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THE W -WEIGHTED DRAZIN-STAR MATRIX AND ITS DUAL∗

MENGMENG ZHOU† , JIANLONG CHEN‡ , AND NÉSTOR THOME§

Abstract. After decades studying extensively two generalized inverses, namely Moore–Penrose inverse and Drazin inverse,

currently, we found immersed in a new generation of generalized inverses (core inverse, DMP inverse, etc.). The main aim of

this paper is to introduce and investigate a matrix related to these new generalized inverses defined for rectangular matrices.

We apply our results to the solution of linear systems.
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1. Introduction. Let Cm×n denote the set of all complex m × n matrices, and Cm×n
r is set of all

complex m × n matrices of rank r. For A ∈ Cm×n, the symbols A∗, rank(A), R(A), and N(A) denote

conjugate transpose, rank, range space, and null space of A, respectively. The symbol I stands for the

identity matrix of an appropriate order, and the symbol PM,N denotes the projector onto M along N , where

M and N are two complementary subspaces of Cm×1. The unique matrix X ∈ Cn×m, which is denoted by

A†, satisfying the following equations:

AXA = A,(1.1)

XAX = X,(1.2)

(AX)∗ = AX,(1.3)

(XA)∗ = XA,(1.4)

is called the Moore–Penrose inverse of A ∈ Cm×n [19]. A matrix X ∈ Cn×m is called an outer inverse of

A ∈ Cm×n if X satisfies the equation (1.2). If A ∈ Cm×n
r , T is a subspace of Cn of dimension t ≤ r and

S is a subspace of Cm of dimension m − t, then A has an outer inverse X ∈ Cn×m with prescribed range

R(X) = T and null space N(X) = S if and only if AT ⊕S = Cm. In this case, X is unique and it is denoted

by A
(2)
T,S [2]. If A ∈ Cn×n, the index of A, denoted by ind(A), is the smallest nonnegative integer k such that

rank(Ak) = rank(Ak+1). The unique matrix X ∈ Cn×n satisfying the following three equations:

Ak+1X = Ak, XAX = X, AX = XA,

is called the Drazin inverse of A and denoted by AD, where k = ind(A). When k = 1, the Drazin inverse is

called the group inverse, and denoted by A# [7].
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The core inverse of a square complex matrix was introduced by Baksalary and Trenkler [1]. Later, Xu

et al. [24] characterized the core inverse by three equations. Let A ∈ Cn×n with ind(A) ≤ 1. The unique

matrix X, denoted by A#©, satisfying the following equations:

(AX)∗ = AX, AX2 = X, XA2 = A,

is called the core inverse of A. We know that A#© = A#AA†. Malik et al. [16] extended the core inverse

from index at most one to an arbitrary index. These generalizations were called DMP inverse and dual DMP

inverse. Zhu et al. defined and characterized the DMP inverse in rings [25]. Let A ∈ Cn×n with ind(A) = k.

The DMP inverse of A, denoted by AD,†, is defined to be the matrix AD,† = ADAA†. The dual DMP inverse

of A, denoted by A†,D, is defined as A†,D = A†AAD.

Let A ∈ Cm×n and 0 6= W ∈ Cn×m. Cline et al. [4] extended the Drazin inverse from a square matrix

to a rectangular matrix. A matrix X ∈ Cm×n is the weighted Drazin inverse of A, and denoted by AD,W ,

if X is the unique matrix satisfying AWX = XWA, XWAWX = X and XW (AW )k+1 = (AW )k, where

k = max{ind(AW ), ind(WA)}. Moreover, AD,W = A((WA)D)2 = ((AW )D)2A hold. In particular, if k = 1,

the weighted Drazin inverse is the weighted group inverse and is denoted by A#,W . The DMP inverse was

generalized from square matrices to rectangular matrices by Meng [17]. It is called the W -weighted DMP

inverse and given by AD,†,W = WAD,WWAA†, which is unique solution of the following equations:

XAX = X, XA = WAD,WWA, (WA)kX = (WA)kA†,

where k = max{ind(AW ), ind(WA)}. Dually, it is easy to see that the W -weighted dual DMP inverse is

given by A†,D,W = A†AWAD,WW . In literature, a variety of algorithms for computing generalized inverses

were designed (e.g., [6, 14, 20, 13]). Another papers related to weighted inverses that motivated our research

are [11] by Kyrchei.

It is well known that one of the most important applications of the inverse of a matrix (square and

nonsingular) is its involvement to solve linear systems. This application remains being important for rect-

angular and singular matrices by considering outer inverses [2]. In this sense, the W -weighted Drazin-star

matrix introduced in this paper allows us to solve certain class of linear systems. Further potential works

starting from our approach may be developed by studying Cramer’s rules and determinantal representations

for solving the class that we treat in this paper as well as the least-squares associated problem.

Recently, the Drazin-star matrix and the star-Drazin matrix were introduced by Mosić [18]. ForA ∈ Cn×n

of index k, the Drazin-star matrix of A is defined as AD,∗ := ADAA∗, that is, it appears A∗ instead of the

Moore–Penrose inverse in the definition of the DMP inverse. The matrix AD,∗ is the unique matrix satisfying

the following system of equations:

X(A†)∗X = X, AkX = AkA∗, X(A†)∗ = ADA.

The Drazin-star matrix introduced by Mosić in [18] is a (complex) square matrix. However, in practice,

a wide range of real problems require generalized inverses of rectangular matrices and techniques involving

Drazin-star matrix cannot be applied. The advantage of studying W -weighted Drazin-star matrix is that

they allow us to tackle problems in areas such as (rectangular) linear system [2], cryptography [10], chemical

equations [21], optimal problem [9], and rectangular descriptor control systems [12]. Motivated by above

discussion, we investigate the Drazin-star matrix for rectangular matrices and present its properties and

application (Section 5).
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This paper is organized as follows. In Section 2, we introduce the W -weighted Drazin-star matrix as

the unique solution of a suitable systems of equations. This matrix extends the Drazin-star matrix from a

square matrix to a rectangular matrix. In Section 3, we investigate several equivalent characterizations of the

W -weighted Drazin-star matrix. In Section 4, we compute the W -weighted Drazin-star matrix by weighted

core-EP decomposition and singular value decomposition. Two canonical forms of the W -weighted Drazin-

star matrix are obtained. In Section 5, we design two algorithms to solve a system of linear equations by

the W -weighted Drazin-star matrix and we give examples to illustrate them. In Section 6, the corresponding

results of the W -weighted star-Drazin matrix are presented. Simultaneously, we study the relationships

between the W -weighted Drazin-star matrix, the W -weighted star-Drazin matrix, and other generalized

inverses.

2. Definition of the W -weighted Drazin-star matrix. In this section, we introduce the W -

weighted Drazin-star matrix. Several properties of the W -weighted Drazin-star matrix are studied. Through-

out this paper, we will use a nonzero matrix W ∈ Cn×m that will play the role of the weighted matrix.

Firstly, we have the following system of equations.

Theorem 2.1. Let A ∈ Cm×n and W ∈ Cn×m with k = max{ind(AW ), ind(WA)}. Then the system

(2.5) X(A†)∗X = X, (WA)kX = (WA)kA∗, X(A†)∗ = WAD,WWA,

is consistent and it has a unique solution given by X = WAD,WWAA∗.

Proof. Assume that X := WAD,WWAA∗. Then we have

X(A†)∗ = WAD,WWAA∗(A†)∗ = WAD,WWA,

(WA)kX = (WA)kWAD,WWAA∗ = (WA)k(WA)DWAA∗ = (WA)kA∗,

and

X(A†)∗X = WAD,WWAWAD,WWAA∗ = WAD,WWAA∗ = X.

So, X = WAD,WWAA∗ satisfies the three equations in (2.5). If there exist two n×m matrices X1 and X2

such that the equations in (2.5) hold, then

X1 = X1(A†)∗X1 = WAD,WWAX1 = (WA)DWAX1 = ((WA)D)k(WA)kX1

= ((WA)D)k(WA)kA∗ = ((WA)D)k(WA)kX2 = (WA)DWAX2

= WAD,WWAX2 = X2(A†)∗X2 = X2.

Therefore, the solution of the system (2.5) is unique.

Theorem 2.1 justifies the following definition.

Definition 2.2. Let A ∈ Cm×n and W ∈ Cn×m with k = max{ind(AW ), ind(WA)}. The W -weighted

Drazin-star matrix of A is defined as AW−D,∗ = WAD,WWAA∗.

Remark 2.3. For A ∈ Cm×n and W ∈ Cn×m with k = max{ind(AW ), ind(WA)}, we have AW−D,∗ =

(WA)DWAA∗. When m = n and W = I, it is easy to check that AW−D,∗ = ADAA∗ is a Drazin-star matrix.

In particular, if k = 1, then the W -weighted Drazin-star matrix of A is called the W -weighted group-star

matrix of A and denoted by AW−#,∗.
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In the following lemma, we consider the weighted Drazin-star matrix as an outer inverse with prescribed

range and null space.

Lemma 2.4. Let A ∈ Cm×n and W ∈ Cn×m with k = max{ind(AW ), ind(WA)}. Then

(i) (A†)∗AW−D,∗ is a projector onto R((A†)∗WAD,W ) along N(AD,WA∗);

(ii) AW−D,∗(A†)∗ is a projector onto R((WA)k) along N((WA)k);

(iii) AW−D,∗ = ((A†)∗)
(2)

R((WA)k), N(AD,WA∗)
.

Proof. (i): Since AW−D,∗(A†)∗AW−D,∗ = AW−D,∗, (A†)∗AW−D,∗ is a projector. From

(A†)∗AW−D,∗ = (A†)∗WAD,WWAA∗,

and

(A†)∗WAD,W = (A†)∗WAD,WWAA∗(A†)∗WAD,W ,

we have R((A†)∗AW−D,∗) = R((A†)∗WAD,W ).

On the other hand, since

N((A†)∗AW−D,∗) = N((A†)∗WAWAD,WA∗) ⊇ N(AD,WA∗),

and

N(AD,WA∗) = N(AD,WWAD,WWAA∗) = N(AD,WAW−D,∗)

= N(AD,WWAD,WWAA∗(A†)∗AW−D,∗) ⊇ N((A†)∗AW−D,∗),

we get N((A†)∗AW−D,∗) = N(AD,WA∗).

(ii): Since AW−D,∗(A†)∗ = (WA)DWA, we get

R(AW−D,∗(A†)∗) = R((WA)k) and N(AW−D,∗(A†)∗) = N((WA)k).

(iii): From R(AW−D,∗) = R(AW−D,∗(A†)∗) = R((WA)k) and

N(AW−D,∗) = N((A†)∗AW−D,∗) = N(AD,WA∗),

we have AW−D,∗ = ((A†)∗)
(2)

R((WA)k), N(AD,WA∗)
.

3. Characterizations of W -weighted Drazin-star matrices. This section provides both algebraic

and geometrical characterizations of the W -weighted Drazin-star matrix. Two canonical forms of the W -

weighted Drazin-star matrix are also developed.

Proposition 3.1. Let A ∈ Cm×n and W ∈ Cn×m with k = max{ind(AW ), ind(WA)}. The W -weighted

Drazin-star matrix X ∈ Cn×m of A satisfies the following matrix equations:

(A) (WA)kX = (WA)kA∗;

(B) X(A†)∗ = WAD,WWA;

(C) AX = AWAD,WWAA∗;

(D) XA = WAD,WWAA∗A;

(E) (A†)∗X = (A†)∗WAD,WWAA∗;

(F) WAD,WWAX = X;
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(G) WAD,WWAXAA† = X;

(H) XAA† = X;

(I) (WA)kX(A†)∗ = (WA)k;

(J) X(A†)∗(WA)k = (WA)k;

(K) X(A†)∗A† = AD,†,W ;

(L) X(A†)∗WAWAD,WA∗ = X;

(M) (A†)∗WAWAD,WX = (A†)∗WAD,WWAA∗;

(N) X(A†)∗WAD,WWA = WAD,WWA.

Proof. A standard computation allows us to verify that items (A)− (N) hold by applying Theorem 2.1

and Definition 2.2.

The equivalent conditions for a rectangular matrix to be a weighted Drazin-star matrix are studied in

the following theorem.

Theorem 3.2. Let A ∈ Cm×n and W ∈ Cn×m with k = max{ind(AW ), ind(WA)} and consider the

notation of items in Proposition 3.1. Then X ∈ Cn×m is the W -weighted Drazin-star matrix of A if and only

if any of the following statements is satisfied:

(i) (A) and (F);

(ii) (G) and (I);

(iii) (C) and (F);

(iv) (E) and (F);

(v) (B) and (H);

(vi) (J) and (L);

(vii) (H) and (K);

(viii) (D) and (H);

(ix) (F) and (M);

(x) (L) and (N).

Proof. Let X := WAD,WWAA∗. It is clear that conditions (i)− (x) hold by Proposition 3.1. Conversely,

it is sufficient to verify that every condition (i)− (x) implies X = WAD,WWAA∗. In fact,

(i): Assume that WAD,WWAX = X and (WA)kX = (WA)kA∗. Then

X = WAD,WWAX = ((WA)D)k(WA)kX = ((WA)D)k(WA)kA∗ = WAD,WWAA∗.

(ii): Suppose that WAD,WWAXAA† = X and (WA)kX(A†)∗ = (WA)k. Then

X = WAD,WWAXAA† = ((WA)D)k(WA)kX(A†)∗A∗ = WAD,WWAA∗.

(iii): Let WAD,WWAX = X and AX = AWAD,WWAA∗. Then

X = WAD,WWAX = WAD,WWAWAD,WWAA∗ = WAD,WWAA∗.

(iv): Set WAD,WWAX = X and (A†)∗X = (A†)∗WAD,WWAA∗. Then

X = WAD,WWAX = WAD,WWAA∗(A†)∗X = WAD,WWAA∗.
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(v): Assume that XAA† = X and X(A†)∗ = WAD,WWA. Then

X = XAA† = X(A†)∗A∗ = WAD,WWAA∗.

In a similar way, we can prove the rest of items.

Remark 3.3. We would like to highlight that while the system (2.5) that defines the W -weighted Drazin-

star matrix requires three equations, every item in Theorem 3.2 needs only two matrix equations.

Now, we characterize the W -weighted Drazin-star matrix from a geometrical point of view.

Theorem 3.4. Let A ∈ Cm×n and W ∈ Cn×m with k = max{ind(AW ), ind(WA)}. Then AW−D,∗ is

the unique matrix X that satisfies

(3.6) (A†)∗X = PR((A†)∗WAD,W ), N(AD,WA∗), R(X) ⊆ R((WA)k).

Proof. Assume that X = AW−D,∗. By Lemma 2.4 (i), it is easy to check that AW−D,∗ is a solution of

both conditions in system (3.6). It is sufficient to prove that the solution of system (3.6) is unique. Suppose

that X1 and X2 satisfy both conditions in (3.6). From (A†)∗(X1 −X2) = 0, we have

R(X1 −X2) ⊆ N((A†)∗) = N(A) ⊆ N(WAD,WWA) = N((WA)k).

Since R(X1) ⊆ R((WA)k) and R(X2) ⊆ R((WA)k), we get

R(X1 −X2) ⊆ R((WA)k) ∩N((WA)k) = {0}.

Hence, X1 = X2.

4. Computing the W -weighted Drazin-star matrix. In order to compute numerically the W -

weighted Drazin-star matrix, we present two methods by using the weighted core-EP decomposition and the

singular value decomposition in Theorems 4.2 and 4.4, respectively.

Lemma 4.1 ([8]). Let A ∈ Cm×n and W ∈ Cn×m with k = max{ind(AW ), ind(WA)}. Then there exist

two unitary matrices U ∈ Cm×m, V ∈ Cn×n, two nonsingular matrices A1, W1 ∈ Ct×t, and two matrices

A2 ∈ C(m−t)×(n−t) and W2 ∈ C(n−t)×(m−t) such that A2W2 and W2A2 are nilpotent of indices ind(AW ) and

ind(WA), respectively, with

A = U

(
A1 A12

0 A2

)
V ∗, W = V

(
W1 W12

0 W2

)
U∗.

The decomposition given in Lemma 4.1 is called weighted core-EP decomposition of the pair {A,W}.

Theorem 4.2. Let A ∈ Cm×n and W ∈ Cn×m with k = max{ind(AW ), ind(WA)}. If A and W are

given as in Lemma 4.1, then

AW−D,∗ = V

(
A∗1 +RWAA

∗
12 RWAA

∗
2

0 0

)
U∗,

where RWA =
∑k

i=0(W1A1)i−k−1(W1A12 +W12A2)(W2A2)k−i.
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Proof. According to [5, 8], we have (WA)D = V

(
(W1A1)−1 T̃WA

0 0

)
V ∗, where

T̃WA =

k−1∑
i=0

(W1A1)i−k−1(W1A12 +W12A2)(W2A2)k−1−i.

Thus,

AW−D,∗ = WAD,WWAA∗ = (WA)DWAA∗

= V

(
(W1A1)−1 T̃WA

0 0

)(
W1A1 W1A12 +W12A2

0 W2A2

)(
A∗1 0

A∗12 A∗2

)
U∗

= V

(
A∗1 +RWAA

∗
12 RWAA

∗
2

0 0

)
U∗,

where RWA =
∑k

i=0(W1A1)i−k−1(W1A12 +W12A2)(W2A2)k−i.

Lemma 4.3 ([2] (Singular value decomposition)). The matrices A ∈ Cm×n
r and W ∈ Cn×m

s have the

following singular value decompositions, respectively,

A = U

(
ΣA 0

0 0

)
V ∗, W = Ṽ

(
ΣW 0

0 0

)
Ũ∗,

where U = (U1, U2) ∈ Cm×m, Ũ = (Ũ1, Ũ2) ∈ Cm×m, V = (V1, V2) ∈ Cn×n and Ṽ = (Ṽ1, Ṽ2) ∈ Cn×n

are unitary matrices, U1 ∈ Cm×r, Ũ1 ∈ Cm×s, V1 ∈ Cn×r , Ṽ1 ∈ Cn×s, and ΣA = diag(σ1, . . . , σr),

ΣW = diag(β1, . . . , βs), σ1 ≥ · · · ≥ σr > 0, and β1 ≥ · · · ≥ βs > 0.

Theorem 4.4. Let A ∈ Cm×n and W ∈ Cn×m with k = max{ind(AW ), ind(WA)}. If A and W are

represented as in Lemma 4.3, then

AW−D,∗ = Ṽ

(
ΣWS11ΛΣWS11Σ2

A 0

0 0

)
U∗,

where S11 = Ũ∗1U1, S12 = Ũ∗1U2, T11 = V ∗1 Ṽ1, T12 = V ∗1 Ṽ2 and Λ = (ΣAT11)D,ΣWS11 .

Proof. Denote S = Ũ∗U =

(
S11 S12

S21 S22

)
and T = V ∗Ṽ =

(
T11 T12

T21 T22

)
, where U = (U1, U2), Ũ =

(Ũ1, Ũ2), V = (V1, V2) and Ṽ = (Ṽ1, Ṽ2). Then S11 = Ũ∗1U1 and T11 = V ∗1 Ṽ1. From [22], we have

W = Ṽ

(
ΣWS11 ΣWS12

0 0

)
U∗, A = U

(
ΣAT11 ΣAT12

0 0

)
Ṽ ∗,

and AD,W = U

(
Λ ΛΣWS11ΛΣWS11ΣAT12

0 0

)
Ṽ ∗, where Λ = (ΣAT11)D,ΣWS11 . By direct computation, we

can get the results.
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5. Applications. This section presents some applications.

5.1. Algorithms to solve linear systems. In this section, we design two algorithms to solve a linear

system of equations by using the W -weighted Drazin-star matrix. In addition, an illustrating example is

presented.

Theorem 5.1. Let A ∈ Cm×n and W ∈ Cn×m with max{ind(AW ), ind(WA)} = k ≤ s, let b ∈ Cm.

Then AW−D,∗b is a solution of equation

(5.7) (WA)sx = (WA)sA∗b,

and its general solution is given by

(5.8) x = AW−D,∗b+ (I −WAD,WWA)y,

for arbitrary y ∈ Cn.

Proof. By Definition 2.5, it is easy to see that AW−D,∗b is a solution of the equation (5.7). Suppose that

x = AW−D,∗b+ (I −WAD,WWA)y, for arbitrary y ∈ Cn. Then

(WA)sx = (WA)s(AW−D,∗b+ (I − (WA)DWA)y)

= (WA)sAW−D,∗b = (WA)sA∗b,

that is, x is a solution of the equation (5.7). Assume that x is a solution of the equation (5.7). Then, we have

WAD,WWAx = (WA)DWAx = ((WA)D)s(WA)sx = ((WA)D)s(WA)sA∗b

= WAD,WWAA∗b = AW−D,∗b.

So, x = AW−D,∗b+ x−WAD,WWAx = AW−D,∗b+ (I −WAD,WWA)x, which is of the form (5.8).

Now, let A ∈ Cm×n and W ∈ Cn×m with k = max{ind(AW ), ind(WA)} and assume that b ∈
R((A†)∗(WA)k). We consider the linear system

(5.9) (A†)∗x = b,

and we are interested in obtaining solutions in R((WA)k). We note that the expression (5.9) is not a

restriction because every linear system Bx = b can be written as (A†)∗x = b by setting A := (B∗)†. Next,

algorithms allow us to solve this problem.

Algorithm 1: Input: A ∈ Cm×n, W ∈ Cn×m and b ∈ Cm.

Output: The solution of system (5.9) (if possible).

Step 1: Compute (A†)∗ and R((WA)k).

Step 2: Check whether b ∈ R((A†)∗(WA)k). If not, go to Step 6.

Step 3: Perform the weighted core-EP decomposition of the pair {A, W} (see Lemma 4.1).

Step 4: Compute AW−D,∗ with Theorem 4.2.

Step 5: The solution of system (5.9) is x = AW−D,∗b. Go to end.

Step 6: There exists no solution of system (5.9).

End.
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Now, we have to justify the Algorithm 1. Suppose that b ∈ R((A†)∗(WA)D), then there exists z ∈ Cn

such that b = (A†)∗(WA)Dz. Set x = AW−D,∗b. So, we have

(A†)∗x = (A†)∗AW−D,∗b = (A†)∗WAD,WWAA∗b = (A†)∗(WA)DWAA∗b

= (A†)∗(WA)DWAA∗(A†)∗(WA)Dz = (A†)∗(WA)Dz = b.

That is, x is a solution of equation (5.9). Now, we justify the uniqueness of solution in equation (5.9).

Assume that the equation (5.9) has two solutions x1 and x2 in R((WA)k). By Lemma 2.4 (ii), we have

N(AW−D,∗(A†)∗) = N((WA)k). Therefore,

x1 − x2 ∈ R((WA)k) ∩N((A†)∗) ⊆ R((WA)k) ∩N(AW−D,∗(A†)∗)

= R((WA)k) ∩N((WA)k) = {0},

that is, x1 = x2.

Algorithm 2: Input: A ∈ Cm×n, W ∈ Cn×m, and b ∈ Cm.

Output: The solution of system (5.9) (if possible).

Step 1: Compute (A†)∗ and R((WA)k).

Step 2: Check whether b ∈ R((A†)∗(WA)k). If not, go to Step 6.

Step 3: Perform the singular value decomposition of the pair {A, W} (See Lemma 4.3).

Step 4: Compute AW−D,∗ with Theorem 4.4.

Step 5: The solution of system (5.9) is x = AW−D,∗b. Go to end.

Step 6: There exists no solution of system (5.9).

End.

The following example illustrates the performance of the above algorithms.

Example 5.2. Let A =


1
2

5
2

1
2 1 1

− 1
2 − 5

2 − 1
2 0 0

1
2 − 1

2
1
2 0 −1

1
2 − 1

2
1
2 −1 0

, W =


2 0 0 0
1
2 − 1

2 − 1
2 − 1

2

1
2

1
2

1
2 − 1

2

1
2

1
2 − 1

2
1
2

0 0 0 0

, and b =


5
12

1
4

5
12

5
12

. It is

easy to check that max{ind(AW ), ind(WA)} = 3. From Algorithm 1, by weighted core-EP decomposition,

we get A = U

(
A1 A12

0 A2

)
V ∗, W = V

(
W1 W12

0 W2

)
U∗, where U = 1

2


1 1 1 1

−1 −1 1 1

1 −1 1 −1

1 −1 −1 1

, A1 =

(
1 2

0 3

)
,

A12 =

(
1 0 0

0 1 1

)
, A2 =

(
0 1 0

0 0 1

)
, W1 =

(
1 1

0 1

)
, W12 =

(
1 1

0 0

)
, W2 =

1 0

0 1

0 0

 and V is identity

matrix of size 5. Then, by the canonical form of W -weighted Drazin-star matrix in Theorem 4.2, we have
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(WA)D =



1 −5

3
1

7

9

10

27

0
1

3
0

1

9

4

27

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


, AW−D,∗ =



31

9
−1 −1

9
−1

3
59

18
−5

2
−17

18
−5

6

0 0 0 0

0 0 0 0

0 0 0 0


.

Since

(A†)∗ =



5

12
−1

6

5

12

1

2

1

2
1

4
−1

2

1

4

1

2

1

2
5

12
−1

6

5

12

1

2
−1

2
5

12
−1

6

5

12
−1

2

1

2


,

and we check that b = ( 5
12 ,

1
4 ,

5
12 ,

5
12 )∗ ∈ R((A†)∗(WA)k) = R((A†)∗(WA)D), by direct computation, we

obtain AW−D,∗b = (1, 0, 0, 0, 0)∗ and (A†)∗AW−D,∗b = b.

Now, we use Algorithm 2. By singular value decomposition (see Lemma 4.3), we have

ΣA = diag

(
3637

936
,

2367

1526
, 1,

951

1351

)
, ΣW = diag

(
2051

937
, 1, 1,

937

2051

)
,

U =



254

339
− 329

1914
0 −1212

1895

−2311

3661
−1251

2620
0 −514

841

−101

713

1653

2713
− 985

1393
− 514

1559

−101

713

1653

2713

985

1393
− 514

1559


and Ṽ =



−171

188
0 0

1444

3475
0

− 327

1363
−1488

1921

496

1921
− 825

1571
0

− 327

1363

486

2969
−1995

2494
− 825

1571
0

− 327

1363

493

807

831

1534
− 825

1571
0

0 0 0 0 1


.

Since rank(A) = 4 = rank(W ), by the proof of Theorem 4.4, we have S = S11 in this example. Then

S = Ũ∗U =



−572

787

169

640
0

473

746

−1004

1677

73

715

228

721
− 868

1191
365

1829
− 73

2145

684

721

868

3573
151

557

1339

1397
0 − 430

4863


,
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and

T11 = V ∗1 Ṽ1 =



− 487

1109
− 787

1423

3930

15719
−1031

1659

−1361

2909
− 929

3051
−2063

3223

254

1605
3182

18757
− 562

1301
−321

838

443

1193
817

1411
−619

977

510

2063

254

2769


,

Therefore, by using MATLAB, it is easy to obtain

(ΣAT11ΣWS)D =



888

4453
− 293

2075
− 318

4973
−989

622

− 797

4413

509

4743
− 345

1601
−2885

1273
0 0 0 0

740

6573
− 671

9719

306

2891

1042

1015


.

and

Λ = (ΣAT11)D,ΣWS =



−1123

2065

1469

1462
− 931

2314

215

1656

−1107

1897

521

306
−2512

3161

1799

3232
0 0 0 0

455

1808
−539

683

877

2341
− 370

1337


.

Hence, AW−D,∗ = Ṽ

(
ΣW

0

)
SΛΣWSΣ2

AU
∗ =


31
9 −1 − 1

9 − 1
3

59
18 − 5

2 − 17
18 − 5

6

0 0 0 0

0 0 0 0

0 0 0 0

. It illustrates that Algorithm 2 also

works.

Remark 5.3. Theorem 5.1 has been presented as an application to solve certain class of linear equation

by means of the W -weighted Drazin-star matrix. In Lemma 2.4 (iii), we have proved that the W -weighted

Drazin-star matrix is an outer inverse matrix with prescribed range and null space. Since outer inverses with

prescribed range and null space have a remarkable significance in Matrix Theory, the W -weighted Drazin-star

matrix can provide theoretical value for future practice [11, 17].

5.2. Solving restricted linear systems. Let A ∈ Cm×n, T ∈ Cn, and S ∈ Cm. In [3, 23], it was

shown that A
(2)
T,Sb is the solution of the restricted linear equation Ax = b, with x ∈ T, b ∈ AT . In [3,

Theorem 2.1], the author proved that the system Ax = b restricted to x ∈ T has a unique solution if and

only if b ∈ AT and T ∩N(A) = {0}. In the following lemma, we give an auxiliary lemma.

Lemma 5.4. Let B ∈ Cm×n and W ∈ Cn×m with ind(W (B†)∗) = k. Then N(B)∩R((W (B†)∗)k) = {0}.

Proof. Let x ∈ N(B)∩R((W (B†)∗)k). Then there exists y ∈ Cn such that x = (W (B†)∗)ky and Bx = 0.

Since (B†)∗B†B = (B†)∗, by Drazin inverse definition we have

x = (W (B†)∗)D(W (B†)∗)B†B(W (B†)∗)ky = (W (B†)∗)D(W (B†)∗)B†Bx = 0.
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Next, we show that the W -weighted Drazin-star matrix can solve the restricted linear equation.

Theorem 5.5. Let B ∈ Cm×n and W ∈ Cn×m with max{ind((B†)∗W ), ind(W (B†)∗)} = k and let

S := R((W (B†)∗)k). If b ∈ BS, then the unique solution of

Bx = b, restricted to x ∈ S,

is given by

x = B
(2)

R((W (B†)∗)k),N((W (B†)∗)DB†)
b = ((B†)∗)W−D,∗b.

Proof. From Lemma 2.4 (iii), it is easy to obtain that

((B†)∗)W−D,∗ = B
(2)

R((W (B†)∗)k),N((W (B†)∗)DB†)
.

By Lemma 5.4, we know that S ∩N(B) = {0}. Assuming that b ∈ BS, the rest proof is similar to the proof

of [3, Theorem 2.2].

Lemma 5.6. Let B ∈ Cm×n and W ∈ Cn×m with ind(W (B†)∗) = k, let S := R((W (B†)∗)k). Then for

any b ∈ Cm, Xb is the minimum-norm least-squares solution of

Bx = b, restricted to x ∈ S,

if and only if X = PS(BPS)† is the S-restricted Moore–Penrose inverse of B.

Proof. It is clear by [2, Page 113, Ex20, Ex21, Ex22].

6. The W -weighted star-Drazin matrix. Dually, we give the related results of W -weighted star-

Drazin matrices.

In a similar way, the system is considered in the following result.

Theorem 6.1. Let A ∈ Cm×n and W ∈ Cn×m with k = max{ind(AW ), ind(WA)}. Then the system:

X(A†)∗X = X, X(AW )k = A∗(AW )k, (A†)∗X = AWAD,WW,

is consistent and it has a unique solution given by X = A∗AWAD,WW.

Definition 6.2. Let A ∈ Cm×n and W ∈ Cn×m with k = max{ind(AW ), ind(WA)}. Then the

W -weighted star-Drazin matrix of A is defined as A∗,W−D = A∗AWAD,WW.

Remark 6.3. Let A ∈ Cm×n and W ∈ Cn×m with k = max{ind(AW ), ind(WA)}. If k = 1, then the

W -weighted star-Drazin matrix of A is reduced to the weighted star-group matrix of A and denoted by

A∗,W−#.

In the following lemma, we consider the W -weighted star-Drazin matrix as an outer inverse with pre-

scribed range and null space.

Lemma 6.4. Let A ∈ Cm×n and W ∈ Cn×m with k = max{ind(AW ), ind(WA)}. Then

(i) (A†)∗A∗,W−D is a projector onto R((AW )k) along N((AW )k);

(ii) A∗,W−D(A†)∗ is a projector onto R(A∗AD,W ) along N(AD,WW (A†)∗);

(iii) A∗,W−D = ((A†)∗)
(2)

R(A∗AD,W ), N((AW )k)
.

We give the equivalent conditions of the W -weighted star-Drain matrix.
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Proposition 6.5. Let A ∈ Cm×n and W ∈ Cn×m with k = max{ind(AW ), ind(WA)}. The W -weighted

star-Drazin matrix X ∈ Cn×m of A satisfies the following equations:

(A) X(AW )k = A∗(AW )k;

(B) (A†)∗X = AWAD,WW ;

(C) AX = AA∗AWAD,WW ;

(D) XA = A∗AWAD,WWA;

(E) X(A†)∗ = A∗AWAD,WW (A†)∗;

(F) XAWAD,WW = X;

(G) A†AXAWAD,WW = X;

(H) A†AX = X;

(I) (A†)∗X(AW )k = (AW )k;

(J) (AW )k(A†)∗X = (AW )k;

(K) A†(A†)∗X = A†,D,W ;

(L) A∗AWAD,WW (A†)∗X = X;

(M) XAD,WWAW (A†)∗ = A∗AWAD,WW (A†)∗;

(N) AWAD,WW (A†)∗X = AWAD,WW .

Theorem 6.6. Let A ∈ Cm×n and W ∈ Cn×m with k = max{ind(AW ), ind(WA)} and consider the

notation of items in Proposition 6.5. Then X ∈ Cn×m is the W -weighted star-Drazin matrix of A if and only

if any of the following statements is satisfied:

(i) (A) and (F);

(ii) (G) and (I);

(iii) (D) and (F);

(iv) (E) and (F);

(v) (B) and (H);

(vi) (J) and (L);

(vii) (H) and (K);

(viii) (C) and (H);

(ix) (F) and (M);

(x) (L) and (N).

We characterize the W -weighted star-Drazin matrix by applying a geometrical method in the following

theorem.

Theorem 6.7. Let A ∈ Cm×n and W ∈ Cn×m with k = max{ind(AW ), ind(WA)}. Then A∗,W−D is

the unique matrix X satisfies

(A†)∗X = PR((AW )k), N((AW )k), R(X) ⊆ R(A∗AD,W ).

Theorem 6.8. Let A ∈ Cm×n and W ∈ Cn×m with k = max{ind(AW ), ind(WA)}. If A and W are

given as in Lemma 4.1, then

A∗,W−D = V

(
A∗1 A∗1RAW

A∗12 A∗12RAW

)
U∗,

where RAW =
∑k

i=0(A1W1)i−k−1(A1W12 +A12W2)(A2W2)k−i.
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Theorem 6.9. Let A ∈ Cm×n and W ∈ Cn×m with k = max{ind(AW ), ind(WA)}. If A and W are

represented as in Lemma 4.3, then

A∗,W−D = Ṽ

(
T ∗11Σ2

AT11ΣWS11ΛΣWS11 T ∗11Σ2
AT11ΣWS11ΛΣWS12

T ∗12Σ2
AT11ΣWS11ΛΣWS11 T ∗12Σ2

AT11ΣWS11ΛΣWS12

)
U∗,

where S11 = Ũ∗1U1, S12 = Ũ∗1U2, T11 = V ∗1 Ṽ1, T12 = V ∗1 Ṽ2 and Λ = (ΣAT11)D,ΣWS11 .

Finally, the relations between the W -weighted Drazin-star matrix, the W -weighted star-Drazin matrix,

and some generalized inverses are given.

Theorem 6.10. Let A ∈ Cm×n and W ∈ Cn×m with k = max{ind(AW ), ind(WA)}. Then the following

conditions hold:

(i) AW−D,∗ = A∗,W−D if and only if R((WA)k) = R(A∗AD,W ) and N(AD,WA∗) = N((AW )k);

(ii) AW−D,∗(A†)∗ = (A†)∗A∗,W−D if and only if (WA)DWA = AW (AW )D;

(iii) AW−D,∗ = A∗ = A∗,W−D if and only if AD,†,W = A† = A†,D,W ;

(iv) AAW−D,∗(A†)∗ = (A†)∗A∗,W−DA if and only if AAD,†,WA = AA†,D,WA;

(v) AW−D,∗A = (WA)DWA if and only if AW−D,∗ = AD,†,W ;

(vi) AA∗,W−D = AW (AW )D if and only if A∗,W−D = A†,D,W .

Proof. (i): It is evident by Lemmas 2.4 (iii) and 6.4 (iii).

(ii): By definition, the condition AW−D,∗(A†)∗ = (A†)∗A∗,W−D can be rewritten as WAD,WWA =

AWAD,WW which is equivalent to (WA)DWA = AW (AW )D.

(iii): Assume that AW−D,∗ = A∗ = A∗,W−D. Then

WAD,WWAA∗ = A†AA∗ and A∗AWAD,WW = A∗AA†.

By left and right ∗-cancellable property, we have WAD,WWA = A†A and AWAD,WW = AA†. So,

AD,†,W = (WAD,WWA)A† = (A†A)A† = A† = A†(AA†)

= A†AWAD,WW = A†,D,W .

Now, suppose that AD,†,W = A† = A†,D,W . Then

AW−D,∗ = WAD,WWAA∗ = WAD,WWAA†AA∗ = AD,†,WAA∗ = A∗

= A∗AA† = A∗AA†,D,W = A∗AA†AWAD,WW = A∗,W−D.

(iv): We have that

AAW−D,∗(A†)∗ = (A†)∗A∗,W−DA⇔ AWAD,WWAA∗(A†)∗ = (A†)∗A∗AWAD,WWA

⇔ AWAD,WWAA†A = AA†AWAD,WWA

⇔ AAD,†,WA = AA†,D,WA.

(v): Suppose that AW−D,∗A = (WA)DWA. Then

(WA)DWAA∗A = (WA)DW (A†)∗A∗A.
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By right ∗-cancellable property, we obtain

AW−D,∗ = (WA)DWAA∗ = (WA)DW (A†)∗A∗ = (WA)DWAA† = AD,†,W .

The converse is evident.

(vi): It is similar to the proof of (v).

Theorem 6.11. Let A ∈ Cm×n and W ∈ Cn×m with k = max{ind(AW ), ind(WA)}. If A and W are

given as in Lemma 4.1, then AW−D,∗ = A∗,W−D if and only if A12 = 0 and RWAA
∗
2 = A∗1RAW , where RWA

and RAW as in Theorems 4.2 and 6.8, respectively.

Proof. The result follows by applying Theorems 4.2 and 6.8.

Acknowledgements. The authors wish to thank the editor and reviewers sincerely for their construc-

tive comments and suggestions that have improved the quality of the paper. This research is supported by

the Postgraduate Research and Practice Innovation Program of Jiangsu Province (No. KYCX18−0053), the

China Scholarship Council (File No. 201906090122), the National Natural Science Foundation of China (No.

11771076, 11871145). The third author is partially supported by Ministerio de Economı́a y Competitividad of

Spain (grant Red de Excelencia MTM2017-90682-REDT) and Universitat Nacional de La Pampa, Facultad
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