handle more than one dataset.
Consequently, reducing the need of previously sorting mixed collections of docu-
ments. Furthermore, the results obtained suggest that the predicted layout can be
useful to classify those documents a posteriori.

7.6 Reading Order Determination Experiments

In this section, we experimentally evaluate the performance of the proposed ap-
proach to address the Reading Order Determination problem presented in Chapter 6.
To that end, first, in Section 7.6.1, we evaluate how the size of the input sample
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influence the behavior of the proposed decoding algorithms. Then, the text-lines
present in a page document are sorted in reading order in Section 7.6.2 at page level.

Moreover, we analyze how the system performs in a two-level hierarchical setting
in order to obtain the text lines in reading order. At the first level, we sort the
layout regions in reading order (Section 7.6.3.1). Then at the second level, the text
lines inside each layout region are sorted (Section 7.6.3.2). Finally, the reading order
obtained in the previously mentioned levels is consolidated at page level in order to
be compared with the reading order obtained of the text lines directly at page level
(Section 7.6.3.3).

One of the main bottlenecks we found on reading-order-related research is
the lack of available datasets. Moreover, none of the datasets used in previous
experiments were labeled with the correct reading order, therefore we had to label
our own datasets.

We consider three datasets with complex reading order: OHG, Filand Renovated
District Court Records (FCR) and READ ABP Table (ABP). FCR dataset is a selection
of 500 images (250 for training and 250 for test) containing one or two document
pages, and it is annotated at image level using six different region types along with
the baselines. This blend of single-page and double-page images is a common com-
plexity added to the DLA problem and the reading problem itself. In Appendix B.6
we provide more details about this dataset.

ABP dataset is a very heterogeneous set of pages where the main element is
a table. It is composed of 109 images (55 for training and 54 for test). Only two
different regions are defined, namely: “TextRegion” for regular text regions and
“TableRegion” for tables. In Appendix B.7 we provide more details about this dataset.

In the case of OHG and FCR datasets we obtain the correct reading order as a
byproduct of the transcript and layout already available for it. Conversely, in the
case of ABP, since no reading order is explicitly defined in the dataset, we define it
as follows:

• First, “TextRegion” elements are sorted in a top-down/left-right manner.

• Then, “TableRegion” cells are ordered row by row from top-to-bottom.

• Finally, inside each cell the baselines are sorted in top-down/left-right order
manner.

In Figure 7.15, Figure 7.16 and Figure 7.17, an example of the reading order of
each dataset is depicted. As can be noticed, each case is very different from the
others and in all cases the reading order is not trivial.

Finally, to easily compare the obtained results, we report the macro average of
each metric (see Section 7.1.2.3) relative to the number of test pages or layout regions
of each dataset. Additionally, to reduce variance, all reported values have been
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Figure 7.15: Example of the reading order in the OHG dataset. The text-line reading
order is depicted in green over the baseline centers, and text regions are depicted as
pac in brown, tip in red, par in violet, nop in yellow and not in blue.

Figure 7.16: A double-page example of the reading order in the FCR dataset. The
text-line reading order is depicted in green over the baseline centers, and regions
are depicted as page-number in red, marginalia in yellow , paragraph in violet and
paragraph2 in brown.

105



7. Experiments

Figure 7.17: Example of the reading order in the ABP dataset. The text-line read-
ing order is depicted in green over the baseline centers, and the TextRegions and
TableRegion in red and violet respectively.

obtained as the average over ten experiments with different random initialization of
the model parameters. Furthermore, ρ(t, ν) values are reported as a percentage (%)
to avoid small numbers.

Along with the proposed approach we also report results using the top-bottom-
left-right approach (TBLR) as a basic benchmark in all the experiments. Moreover, a
few other methods can be used as a benchmark, but we only use TBLR as it is the
only one that does not depend on very specific domain knowledge and heuristics
that should be updated for each kind of document.

7.6.1 Decoding Algorithms Analysis

In this experiment we compare the three different decoding algorithms, presented
in Section 6.2, for an increasing number of input layout elements. To this end, we
build subsets of m text lines per page, from m = 2 to the maximum number of lines
available (i.e., 2 ≤ m ≤ n). The text lines are selected randomly from the OHG
dataset (where n = 40 on average). We compute the time each algorithm needs to
obtain the hypothesis. In each case, the Spearman’s footrule distance is computed
as well in order to analyze the relative effectiveness of each decoding method. The
results are summarized in Figure 7.18.

As shown in Figure 7.18, the Brute Force computing time grows exponentially,
hence, we only obtain results for m ≤ 9 under a reasonable amount of time. In com-
parison, the computing times of both proposed decoders grow slowly. Nonetheless,
the Greedy method typically takes an order of magnitude longer than the FDTD
decoder.
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Figure 7.18: Computing time and effectiveness (ρ(s, t)) of each decoding method for
increasing input sizes.

With respect to the accuracy of each decoder, for m ≤ 9 all of them provide the
same (optimal) response. Then, the Grady and FDTD methods respond very similar
until m > 38, where the latter starts behaving slightly better. In the light of these
results, the FDTD method exhibits better overall performance, taking into account
both complexity and accuracy. Nevertheless, for the sake of completeness, in the
following experiments, we report results of all decoding algorithms (including Brute
Force whenever possible).

7.6.2 Text Lines at Page Level

In this task, we obtain the reading order of the text lines present in a document at
page level (i.e., each image is assumed independent of any other in the dataset).
In Table 7.10 we summarize the results obtained in all three datasets, using the
benchmark method TBLR, and the proposed Greedy and First Decide then Decode
(FDTD) algorithms.
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Table 7.10: Text-lines ordering results for different metrics and datasets at page
level. Reported figures are page averages of values of ρ(t, ν)(in %) and K(t, ν)
(absolute numbers of swaps). Each result is the average over 10 randomly initialized
experiments. In both metrics the lower the better.

Dataset Decoder ρ(t, ν) (%) K(t, ν)

OHG
TBLR 2.875 12.899
Greedy 0.504 2.517
FDTD 0.498 2.447

FCR
TBLR 31.838 606.976
Greedy 1.063 18.372
FDTD 0.699 11.544

ABP
TBLR 10.989 4020.111
Greedy 4.707 2218.82
FDTD 4.679 2211.32

Results obtained for the OHG dataset are very encouraging. For the ρ(t, ν) metric,
values below 0.6% are reported for both proposed decoders. This means that even
though a few order errors exist, the text lines involved are placed near the correct
relative position. In like manner, according to K(t, ν), less than 3 swaps would be
needed by a user to achieve the correct reading order, being FDTD slightly better.
Taking into account that OHG dataset contains an average of 40 text lines per page,
requiring less than 3 swaps is a very important effort reduction in case any user
is required to review and fix the reading order. Moreover, the proposed approach
improves TBLR approach results in more than 80%, according to both metrics.

Two representative examples of the reading order obtained in OHG datasets
are presented in Figure 7.19. In Section 7.6.2, the result provided by the proposed
decoder (FDTD) is fully correct. This is achieved in spite of complexities like the text
lines in the middle and the bottom of the page which are very close to each other. In
Section 7.6.2, the proposed method produces only one error, in the left marginalia.
In contrast, TBLR results are unsatisfactory, particularly in the second example.

It is important to notice that even the single error in the reading order of
the second example inserts text from a text region into another region. Such an
apparently minor error may dramatically change the meaning of the corresponding
paragraphs. This example is a clear indicator of the difficulty and sensitivity of the
reading order problem.

The FCR dataset has 64 text lines per image on average, with the added complex-
ity that an image can contain one or two document pages. Above all, the proposed
methods obtain a good quality reading order. Specifically, values of ρ(t, ν) fall below
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(a) TBLR method (b) FDTD method

Figure 7.19: Two examples (left-right) of results obtained for the OHG dataset where
ground-truth is depicted in green and the system results in blue (for the TBLR
approach) and violet (for FDTD). The center of each element is slightly shifted to
improve readability.

1% of the maximum displacement the elements can have, and, on average, only 18
swaps would be needed to correct the reading order, which is 97% lower than with
the TBLR approach. The largest performance differences between the two proposed
decoders are observed in this dataset, with FDTD performing better than Greedy by
0.34% in the ρ(t, ν) metric and by more than 6 swaps per page according to K(t, ν).

Two representative examples of results are shown in Figure 7.20. FDTD rendered
almost perfect results (only subtle errors in the last lines of the right marginalia). In
contrast, the results of the simple TBLR approach are hardly usable, particularly (as
expected) those of the double-page example.

In contrast with OHG and FCR, the ABP dataset is very heterogeneous and only
a few samples of each type of table are available for training (see Appendix B.7 for
details about this dataset). Moreover, it has as many as 268 text lines on average per
page.

Despite the difficulties, the proposed methods are able to obtain reasonably good
qualitative results between rows in the same table, while the intra-row results are
far insufficient, making the obtained reading order inadequate for real applications.
Particularly, the average number of swaps needed to fix the errors is larger than the
number of layout elements in the input. Nevertheless, the proposed methods are
still performing around 47% better than TBLR according to the ρ(t, ν) metric.

Figure 7.21 shows two examples of the reading order obtained on ABP dataset
for images that have a sufficiently small number of elements to allow visualization
and readability. In both cases, the methods fails to distinguish that text lines that
belongs to the same table cell should be ordered before moving to the next cell,
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(a) TBLR method

(b) FDTD method

Figure 7.20: Two examples (left-right) of results obtained for the FCR dataset where
ground-truth is depicted in green and the system results in blue (for the TBLR
approach) and violet (for FDTD). The center of each element is slightly shifted to
improve readability.

which is a very important limitation of the method.

7.6.3 Hierarchical Approach

In the experiments of this section all the layout regions in the documents are sorted
according to the reading order. Then the text lines inside each region are sorted as
well. We consider each of these two tasks individually, followed by a hierarchical
composition of the individual results at page level. Notice that these experiments,
in contraposition to the plain approach (Section 7.6.2), require a DLA system to
previously segment the documents into layout regions, not only text lines.

110



Reading Order Determination Experiments

(a) TBLR method

(b) FDTD method

Figure 7.21: Two examples (left-right) of results obtained for the ABP dataset where
ground-truth is depicted in green and the system results in blue (for the TBLR
approach) and violet (for FDTD). The center of each element is slightly shifted to
improve readability.

7.6.3.1 Region Reading Order at Page Level

In this task, we obtain the reading order or the layout regions of each document page.
Moreover, as the number of layout regions on the OHG dataset is small enough,
in that case, along with the Greedy and FDTD decoders, we provide experiments
using the Brute Force (BF) decoder. In this way all the decoders can be empirically
compared under reasonable computing resources.

In Table 7.11 we summarize the results obtained in all three datasets. As in
the case of text lines at page level, in this experiment, all the proposed decoding
methods perform similarly well, and significantly better than TBLR. The difference
between the Brute Force method (which guarantees optimal solutions) and the other
two proposed methods is minimal. Notice that those results are congruent with the
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results reported in Section 7.6.1, proving that the prohibitive optimal solutions are
very well approximated by the inexpensive proposed methods.

Table 7.11: Layout regions ordering results for different metrics and datasets at
page level. Reported figures are page averages of values of ρ(t, ν)(in %) and K(t, ν)
(absolute numbers of swaps). Each result is the average over 10 randomly initialized
experiments. In both metrics the lower the better.

Dataset Decoder ρ(t, ν) (%) K(t, ν)

OHG

TBLR 9.348 0.614
Greedy 0.125 0.009
FDTD 0.134 0.012
BF 0.118 0.007

FCR
TBLR 28.431 1.860
Greedy 1.629 0.113
FDTD 1.692 0.128

ABP
TBLR 16.900 5.148
Greedy 6.012 0.963
FDTD 5.920 0.953

Using these methods, the average number of required region swaps is less than 1
every 100 pages for OHG, about 1 each 8 pages for FCR and less than 2 per page
for ABP. Equally important is to notice that the Sperman’s footrule distance is very
small for OHG and FCR, which means that the very few misplaced elements are
very near the correct positions.

Despite the unacceptable results obtained for ABP dataset at determining the
reading order of the text lines at page level, in this case we obtained very competitive
results, mainly because the distribution of layout regions in the dataset is more
homogeneous than the distribution of text lines inside each region.

7.6.3.2 Text Lines Reading Order at Region Level

In this section we obtain the reading order of the text lines present in a document
page, but restricted to the layout region where they belong. We hypothesized that
the reading order problem is simpler to be solved inside each region respect to do it
at page level.

Also, in this way we avoid the expensive process of computing P(r | s, s′) for all
s, s′ ∈ S in favor of computing it for only those elements that belong to the same
layout region. Later on, this “local” reading order can be consolidated with the
region level reading order obtained in the previous section, to obtain the reading
order of all text lines at page level.
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In Table 7.12 we summarize the results obtained for all three datasets. Notice
that in contrast to previous results, in this case all results are normalized respect to
the number of layout regions instead of the number of pages.

Table 7.12: Text-lines ordering results for different metrics and datasets at region
level. Reported figures are page averages of values of ρ(t, ν)(in %) and K(t, ν)
(absolute numbers of swaps). Each result is the average over 10 randomly initialized
experiments. In both metrics the lower the better.

Dataset Decoder ρ(t, ν) (%) K(t, ν)

OHG
TBLR 0.061 0.013
Greedy 0.053 0.012
FDTD 0.053 0.012

FCR
TBLR 0.654 1.859
Greedy 0.336 1.157
FDTD 0.338 1.153

ABP
TBLR 0.909 221.111
Greedy 0.605 114.199
FDTD 0.603 113.842

In the OHG dataset, writing inside the text regions is very consistent. For this
reason, even the results provided by the simple TBLR approach are reasonably good.
Yet, the proposed methods still perform slightly better.

Likewise, in the FCR dataset the text line reading order produced by TBLR
at region level is fairly good, but the proposed methods achieve a 48% better
Spearman’s Footrule distance and a 37% lower K(t, ν) (number of swaps).

With respect to the ABP dataset, the proposed methods are able to reduce the
average number of swaps to less than 115 (which is about half of those required by
TBLR). However, the number of misplaced elements is still exceedingly large to be
useful for real applications.

It is important to notice that we may found layout regions that contain only one
text line, hence no reading order is required there. But it may bias the results as
the number of those regions in the dataset increases. Hence, in the interest of a fair
analysis and comparison, it is preferred to leave that analysis to a consolidation
setting, as we do in the next section.

7.6.3.3 Hierarchical Consolidation

As mentioned before, in this section we analyze how the hierarchical approach
compares to the non-hierarchical or plain approach. First text regions are sorted at
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page level, then text lines within each region are sorted. This allows us to compare
this approach with the task of directly sorting text lines at page level.

In Table 7.13 we summarize the results obtained on the hierarchical approach
consolidated at page level (called LHP), also the values reported in Table 7.10 are
replicated here for easy comparison (column LP).

Table 7.13: Text-lines ordering results for different metrics, at page level and con-
solidated from the hierarchical approach. Reported figures are page averages of
values of ρ(t, ν) (in %) and K(t, ν) (absolute numbers of swaps). Tasks correspond to:
ordering Lines at Page level (LP) and Lines obtained through Hierarchical processing
(LHP). Each result is the average over 10 randomly initialized experiments. In both
metrics the lower the better.

Metric ρ(t, ν) (%) K(t, ν)

Data Decoder LP LHP LP LHP

OHG
TBLR 2.875 3.511 12.899 0.671
Greedy 0.504 0.035 2.517 0.065
FDTD 0.498 0.035 2.447 0.069

FCR
TBLR 31.838 31.379 606.976 8.324
Greedy 1.063 1.074 18.372 4.136
FDTD 0.699 1.152 11.544 4.138

ABP
TBLR 10.989 8.785 4020.111 1733.092
Greedy 4.707 4.778 2218.82 893.404
FDTD 4.679 4.713 2211.32 890.606

In general, the hierarchical approach significantly overcomes the LP results, in
some cases by more than one order of magnitude. For instance, in OHG dataset,
K(t, ν) is reduced from less than 2.5 swaps to less than 0.07 swaps, using either the
FDTD decoder or the Greedy approach. Important reductions are also achieved for
FCR dataset (from more than 18 to a bit more than 4 swaps). Similarly, in the ABP
dataset the number of swaps were reduced from more than 2200 to less than 900
swaps.

This important reduction in the number of swaps is due to the fact that a single
swap at region level implies moving all its text lines, hence, fixing many errors at
once.

Regarding the ρ(t, ν) metric, results also improve dramatically in the OHG
dataset (from 0.5% down to 0.03%) and similarly for FCR dataset. The simple TBLR
results are also improved, but the proposed methods still outperform TBLR by large
margins.
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In summary, the hierarchical treatment of the data proves to be very important
both to reduce the problem complexity and to increase the effectiveness of the
proposed methods. Although, these improvements come at the price of requiring a
richer layout analysis where the text regions are accurately recognized, while in the
LP task (text lines at page level) only plain text line detection is strictly required.

7.6.4 Discussion

In this section we experimentally evaluate the proposed approach to handle the
Reading Order Determination problem based on learning a pairwise relation opera-
tor. Also, two different decoding methods were evaluated experimentally. In general
the accuracy of both proposed decoders is very similar, while the main difference
is the computational complexity of each one. Experiments support that the FDTD
algorithm is faster and slightly more accurate.

We obtain very competitive results in moderately homogeneous datasets such
as OHG and FCR, while results in the very heterogeneous ABP dataset are still far
away from being useful to recover the information present in the documents.

Furthermore, we evaluate a hierarchical application of the proposed methods, and
experimental evidence shows that such a hierarchically processing further reduces
the complexity of the problem and increases the accuracy of the results. Nevertheless,
the method still exhibits some limitations that should be taken into account in any
production scenario. Specially, the method depends on a good estimated P(r | s, s′),
which is proven to be hard in very heterogeneous datasets. Also, the computational
cost of samples with a large number of elements (e.g., maritime navigation charts
with thousands of elements) should be carefully analyzed.
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8Conclusions and Perspectives

This thesis was devoted to the development of probabilistic methods to address the
DLA problem on handwritten documents. DLA is the scientific field that aims to
extract the intrinsic structure of a document from its digitized version. It includes
the detection of the text present in a document, the layout regions and how those
elements interact among them to successfully allow any subsequent ATR system to
extract the information contained in the data those elements convey. Nonetheless,
due to the uncertainty involved in the creation of those documents, it is very complex
to decode and extract that non-deterministic structure.

In this thesis we focused on developing probabilistic models to efficiently under-
take the uncertainty nature of the problem and predict the most probable structure
of each document, while trying to avoid heuristic based methods that included
hard-coded knowledge. Therefore, first we address the Baseline Detection problem
and propose two probabilistic approaches to the problem. As a matter of fact, the
Baseline Detection problem is important in order to feed most SOTA ATR systems
developed nowadays.

Next, we focus on the Region Segmentation problem, extending the two proba-
bilistic methods, previously defined for the Baseline Detection problem, to address
this new complex problem as well. The resolution of the Region Segmentation
problem is helpful to provide better quality digital libraries where, for example, with
the help of ATR systems, we will be able to perform text searches as per specific
regions in the documents.

Moreover, taking into account real production scenarios where the systems will
be deployed, we propose an integrated approach on which both Baseline Detection
and Region Segmentation tasks are addressed jointly by the same probabilistic
model. This integrated approach helps to resolve the aforementioned problems
under limited computational resources without statistically significant degradation
in performance.

Finally, we investigate how to address the Reading Order Determination problem,
as it is the main vehicle that allows ATR and DLA systems to offer the recognized
data as structured information. We propose to address the Reading Order Determina-
tion problem as a pairwise probabilistic sorting problem. Furthermore, two different
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decoding algorithms have been successfully developed to reduce the complexity of
the problem so it can be handled under restricted computational resources.

8.1 Scientific Publications

The different contributions of this thesis have been materialized in scientific publica-
tions. Consequently, 6 conference (plus one more pending of submission) and one
journal (submitted) paper have been generated. Below we sum up the scientific pub-
lications grouped according to the different DLA subproblems they aim to address
(notice that some papers convey information about more than one task).

• Baseline Detection on handwritten textual documents: on these papers we
address the Baseline Detection problem using the Map-based approach on a
variety of handwritten documents where the main source of information is
textual.

– Vidal, E., Romero, V., Toselli, A. H., Sánchez, J.A., Bosch, V., Quirós,
L., et al. “The Carabela Project and Manuscript Collection: Large-Scale
Probabilistic Indexing and Content-based Classification”. In: 2020 17th In-
ternational Conference on Frontiers in Handwriting Recognition (ICFHR).
2020, pp. 85–90

– Quirós, L., Bosch, V., Toselli, A. H., and Vidal, E. “From HMMs to RNNs:
Computer-assisted Transcription of a Handwritten Notarial Records Col-
lection”. In: International Conference on Frontiers in Handwriting Recog-
nition (ICFHR). Aug. 2018, pp. 116–121

• Integrated Baseline Detection and Region Segmentation on handwritten tex-
tual documents: on this paper, together with the normal Baseline Detection
problem, we addressed the Region Segmentation problem and the integrated
approach on textual handwritten documents.

– Quirós, L., Bosch, V., Toselli, A. H., and Vidal, E. “From HMMs to RNNs:
Computer-assisted Transcription of a Handwritten Notarial Records Col-
lection”. In: International Conference on Frontiers in Handwriting Recog-
nition (ICFHR). Aug. 2018, pp. 116–121

• Integrated Baseline Detection and Region Segmentation on handwritten mu-
sical documents: our previous work was extended to take into account the
special requirements of musical handwritten documents. Baseline Detection
and Region segmentation tasks are addressed in separated and integrated
ways and its performance is evaluated and analyzed.
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– Quirós, L., Toselli, A. H., and Vidal, E. “Multi-task Layout Analysis
of Handwritten Musical Scores”. In: Iberian Conference on Pattern
Recognition and Image Analysis. Springer. 2019, pp. 123–134

• General definition and evaluation of the Map-based approach: on this paper we
have developed, analyzed and evaluated the main ideas behind the Map-based
approach. However, we did not publish it yet under the standard channels.
Nonetheless, we believe it should be listed here for the sake of completeness.

– Quirós, L. “Multi-Task Handwritten Document Layout Analysis”. In:
ArXiv e-prints, 1806.08852 (2018). arXiv: 1806.08852

• Reading Order Determination on handwritten textual documents: on this
papers we explain the algorithms and methods developed to address the
Reading Order Determination problem on handwritten text lines.

– Quirós, L. and Vidal, E. “Learning to Sort Handwritten Text Lines in
Reading Order through Estimated Binary Order Relations”. In: 2020 25th
International Conference on 1405 Pattern Recognition (ICPR). 2021, pp.
7661–7668

– (Submitted) Quirós, L. and Vidal, E. “Reading Order Detection on Hand-
written Documents”. In: submitted to Neural Computing and Applica-
tions Journal (2021).

• DLA confidence and interactive DLA: in this document we did not fully
explore the confidence estimation and interactive DLA lines of work, as they
are ongoing research lines. Nonetheless, for the sake of completeness, here we
list the scientific publications generated during the development of this thesis
in those directions.

– Granell, E., Quirós, L., et al. “Reducing the Human Effort in Text Line
Segmentation for Historical Documents”. In Proceedings of the 16th In-
ternational Conference on Document Analysis and Recognition (ICDAR).
2021, pp. 523–537.

– Quirós, L., Martínez-Hinarejos, C-D., and Vidal, E. “Interactive Layout
Detection”. In: 8th Iberian Conference on Pattern Recognition and Image
Analysis (IbPRIA). Cham: Springer International Publishing, 2017, pp.
161–168.

• General analysis and evaluation of the Direct approach: on this paper we have
analyzed and evaluated the Direct approach to address the Baseline Detection
and Region Segmentation tasks (in an integrated manner as well) on textual
and musical handwritten documents. Although the paper is not published yet
under the normal channels, its preprint can be accessed on arXiv platform.
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– Quirós, L., Vidal E. “Evaluation of a Region Proposal Architecture for
Multi-task Document Layout Analysis”. In: ArXiv e-prints, 2106.11797
(2021). arXiv: 2106.11797.

8.2 Projects and Demonstrators

The methods and algorithms developed in during this thesis have been used in large
scale projects, were thousands of images were processed. These projects have served
to evaluate the proposed systems in real production scenarios, were unlike the
academic ones, the systems should be able to adapt to a dynamic environment were
the resources are limited and requirements change easily. Also, production scenarios
do not have a labeled ground-truth to measure the performance of the system, only
the minimum required to train the system is available (hence the importance of the
minimum number of samples needed to train a system). Therefore, no objective
metrics can be reported.

Moreover, we developed some demonstrators to showcase the methods capabili-
ties. Those demonstrators have been developed to exhibit an specific capability of
the proposed systems, therefore, should not be considered a general production
scenario.

Projects:

• Oficio de Hipotecas de Girona: the systems developed during this thesis have been
tested and furthermore used in a large scale production scenario as part of the
transcription process of the Oficio de Hipotecas de Girona collection. Initially, an
integrated model was used to obtain the baselines and layout regions of the
documents using the Map-based approach presented in Section 4.1.1. Using
this system more than 43 000 images have been processed and then manually
revised in order to obtain a ground-truth quality layout. Moreover, in the light
of the results obtained using the Direct approach we shifted towards this new
model and further process more than 10 000 pages.

• Carabela: the Map-based approach have been used to process more than 150 000
images related to the “Carabela” project1. Due to the high level of degradation
of the documents, and the complexity of the layout, Algorithm 1 was updated
using some heuristics in order to address the many complexities of the data.

• READ: the software developed to showcase and test the Map-base approach
(called P2PaLA) has been made part of the Transkribus platform, mainly

1http://carabela.prhlt.upv.es/en
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developed during the READ EU project2. Transkribus is a comprehensive
platform for the digitisation, AI-powered text recognition, transcription and
searching of historical documents3.

Demonstrators:

• P2PaLA showroom: on this online demonstrator we show several datasets
already processed using the Map-based approach presented in Section 4.1.1.
The demonstrator is intended to showcase how the proposed system performs
in the Baseline Detection task on datasets unseen previously at training time.
To that end, we showcase 17 different collections of handwritten documents,
comprising more than 6700 images and several layout styles and languages.
Particularly, it is important to emphasize that the probabilistic model used to
predict those baselines was trained using documents from other collections.
The demonstrator can be accessed in the following link:

http://prhlt-carabela.prhlt.upv.es/tld_showcase/

• Text-line detection demo: on this online demonstrator the user can upload
an image of a document and run a Baseline Detection system based on the
Map-based approach presented in Section 4.1.1. The demonstrator is intended to
showcase how the system, previously trained on a set of documents probably
unrelated to the image uploaded by the user, performs on an image of an
unseen collection. Hence, the demonstrator is designed to process only one
image at a time. The system can be accessed in the following link:

http://prhlt-carabela.prhlt.upv.es/tld/

8.3 Generated Databases

Besides of the common difficulties of developing a thesis, an important fraction of
time was dedicated searching for public available handwritten document databases
labeled with enough quality to support our experiments. As this thesis is focused
not only on one aspect of DLA but three, it was difficult to find a single database
labeled to address all problems.

Hence, due to the lack of that public database, we developed new databases (or
enhanced a public one) and make them publicly available. We hope those databases
will help to boost research on DLA for handwritten documents.

2https://www.prhlt.upv.es/wp/project/2016/recognition-and-enrichment-of-archival-documents
3https://readcoop.eu
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Following, we list all the datasets developed or enhanced during this thesis.
Moreover, we refer the reader to Appendix B for further details about each one.

• Oficio de Hipotecas de Girona (OHG). This 596 images dataset was created
due to the lack of publicly available databases of handwritten text documents
annotated at both, baseline and region level, and with a coherent reading order.
It is labeled using six different layout regions, the corresponding baselines, the
reading order of each element and the line level transcript.

https://zenodo.org/record/1322666

• Bozens Ratsprotokolle (Bozen). This dataset was originally annotated for
HTR, hence, only the transcripts and baselines were available. We re-labeled
the 400 images of the dataset to include the different layout regions present on
it.

https://zenodo.org/record/1297399

• Filand Renovated District Court Records (FCR). This 500 images dataset was
annotated using six different layout regions, its corresponding baselines and a
coherent reading order of the layout elements.

https://zenodo.org/record/3945088

• Vorau Abbey library Cod. 253 (VORAU-253). As we were interested in
covering not only textual documents but also musical ones, we enhanced the
VORAU-253 database to include not only the transcript of some staff regions,
as originally labeled, but the layout regions and baselines as well. The dataset
contains 228 images, now labeled using three different layout regions, along
with the baselines present in the “lyrics” of each document.

https://zenodo.org/record/5443258

8.4 Open Source Software

We do believe that in the new era of Computer Science, it is not enough to share
knowledge trough scientific papers. Although they should be the main vehicle to
introduce and explain new concepts to the scientific community, papers should be
accompanied, whenever possible, by at least a functional implementation of those
algorithms and any other source-code used to test them. Provided that, the scientific
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Future Work

community can focus on verify and improving those methods, instead of expending
valuable time on the, sometimes, cumbersome process of rewriting code.

Moreover, with the development of very complex Deep Leaning models, which
may have hundreds of hyperparameters and many algorithms involved, it is always
advantageous to have the source code available in order to analyze and comprehend
it. Likewise, it is very common that many important details, necessary to replicate
some experiment in a given publication, are not fully described or even mentioned
on it, making the process even harder.

Hopping those obstacles do not disturb the results presented in this thesis and
our papers, we have decided to release as open source most of the software (at least
everything needed to reproduce our experiments) developed during this thesis.

• Map-based approach to Baseline Detection and Region Segmentation. We
built this deep learning toolkit for DLA to showcase and test the Map-based
approach described in Section 4.1.1 for the Baseline Detection problem, and in
Section 5.1.1 for the Region Segmentation problem. Indeed, all experiments in
Section 7.3 to Section 7.5, which are related to the Map-based approach were
made with this software.

https://github.com/lquirosd/P2PaLA

• Direct approach to Baseline Detection and Region Segmentation. This
project is an extension of the Detectron2 toolkit. We built this project to imple-
ment the Direct approach described in Section 4.1.2 for the Baseline Detection
problem and in Section 5.1.2 for the Region Segmentation problem. Hence, this
software has been widely used in our experiments carried out in Section 7.3 to
Section 7.5.

https://github.com/lquirosd/RPN_DLA

• Reading Order Determination. The implementation of the algorithms de-
scribed in Chapter 6, and the code necessary to reproduce all experiments
related to the proposed solution to Reading Order Determination (i.e., Sec-
tion 7.6) can be found in:

https://github.com/lquirosd/Order_Relation_Operator

8.5 Future Work

As in many other scientific fields, there is a tremendous amount of work still to
be done in order to thoroughly address the DLA problem in its full complexity.
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Nonetheless, we hope the contributions of this thesis will help in that direction.
Moreover, also want to finalize this chapter by identifying the future research topics
and development that we have already considered, or we think may be important to
the field.

8.5.1 Inter-page Analysis

As mentioned in Chapter 3, the next logical step in DLA is to address the problem
at inter-page level. This is, to obtain those structures that exceed the boundary of
a single document page in order to fulfill its function. For instance, a chapter in a
document must be identified similarly as we identify layout regions in a page, but
normally a chapter spans several pages.

During this thesis we assumed that each document page x ∈ X is independent
of the others in the collection X . Conversely, in order to address the inter-page
analysis task in a probabilistic way, this assumption cannot longer hold.

In order to address this problem, we need to investigate how to extend our
algorithms and models to avoid this assumption, at the same time that we do
it under restricted computational resources, in a theoretically sound, robust and
efficient manner.

8.5.2 Confidence Estimation

Although great progress have been made in the last years in the field of DLA, we
are still far away from perfect systems where the expected error on each DLA task is
small enough to be ignored in all practical situations (i.e., to consider the problem
solved). Therefore, in many cases human intervention is still necessary to review
and fix the predicted layout and, of course, to create the ground-truth necessary to
train those probabilistic models.

This human intervention is a cumbersome and expensive process that, although
it is still necessary, should be abridged as much as possible. Nonetheless, is our
belief that estimating the confidence with which a DLA system predicts the layout
of some sample, will prove to be very useful to reduce such cumbersome process.
For instance, a well-estimated confidence measure can be used to direct the user
towards those samples where it is most probable to found an error. Also, confidence
measure can be used to reduce the ground-truth generation process load by doing it
in an iterative manner, where only a few samples are selected, taking into account
the confidence measure, and manually labeled on each step until the model is good
enough for a specific application.

Although we have already made some progress in that regard [Gra+21], there is
still a lot of work to be done in that direction.
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8.5.3 Interactive DLA

In the same direction of reducing the user effort needed to label and review doc-
uments for DLA tasks, another approach is to develop an interactive system that
assists the user in the task (similar to the CATTI system [Góm10] used in HTR) by
means of the Interactive Pattern Recognition framework [TVC11].

To that end, we need to explore how to extend our systems (or develop new ones)
to generate several predictions per sample instead of the “best” one that is currently
generated. We explore that approach in [Qui+17] using a very simple probabilistic
model. However, much work should be done to obtain a theoretically sound system
under restricted computational resources.

8.5.4 Probabilistic Indexes Symbiosis

Although it is kind of the “egg and the chicken” problem, it is important to explore
the effectiveness of using probabilistic indexes [Pui18] or, if possible, the transcript
of the documents, to enhance DLA systems capabilities.

Sometimes the graphical information that can be obtained from the images is not
enough for a system to make correct predictions about the structure of a document.
For example, instead of searching for the most probable reading order in an image,
once knowing what is written on the text lines, we can search for the most probable
order restricted to the most probable global transcript of the document.

Nonetheless, normally we need to perform DLA before any ATR system, and we
need the ATR system to obtain the probabilistic indexes (or the transcript) that may
be used to obtain a better layout. Accordingly, further research is needed in order to
solve this “egg and the chicken” dilemma, boosting the benefits of both methods.

8.5.5 Enhance Reading Order Methods

The methods developed during this thesis to address the Reading Order Deter-
mination problem, although very competitive, are still underperforming on very
heterogeneous datasets, which restricts its applicability to a broach set of production
scenarios. Hence, it is convenient to explore more powerful classifiers, as well as
more informative features to represent layout elements, including textual content
features obtained by means of probabilistic indexing (as mentioned on the previous
section).

Equally important is to extend the proposed methods to take into account a more
complete context of each layout element. We expect this will lead to more robust
ordering models.

Finally, we aim to further exploring the algorithmics of the order decoding
problem. According to Equation (6.15), the probability of a solution obtained by the
proposed Greedy method is a lower bound of the probability of a globally optimal
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solution. Similarly, according to Equation (6.19), the probability of a solution yield
by the FDTD method is an upper bound of the optimal probability. Moreover, as
shown in Section 7.6, both bounds are fairly tight. These results pave the way for the
development of Branch and Bound methods that provide globally optimal solutions
as the Brute Force method considered in this work does, but requiring only moderate
computation resources.
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ANumerical Examples on the Reading Order

In this appendix we provide three illustrative examples of possible learned vales of
the P̃(Y = 1 | ei,ej), 1 ≤ i, j ≤ n for the five layout elements (text lines) in Figure 6.1
and how Equation (6.8) is computed using these values. These examples also aim
to help to understand important aspects of the decoding methods proposed in
Section 6.2 and the effect of some corner cases on these methods.

Case 1

In this case we present an example of the most common case, where P̃(Y = 1 | ei,ej)
is well estimated by some statistical model:

P̃(Y = 1 | ei,ej) :



A C E B D

A 0 0.6 0.9 0.8 0.7
C 0.4 0 0.8 0.6 0.9
E 0.1 0.2 0 0.7 0.9
B 0.2 0.4 0.3 0 0.8
D 0.3 0.1 0.1 0.2 0

 (A.1)

We can now use these values to apply Equation (6.8) to the second matrix
in Equation (6.3), corresponding to the canonical form of the permutation ẑ =
{(A, 1), (B, 4), (C, 2), (D, 5), (E, 3)}:
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P(Rẑ) ≈ P̃(Y = 1 | A, C)2 P̃(Y = 1 | A, E)2

P̃(Y = 1 | A, B)2 P̃(Y = 1 | A, D)2

P̃(Y = 1 | C, E)2 P̃(Y = 1 | C, B)2

P̃(Y = 1 | C, D)2 P̃(Y = 1 | E, B)2

P̃(Y = 1 | E, D)2 P̃(Y = 1 | B, D)2

= 0.62 · 0.92 · 0.82 · 0.72·
0.82 · 0.62 · 0.92·
0.72 · 0.92

0.82

≈ 0.0043

The same result is obtained for the first matrix in Equation (6.3), but using the
corresponding values of P̃(Y = ri,j | ei, ej) as:

P(Rẑ) ≈ 0.82 · 0.62 · 0.72 · 0.92·
(1− 0.4)2 · 0.82 · (1− 0.3)2·
0.92 · 0.82·
(1− 0.1)2

≈ 0.0043

And now for the naive TBLR order z′ = {(A, 1), (B, 2), (C, 3), (D, 4), (E, 5)}:

P(Rz′) ≈ 0.82 · 0.62 · 0.72 · 0.92·
0.42 · 0.82 · 0.32·
0.92 · 0.82·
0.12

≈ 0.00000436

The Brute Force decoding of Section 6.2 goes over the 120 different permutations
to obtain that the most probable permutation is z? = ẑ, with P(Rz?) = 0.0043. The
Greedy and FDTD decoders also predict the same permutation.

130



Case 2

Another possible case, where P̃(Y = 1 | ei,ej) is properly estimated (in the sense
discussed in Section 6.1) could be:

P̃(Y = 1 | ei,ej) :



A C E B D

A 0 0.6 0.8 0.8 0.7
C 0.4 0 0.9 0.9 0.9
E 0.2 0.1 0 0.7 0.7
B 0.2 0.1 0.3 0 0.9
D 0.3 0.1 0.3 0.1 0

 (A.2)

Following Algorithm 4, the most probable element to be placed in the first posi-
tion is C with b = 0.2916 (see lines 6− 9 in Algorithm 4). Upon termination, Algo-
rithm 4 finally predicts the reading order as z̃? = {(C, 1), (A, 2), (E, 3), (B, 4), (D, 5)}
with P(Rz̃?) = 0.003 (which in fact is the second best permutation), while the global
optimum permutation is z? = {(A, 1), (C, 2), (E, 3), (B, 4), (D, 5)} with a higher prob-
ability, P(Rz?) = 0.0074. The same optimal results is also obtained by the FDTD
decoder in this case.

This is a representative example of the limitations of the Greedy decoder, where
a local maximum corresponds to a sub-optimal result.

Case 3

As discussed in Section 6.2.2, it is possible that Equation (6.17) leads to ties in the
number of zeros per row in R?, resulting in an improper permutation. This may
happen, for instance, in the following case, where P̃(Y = 1 | B, C) > 0.5, P̃(Y = 1 |
C, E) > 0.5 and P̃(Y = 1 | E, B) > 0.5:

P̃(Y = 1 | si,sj) :



A C E B D

A 0 0.6 0.9 0.8 0.7
C 0.4 0 0.8 0.4 0.9
E 0.1 0.2 0 0.7 0.9
B 0.2 0.6 0.3 0 0.8
D 0.3 0.1 0.1 0.2 0

 (A.3)

This combination contradicts the transitivity property of a total order and,
using Equation (6.17) and Equation (6.18), FDTD yields an improper permuta-
tion; namely: z = {(A, 1), (C, 3), (E, 3), (B, 3), (D, 5)}, with P(R?) = 0.0043 ob-
tained using (6.8). The optimal solution provided by Brute Force (and in this
case also by the Greedy method) is z? = {(A, 1), (C, 2), (E, 3), (B, 4), (D, 5)}, with
P(Rz?) = 0.0019 < 0.0043 = P(R?). Depending on how the ties for C, E, B are
resolved, different proper permutations can be obtained. Nonetheless, only if those
ties are resolved in favor of C ≺ E ≺ B, the optimal permutation, z?, is obtained.
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Several datasets were used and processed during the development of this thesis.
However, many of them are private or the ground-truth is not completely available,
which makes the process of replication or validating results very difficult. Therefore,
in order to facilitate the replication or validation of the results presented in this
thesis, we report results only using public available datasets.

In this appendix we provide a description of seven datasets used in this document,
providing in all cases a link to access that publicly available data.

B.1 Oficio de Hipotecas de Girona (OHG)

We create the Oficio de Hipotecas de Girona (OHG) database due to the lack of
a publicly available database of handwritten text documents annotated at both
baseline and region level and with a coherent reading order.

The manuscript Oficio de Hipotecas de Girona (OHG) is provided by the Centre de
Recerca d’Història Rural from the Universitat de Girona (CRHR)1. This collection is
composed of hundreds of thousands of notarial deeds from the XVIII-XIX century.
Sales, redemption of censuses, inheritance and matrimonial chapters are among the
most common documentary typologies in the collection. This collection is divided
in batches of 50 pages each, digitized at 300ppi in 24 bit RGB color, available as
TIF images along with their respective ground-truth layout in PAGE XML format,
compiled by the HTR group of the PRHLT2 center and CRHR.

The publicly available database [Qui+18b] is a portion of 596 pages from the
collection, from batch b001 to batch b012. OHG pages exhibit a relatively complex
layout, as shown in Figure B.1, composed of six relevant region types; namely: pag,
tip, par, pac, not, nop, as described in Table B.1. Moreover, it contains only
textual information, without any drawing or table.

Nonetheless, there are several details that make the dataset complex from the
DLA point of view. For instance, a page can contain two or more par regions with
very narrow or even no separation between them (see par (blue) regions in the left

1http://www2.udg.edu/tabid/11296/Default.aspx
2https://prhlt.upv.es
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Table B.1: Layout regions in the OHG database.

ID Description

pag a page number.
tip a notarial typology.
par a paragraph of text that begins next to a notarial typology.
pac a paragraph that begins on a previous page.
not a marginal note.
nop a marginal note added a posteriori to the document.

page in Figure B.1), or it can contain layout regions of different class but one of them
is embedded over the other (like pag and pac regions on left page in Figure B.1)
which makes impossible to fully segment those regions using only rectangles (i.e., at
least a polygon with more than four vertexes is needed).

Figure B.1: Examples of pages with different layouts, belonging to the OHG database.
Cyan: pag, red: tip, green: pac, blue: par, violet: not, orange:nop.

Another important complexity of the OHG dataset, concerning the Baseline
Detection problem, are the baselines that belong to different text regions but the
physical separation between them is minuscule, so separating them is a very hard
task. For example, in the right page in Figure B.1 there is virtually no separation
between baselines belonging to the not region (in violet) and the ones belonging to
the par region (in blue).
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Equally important is to analyze how the layout regions labels are defined. In
OHG we have pac and par regions, of which the only way to differentiate them is
that if there exists a tip region on the right side of the layout region, it should be
labeled as par, otherwise it should be labeled as a pac region. For example, in the
case of the first paragraph of the right page in Figure B.1 there is no tip region on its
right, hence it is labeled as a pac region. Provided that, any DLA system designed
to address the Region Segmentation task, must be able to take into account not only
the local information of some crop of the image, but a more global context.

Furthermore, in Table B.2 the main statistics of the OHG dataset are listed. From
which, we can notice that in average each page contains 39.9 [33, 66] lines of text
(hence same number of baselines), distributed over and average of 4.8 [1, 11] layout
regions per page.

Table B.2: Main characteristics of the OHG database.

Region #Regions #Lines

Name Train Test Total Train Test Total

pag 157 139 296 157 139 296
tip 430 421 851 458 455 913
par 430 421 851 7562 7333 14895
pac 240 238 478 3519 3561 7080
not 17 17 34 95 98 193
nop 210 191 401 216 191 407

Finally, the dataset can be downloaded from https://zenodo.org/record/1322666.

B.2 Vorau Abbey library Cod. 253 (VORAU-253)

VORAU-253 is a music manuscript referred to as Cod. 253 of the Vorau Abbey library,
which was provided by the Austrian Academy of Sciences. It is written in German
Gothic notation and dated around year 1450. This manuscript is interesting because
of the complexity of its layout, where staff, text and decorations are intertwined to
compose the structure of the document (see Figure B.2).

This database is a subset of 228 pages of the archive, using 128 randomly selected
pages for training and 100 for test.

We annotate this database manually into the following three layout regions:

• staff: represents the regions that contains a set of horizontal lines and spaces
where each one represent a different musical pitch. This region type does not
contain text lines. Hence, no baselines.
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• lyrics: they are the words that are sung, appearing below their corresponding
staff, and other text in the document. In all cases, text to be sung and the other
text are assigned to different layout regions under the lyrics label.

• drop-capital: is a decorated letter that might appear at the beginning of
a word or text line. As it is a single big letter, it contains no text lines nor
baselines.

An example of this layout is shown in Figure B.2. It is important to notice that
the decorations that accompany some drop-capital letters are not labeled, as the
main interest is in the letter itself rather than in the decoration.

Figure B.2: Examples of pages with different layouts, belonging to the VORAU-253
database. Blue: drop-capital, red: staff, green: lyrics.

Similarly to the OHG dataset, on VORAU-253 we can found several cases were
the sole geometrical information of a layout region is not enough to correctly label
it, hence, a more global context is necessary. For instance, in the case of the lyrics
regions, it may happen that a lyrics region with text to be sung is next to other
lyrics region but with text that is not part of the song itself. In those cases the only
way to define the border between them is to take into account the context of the
layout region (e.g., a lyrics region with text to be sung must be placed below to a
staff region) and probably its meaning (i.e., if the text should be sung or not).

This kind of complexities, along with the fact that the document contains musical
information instead of only textual data, makes this dataset very interesting for
the DLA problem. The main statistics of the database are presented in Table B.3,
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Bozens Ratsprotokolle (Bozen)

from which we can obtain that on average each page contains 12.5 [7, 23] text lines
distributed over an average of 10.5 [7, 15] lyrics regions. Moreover, each page
contains 22.3 [14, 28] layout regions on average.

Table B.3: Main characteristics of the VORAU-253 dataset.

Region #Regions #Lines

Name Train Test Total Train Test Total
drop-capital 336 232 568 — — —
staff 1194 919 2113 — — —
lyrics 1379 1042 2403 1628 1215 2843

This dataset can be downloaded from https://zenodo.org/record/5443258.

B.3 Bozens Ratsprotokolle (Bozen)

This database consists of a subset of documents from the Ratsprotokolle collection
composed of minutes of the council meetings held from 1470 to 1805 (about 30.000
pages)[Tos+18]. The database text is written in Early Modern German by an un-
known number of writers. The public database is composed of 400 pages (350 for
training and 50 for validation); most of the pages consist of a two or three zones
with many difficulties for line detection and extraction.

The ground-truth of this database was available in PAGE format and annotated
at baseline level. Furthermore, we manually update the ground-truth to include the
regions of the documents and made it publicly available as well.

The layout regions have been labeled using four different, self-explanatory, region
types, namely: page-number, marginalia, heading, and paragraph. In Figure B.3
an example of Bozen pages is shown. Notice that the text lines are well separated in
the vertical direction, nonetheless, in some cases it is difficult to separate them on
the horizontal direction.

The dataset contains 23.9 [6, 31] text lines per page on average, distributed over
4.6 [2, 9] layout regions on average. It is important to notice that each page can contain
zero, one or more heading or marginalia layout regions to appear on any part of
the document. Conversely, the paragraph regions always appear in the documents
at least once.

Moreover, Bozen dataset can be obtained from the official link provided by its
creators in https://doi.org/10.5281/zenodo.1297399.
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Figure B.3: Examples of pages with different layouts, belonging to the Bozen
database. Blue: paragraph, red: heading, green: page-number, and violet:
marginalia.

B.4 Competition on Baseline Detection in Archival Documents
2017 (cBAD-17)

This database was presented in [Die+17] for the ICDAR 2017 Competition on
Baseline Detection in Archival Documents (cBAD). It is composed of 2035 annotated
document page images that are collected from 9 different archives.

Two competition tracks and their corresponding partitions are defined on this
corpus to test different characteristics of the submitted methods. Track A (“Sim-
ple Documents”) is published with annotated text regions3 and therefore aims to
evaluate the quality of text line segmentation (216 pages for training and 539 for
test).

The more challenging Track B (“Complex Documents“) provides only the page
area (270 pages for training and 1010 for test). Hence, baseline detection algorithms
need to correctly locate text lines in the presence of marginalia, tables, and noise.
The database comprises images with additional PAGE XMLs, which contain text
regions and baseline annotations. In this dissertation we will focus on this part of
the dataset as, as stated before, it is more complex.

Because it is composed of documents from 9 different collections, it is very
heterogeneous, with documents ranging from simple pages with few or no text lines

3Only the polygon of the region is available, the class is not provided.
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Figure B.4: Examples of pages with different number of text lines, belonging to the
cBAD-17 dataset. In the left page only 6 text lines are defined, conversely the right
page contains 370 text lines.

to pages with hundreds of text lines agglutinated on it. For instance, in Figure B.4
two examples are shown, the one in the left containing only 6 text lines whereas the
page in the right contains 370 text lines. In general the dataset contains 80.3 [0, 472]

text lines per page on average, nonetheless, they are distributed over a huge range
(from 0 to 472).

This amalgam of layout styles and the variability in the density of the baselines
in the documents cause the dataset to be very difficult to be processed by any DLA
system. Therefore, therein lies the interest to be used in the Baseline Detection task.

Finally, the dataset can be obtained from the official link provided by its creators
in http://doi.org/10.5281/zenodo.1208366.

B.5 Competition on Baseline Detection in Archival Documents
2019 (cBAD-19)

This database was presented in [Die+19] for the cBAD: ICDAR2019 Competition on
Baseline Detection as the successor of the cBAD-17 dataset.

The cBAD-19 dataset is composed of 3021 document images, randomly divided
into 775 images for training, 775 for validation and 1511 for test.
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Following the same line as cBAD-17, cBAD-19 is a very heterogeneous dataset
composed of document from different collections, hence different layouts are present
on it. Moreover, the dataset is composed of a combination of handwritten documents,
printed documents and documents that convey both styles. Also, conversely to
cBAD-17, this dataset contains documents where the main source of information is
not the text on it. For instance, drawings and photographs with captions, maps with
labels, musical documents (where only the text is labeled), among others.

In Figure B.5 we show an example of documents of the cBAD-19. It is important
to notice the variety of layouts and styles, as well as the variability on the number
and distribution of text lines on each document. In particular, the datasets contains
63.87 [0, 2452] text lines per page on average. In effect, the number of text lines ranges
from 0 to 2452, which makes the Baseline Detection problem very hard to address
on it. Nonetheless, it is also what makes it interesting.

Moreover, the size of the images range from 1× 106 px to 87× 106 px, which can
make this dataset very challenging to handle from the computational resources point
of view4.

Figure B.5: Examples of pages with different number of text lines and layouts,
belonging to the cBAD-19 dataset. In the left page only few text lines are defined,
along with some kind of plants. In the middle case the page contains thousands of
printed text lines arranges in two columns. Finally, in the case at the right, only two
text lines can be observed.

4Normally 1× 106 px are enough to handle handwritten documents, however, cBAD-19 contains
maps and other large format documents.
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The dataset is available online in the official link provided by its creators in
http://zenodo.org/record/3234502.

B.6 Filand Renovated District Court Records (FCR)

The FCR dataset is a selection of 500 pages from the Renovated District Court
Records (19th century), a large collection of the National Archives of Finland. The
documents consist of records of deeds, mortgages, traditional life-annuity, among
others.

This dataset contains images with one or two document pages, 5 annotated with
text lines (baselines) and six different region types, namely: page-number, marginalia,
paragraph, paragraph2, table and table2.

The blend of single and double-page images is a common complexity added
to the DLA problem, and its subproblems like the reading order. Nonetheless, we
select this dataset not only because of that complexity but also by the number of
different regions and reading order distribution. In Figure B.6 we show an example
of the pages and layout of the FCR dataset.

Figure B.6: Examples of pages with different layouts, belonging to the FCR database.
Blue: paragraph2, red: paragraph, green: marginalia, violet: table2, and orange:
page-nuber.

This dataset contains 63.7 [22, 131] text lines per page on average, distributed over
3.3 [1, 8] layout regions on average. Also, around 50% of the images are double-page.

The dataset is randomly divided into training, validation and test sets, 125 pages,
125 pages and 250 pages respectively. Moreover, the layout main characteristics are
summarized in Table B.4.

5The word “page” is used here indistinctly to refer to a single or double-page image.
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Table B.4: Main characteristics of the FCR dataset.

Region #Regions #Lines

Name Train Val Test Total Train Val Test Total
page-number 86 87 168 341 92 87 169 348
marginalia 132 142 308 582 637 729 1659 3025
paragraph 183 195 381 714 4731 4707 9326 18764
paragraph2 59 70 129 258 2216 2525 4740 9481
table 2 5 12 19 55 95 261 411
table2 1 2 4 7 9 52 87 148

Furthermore, the dataset can be obtained online on the following link: https:
//zenodo.org/record/3945088

B.7 READ ABP Table (ABP)

The ABP dataset is a subset of the ABP_S_1847-1878 dataset, which contains infor-
mation about the parishioners who died within the geographic boundaries of the
various parishes of the Diocese of Passau between the years 1847 and 1878. This
dataset contains a very heterogeneous set of pages where the main element is a table.
It is composed of 111 manually annotated pages which amount to 29 752 text lines
and 15 231 cells (i.e., 268.1 [21, 583] text lines per page on average). Only two different
regions are defined, namely: textRegion for normal text regions and tableRegion for
tables, distributed as 7.7 [1, 30] layout regions per page on average. In Figure B.7 we
show an example of the type of documents layout on this dataset.

Figure B.7: Examples of pages with different layouts, belonging to the ABP database.
Blue: textRegion, red: tableRegion.
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The dataset is randomly divided into training, validation and test, 28 pages,
28 pages and 55 pages respectively. Moreover, the layout main characteristics are
summarized in Table B.5.

Table B.5: Main characteristics of the ABP dataset.

Region #Regions #Lines

Name Train Val Test Total Train Val Test Total
textRegion 190 182 370 742 213 205 424 842
tableRegion 28 28 58 114 6956 7636 14318 28910

Finally, the dataset can be downloaded from https://zenodo.org/record/1243098.
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CExtended results

In this appendix we provide an extension of the results presented on Chapter 7, as it
will be overcrowded to allocate all the information in that chapter. We encourage the
interested reader to examine the results presented here as they compliment those
previously presented. However, as the main discussion of the results is already
addressed in Chapter 7 we provide no further discussion here.

C.1 Baseline Detection Extended Results

Table C.1: Baseline Detection results obtained using the proposed methods and
different training strategies. Complete set of metrics. Nonparametric Bootstrapping
confidence intervals (CI) at 95%, using 10000 repetitions.

Method pre-trained P(%)[CI] R(%)[CI] F1(%)[CI]

OHG

Map-based — 97.96 [97.70, 98.21] 98.13 [97.95, 98.30] 98.04 [97.82, 98.25]

Direct — 97.08 [96.62, 97.50] 93.15 [92.08, 94.10] 95.07 [94.30, 95.77]

Map-based PubLayNet 98.29 [98.09, 98.49] 98.30 [98.14, 98.45] 98.29 [98.11, 98.47]

Direct PubLayNet 97.83 [97.50, 98.12] 96.23 [95.52, 96.84] 97.02 [96.50, 97.48]

Direct ImageNet 98.00 [97.68, 98.29] 96.46 [95.79, 97.04] 97.22 [96.73, 97.66]

VORAU-253

Map-based — 94.04 [92.46, 95.53] 98.50 [97.88, 99.05] 96.22 [95.09, 97.26]

Direct — 95.18 [93.60, 96.56] 97.75 [97.02, 98.42] 96.45 [95.28, 97.48]

Map-based PubLayNet 92.63 [90.79, 94.33] 98.22 [97.57, 98.82] 95.34 [94.06, 96.52]

Direct PubLayNet 95.33 [93.81, 96.71] 98.24 [97.54, 98.85] 96.76 [95.64, 97.77]

Direct ImageNet 98.03 [97.11, 98.83] 97.79 [97.03, 98.48] 97.91 [97.07, 98.65]
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C. Extended results

C.1.1 Effect of Training Data Size Results
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Figure C.1: Effect of training data size on Baseline Detection metrics for OHG
dataset.
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Figure C.2: Effect of training data size on Baseline Detection metrics for VORAU-253
dataset.
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C. Extended results

C.2 Region Segmentation Extended Results
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Figure C.3: Effect of training data size on Region Segmentation metrics for OHG
dataset.
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Figure C.4: Effect of training data size on Region Segmentation metrics for VORAU-
253 dataset.
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Integrated Results

C.3 Integrated Results

Table C.3: Results obtained using the integrated approach for the Baseline Detection
task. Nonparametric Bootstrapping confidence intervals (CI) at 95%, using 10000
repetitions.

Method pre-trained P(%)[CI] R(%)[CI] F1(%)[CI]

OHG

Map-based — 94.68 [93.62, 95.66] 97.90 [97.68, 98.10] 96.26 [95.61, 96.86]

Direct — 96.99 [96.52, 97.41] 91.74 [90.55, 92.82] 94.29 [93.44, 95.06]

Map-based PubLayNet 94.37 [93.40, 95.26] 97.86 [97.62, 98.08] 96.08 [95.46, 96.65]

Direct PubLayNet 97.99 [97.68, 98.27] 96.20 [95.54, 96.77] 97.09 [96.60, 97.51]

Direct ImageNet 98.01 [97.70, 98.30] 95.34 [94.63, 95.96] 96.66 [96.14, 97.12]

VORAU-253

Map-based — 95.19 [93.62, 96.57] 95.19 [93.62, 96.57] 96.78 [95.65, 97.76]

Direct — 95.71 [94.08, 97.13] 95.71 [94.08, 97.13] 95.53 [94.19, 96.72]

Map-based PubLayNet 94.60 [93.37, 95.78] 94.60 [93.37, 95.78] 96.30 [95.33, 97.20]

Direct PubLayNet 95.81 [94.34, 97.11] 95.81 [94.34, 97.11] 95.94 [94.66, 97.09]

Direct ImageNet 98.03 [97.11, 98.82] 98.03 [97.11, 98.82] 96.01 [94.84, 97.07]
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Reading Order Results

C.4 Reading Order Results

Table C.5: Layout element ordering results for different metrics, tasks and decoders.
Reported figures are page or region averages of values of ρ(t, ν) (in %) and K(t, ν)
(absolute numbers of swaps). Tasks correspond to: ordering Lines at Page level (LP),
Regions at Page level (RP), Lines at Region level (LR) and Lines obtained through
Hierarchical processing via RP, but evaluated at Page level (LHP). The decoders are:
Top Bottom Left Right (TBLR), Greedy, First Decide Then Decode (FDTD) and Brute
Force (BF). Order relation probabilities are learned using a Multilayer Perceptron.
Each result is the average over 10 randomly initialized experiments. In both metrics
the lower the better.

Metric ρ(t, ν) (%) K(t, ν)
Decoder LP RP LR LHP LP RP LR LHP

OHG

TBLR 2.875 9.348 0.061 3.511 12.899 0.614 0.013 0.671
Greedy 0.504 0.125 0.053 0.035 2.517 0.009 0.012 0.065
FDTD 0.498 0.134 0.053 0.035 2.447 0.012 0.012 0.069

FCR

TBLR 31.838 28.431 0.654 31.379 606.976 1.860 1.859 8.324
Greedy 1.063 1.629 0.336 1.074 18.372 0.113 1.157 4.136
FDTD 0.699 1.692 0.338 1.152 11.544 0.128 1.153 4.138

ABP

TBLR 10.989 16.900 0.909 8.785 4020.111 5.148 221.111 1733.092
Greedy 4.707 6.012 0.605 4.778 2218.82 0.963 114.199 893.404
FDTD 4.679 5.920 0.603 4.713 2211.32 0.953 113.842 890.606
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