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Abstract: This paper provides a method to bound and calculate any eigenvalues and eigenfunctions
of n-th order boundary value problems with sign-regular kernels subject to two-point boundary
conditions. The method is based on the selection of a particular type of cone for each eigenpair to be
determined, the recursive application of the operator associated to the equivalent integral problem
to functions belonging to such a cone, and the calculation of the Collatz–Wielandt numbers of the
resulting functions.
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1. Introduction

Let J be a compact interval in R and let us consider the real differential operator L
disconjugate on J and defined by:

Ly = y(n)(x) + an−1(x)y(n−1)(x) + · · ·+ a0(x)y(x), x ∈ J, (1)

where aj(x) ∈ Cj(J) for 0 ≤ j ≤ n− 1.
In this paper, we will address the eigenvalue problem:

Ly = λr(x)y, x ∈ [a, b] ⊆ J, (2)

subject to the boundary conditions

Ui(y) ≡ y(ki)(a) + ∑k<ki
γiky(k)(a) = 0 (i = 1, . . . , m),

Ui(y) ≡ y(ki)(b) + ∑k<ki
γiky(k)(b) = 0 (i = m + 1, . . . , n),

(3)

where 1 ≤ m ≤ n− 1, n− 1 ≥ k1 > · · · > km ≥ 0, n− 1 ≥ km+1 > · · · > kn ≥ 0, and r(x)
is a positive function piecewise continuous on [a, b].

If the problem Ly = 0 subject to the boundary conditions (3) does not have a non-
trivial solution (namely, if λ = 0 is not an eigenvalue of (2) and (3)), then the problem (2)
and (3) is equivalent to the integral eigenvalue problem:

y = λMy, (4)
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where M is the operator C[a, b]→ ACn−1[a, b] defined by:

Mu =
∫ b

a
G(x, t)r(t)u(t)dt, x ∈ [a, b], (5)

and G(x, t) is the Green function of the problem,

LG(x, t) = 0, x ∈ (a, t) ∪ (t, b),

Ui(G(x, t)) ≡ ∂ki G(a,t)
∂xki

+ ∑k<ki
γik

∂kG(a,t)
∂xk = 0 (i = 1, . . . , m),

Ui(G(x, t)) ≡ ∂ki G(b,t)
∂xki

+ ∑k<ki
γik

∂kG(b,t)
∂xk = 0 (i = m + 1, . . . , n).

(6)

Let us introduce the naming convention:

G
(

x1, x2, . . . , xp
t1, t2, . . . , tp

)
=

∣∣∣∣∣∣
G(x1, t1) . . . G(x1, tp)

. . . . . . . . . . . . .
G(xp, t1) . . . G(xp, tp)

∣∣∣∣∣∣,
where | · | is the determinant of the matrix.

According to [1,2], G(x, t) is called a sign-regular kernel of the integral Equations (
4) and (5) if the following condition is satisfied for a sequence of real numbers ε1, ε2, . . .,
each one taking either the value 1 or the value −1, for p = 1, 2, . . .:

εpG
(

x1, x2, . . . , xp
t1, t2, . . . , tp

)
≥ 0

(
a <

x1 < x2 < · · · < xp
t1 < t2 < · · · < tp

< b
)

. (7)

A sign-regular kernel is called strongly sign-regular if, in addition, it satisfies the
following two conditions:

ε1G(t, s) > 0 (a < t < b, a < s < b), (8)

εpG
(

x1, x2, . . . , xp
x1, x2, . . . , xp

)
> 0 (a < x1 < x2 < · · · < xp < b, p = 1, 2, . . .). (9)

If all the εp (for p = 1, 2, . . .) are equal to +1, then a sign-regular kernel is called totally
non-negative, whereas a strongly sign-regular kernel is called oscillatory. For the Green
functions of two-point boundary problems like that of (6), sign-regularity is equivalent to
strong sign-regularity (see [1]), and the condition (7) needs only to hold for p = 1, . . . , n− 1
(see [3] [Condition A]).

Throughout the paper, we will assume that the Green function of (6) is sign-regular.
The interest of sign-regular Green functions resides on the Sturm–Liouville-like prop-

erties that it gives to the boundary value problem (2) and (3), namely (see [3]):

1. The problem (2) and (3) has countable infinitely many different eigenvalues λ1, λ2, . . .,
which are real, algebraically and geometrically simple, and can be ordered as
0 < ε0ε1λ1 < ε1ε2λ2 < · · · , where ε0 = 1 and ε1, ε2, . . . are the same numbers
as in (7).

2. The eigenfunction ϕi(x) (i=1,2, . . . ), corresponding to each λi, has exactly i− 1 zeroes
in (a, b), all of which are simple. Moreover, the zeroes of ϕi and ϕi+1 alternate
(i = 2,3,. . . ). At the extremes , a, b, all the eigenfunctions ϕi have zeroes of the order
exactly imposed by the boundary conditions.

3. Each non-trivial linear combination cr ϕr + · · · + cl ϕl with r ≤ l has at least r − 1
nodal zeroes (that is, zeroes where the function changes its sign) and at most l − 1
zeroes in I1, where I1 is the interval obtained from [a, b] by removing a if km = 0 and b
if kn = 0, and the zeroes which are antinodes (that is, zeroes where the function does
not change its sign) are counted twice.
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There is a fourth property of the eigenfunctions ϕi, which requires the introduction of
the following definition (see [4] [Chapter 3, Section 5]):

Definition 1. A system of continuous functions,

y1(x), y2(x), . . . , yp(x), x ∈ I,

is called a Chebyshev system on the interval I if every linear combination of these functions

y(x) =
p

∑
i=1

ciyi(x)

(
p

∑
i=1

c2
i > 0

)

vanishes on the interval I at most p− 1 times. Likewise, a sequence of (finite or infinite) functions

y1(x), y2(x), y3(x), . . .

is a Markov sequence within the interval I if for every p (p = 1, 2, . . .), the functions y1(x), y2(x),
. . . , yp(x) form a Chebyshev system on I.

According to [3], the eigenfunctions ϕ1, ϕ2, . . . of the problem (2) form a Markov
sequence on [a, b] within I1.

The problem (2)–(7) appears in the analysis of the vibrations of a loaded continuum,
but the associated theory can be applied to multiple differential problems as long as the
boundary conditions imply the sign-regularity of the Green function G(x, t). In particular,
in [5] [Appendix D], one can find multiple examples of differential problems of the type (2)
in the theory of fluid dynamics, problems whose Green function satisfies (7) under some
boundary conditions. Likewise, [6] contains many examples of physical and biological
problems with sign regular kernels satisfying (7)–(9).

The eigenvalue problem (2) with a sign-regular kernel has been studied thoroughly
in the literature. It was Kellogg [7–9] who first assessed symmetric totally non-negative
kernels satisfying condition (7). The non-symmetric case was developed by Gantmakher
and Krein in [10–12]. Karlin obtained new results by attacking the problem from the
theory of spline interpolation and Chebyshev and Markov systems [2,13]. Other important
breakthroughs were achieved by Levin and Stepanov [1], who extended the results to the
sign-regular case, and Borovskikh and Pokornyi [14], who applied them to discontinuous
kernels. Later, Stepanov provided necessary and sufficient conditions for the Green function
of (6) to be sign-regular in [3]. The research on this topic was continued by Pokornyi
and his collaborators due to its relationship with the theory of differential equations in
networks [6,15]. Some more recent contributions include [16,17].

While the aforementioned papers cover multiple aspects of the theory of sign-regular
kernels and the properties of the solutions of (2), none of them seems to have attempted to
use them to calculate its eigenvalues and eigenfunctions, as far as the authors are aware.
That will be the purpose of this paper, which will provide an iterative procedure to:

1. Bound and calculate any eigenvalues λi and
2. Calculate the associated eigenfunctions ϕi,

with as much precision as desired.
Our approach will make use of Krein–Rutman cone theory, which was also employed

by many of the papers mentioned before, in the following manner:

1. Defining a Banach space and a cone of functions, and picking up a function u which
belongs to it. Concretely, there will be a Banach space and cone for each eigenvalue λi
to be determined.

2. Calculating Mju iteratively, where Mj is the composition of M with itself j− 1 times,
M ◦M ◦ · · · ◦M︸ ︷︷ ︸

j times M

.
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3. Calculating the so-called Collatz–Wielandt numbers of Mju in that cone, for different
values of j. These numbers are bounds for the inverse of the eigenvalue λi, and
converge to this as the iteration index j grows.

4. Determining the eigenfunctions ϕi from Mju.

The procedure requires a sequential calculation of the eigenpairs, that is, in order to
calculate λi and ϕi, one has to run the process for the eigenpairs associated with eigenvalues
of smaller absolute value.

For self-completeness, let us recall that, given a Banach space B, a cone P ⊂ B is a
non-empty closed set defined by the conditions:

1. If u, v ∈ P, then cu + dv ∈ P for any real numbers c, d ≥ 0. Note that this condition
implies that 0 ∈ P.

2. If u ∈ P and −u ∈ P, then u = 0.

A cone P is reproducing if any y ∈ B can be expressed as y = u− v with u, v ∈ P.
The existence of a cone in a Banach space B allows the definition of a partial ordering
relationship in that Banach space by setting u ≤ v if and only if v− u ∈ P. Thus, we will
say that the operator M is u0-positive if there exists an integer q > 0 and a u0 ∈ P such
that for any v ∈ P\{0} one can find positive constants δ1, δ2 such that δ1u0 ≤ Mqv ≤ δ2u0
(note that δ1 and δ2 will not be the same for all v). We will denote by int(P) the interior of
the cone P, provided that it exists. Let us note that if Mq maps P\{0} into int(P), then it is
u0-positive, with u0 being any member of int(P).

Following the Forster–Nagy definition [18], if u ∈ P\{0}, the upper and lower Collatz–
Wielandt numbers are defined, respectively, as:

r(M, u) = inf{w ∈ R : Mu ≤ wu}, r(M, u) = sup{w ∈ R : wu ≤ Mu}. (10)

They are called upper and lower Collatz–Wielandt numbers as they extend the es-
timates for the spectral radius of a non-negative matrix given by L. Collatz [19] and H.
Wielandt [20]. We will write them too as r(M, u, P) and r(M, u, P) when we want to make
an explicit reference to the concrete cone P in which they are calculated.

The properties of r(M, u) and r(M, u) and their relationship with the spectral radius of
the operator M have been studied by several authors, starting with Marek [21,22], Forster
and Nagy [18], who corrected some previous mistakes from Marek, and Marek again [23].
The concept has been extended to multiple types of operators, Banach spaces and cones.
The references [24–27], include a good account of recent results.

The use of r(M, Mju) and r(M, Mju) to bound and estimate the principal eigenvalue
of a boundary value problem of the type (3) and (4) seems to date from Webb [28], who
applied it to define conditions for the existence of solutions to non-linear boundary value
problems. Chang [25] proved it for other 1-homogeneous non-linear differential problems
like p-Laplace systems, calling it the power method, so it is possible that it was known
and used before. Later, the authors used it in [29–31] to determine the solvability of
boundary value problems and in [32] to bound and estimate the principal eigenvalue of
boundary value problems including higher derivatives, for which some results on the sign
of the derivatives of the Green function were needed. However, to the knowledge of the
authors, it has never been applied to determine the value of other eigenpairs apart from
the principal one.

This paper took inspiration from an algorithm used to calculate eigenvalues of an
oscillatory matrix described in [4] [Appendix 1], which is also based on the use of the
Collatz–Wielandt numbers in different cones.

The organization of the paper is as follows. In Section 2, the main results will be
presented. In particular, Section 2.1 will introduce the Banach space and the cones to be
used for each λi, and will prove the convergence of the Collatz–Wielandt numbers of
Mju in such cones. The subsection Section 2.2 will yield a procedure to find a function
u belonging to each cone, and will show how to simplify the calculation of the Collatz–
Wielandt numbers. Section 3 will give an example of how to apply the previous theory
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to calculate several eigenpairs of a boundary value problem. Finally, Section 4 will draw
some conclusions.

2. Main Results
2.1. The Procedure to Calculate λp and ϕp

2.1.1. Some Preliminaries

The fact that aj(x) ∈ Cj[a, b] allows definition of the operator L∗ adjoint to L, namely [33]
[Chapter 11, Section 1]:

L∗y = (−1)ny(n)(x) + (−1)n−1(an−1(x)y(x))(n−1) + · · ·+ a0(x)y(x), x ∈ [a, b]. (11)

Accordingly, let us consider the eigenvalue problem adjoint to (2)

L∗y = λ̃r(x)y, x ∈ [a, b]; U∗i (y) = 0, i = 1, . . . , n, (12)

where U∗i are the boundary conditions adjoint to Ui (see [33] [Chapter 11, Theorem 3.1] for
a definition of adjoint boundary conditions). From the properties of the adjoint eigenvalue
problems, it is well known [33] [Chapter 12, Theorem 5.2] that the eigenvalues λ̃i of (12) are
the complex conjugates of those of (2) and (3) (that is λ̃i = λ∗i ), and that its eigenfunctions
ψi form a biorthogonal system with ϕi, namely that:

〈
ψi, ϕj

〉
=
∫ b

a
ψi(x)ϕj(x)r(x)dx = δij. (13)

Given that the eigenvalues λi are real, obviously λ̃i are also real and λ̃i = λi.
Next, given a set of p functions yi(x) ∈ C[a, b] for i = 1, . . . , p, let us introduce

the notation:

∆
(

y1 y2 . . . yp
x1 x2 . . . xp

)
=

∣∣∣∣∣∣
y1(x1) . . . y1(xp)

. . . . . . . . . .
yp(x1) . . . yp(xp)

∣∣∣∣∣∣, (x1, . . . xp) ∈ [a, b]p ⊂ Rp. (14)

The determinant (14) has very interesting symmetric properties. In particular, its
value in [a, b]p is determined by its value in the simplex Ω = {(x1, . . . , xp) : a ≤ x1 <
· · · < xp ≤ b}, as can be easily shown using the properties of determinants. We will
use this simplex frequently in the rest of the paper, together with the related simplex
Ω∗ = {(x1, . . . , xp) ∈ Ω : x1, · · · , xp ∈ I1}.

Let u ∈ C[a, b]. We will denote by ∆p(u; x1, . . . , xp) (or simply ∆p(u)) the function:

∆
(

ϕ1 ϕ2 . . . ϕp−1 u
x1 x2 . . . xp−1 xp

)
, (x1, . . . xp) ∈ [a, b]p ⊂ Rp, (15)

where ϕi are the eigenfunctions of (2). As before, the value of ∆p(u) is given by its value in
the simplex Ω.

Now we are in a position to define the Banach spaces and cones needed by our method.
Thus, for each index p, we will define the Banach space Bp as:

Bp = {y ∈ C[a, b] : 〈ψi, y〉 = 0, i = 1, . . . , p− 1}, (16)

subject to the sup norm ‖y‖ = sup{| f (x)|, x ∈ [a, b]}. Since C[a, b] is complete with
regards to the sup norm and the functional 〈ψi, y〉 is linear and bounded for each ψi, and
therefore continuous, it is straightforward to show that Bp is also complete and therefore a
proper Banach space.

Likewise, the cone Pp will be defined by:

Pp = {y ∈ Bp : ∆p(y) ≥ 0, (x1, . . . xp) ∈ Ω}, (17)
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where Ω is the closure of Ω.
Similarly, the Banach space Bp will be defined as:

Bp = {y ∈ ACmax(n−1,p)[a, b] : 〈ψi, y〉 = 0, i = 1, . . . , p− 1;

Ui(y) ≡ y(ki)(a) + ∑k<ki
γiky(k)(a) = 0, i = 1, . . . , m;

Ui(y) ≡ y(ki)(b) + ∑k<ki
γiky(k)(b) = 0, i = m + 1, . . . , n},

(18)

where ACm[a, b] is the space of functions whose m-th derivative is absolutely continuous
in [a, b]. This space will be endowed with the norm ‖y‖ = max{sup{| f (i)(x)|, x ∈ [a, b]},
i = 0, . . . , max(n− 1, p)}, for p = 0, 1, . . .. As before, it is straightforward to show that Bp
is a Banach space.

Finally, linked to Bp, the cone Pp will be given by:

Pp = {y ∈ Bp : ∆p(y) ≥ 0, (x1, . . . xp) ∈ Ω}. (19)

Lemma 1. The cones Pp and Pp are actually cones.

Proof. From property 3 of the eigenfunctions of (2), (13) and the definition of ∆p in (15),
it is clear that either ϕp or −ϕp belong to both cones, so they are not empty. From the
properties of the determinants one also has:

∆p(cy + dz) = c∆p(y) + d∆p(z),

so if c, d > 0 and ∆p(y), ∆p(z) ≥ 0 for x ∈ Ω, then obviously ∆p(cy + dz) ≥ 0 for x ∈ Ω.
Last, but not least, if ∆p(y) ≥ 0 and ∆p(−y) ≥ 0 for x ∈ Ω, then ∆(y) ≡ 0 in Ω. This is
only possible if y is a linear combination of ϕi for i = 1, . . . , p− 1. As the definition of Bp
and Bp requires y to be orthogonal to the adjoint eigenfunctions ψi, i = 1, . . . , p− 1, (13)
leaves y ≡ 0 in Ω as the only alternative. This completes the proof.

2.1.2. The Operator Mp and Its Properties in the Cones

Let us introduce the operator Mp, defined by:

Mp = εp−1εp M. (20)

The operator Mp has some interesting properties in the cone Pp, such as, for instance,
its positive character.

Theorem 1. The operator Mp maps Pp into itself.

Proof. From (5), (6) and (20), it is clear that Mp maps C[a, b] into ACn−1[a, b] ⊂ C[a, b], and
incidentally the resulting function satisfies the boundary conditions (3). Moreover,

〈
ψi, Mpu

〉
= εp−1εp

∫ b

a
ψi(x)r(x)

∫ b

a
G(x, t)u(t)r(t) dtdx =

εp−1εp

∫ b

a
u(t)r(t)

∫ b

a
G(x, t)ψi(x)r(x) dxdt.

The Green function of the adjoint problem (12) is exactly G∗(x, t) = G(t, x) (see for
instance [33] [Chapter 11, Theorem 4.2]), which yields

〈
ψi, Mpu

〉
= εp−1εp

∫ b

a
u(t)r(t)

∫ b

a
G∗(t, x)ψi(x)r(x) dxdt = εp−1εp

∫ b

a
u(t)r(t)

ψi(t)
λi

dt = 0,
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for any u ∈ Bp. That implies that
〈
ψi, Mpu

〉
= 0 for i = 1, . . . , p− 1, and therefore Mp

maps Bp into itself.
Next, we will prove that ∆p(Mpu) ≥ 0 in Ω when ∆p(u) ≥ 0 in the same set. We

will show first that, in fact, ∆p(Mpu) 6= 0 for x ∈ Ω∗ in that case. Thus, let us assume
that, on the contrary, ∆p(Mpu) = 0 at x’ ∈ Ω∗, that is, there exist (x′1, . . . , x′p) ∈ Ω∗ such
that ∆p(Mpu; x′1, . . . , x′p) = 0. From (14), it follows that there is a linear combination of
ϕ1, . . . , ϕp−1, Mpu:

y(x) = c1 ϕ1(x) + · · ·+ cp−1 ϕp−1(x) + cp Mpu(x), (21)

which vanishes at least at x = x′1, . . . , x′p ∈ I1.
In order for the Green function (6) to be sign-regular, it is necessary that the equation

Lz = 0 is disconjugate on [a, b], that is, no solution of such an equation can have n zeroes in
[a, b] (see, for instance, [3] [p. 1690]). In that case, a result from Polya [34] allows factoring
L in first order differential operators as follows:

L0y = ρ0y,

Liy = ρi(Li−1y)′, i = 1, . . . , n, (22)

and Ly = Lny,

where ρi > 0, ρ0ρ1 · · · ρn = 1 and ρi ∈ Cn−i[a, b].
Let us assume that the number of zeroes of y of (21) is finite in (a, b). Following [3]

[Section 5], let S(d0, . . . , dn) denote the number of sign changes in the sequence d0, . . . , dn
of non-zero real numbers and let σ( f ) be the number of sign changes of f (x) in (a, b). For
the function y, we define the one-sided limit:

S(y, x−) = lim
ξ→x−

S(L0y(ξ), L1y(ξ), . . . , Lny(ξ)). (23)

Using (22) and Rolle’s theorem, Stepanov proved [3] [Lemma 5.1] that:

σ(Ly) ≥ σ(y) + S(y, b−)− S(y, a−). (24)

However, if one reviews the proof of such a lemma, one can easily conclude that in
fact:

σ(Ly) ≥ z(y) + S(y, b−)− S(y, a−), (25)

where z(y) is the number of zeroes of y in (a, b). Stepanov used (24) in several lemmata of the
same paper [3] [Lemmata 6.2, 6.3 and 6.5] to prove the sufficiency of his [3] [Theorem 1.3] for
the Green function (6) to be sign regular on [a, b], theorem who Stepanov had previously [3]
[p. 1713] shown also to be necessary for the sign regularity. Such lemmata essentially proved

σ(Ly) ≥ σ(y),

and one can repeat their same arguments, using inequality (25) instead and mutatis mu-
tandi, to show that

σ(Ly) ≥ z(y) ≥ p. (26)

Since [3] [Theorem 1.3] is also a necessary condition, any sign regular Green function must
fulfil (26) for y having p zeroes in (a, b). Recalling the form of y in (21), then the function:

Ly(x) = r(x)
(
c1λ1 ϕ1(x) + · · ·+ cp−1λp−1 ϕp−1(x) + cpεpεp−1u(x)

)
, (27)

must change its sign at least p times in (a, b), exactly at the same points as

v(x) = c1λ1 ϕ1(x) + · · ·+ cp−1λp−1 ϕp−1(x) + cpεpεp−1u(x), (28)
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given that r(x) is piecewise continuous and positive. Let (x′′1 , . . . , x′′p) be such points and
let us build the matrix:

A =


ϕ1(x′′1 ) . . . ϕ1(x′′p−1) ϕ1(x′′p)

. . . . . . . . . . . . . . . . . . . . .
ϕp−1(x′′1 ) . . . ϕp−1(x′′p−1) ϕp−1(x′′p)

u(x′′1 ) . . . u(x′′p−1) u(x′′p)

, (29)

whose determinant |A| is obviously zero. Given that ϕ1, . . . , ϕp−1 is a Chebyshev system
on I1, the matrix  ϕ1(x′′1 ) . . . ϕ1(x′′p−1)

. . . . . . . . . . . . . . .
ϕp−1(x′′1 ) . . . ϕp−1(x′′p−1)

, (30)

has a range of p− 1, and therefore A must also have a range of p− 1 (the difference between
both matrices is one row and one column). That means that the null space N of A, namely
the subspace of column vectors C ∈ Rp such that CA = 0, has dimension 1, and the vector
composed by the coefficients of ϕ1(x), . . . , ϕp−1(x), u(x) in (27) belongs to N.

Expanding the determinant:∣∣∣∣∣∣∣∣∣
ϕ1(x′′1 ) . . . ϕ1(x′′p−1) ϕ1(x)

. . . . . . . . . . . . . . . . . . . .
ϕp−1(x′′1 ) . . . ϕp−1(x′′p−1) ϕp−1(x)

u(x′′1 ) . . . u(x′′p−1) u(x)

∣∣∣∣∣∣∣∣∣ (31)

along its last column, one obtains a linear combination of ϕ1(x), . . . , ϕp−1(x), u(x) that
vanishes at x′′1 , . . . , x′′p ∈ I1 and which equals ∆p(u; x′′1 , . . . , x′′p−1, x) for any x ∈ (a, b).
Therefore, the column vector composed by the coefficients of that linear combination
(namely, the cofactors of the last column of (31)) must also belong to the subspace N
and be a multiple of the coefficients of ϕ1(x), . . . , ϕp−1(x), u(x) in (27), that is, v(x) of
(28) must be a multiple of ∆p(u; x′′1 , . . . , x′′p−1, x). As v(x) changed its sign at x = x′′p ,
∆p(u; x′′1 , . . . , x′′p−1, x) must also change its sign at x = x′′p . A similar conclusion can be
obtained if y in (21) has infinitely many zeroes in (a, b). Thus, we have proven that if
∆p(Mpu) vanishes at x’ ∈ Ω∗, then ∆p(u) must change sign at least at a point x” ∈ Ω∗, so
u cannot belong to Pp. In summary, if u ∈ Pp, ∆p(Mpu) 6= 0 in Ω∗.

It remains to be proven that ∆p(Mpu) and ∆p(u) have the same sign, namely that
∆p(Mpu) > 0 in Ω∗ when ∆p(u) > 0 in the same set. This follows from the expression
(see, for instance, [4] [Chapter 4, Section 3, Equation (62)]),

∆
(

Mϕ1 Mϕ2 . . . Mϕp−1 Mu
x1 x2 . . . xp−1 xp

)

=
∫ b

a · · ·
∫ t2

a G
(

x1, x2, . . . , xp
t1, t2, . . . , tp

)
∆
(

ϕ1 ϕ2 . . . ϕp−1 u
t1 t2 . . . tp−1 tp

)
r(t1) · · · r(tp) dt1 · · · dtp.

(32)

The left hand side of (32) is exactly εp∆p(Mpu)
|λ1···λp−1|

. From the sign-regularity of G(x, t),

(7) and (32), one has that the signs of ∆p(Mpu) and ∆p(u) coincide in Ω∗. This completes
the proof.

Although the Theorem 1 can be used to obtain some information about the nature
of the eigenvalues λp, it does not provide any indication about the relationship between
the Collatz–Wielandt numbers and λp. A first step towards that direction can be made if
we can find a solid cone Kp contained in Pp (Pp is not solid, as per its definition), which is
mapped by Mp into itself, as the next theorem will show. For that, we need to introduce
the notion of weak irreducibility (see [35] [Definition 7.5]):
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Definition 2. Let P be a solid cone. We say that Mp is weakly irreducible, if the boundary ∂P of P
contains no eigenvectors of Mp pertaining to nonnegative eigenvalues.

Theorem 2. Let Kp be a solid cone such that Kp ⊂ Pp. If Mp maps Kp into itself, then
ϕp ∈ int(Kp) and for any u ∈ Kp\{0} one has

r(Mp, Mj
pu, Kp) ≤

1
|λp|

, j = 1, . . . , (33)

lim
j→∞

r(Mp, Mj
pu, Kp) = lim

j→∞
r(Mp, Mj

pu, Kp) =
1
|λp|

, (34)

and
lim
j→∞
|λp|j Mj

pu = f (u)ϕp, (35)

where f (u) is a non-zero linear functional dependent on u and ϕp.

Proof. Let us first prove that Mp is weakly irreducible in Kp.
From the property 2 of the sign regular problems (see the Introduction) any non-trivial

linear combination of ϕ1, . . . , ϕp−1, ϕi with i > p, where the coefficients of ϕ1, . . . , ϕp−1 are
zero, must have i− 1 zeroes in I1. That implies that ∆p(ϕi) must vanish in at least i− p
points in Ω∗. Using an argument similar to that used in the Theorem 1, one has that ∆p(ϕi)
must change its sign in Ω∗, so ϕi /∈ Pp (ergo ϕi /∈ Kp) for i > p, and therefore Mp is weakly
irreducible in Kp according to the Definition 2.

Next, in the Banach space Bp it is clear that r(Mp) = 1
|λp | > 1

|λi |
for i > p. We

can apply [35] [Theorem 7.7] to conclude that 1
|λp | is a simple eigenvalue of Mp with an

eigenvector ϕp ∈ int(Kp). From here and [25, Lemma 1.16], one gets (33). Likewise,
following the same reasoning as in [32, Theorems 6 and 7], one can get to (35) and, noting
that for some j0 > 0, Mj

pu ∈ int(Kp) for all j ≥ j0, also to (34).

2.1.3. The Cone Pp

The previous theorem does not offer any hints for finding the solid cone Kp, nor does

it indicate any relationship between r(Mp, Mj
pu, Kp) and λp beyond the fact that the upper

Collatz–Wielandt number converges to 1
|λp | . To determine such a relationship, the solid

cone Kp must be such that Mp maps it (excluding the zero element) to its interior. As it
turns out, under certain conditions, the cone Pp defined in (19) is solid and satisfies that
property with regards to Mp.

To establish that, let us start by identifying the interior of Pp. Although one could
be tempted to think that int(Pp) is merely composed by the functions y ∈ Bp such that
∆p(y) > 0 in Ω∗, in the end this is only a necessary condition as one must pay attention to
the value of ∆p(y) in the vicinity of the closure of Ω∗ where in fact ∆p(y) vanishes, namely
when x1 is close to a if a /∈ I1, when xp is close to b if b /∈ I1, and when several values xi
converge simultaneously to the same point x∗.

The next Lemma will give the value of ∆p(y) in the latter case.

Lemma 2. Let us suppose that ϕi, u ∈ ACl [a, b]. If xi+1, . . . , xi+l ∈ (xi − δ, xi + δ) for δ >
0 , then

∆p(u; x1, . . . , xp)

= 1
∏l

j=1 j!
∂l

∂xl
i+l

∂l−1

∂xl−1
i+l−1
· · · ∂∆p(u)

∂xi+1

∣∣∣∣
xi=···=xi+l

∏i≤k<j≤i+l(xj − xk) + o(δ
l(l+1)

2 ). (36)
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Proof. Noting that 1 + 2 + · · ·+ l = l(l+1)
2 , Taylor’s formula for multivariate functions

allows expressing ∆p(u; x1, . . . , xp) when xi+1, . . . , xi+l are in a neighborhood of xi of radius
δ, as:

∆p(u; x1, . . . , xp) = ∆p(u)
∣∣
xi=···=xi+l

+∑l
j=1

∂∆p(u)
∂xi+j

∣∣∣
xi=···=xi+l

(xi+j − xi) +
1
2 ∑l

j=1 ∑l
k=1

∂
∂xi+j

∂∆p(u)
∂xi+k

∣∣∣
xi=···=xi+l

(xi+j − xi)(xi+k − xi) + · · ·+

+ 1
l(l+1)

2 !

l

∑
j=1

l

∑
k=1
· · ·

l

∑
q=1︸ ︷︷ ︸

l(l+1)
2 summation symbols

∂
∂xi+j

· · · ∂∆p(u)
∂xi+q

∣∣∣
xi=···=xi+l

(xi+j − xi) · · · (xi+q − xi) + o(δ
l(l+1)

2 ).

(37)

From the properties of the determinants, (14) and (15), it is clear that all the terms
in (37) where the order of the partial derivatives of two different xj coincide, vanish, which
yields:

∆p(u; x1, . . . , xp)

= ∑
(j1 ,...,jl )∈K

1

∏l
j=1 j!

∂jl

∂xjl
i+l

∂jl−1

∂xjl−1
i+l−1

· · ·
∂j1 ∆p(u)

∂xj1
i+1

∣∣∣∣∣∣
xi=···=xi+l

(xi+l − xi)
jl · · · (xi+1 − xi)

j1 + o(δ
l(l+1)

2 ), (38)

where K is the set of all permutations of the indexes (1, 2, . . . , l).
Let us denote by s(j1, j2, . . . , jl) the signature of the l-tuple (j1, j2, . . . , jl) (the signature

of a tuple is defined to be +1 whenever the reordering (1, 2, . . . , l) can be achieved by
successively interchanging two entries of the tuple an even number of times, and −1
whenever it can be achieved by an odd number of such interchanges). As the different
partial derivatives appearing in (38) are continuous in xi+1, . . . , xi+l (ϕi, u ∈ Cl [a, b] by
hypothesis) and are calculated at the same point xi+j = xi, we can exchange their order
just by taking into account the impact of such a change in the determinant (14) (it is an
exchange of rows), which leads us to:

∂jl

∂xjl
i+l

∂jl−1

∂xjl−1
i+l−1

· · ·
∂j1 ∆p(u)

∂xj1
i+1

∣∣∣∣∣∣
xi=···=xi+l

= (−1)s(j1 ,j2 ,...,jl ) ∂l

∂xl
i+l

∂l−1

∂xl−1
i+l−1

· · ·
∂∆p(u)
∂xi+1

∣∣∣∣∣
xi=···=xi+l

. (39)

Equations (38) and (39) give:

∆p(u; x1, . . . , xp)

=
1

∏l
j=1 j!

∂l

∂xl
i+l

∂l−1

∂xl−1
i+l−1

· · ·
∂∆p (u)
∂xi+1

∣∣∣∣∣∣∣
xi=···=xi+l

∑
(j1,...,jl )∈K

(−1)s(j1,j2,...,jl ) (xi+1 − xi )
j1 · · · (xi+l − xi )

jl + o(δ
l(l+1)

2 ). (40)

The expression within the sum in (40) has exactly the form of the Vandermonde
determinant ∣∣∣∣∣∣

xi+1 − xi · · · xi+l − xi
. . . . . . . . . . . . . . . .

(xi+1 − xi)
l · · · (xi+l − xi)

l

∣∣∣∣∣∣,
whose value, as it is well known, is ∏i≤k<j≤i+l(xj − xk). From here and (40), one gets (36).

Given that a ≤ x1 < . . . < xp ≤ b for (x1, . . . , xp) ∈ Ω, the consequence of the Lemma 2
is that, if α is the lowest derivative which the boundary conditions on a do not specify to
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vanish, β is the lowest derivative which the boundary conditions on b do not specify to
vanish, and ϕi, u ∈ ACp[a, b], the interior of Pp is defined by:

int(Pp) =
{

y ∈ Bp : ∆p(y) > 0, (x1, . . . xp) ∈ Ω∗,

∂α∆p(u)
∂xα

1

∣∣∣
x1=a

> 0, (a, x2, . . . , xp) ∈ Ω, i f a /∈ I1,

(−1)β ∂β∆p(u)

∂xβ
p

∣∣∣∣
xp=b

> 0, (x1, x2, . . . , b) ∈ Ω, i f b /∈ I1,

∂l

∂xl
i+l

∂l−1

∂xl−1
i+l−1
· · · ∂∆p(u)

∂xi+1

∣∣∣∣
xi=···=xi+l=x∗

> 0, i = 1, . . . , p, l = 1, . . . , p− i

}
.

(41)

Remark 1. By the definition of Mp and G(x, t), it is clear that ϕi, Mpu ∈ ACn−1[a, b]. However,
if p > n− 1, one cannot grant that ϕi, Mpu ∈ ACp[a, b], or even the mere existence of int(Pp),
without imposing extra conditions on u, r and the coefficients aj of L in (1). The next theorem will
display some sufficient conditions for that.

Theorem 3. Let us suppose that either p < n or p ≥ n, r(x), aj(x) ∈ ACp−n[a, b] for
j = 0, . . . , n − 1. Let q be the lowest integer greater than 1 such that q · n > p. Then Pp is
solid and Mq

p maps Pp\{0} into int(Pp). In addition, if u ∈ Pp\{0}, then,

r(Mp, Mj
pu) ≤ 1

|λp|
≤ r(Mp, Mj

pu), j = q, . . . , (42)

lim
j→∞

r(Mp, Mj
pu) = lim

j→∞
r(Mp, Mj

pu) =
1
|λp|

, (43)

and
lim
j→∞
|λp|j Mj

pu = f (u)ϕp, (44)

where f (u) is a non-zero linear functional dependent on u and ϕp.

Proof. From (1) and (2), one has:

(Mq
pu)(n)(x) = εp−1εpr(x)Mq−1

p u(x)−
n−1

∑
i=0

ai(x)(Mq
pu)(i)(x), x ∈ (a, b). (45)

Therefore, in order for (Mq
pu)(n)(x) to belong to ACp−n[a, b], it suffices that Mq−1

p u(x),
r(x), aj(x) ∈ ACp−n[a, b] for j = 0, . . . , n− 1, which is granted by the hypotheses and the
fact that q · n > p and Mpu ∈ ACn−1[a, b]. With this, following the same steps as in the
Theorem 1 it is straightforward to show that Mq

p maps Bp into Bp, and that ∆p(Mq
pu) > 0

for x ∈ Ω∗ provided that u ∈ Pp\{0}, which covers the conditions of the first line of (41).
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Let us focus now on the condition of the second line of (41), related to the derivative
of ∆p(Mq

pu) at a when a /∈ I1. From (32), one has:

εp
|λ1 ···λp−1 |

∂α∆p(Mq
pu;a,x2 ,...,xp)

∂xα
1

= ∂α∆
∂xα

1

(
Mϕ1 Mϕ2 . . . Mϕp−1 M(Mq−1

p )u
a x2 . . . xp−1 xp

)

=
∫ b

a · · ·
∫ t2

a

∣∣∣∣∣∣∣∣∣
∂α G(a,t1)

∂xα
1

. . . ∂α G(a,tp)
∂xα

1
G(x2, t1) . . . G(x2, tp)

. . . . . . . . . . . . .
G(xp, t1) . . . G(xp, tp)

∣∣∣∣∣∣∣∣∣∆
(

ϕ1 ϕ2 . . . ϕp−1 Mq−1
p u

t1 t2 . . . tp−1 tp

)
r(t1) · · · r(tp) dt1 · · · dtp

=
∫ b

a · · ·
∫ t2

a

∣∣∣∣∣∣∣∣∣
∂α G(a,t1)

∂xα
1

. . . ∂α G(a,tp)
∂xα

1
G(x2, t1) . . . G(x2, tp)

. . . . . . . . . . . . .
G(xp, t1) . . . G(xp, tp)

∣∣∣∣∣∣∣∣∣∆(Mq−1
p u; t1, . . . , tp)r(t1) · · · r(tp) dt1 · · · dtp.

(46)

As q > 1, ∆p(Mq−1
p u) > 0 in Ω∗ according to the Theorem 1. For that reason, the key

to grant the positivity of the α-th partial derivative at a lies on the value of the determinant
of the matrix: 

∂αG(a,t1)
∂xα

1
. . . ∂αG(a,tp)

∂xα
1

G(x2, t1) . . . G(x2, tp)
. . . . . . . . . . . . .

G(xp, t1) . . . G(xp, tp)

. (47)

Let us denote by Kp(t1; x2, . . . , xp) the matrix:

Kp(t1; x2, . . . , xp) =


∂αG(a,t1)

∂xα
1

∂αG(a,x2)
∂xα

1
. . . ∂αG(a,xp)

∂xα
1

G(x2, t1) G(x2, x2) . . . G(x2, xp)
. . . . . . . . . . . . . . . . . . .

G(xp, t1) G(xp, xp) . . . G(xp, xp)

, (48)

whose determinant we will write as |Kp|. Using Taylor’s formula, when x1 is in the
neighborhood of a one has:

G
(

x1, x2, . . . , xp
t1, x2, . . . , xp

)
=

∣∣∣∣∣∣∣∣∣
∂αG(a,t1)

∂xα
1

∂αG(a,x2)
∂xα

1
. . . ∂αG(a,xp)

∂xα
1

G(x2, t1) G(x2, x2) . . . G(x2, xp)
. . . . . . . . . . . . . . . . . . .

G(xp, t1) G(xp, x2) . . . G(xp, xp)

∣∣∣∣∣∣∣∣∣
(x1 − a)α

α!
+ o((x1 − a)α),

so that the matrix Kp(t1; x2, . . . , xp) must also be sign regular with εp|Kp(t1; x2, . . . , xp)| ≥ 0
for a < t1 < x2 < · · · < xp < b as per (7). We will prove in fact that

εp|Kp| > 0, a < t1 < x2 < · · · xp < b. (49)

We will proceed by induction, following the ideas of [1]. Thus, from [1] [Equation (12.12)],
we know that:

ε1
∂αG(a, t)

∂xα
> 0, a < t < b. (50)

Let us assume that εp−1|Kp−1(t′1; x′2, . . . , x′p−1)| > 0 for a < t′1 < x′2 < · · · < x′p−1 < b
and εp|Kp(t′1; x′2, . . . , x′p)| = 0 for a < t′1 < x′2 < · · · < x′p−1 < x′p < b. If we introduce an
additional pair (x∗, x∗) such that a < t′1 < x∗ < x′2, by the same argument as before on
the sign regularity of G(x, t) one must have that the matrix Kp+1(t′1; x∗, x′2, . . . , x′p) must be
sign regular too with εp+1|Kp+1(t′1; x∗, x′2, . . . , x′p)| ≥ 0.
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Kp+1(t′1; x∗, x′2, . . . , x′p) is therefore a (p + 1)× (p + 1) sign regular matrix whose first

row is composed of terms of the type ∂αG(a,t′1)
∂xα and

∂αG(a,x′j)
∂xα while the rest of rows form

the matrix: 
G(x∗, t′1) G(x∗, x∗) G(x∗, x′2) . . . G(x∗, x′p)
G(x′2, t′1) G(x′2, x∗) G(x′2, x′2) . . . G(x′2, x′p)

. . . . . . . . . . . . . . . . . . . . . . . . .
G(x′p, t′1) G(x′p, x∗) G(x′p, x′2) . . . G(x′p, x′p)

, (51)

which is p× (p + 1) and sign regular, and whose last p columns are linearly independent
(their determinant does not vanish as per (9)). Accordingly its range is p, and the range of
Kp+1(t′1; x∗, x′2, . . . , x′p) must be at least p too.

In the same way, one can find that the range of Kp(t′1; x′2, . . . , x′p), whose determi-
nant vanishes, is p− 1, with its last p− 1 rows linearly independent. Since the range of
Kp−1(t′1; x′2, . . . , x′p−1) is p− 1 by the induction hypothesis, one can apply [1] [Lemma 2] to
conclude that the range of Kp+1(t′1; x∗, x′2, . . . , x′p) equals p− 1, contradicting the previous
assertion. Therefore, |Kp(t′1; x′2, . . . , x′p)| cannot be zero for a < t′1 < x′2 < · · · < x′p < b and,
due to its sign regularity, εp|Kp(t′1; x′2, . . . , x′p)| > 0. By continuity, the matrix (47) must
have a determinant of sign εp for ti ∈ (xi − δ, xi + δ), i = 2, . . . , p. From here and (46) one

gets ∂α∆p(u)
∂xα

1

∣∣∣
x1=a

> 0 for (a, x2, . . . , xp) ∈ Ω.

The condition of the third line of (41) with respect to the derivatives at b, if b /∈ I1, can
be proven in the same way.

As for the last condition of (41), let us assume that:

∂l

∂xl
i+l

∂l−1

∂xl−1
i+l−1

· · ·
∂∆p(Mq

pu)
∂xi+1

∣∣∣∣∣
xi=···=xi+l=x∗

= 0, (52)

for an x∗ ∈ Ω∗. From here, (14) and (15) one has that there exists a linear combination of
ϕ1, . . . , ϕp−1, Mq

pu,
w(x) = d1 ϕ1 + · · ·+ dp−1 ϕp−1 + dp Mq

pu,

with p zeroes on I1, counting their multiplicities (there must be a zero multiple of order
l + 1 at x∗). Using a similar argument to that of the Theorem 1, one has that the function ,

Lw(x) = r(x)
(

d1λ1 ϕ1 + · · ·+ dp−1λp−1 ϕp−1 + dpεp−1εp Mq−1
p u

)
, (53)

must change its sign at least p times in (a, b), exactly at the same points as:

y(x) = d1λ1 ϕ1 + · · ·+ dp−1λp−1 ϕp−1 + dpεp−1εp Mq−1
p u. (54)

Let these points be x′′1 , . . . , x′′p . This means that the function ∆p(Mq−1
p u; x′′1 , . . . , x′′p−1, x)

must change its sign at x = x′′p and therefore u cannot belong to Pp. This completes the proof
that Mq

p(Pp\{0}) ⊂ int(Pp), that is, that Mp is u0−positive in Pp. Equations (42)–(44) follow
now from [32] [Theorems 6 and 7].

Remark 2. The Theorem 3 shows that the Collatz–Wielandt numbers r(Mp, Mj
pu) and r(Mp, Mj

pu)
are lower and upper bounds of the inverse of the eigenvalue |λp|, which converge to it as the iteration
index j grows. Therefore, they allow determining λp with as much accuracy as desired, as the error
in the approximation is bounded by the difference r(Mp, Mj

pu)− r(Mp, Mj
pu).

To clarify how to calculate them, let us recall that, from (10), (14), (15) and (19), for the cone
Pp, they can be expressed as:

r(Mp, Mj
pu) = inf{w ∈ R : ∆p(Mj+1

p u) ≤ w∆p(Mj
pu), x ∈ Ω}, j ≥ q, (55)
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and
r(Mp, Mj

pu) = sup{w ∈ R : w∆p(Mj
pu) ≤ ∆p(Mj+1

p u), x ∈ Ω}, j ≥ q, (56)

provided that ∆p(u) ≥ 0 in Ω. Therefore, their calculation requires a comparison of two functions
in the simplex Ω ⊂ [a, b]p.

We will close this subsection by showing that, in practice, the function u does not need
to be orthogonal to the adjoint eigenfunctions ψi for i = 1, . . . , p− 1 for Equations (42)–(43)
to be valid.

Theorem 4. Under the conditions of the Theorem 3, let us suppose that v ∈ C[a, b] and it is not
identically zero. If ∆p(v) ≥ 0 in Ω, then its Collatz–Wielandt numbers satisfy (42)–(43).

Proof. If we decompose v as:

v =
p−1

∑
i=1
〈ψi, v〉ϕi + u, (57)

it follows that u ∈ Bp and

∆p(u) = −
p−1

∑
i=1
〈ψi, v〉∆p(ϕi) + ∆p(v) = ∆p(v) ≥ 0,

for x ∈ Ω, that is, u ∈ Pp. Likewise,

Mj
pv = (εpεp−1)

j
p−1

∑
i=1

〈ψi, v〉
λ

j
i

ϕi + Mj
pu, (58)

so ∆p(Mj
pv) = ∆p(Mj

pu) and therefore r(Mp, Mj
pu) = r(Mp, Mj

pv) and r(Mp, Mj
pv) =

r(Mp, Mj
pu), for j = 1, . . ..

Remark 3. The property that the function u of the previous theorem fails to hold due to the lack of
orthogonality with ψi, i = 1, . . . , p− 1, is precisely (44), since the term in (58) associated to 1

λ1
gets bigger in absolute value than the rest of terms as the iteration index j grows.

2.1.4. The Calculation of the Adjoint Eigenfunctions ψi

The application of the method described in the Remark 2 for different values of p
requires knowledge of the eigenfunctions ϕi, i = 1, . . . , p− 1. Although the Theorem 4
stated that one can start the iteration Mj

pv with a function v not orthogonal to the adjoint
eigenfunctions ψi, i = 1, . . . , p− 1, such an orthogonality is necessary in order to use (44)
to determine ϕp, and employ the latter in the calculation of λi, ϕi for i > p. This implies
that knowledge on ψi must also be obtained as p increases.

The process to obtain ψp is very similar to that followed for ϕp. To start with, the
sign regularity of G(x, t) ensures the sign regularity of G∗(x, t), where G∗(x, t) is the Green
function of the adjoint problem,

L∗y = 0, x ∈ [a, b]; U∗i (y) = 0, i = 1, . . . , n. (59)

This is due to the fact that G∗(x, t) = G(t, x) (see [33] [Chapter 11, Theorem 4.2]), so that, if
G(x, t) satisfies (7)–(9), it is immediately shown that these conditions hold for G(t, x) too.

Next, one has to define the Banach space,

B∗p = {y ∈ C[a, b] : 〈ϕi, y〉 = 0, i = 1, . . . , p− 1}, (60)
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subject to the sup norm ‖y‖ = sup{| f (x)|, x ∈ [a, b]}, the cone P∗p

P∗p = {y ∈ B∗p : ∆∗p(y) ≥ 0, (x1, . . . xp) ∈ Ω}, (61)

where ∆∗p(y) is defined by:

∆∗p(y) = ∆
(

ψ1 ψ2 . . . ψp−1 yp
x1 x2 . . . xp−1 xp

)
, (x1, . . . xp) ∈ [a, b]p ⊂ Rp, (62)

the Banach space B∗p

B∗p = {y ∈ ACmax(n−1,p)[a, b] : 〈ϕi, y〉 = 0, i = 1, . . . , p− 1; U∗i (y) = 0, i = 1, . . . , n},
(63)

and the cone P∗p
P∗p = {y ∈ B∗p : ∆∗p(y) ≥ 0, (x1, . . . xp) ∈ Ω}. (64)

The operator M∗p is defined by:

M∗pw(x) = εpεp−1

∫ b

a
G(t, x)w(t)r(t)dt, x ∈ [a, b], (65)

given that the Green function of the adjoint problem (12) is exactly G(t, x).
However, the conditions on aj(x) required for P∗p to be solid, and for M∗p to map

P∗p\{0} into int(P∗p ) are stronger, as the next theorem will show:

Theorem 5. Let us suppose that either p < n and aj(x) ∈ ACj[a, b] for j = 0, . . . , n− 1, or
p ≥ n, r(x) ∈ ACp−n[a, b] and aj(x) ∈ ACp+j−n[a, b] for j = 0, . . . , n− 1. Let q be the lowest
integer greater than 1 such that q · n > p. Then P∗p is solid and (M∗p)q maps P∗p\{0} into int(P∗p ).
In addition, if w ∈ P∗p\{0}, then,

r(M∗p, (M∗p)
jw) ≤ 1

|λp|
≤ r(M∗p, (M∗p)

jw), j = q, . . . , (66)

lim
j→∞

r(M∗p, (M∗p)
jw) = lim

j→∞
r(M∗p, (M∗p)

jw) =
1
|λp|

, (67)

and
lim
j→∞
|λp|j(M∗p)

jw = g(w)ψp, (68)

where g(w) is a non-zero linear functional dependent on w and ψp.

Proof. The proof is essentially the same as that of the Theorem 3, changing the references
to ϕi, ∆p and Mp, to ψi, ∆∗p and Mp∗, respectively.

Remark 4. The Theorem 5 implies that, in practice, r(x) ∈ ACp−n[a, b] and aj(x) ∈ ACp+j−n[a, b]
for j = 0, . . . , n− 1, in order to be able to apply the procedure to determine λp, ϕp and ψp for
values of p higher than n.

2.2. Some Practical Considerations for the Application of the Procedure
2.2.1. The Selection of the Starting Function u

A key aspect in the procedure described before is the selection of a function u belonging
to the cone Pp. Whereas the continuity in [a, b] is a condition easy to meet, and for the
orthogonality with the adjoint eigenfunctions ψi one can follow a similar approach to that
of the Theorem 4, the satisfaction of the condition ∆p(u) ≥ 0 in Ω is not so straightforward.
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A possible solution to this problem goes by interpolating u by means of linear splines.
Thus, let us assume a partition {ẋl} of [a, b], with t points and a mesh size h = max{ẋl+1 −
ẋl , l = 1, . . . , t− 1}. The linear spline û is defined by:

û(x) = u(ẋl)
ẋl+1 − x
ẋl+1 − ẋl

+ u(ẋl+1)
x− ẋl

ẋl+1 − ẋl
, x ∈ (ẋl , ẋl+1). (69)

The linear spline û(x) defines a function continuous on [a, b], whose interpolation
error e(x) = |u(x)− û(x)| in each subinterval, if u ∈ C2[ẋl , ẋl+1], is given by:

e(x) =
(ẋl+1 − x)(x− ẋl)

2
u′′(ξ), x, ξ ∈ (ẋl , ẋl+1), (70)

with ξ depending on x, and can be bounded by:

‖e‖ = (ẋl+1 − ẋl)
2

8
max

{∣∣u′′(ξ)∣∣, ξ ∈ (ẋl , ẋl+1)
}

. (71)

From (71), it follows that if the size h of the mesh is small the interpolation error will
also be small.

The advantage of the use of the splines is that it allows the reduction of the determina-
tion of ∆p(u) to calculations over the t points of the mesh, that is, to vectors composed by
the values of ϕi, i = 1, . . . , p− 1, and u at the points ẋl . In [4] [Chapter 5, Section 3], one
can find a couple of Lemmata, Lemma 2 and Lemma 3, which allow constructing a vector
{v(ẋl)} ∈ Rt, which forms a Markov system of vectors with the vectors {ϕi(ẋl)} ∈ Rt,
i = 1, . . . , p − 1. To do so, it suffices to select (more or less randomly) p − 1 values for
the points v(ẋ1), . . . v(ẋp−1) and pick up a value v(ẋp), such that the following inequality
holds: ∣∣∣∣∣∣∣∣

ϕ1(ẋ1) · · · ϕp−1(ẋ1) v(ẋ1)
ϕ1(ẋ2) · · · ϕp−1(ẋ2) v(ẋ2)

. . . . . . . . . . . . . . . .
ϕ1(ẋp) · · · ϕp−1(ẋp) v(ẋp)

∣∣∣∣∣∣∣∣ > 0, (72)

which is always possible if ẋ1 ∈ I1, given that:∣∣∣∣∣∣∣∣
ϕ1(ẋ1) · · · ϕp−1(ẋ1)
ϕ1(ẋ2) · · · ϕp−1(ẋ2)

. . . . . . . . . . . . . . .
ϕ1(ẋp−1) · · · ϕp−1(ẋp−1)

∣∣∣∣∣∣∣∣ > 0, (73)

as ϕ1, . . . , ϕp−1 form a Chebyshev system on I1. If ẋ1 /∈ I1, then the determinant (72) will
vanish regardless of the value of ẋi, i = 2, . . . , p, so we must start the process by calculating
ẋp+1 such that: ∣∣∣∣∣∣∣∣

ϕ1(ẋ2) · · · ϕp−1(ẋ2) v(ẋ2)
ϕ1(ẋ3) · · · ϕp−1(ẋ3) v(ẋ3)

. . . . . . . . . . . . . . . . . . . .
ϕ1(ẋp+1) · · · ϕp−1(ẋp+1) v(ẋp+1)

∣∣∣∣∣∣∣∣ > 0.

The values of the following coefficients v(ẋj) can be determined using a similar inequality:∣∣∣∣∣∣∣∣
ϕ1(ẋi) · · · ϕp−1(ẋi) v(ẋi)

ϕ1(ẋi+1) · · · ϕp−1(ẋi+1) v(ẋi+1)
. . . . . . . . . . . . . . . . . . . . . . .

ϕ1(ẋi+p−1) · · · ϕp−1(ẋi+p−1) v(ẋi+p−1)

∣∣∣∣∣∣∣∣ > 0. (74)
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Once all entries v(ẋl) have been selected, one has to make the spline defined by {v(ẋl)}
orthogonal to the adjoint eigenfunction functions ψi, also constructed as splines. The way
to do it is by calculating the inner vector product:

〈ψi , v〉 =
t−1

∑
l=1

∫ xl+1

xl

(
v(ẋl)

ẋl+1 − x
ẋl+1 − ẋl

+ v(ẋl+1)
x− ẋl

ẋl+1 − ẋl

)(
ψi(ẋl)

ẋl+1 − x
ẋl+1 − ẋl

+ ψi(ẋl+1)
x− ẋl

ẋl+1 − ẋl

)
r(x)dx,

for i < p, and putting

u(ẋl) = v(ẋl)−
p−1

∑
i=1
〈ψi, v〉ϕi(ẋl), l = 1, . . . , t. (75)

From (69) and (75), one can build the linear spline û(x) to be used as the starting point
for the calculations of Mj

pû and ∆p(Mj
pû).

A similar procedure can be used to find a starting function w for the calculations of
(M∗p)jŵ and ∆∗p((M∗p)jŵ) in the adjoint problem, taking into consideration {ψi(ẋl)} and
the orthogonality of w and ϕi, i = 1, . . . , p− 1.

2.2.2. How to Simplify the Calculation of the Collatz-Wielandt Numbers

The Lemmata of [4] that simplified the determination of the starting function û are
based on a Theorem by Fekete ([4], Theorem 8), which relates the minors of matrices whose
columns are long vectors (in our case, {ϕi(ẋl)}, i = 1, . . . , p− 1, and {Mj

pu(ẋl)}) with the
minors made by consecutive entries of these vectors (see (74)). Given that the calculation of
the Collatz–Wielandt numbers requires basically finding ω such that ∆p(Mj+1

p u−ωMj
pu; ẋ)

is greater or lower than zero for all ẋ ∈ Ω, we can also exploit this property to reduce the
number of combination of points ẋj in the simplex Ω, where that determinant has to be
calculated.

Thus, r(Mp, Mj
pu) will be given by the supremum of ω such that:∣∣∣∣∣∣∣∣∣

ϕ1(ẋi) · · · ϕp−1(ẋi) Mj+1
p u(ẋi)−ωMj

pu(ẋi)

ϕ1(ẋi+1) · · · ϕp−1(ẋi+1) Mj+1
p u(ẋi+1)−ωMj

p(ẋi+1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ϕ1(ẋi+p−1) · · · ϕp−1(ẋi+p−1) Mj+1
p u(ẋi+p−1)−ωMj

p(ẋi+p−1)

∣∣∣∣∣∣∣∣∣ > 0, i = 1, . . . , t− p + 1, (76)

whereas r(Mp, Mj
pu) will be given by the infimum of ω such that:∣∣∣∣∣∣∣∣∣

ϕ1(ẋi) · · · ϕp−1(ẋi) Mj+1
p u(ẋi)−ωMj

pu(ẋi)

ϕ1(ẋi+1) · · · ϕp−1(ẋi+1) Mj+1
p u(ẋi+1)−ωMj

p(ẋi+1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ϕ1(ẋi+p−1) · · · ϕp−1(ẋi+p−1) Mj+1
p u(ẋi+p−1)−ωMj

p(ẋi+p−1)

∣∣∣∣∣∣∣∣∣ < 0, i = 1, . . . , t− p + 1. (77)

3. An Example

Let us consider the problem:

y(4) − λ
1
x

y = 0, x ∈ [1, 2], y(1) = y′′(1) = y(3)(1) = y(2) = 0, (78)

which matches the structure (1)–(3) since r(x) = 1
x > 0. The Green function of the

associated problem:

∂4G(x, t)
∂x4 = 0, x ∈ [1, 2], G(1, t) =

∂2G(1, t)
∂x2 =

∂3G(1, t)
∂x3 = G(2, t) = 0, (79)

is defined by:

G(x, t) =

{
− (2−t)3(x−1)

6 , x ∈ [1, t),

− (2−t)3(x−1)
6 + (x−t)3

6 , x ∈ (t, 2].
(80)
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In order to apply the procedure described in this paper, one must verify that G(x, t) is
in fact a sign-regular kernel. In [3], one can find several theorems (Theorems 1.1–1.3) that
provide algorithmically effective conditions for such an identification. However, in this
case it is easier to use the following theorem of Kalafati–Gantmakher–Krein–Karlin (see for
instance [13] [Theorem 4] or [1] [Theorem 8]):

Theorem 6. Suppose that the operator L on [a, b] has the form (22) and the boundary conditions are:

∑n
k=1 αikLk−1y(a) = 0, i = 1, . . . , m,

∑n
k=1 β jkLk−1y(b) = 0, j = 1, . . . , n−m.

(81)

Suppose also that all the non-zero minors of order m of the matrix

A = ‖(−1)kαik‖, i = 1, . . . , m, k = 1, . . . , n,

have the same sign and the same holds for the minors of order (n−m) of the matrix

B = ‖β jk‖, j = 1, . . . , n−m, k = 1, . . . , n.

Then (−1)n−mG(x, t) is an oscillatory kernel provided that the boundary value problem is
non-singular.

The problem (78) has the form (22) with ρ0 = ρ1 = ρ2 = ρ3 = 1, so that Liy(x) = y(i)(x).
The resulting matrix A is

A =

 −1 0 0 0
0 0 −1 0
0 0 0 1

, (82)

whereas B is just the matrix
B =

(
1 0 0 0

)
. (83)

The only non-zero minor of order m = 3 of A is∣∣∣∣∣∣
−1 0 0
0 −1 0
0 0 1

∣∣∣∣∣∣ = 1, (84)

whereas the only non-zero minor of order n − m = 1 of B equals 1. In addition, the
homogeneous boundary conditions are poised in Elias’ sense [36] (that is, the number
of boundary conditions set on derivatives of an order lower than t is at least t, for
t = 1, . . . , n). This implies that λ = 0 is not an eigenvalue and the problem is not singu-
lar [36] [Lemma 10.3]. Accordingly, one can apply the Kalafati–Gantmakher–Krein–Karlin
theorem and conclude that −G(x, t) of (79) is an oscillatory kernel, that is, εi = (−1)i for
all i.

Given that the coefficients of (78) are infinitely continuously differentiable, one can
apply the method described in previous sections to determine all eigenfunctions and
eigenvalues. As an example, we will calculate λ1 and λ2, as well as the corresponding
eigenfunctions ϕ1 and ϕ2, and the adjoint eigenfunctions ψ1 and ψ2.

The operator Mp can be calculated as:

Mpu = x−1
6

∫ x
1

(2−t)3

t u(t)dt− x3

6

∫ x
1

u(t)
t dt + x2

2

∫ x
1 u(t)dt

− x
2

∫ x
1 tu(t)dt + 1

6

∫ x
1 t2u(t)dt + x−1

6

∫ 2
x

(2−t)3

t u(t)dt, x ∈ [1, 2].

(85)
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The Green function G∗(x, t) of the problem adjoint to (78) is linked to G(x, t) of (80)
by G∗(x, t) = G(t, x). Therefore,

G∗(x, t) =

{
− (2−x)3(t−1)

6 , t ∈ [1, x),

− (2−x)3(t−1)
6 − (x−t)3

6 , t ∈ (x, 2]
(86)

and
M∗pu = (2−x)3

6

∫ 2
1

t−1
t u(t)dt + x3

6

∫ 2
x

u(t)
t dt− x2

2

∫ 2
x u(t)dt

+ x
2

∫ 2
x tu(t)dt− 1

6

∫ 2
x t2u(t)dt, x ∈ [1, 2].

(87)

Since p ≤ 2 and n = 4, in all cases it will suffice to use q = 1 (q · n = 1 · 4 = 4 > 3 ≥ p).
The execution of the procedure, using a partition of [1, 2] with size h = 10−6, gives the

Collatz–Wielandt numbers associated to p = 1 and p = 2, which are displayed in Table 1.
According to them, one deduces that λ1 = −163.36711 and λ2 = −5229.8041.

Table 1. Calculation of Collatz–Wielandt numbers for the first and second eigenvalue.

j r(M1, M j
1u) r(M1, M j

1u) r(M2, M j
2u) r(M2, M j

2u)

1 0.0059445 0.0074422 0.0000013 0.0006649
2 0.0061165 0.0062012 0.0001568 0.000287
3 0.006121 0.0061244 0.0001863 0.0002122
4 0.0061212 0.0061213 0.0001902 0.0001961
5 0.0061212 0.0061212 0.0001907 0.0001917
6 0.0061212 0.0061212 0.0001912 0.0001912

The resulting eigenfunctions ϕ1 and ϕ2, as well as the adjoint eigenfunctions ψ1 and
ψ2, are shown in the Figure 1. They have been normalized to sup norm.

Figure 1. Eigenfunctions v1 and v2 and adjoint eigenfunctions w1 and w2.

It is worth remarking that two phenomena observed during the numerical calculations:

• The calculation of ∆p is very sensitive to rounding errors when xi, . . . , xi+p are close
to the extremes a or b, if there are homogeneous boundary conditions set at these. The
reason for that is that the values of ∆p are zero or almost zero there. In these points of
the partition, it makes sense to replace the calculation of ∆p by the calculation of the
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equivalent determinant composed by the lowest derivatives of ϕi and Mj
pu, which do

not vanish at the extreme.
• If u is not exactly orthogonal to ψi, i = 1, . . . , p− 1, beyond a certain iteration it can

happen that in the decomposition of Mju as a sum of terms of the form 1
λ

j
i

〈u, ψi〉ϕi,

the terms associated with those i < p for which 〈u, ψi〉 6= 0 start to get a size similar
to that of the term 1

λ
j
p

〈
u, ψp

〉
ϕp, as anticipated by Remark 3. Further iterations will

make Mj
pu diverge from ϕp and get closer to the eigenfunctions ϕi, i < p, for which〈

u, ψj
〉

ϕj 6= 0. The precise orthogonality is therefore key for the accuracy of the
method.

4. Discussion

The results presented in this paper allow finding the n smallest eigenvalues (and their
associated eigenfunctions) of boundary value problems with sign-regular Green functions,
as well as the following ones provided that certain conditions on the functions aj(x) of L
and r(x) (namely, the absolutely continuity of their derivatives) are met.

The procedure is sequential in the sense that it requires running it for the first p− 1
eigenvalues in order to use it to calculate the p-th one.

For each p, it can be summarized in the following algorithm, which assumes the
knowledge of the p− 1 previous eigenfunctions ϕi and the p− 1 previous adjoint eigen-
functions ψi:

1. Calculate q > 1 such that q · n > p;
2. Select u ∈ Pp\{0} using the process described in the Section 2.2.1, so that u is orthog-

onal to ψi, i = 1, . . . , p− 1;
3. Calculate Mj

pu for j ≥ q;
4. Calculate the Collatz–Wielandt numbers using (76) and (77) and the considerations

described in the Section 2.2.2. These will be bounds for the inverse of the absolute
value of the eigenvalue λp, whose sign is determined by εp−1 and εp of (7), the error

in the calculation being given by the difference r(Mp, Mj
pu)− r(Mp, Mj

pu). Due to
the convergence of the Collatz-Wielandt numbers as j increases, the eigenvalue λp
can be estimated with as much accuracy as desired;

5. The quotient
Mj

pu

r(Mp ,Mj
pu)j

will converge to ϕp as the iteration index j grows;

6. Select w ∈ P∗p\{0} using the process described in the Section 2.2.1, so that w is
orthogonal to ϕi, i = 1, . . . , p− 1;

7. Calculate (M∗p)jw for j ≥ q. The quotient
(M∗p)jw

r(Mp ,Mj
pu)j

will converge to ψp as the iteration

index j grows;
8. Once obtained, this ψp will have to be normalized by dividing it by

〈
ϕp, ψp

〉
so as to

satisfy (13).

The method, however, has also some limitations, mainly:

• For p > n− 1 it requires some absolutely continuity conditions on r(x) and aj(x) in
order to be applicable, in addition to those required for the existence of the adjoint
problem;

• The method depends on the accuracy of the calculation of the p− 1 previous eigen-
functions, given that the determinant ∆p(u) depends on them. For greater values of p
one can expect more accumulated errors in ϕi, i < p, and potentially bigger errors in
λp and ϕp;

• As the size of the determinant ∆p(Mj
pu) grows with p, the computations become more

complicated as p increases. The use of optimized algorithms for the calculation of the
determinants is key to reduce this problem;

• In a practical scenario, the calculation of the Collatz–Wielandt numbers needs to be
performed on a mesh of the simplex Ω∗, as described in the Section 2.2.2. This raises



Mathematics 2021, 9, 2663 21 of 22

some questions about the validity of these numbers in other points of the simplex.
The problem can be addressed by avoiding the use of the supremum and infimum
in the calculation of the Collatz–Wielandt numbers, so that the difference between
Mj+1

p u and ωMj
pu is not zero at any points of the mesh, but a proper analysis on the

effect of the interpolation error needs to be performed.

In any case, we the authors believe it can be a practical alternative for the calculation
of eigenpairs, especially for lower values of p, and also a source for later work, since an
aspect not stressed in this paper is that this approach also allows the determination of
the existence of the eigenvalues λp, the Markov character of the sequence ϕi and, with
the right conditions on aj(x) and r(x), the algebraical and geometrical simplicity of each
eigenvalue and their different absolute value than the others. These properties are widely
known from the previous literature (the reason our focus has been more practical, on the
determination of λp), but in this sense it is worth highlighting that the approach used
here differs from that used in the classical papers [1,4,14], to give a few examples. These
based their analysis on expressions such as (32), whose iterative application p times leads to
strictly positive kernels, and applied it to the cone of positive functions in C[a, b]p, making use
of Krein–Rutman cone theory and other classical results of Schur. While this approach has the
advantage of not imposing extra conditions on aj(x) and r(x), it does not lend itself easily to
work with cone interiors, which are key for the calculation of the Collatz–Wielandt numbers (or
rather, to their relationship with the eigenvalue λp), as Theorems 2 and 3 show.

To complete this paper, let us mention several areas of interest for future research:

• Explore ways of extending the procedure to the case r(x) = 0 in a set of points
of [a, b]. The effect of this is that the set I1, on which the eigenfunctions ϕi form a
Chebyshev system, does not contain these points where r(x) vanishes, complicating
the extensions of some of the results presented here;

• Analyze the effect of the interpolation error committed in the calculation of each
eigenvalue λp by performing the calculation of Collatz–Wielandt numbers only in the
points of the mesh {ẋl};

• Simplify or categorize the conditions defined by Stepanov for the sign-regularity of
the Green function [3] so that their validation does not always require the calculation
of Wronskians of the solutions of Ly = 0 under certain boundary conditions. This
would allow an easier identification of sign-regular problems, where the procedures
of this manuscript can be applied;

• Last but not least, we have made use of the cone Pp as it allows the fixing of conditions
for such a cone to be solid and for Mp to map Pp into its interior. However, this does not
exclude the existence of other solid cones Kp on which to apply Theorem 2. It would
be very interesting to find some examples of these, in order to relax the hypothesis
that Pp demands on r and aj.
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