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Abstract: We revisit the problem of studying the solutions growth order in complex higher order
linear differential equations with entire and meromorphic coefficients of [p, q]-order, proving how
it is related to the growth of the coefficient of the unknown function under adequate assumptions.
Our study improves the previous results due to J. Liu - J. Tu - L. Z Shi, L. M. Li - T. B. Cao , and others.
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1. Introduction, Definitions and Notations

Complex linear differential equations

f (k) + Ak−1(z) f (k−1) + ... + A1(z) f ′ + A0(z) f = 0 (1)

f (k) + Ak−1(z) f (k−1) + ... + A1(z) f ′ + A0(z) f = F(z), (2)

where the coefficients A0, A1, ... , Ak−1, (k ≥ 2), and F( 6≡ 0) are entire or meromorphic
functions, are relevant and they have extensively been studied by many authors (cf. [1–11]).
In this line, Juneja-Kapoor-Bajpai studied entire functions of [p, q]-order with the aim of
accurately discussing the growth of these functions, ([12,13]). Additionally, more recently,
Liu-Tu-Shi [14] modified slightly the aforementioned [p, q]-order definition investigating
properties of the solutions of complex linear differential equations, also see [7].

The study of order of an entire or meromorphic function f studies the symmetries or
analogies between the growth of the maximum modulus of f and the growth of exponential
and logarithmic functions, since the order of growth of a function relates to the rate of
growth of the latter ones, ([7–9,12–14]). In order to handle this comparison, for each real
number r ∈ [0, ∞) belonging to the domain of f ∈ {exp, log}, we consider f1(r) = f (r) and
f0(r) = r. Additionally, for each of such f and p ∈ N, we define fp+1(r) = f ( fp(r)), this for
sufficiently large r when f = log . We will consider exp−1 r = log1 r and log−1 r = exp1 r.
Moreover, given a set E ⊂ [0, ∞), we denote its linear measure by mE =

∫
E dt, and the

logarithmic measure for E ⊂ (1, ∞), by mlE =
∫

E
dt
t .

Despite the fact that this paper uses standard notions of Nevanlinna theory, we
consider it to be convenient to recall some notation that is related to the number of poles of
a meromorphic or entire function that are located within a disk centered at the origin in
order to facilitate its reading (cf. [15–17]). Let n(r, f ) be the number of poles of a function f
(counting multiplicities) in |z| ≤ r, and where n(r, f ) is the number of distinct poles of a
function f in |z| ≤ r. Subsequently, we define the integrated counting function N(r, f ) by
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N(r, f ) =
∫ r

0

n(t, f )− n(0, f )
t

dt + n(0, f ) log r,

and

N(r, f ) =
∫ r

0

n(t, f )− n(0, f )
t

dt + n(0, f ) log r,

on the other hand, we define the proximity function m(r, f ) by

m(r, f ) =
1

2π

∫ 2π

0
log+

∣∣∣ f(reiφ
)∣∣∣dφ,

where log+ x = max{0, log x}. We should think of m(r, f ) as a measure of how close f is
to infinity on |z| = r.

Nevertheless, within that context, we recall that T(r, f ) stands for the Nevanlinna
characteristic function of the meromorphic function f that is defined on each positive real
value r by

T(r, f ) = m(r, f ) + N(r, f ).

Additionally, M(r, f ) stands for the so-called maximum modulus function defined for each
non-negative real value r by

M(r, f ) = max
|z|=r
| f (z)|.

Now, we recall the following definitions, where p, q are positive integers satisfying
p ≥ q ≥ 1.

Definition 1 ([7,14]). Let f be a meromorphic function, the [p, q]−order of f is defined by

σ[p,q]( f ) = lim
r→∞

logp T(r, f )

logq r
.

If f is an entire function, then

σ[p,q]( f ) = lim
r→∞

logp+1 M(r, f )

logq r
.

Remark 1. If p = q = 1, above definition reduces to standard order. If, just q = 1, it reduces to
p-th order.

Definition 2 ([7,14]). The [p, q]− lower order of a meromorphic function f is defined by

µ[p,q]( f ) = lim
r→∞

logp T(r, f )

logq r
.

If f is an entire function, then

µ[p,q]( f ) = lim
r→∞

logp+1 M(r, f )

logq r
.

Definition 3 ([7,14]). The [p, q]−type of a meromorphic function f of [p, q] -order σ(
0 < σ[p,q]( f ) = σ < ∞

)
is defined by

τ[p,q]( f ) = lim
r→∞

logp−1 T(r, f )(
logq−1 r

)σ .
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If f is an entire function, then

τ[p,q]( f ) = lim
r→∞

logp M(r, f )(
logq−1 r

)σ .

Definition 4 ([7,14]). The [p, q]−convergence exponent of the sequence of zeros of a meromorphic
function f is defined by

λ[p,q]( f ) = lim
r→∞

logp N
(

r, 1
f

)
logq r

.

Definition 5 ([7,14]). The [p, q]−convergence exponent of distinct zeros of a meromorphic function
f is defined by

λ[p,q]( f ) = lim
r→∞

logp N
(

r, 1
f

)
logq r

.

Liu-Tu-Shi [14] consider the Equation (1) with entire functions as coefficients, and
then obtain the following results.

Theorem 1 ([14]). Let Aj, 0 ≤ j ≤ k − 1, be entire functions satisfying

max
{

σ[p,q]
(

Aj
)
, j 6= 0

}
< σ[p,q](A0) < ∞, then every nontrivial solution f of (1) satisfies

σ[p+1,q]( f ) = σ[p,q](A0).

Theorem 2 ([14]). Let Aj, 0 ≤ j ≤ k − 1, be entire functions satisfying

max
{

σ[p,q]
(

Aj
)
, j 6= 0

}
≤ σ[p,q](A0) < ∞, and

max
{

τ[p,q]
(

Aj
)

: σ[p,q]
(

Aj
)
= σ[p,q](A0) > 0

}
< τ[p,q](A0),

then every nontrivial solution f of (1) satisfies

σ[p+1,q]( f ) = σ[p,q](A0).

When the coefficients in (2) are meromorphic functions, Li-Cao [7] obtain the follow-
ing result:

Theorem 3 ([7]). Let Aj, 0 ≤ j ≤ k − 1, and F( 6≡ 0) be meromorphic functions, and let f be

a meromorphic solution of (2) satisfying max
{

σ[p+1,q]
(

Aj
)
, σ[p+1,q](F)

}
< σ[p+1,q]( f ), then

we have
λ[p+1,q]( f ) = λ[p+1,q]( f ) = σ[p+1,q]( f ).

The following section contains the main results that deepen the aforementioned theo-
rems regardinf how fast the solutions of linear differential Equations (1) and (2) may grow.

2. Main Results

In this section, we present our main results.
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Theorem 4. Let Aj, 0 ≤ j ≤ k − 1, be entire functions satisfying σ[p,q](A0) = σ1 and

lim
r→∞

k−1
∑

j=1

m(r,Aj)
m(r,A0)

< 1, then every nontrivial solution f of (1) satisfies

σ[p+1,q]( f ) = σ[p,q](A0) = σ1.

Theorem 5. Let Aj, 0 ≤ j ≤ k− 1, be entire functions and let A0 be a transcendental function
that satisfies

max
{

σ[p,q]
(

Aj
)
| j 6= 0

}
≤ µ[p,q](A0) = σ[p,q](A0),

and lim
r→∞

k−1
∑

j=1

m(r,Aj)
m(r,A0)

< 1 (r /∈ E1), where E1 is a set of r of finite linear measure, then every

nontrivial solution of (1) satisfies

σ[p+1,q]( f ) = µ[p,q](A0) = σ[p,q](A0).

For the non-homogeneous case (2), we obtain the following result:

Theorem 6. Let Aj, 0 ≤ j ≤ k− 1, and F( 6≡ 0) be meromorphic functions. If f is a meromorphic
solution of (2) satisfying

lim
r→∞

k−1
∑

j=0
T
(
r, Aj

)
+ T(r, F)

T(r, f )
< 1,

then
λ[p+1,q]( f ) = λ[p+1,q]( f ) = σ[p+1,q]( f ).

3. Preliminary Lemmas

In this section, we introduce some lemmas and remark that we will use them in
the sequel.

Lemma 1 ([17]). Let g : (0, ∞) → R and h : (0, ∞) → R be monotone increasing functions
so that

(1) g(r) ≤ h(r) outside of a set E2 of finite linear measure. Subsequently, for any α > 1, there
exists r0 > 0, such that g(r) ≤ h(αr) for all r > r0.

(2) g(r) ≤ h(r) outside of a set E2 of finite logarithmic measure. Subsequently, for any α > 1,
there exists r0 > 0, such that g(r) ≤ h(rα) for all r > r0.

Lemma 2 ([17]). Let f be a transcendental entire function, and z a point with |z| = r, at which
| f (z)| = M(r, f ). Subsequently, for all |z| outside a set E3 of finite logarithmic measure, it holds

f (n)(z)
f (z)

=

(
ν f (r)

z

)n

(1 + o(1)), (n ∈ N, r 6∈ E3),

where ν f (r) is the central index of f .

Remark 2. Because the number of zeros of a polynomial P of degree n is finite (at most n) and,
indeed, its central index is n for sufficiently large r, the above Lemma 2 holds for any given entire,
transcendental or not, function f .

Lemma 3 ([14]). Let f be an entire function of [p, q]− order satisfying σ[p,q]( f ) = σ5, then there
exists a set E4 ⊂ (1, ∞) having an infinite logarithmic measure, such that, for all r ∈ E4, it holds

lim
r→∞

logp T(r, f )

logq r
= σ[p,q]( f ) = σ5.
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Lemma 4 ([18]). Let Aj, 0 ≤ j ≤ k − 1, be entire functions in (1), with at least one of
them transcendental. If As, s ∈ {0, 1, ... , k− 1}, is the first one (according to the sequence of

A0, A1, ... , Ak−1) satisfying lim
r→∞

k−1
∑

j=s+1

m(r,Aj)
m(r,As)

< 1 (r /∈ E5), where E5 ⊂ (1, ∞) is a set with

finite linear measure, then (1) possesses at most s linearly independent entire solutions satisfying
lim
r→∞

log T(r, f )
m(r,As)

= 0 (r /∈ E5).

Lemma 5 ([12]). Let f be an entire function of [p, q]−order, and let ν f (r) be the central index of
f , then

lim
r→∞

logp ν f (r)

logq r
= σ[p,q]( f ).

4. Proof of Main Results

Proof of Theorem 4. From Equation (1), it follows that

− A0(z) =
f (k)(z)

f (z)
+ Ak−1(z)

f (k−1)(z)
f (z)

+ ... + A1(z)
f ′(z)
f (z)

. (3)

By Remark 2 and (3),

m(r, A0) ≤
k−1

∑
j=1

m
(
r, Aj

)
+ O{log rT(r, f )}, (r 6∈ E), (4)

where E is a set of finite linear measures.
Assume that

lim
r→∞

k−1

∑
j=1

m
(
r, Aj

)
m(r, A0)

= α < β < 1,

then for sufficiently large r, we find that

k−1

∑
j=1

m
(
r, Aj

)
< βm(r, A0). (5)

From (4) and (5), it follows that

(1− β)m(r, A0) ≤ O{log rT(r, f )} (r 6∈ E). (6)

By Lemma 3, there exists a set E4 ⊂ (1, ∞) of r of infinite logarithmic measure, such that,
for all z satisfying |z| = r ∈ E4, we have

lim
r→∞

logp m(r, A0)

logq r
= σ[p,q](A0)(= σ1).

Subsequently, by the definition of limit, there exists a ε > 0, such that

lim
r→∞

logp m(r, A0)

logq r
≥ (σ1 − ε)

⇒ logp m(r, A0) ≥ (σ1 − ε) logq r = log
(

logq−1 r
)(σ1−ε)

⇒ m(r, A0) ≥ expp−1

{(
logq−1 r

)(σ1−ε)
}

.
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By substituting the above inequality in (6), there exists a set E4 ⊂ (1, ∞) of r of infinite
logarithmic measure, such that, for all z satisfying |z| = r ∈ E4\E and for any ε > 0,
we have

(1− β) expp−1

{(
logq−1 r

)σ1−ε
}
≤ (1− β)m(r, A0) ≤ O{log rT(r, f )}, (r 6∈ E). (7)

From (7) and Lemma 1, we deduce

(1− β) expp

{
(σ1 − ε)

(
logq r

)}
≤ O{log rT(r, f )}

⇒ (σ1 − ε)
(

logq r
)
≤ logp+1 T(r, f ) + O(log r).

Taking limit r → ∞ after dividing both side by logq r, we obtain that

σ[p+1,q]( f ) ≥ σ[p,q](A0) = σ1. (8)

On the other hand, Equation (1) provides∣∣∣∣∣ f (k)(z)
f (z)

∣∣∣∣∣ ≤ |Ak−1(z)|
∣∣∣∣∣ f (k−1)(z)

f (z)

∣∣∣∣∣+ ... + |A1(z)|
∣∣∣∣ f ′(z)

f (z)

∣∣∣∣+ |A0(z)|. (9)

Now, Remark 2 provides a set E3 of finite logarithmic measure, so that, for all z satisfying
|z| = r 6∈ E3 and | f (z)| = M(r, f ), we have

f (j)(z)
f (z)

=

(
ν f (r)

z

)j

(1 + o(1)), (j = 1, 2, ... , k). (10)

Subsequently, (5) and the fact σ[p,q](A0) = σ1 imply that

σ[p,q]
(

Aj
)
< σ[p,q](A0) = σ1 (j = 0, 1, ... , k− 1),

∣∣Aj(z)
∣∣ ≤ expp

{(
logq−1 r

)σ[p,q](A0)+ε
}

, (j = 0, 1, ... , k− 1). (11)

Hence, having in mind the definition of [p, q]−order,

|A0(z)| ≤ expp

{(
logq−1 r

)σ[p,q](A0)+ε
}

. (12)

Substituting (10)–(12) into (9), it follows that


∣∣∣ν f (r)

∣∣∣
r

k

|1 + o(1)| ≤ k expp

{(
logq−1 r

)σ[p,q](A0)+ε
}

∣∣∣ν f (r)
∣∣∣

r

k−1

|1 + o(1)|

⇒ ν f (r) ≤ kr expp

{(
logq−1 r

)σ[p,q](A0)+ε
}

= kr expp+1

{(
σ[p,q](A0) + ε

)(
logq r

)}
⇒ logp+1 ν f (r) ≤

(
σ[p,q](A0) + ε

)(
logq r

)
+ logp+1 kr. (13)

Because ε > 0 is arbitrary, Lemma 1 and (13) provide

lim
r→∞

logp+1 ν f (r)

logq r
≤ σ[p,q](A0). (14)
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By Lemma 5 and (14), we get

σ[p+1,q]( f ) ≤ σ[p,q](A0) = σ1. (15)

From (8) and (15), we conclude that

σ[p+1,q]( f ) = σ[p,q](A0) = σ1.

This proves the theorem.

Proof of Theorem 5. From Lemma 4, it follows that every nontrivial solution f of Equation (1)
satisfies lim

r→∞
log T(r, f )
m(r,A0)

> 0 (r 6∈ E5); hence, there exists a δ > 0 and a sequence {rn}∞
n=1 tend-

ing to infinity, so that, for sufficiently large rn 6∈ E5 and for every nontrivial solution f of
Equation (1), we have

log T(rn, f ) > δm(rn, A0). (16)

Lemma 3 provides a set E4 ⊂ (1, ∞) of infinite logarithmic measure, such that, for all
r ∈ E4\E5 and for any ε > 0, we have

δ expp−1

{(
logq−1 rn

)σ[p,q](A0)−ε
}
≤ δm(rn, A0), (17)

i.e., by (16) and (17),

δ expp−1

{(
logq−1 rn

)σ[p,q](A0)−ε
}
≤ δm(rn, A0) < log T(rn, f ). (18)

Lemma 1 and Equation (18) imply that

σ[p+1,q]( f ) ≥ σ[p,q](A0).

As µ[p,q](A0) = σ[p,q](A0), it follows that

σ[p+1,q]( f ) ≥ σ[p,q](A0) = µ[p,q](A0). (19)

On the other hand, from Equation (1),∣∣∣∣∣ f (k)(z)
f (z)

∣∣∣∣∣ ≤ |Ak−1(z)|
∣∣∣∣∣ f (k−1)(z)

f (z)

∣∣∣∣∣+ ... + |A1(z)|
∣∣∣∣ f ′(z)

f (z)

∣∣∣∣+ |A0(z)|. (20)

Because max
{

σ[p,q]
(

Aj
)
| j 6= 0

}
≤ µ[p,q](A0) = σ[p,q](A0), for sufficiently large r and for

any given ε > 0, we have

∣∣Aj(z)
∣∣ ≤ expp

{(
logq−1 r

)σ[p,q](A0)+ε
}

, j = 1, 2, ... , k− 1. (21)

Again, having in mind the definitions of [p, q]−order, we have

|A0(z)| ≤ expp

{(
logq−1 r

)σ[p,q](A0)+ε
}

. (22)

Now taking Lemma 2 into account, we may assure that there exists some set E3 of finite
logarithmic measure, so that whenever |z| = r 6∈ E3 and | f (z)| = M(r, f ), it holds that(

f (j)(z)
f (z)

)
=

(
ν f (r)

z

)j

(1 + o(1)), (j = 1, 2, ... , k). (23)
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Substituting (21)–(23) into (20), we obtain


∣∣∣ν f (r)

∣∣∣
r

k

|1 + o(1)| ≤ k expp

{(
logq−1 r

)σ[p,q](A0)+ε
}

∣∣∣ν f (r)
∣∣∣

r

k−1

|1 + o(1)|

⇒ ν f (r) ≤ kr expp

{(
logq−1 r

)σ[p,q](A0)+ε
}

= kr expp+1

{(
σ[p,q](A0) + ε

)(
logq r

)}
⇒ logp+1 ν f (r) ≤

(
σ[p,q](A0) + ε

)(
logq r

)
+ logp+1 kr. (24)

Because ε > 0 is arbitrary, from Lemma 1 and (24), we deduce

lim
r→∞

logp+1 ν f (r)

logq r
≤ σ[p,q](A0). (25)

Lemma 5 and (25) imply that

σ[p+1,q]( f ) ≤ σ[p,q](A0).

Because µ[p,q](A0) = σ[p,q](A0), we have

σ[p+1,q]( f ) ≤ σ[p,q](A0) = µ[p,q](A0). (26)

Consequently, by (19) and (26),

σ[p+1,q]( f ) = σ[p,q](A0) = µ[p,q](A0).

This proves the theorem.

Proof of Theorem 6. Let us rewrite Equation (2) as

1
f
=

1
F

(
f (k)(z)

f (z)
+ Ak−1(z)

f (k−1)(z)
f (z)

+ ... + A1(z)
f ′(z)
f (z)

+ A0(z)

)
. (27)

If f has got a zero at z0 of order β (β > k), and if A0(z), A1(z), ... , Ak−1(z) are all of them
analytic at z0, then F has obtained a zero at z0 of order β− k. Therefore

N
(

r,
1
f

)
≤ kN

(
r,

1
f

)
+ N

(
r,

1
F

)
+

k−1

∑
j=0

N
(
r, Aj

)
. (28)

The classical lemma on logarithmic derivative and (27) bring out that the inequality

m
(

r,
1
f

)
≤ m

(
r,

1
F

)
+

k−1

∑
j=0

m
(
r, Aj

)
+ O(log rT(r, f )), (29)

holds for r /∈ E, E being a set of finite linear measure.
Analogously from (28) and (29), it follows that the inequality

T(r, f ) = T
(

r,
1
f

)
+ O(1) = N

(
r,

1
f

)
+ m

(
r,

1
f

)
+ O(1)

≤ kN
(

r,
1
f

)
+ T(r, F) +

k−1

∑
j=0

T
(
r, Aj

)
+ O(log rT(r, f )). (30)
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holds for r /∈ E, where E is a set of r of finite linear measure.
Suppose that

lim
r→∞

k−1
∑

j=0
T
(
r, Aj

)
+ T(r, F)

T(r, f )
= δ < c < 1.

Subsequently, for sufficiently large r and for any given ε, 0 < ε < c− δ, it holds

k−1

∑
j=0

T
(
r, Aj

)
+ T(r, F) ≤ (δ + ε)T(r, f ) < cT(r, f ). (31)

Substituting (31) into (30), we obtain that

T(r, f ) ≤ kN
(

r,
1
f

)
+ cT(r, f ) + O(log rT(r, f ))

⇒ (1− c)T(r, f ) ≤ kN
(

r,
1
f

)
+ O(log rT(r, f ))

⇒ T(r, f ) ≤ 2k
1− c

N
(

r,
1
f

)
+ O(log rT(r, f )), (r 6∈ E). (32)

First, take logarithm and divide by logq r in both side of (32) and then take limit r → ∞,
we can obtain that

λ[p+1,q]( f ) ≥ σ[p+1,q]( f ).

Definitions make immediate the reverse inequalities

λ[p+1,q]( f ) ≤ λ[p+1,q]( f ) ≤ σ[p+1,q]( f ).

Therefore,
λ[p+1,q]( f ) = λ[p+1,q]( f ) = σ[p+1,q]( f ).

This proves the theorem.

5. Discussion

Keeping the results already established in mind, one may explore, for analogous
theorems in which the coefficients of differential equations are bi-complex valued, entire
and meromorphic functions of [p, q]-order, with p and q being any two integers with
p ≥ q ≥ 1 . Further, the case in which the coefficients of differential equations generated by
analytic functions of [p, q]-order in the unit disc may be considered by future researchers in
this area. Moreover, the investigation of the problems under the flavor of [p, q] index pair
of both complex and bi-complex valued entire and meromorphic functions is still a virgin
domain for the new researchers.

6. Open Problem

The methodologies that were adopted in this paper can be treated algebraically under
the flavor of bicomplex numbers, and these may be regarded as an Open Problem to the
future workers of this branch.
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