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Abstract

We present a novel class of integrators for differential equations that are suitable for parallel in time computation,
whose structure can be considered as a generalisation of the extrapolation methods. Starting with a low order integrator
(preferably a symmetric second order one) we can build a set of second order schemes by few compositions of this
basic scheme that can be computed in parallel. Then, a proper linear combination of the results (obtained from the
order conditions associated to the corresponding Lie algebra) allows us to obtain new higher order methods. In this
letter we present the structure of the methods, how to obtain several methods, we notice some order barriers that
depend on the structure of the compositions used and finally, we show how this analysis can be further carried to
obtain new and higher order schemes.
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1. Introduction

We consider the numerical integration of the ODE

x′ = f(t, x), x(t0) = x0, (1)

with x ∈ Cd and formal solution given by x(t) = φt(x0) by using a novel class of methods that are suitable for
parallel computation and whose structure can be considered as a generalisation of extrapolation methods. Extrapola-
tion methods are among the most efficient schemes when highly accurate results are required [7, 11, 12, 16] and, in
addition, they can be computed in parallel.

If there is not a constraint in the number of processors, we show that a generalisation of the extrapolation process
(leading to a novel class of methods) can improve their accuracy while keeping the sequential cost per step. Different
classes of parallel methods for ODEs have been frequently considered in the literature (see [11] or the most recent
review work [8]), and in this work we only consider the parallel in time integration [5, 6, 13].

In this letter we illustrate this novel procedure in very simple cases and we present new 4th and 6th-order methods.
Closely related schemes with complex coefficients and with the goal to preserve time-symmetry and other qualitative
properties to higher order is considered in [5]. Let us denote by Sh a symmetric second order integrator in the time
step, h, i.e. Sh = φh + O(h3) and Sh ◦ S−h = I , the identity map (explicit or implicit symmetric second order
schemes can be easily built [1, 9, 11, 12, 15]). A 4th-order extrapolation method is given by the linear combination

Φ
[4]
h =

4

3
Sh/2 ◦ Sh/2 −

1

3
Sh. (2)

To compute xn+1 from xn, with xk ' x(tk), tk = t0 + kh, each processor computes yi =
∏i

j=1 Sh/2j−1(xn), i =

1, 2 and the results are combined to get xn+1 = 4
3y2 −

1
3y1. The cost is dominated by the evaluation of the most

costly process, y2, i.e. two maps Sh per step (see [7, 11]). If the map Sh is a geometric integrator that preserves
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some of the qualitative properties of the exact solution then, these properties are preserved by composition leading
to integrators with high performance when medium to long time integrations are considered [2, 10, 14]. However,
the linear combination in the extrapolation methods destroy these qualitative properties, although this can happen at
a higher orders than the order of the method [3, 4]. In addition, a variable time step procedure can be implemented if
one compares the accurate 4th-order approximation, xn+1 with the second order one y2 (see [11]).

Notice that, at the same computational cost, the following more general scheme

Ψ
[4]
h = b2S(1−a2)h

◦ Sa2h + b1S(1−a1)h
◦ Sa1h (3)

(which contains the previous one as a particular case: a1 = 0, a2 = 1
2 , b1 = − 1

3 , b2 = 4
3 ) could provide more accurate

results for appropriate choices of the coefficients a1, a2, b1, b2. This scheme can be further generalised to the case in
which we have k available processors, as follows

Ψ
[m,2]
h =

k∑
j=1

bjS(1−aj)h
◦ Sajh.

The accuracy of the method will depend on how much the map Ψ
[m,2]
h approaches the exact solution φh, and this

depends on the number of order conditions the coefficients ai, bisatisfy. Given a value of k we can choose a set of
values for the coefficients ai, i = 1, . . . , k (with ai 6= aj , i 6= j and taking into account that the choice ai = 0
is equivalent to ai = 1) and then the coefficients bi have to solve a linear system of equations. In some cases, it is
possible to solve the same set of equations with a reduced value of k by allowing some of the coefficients ai to satisfy
non-linear order conditions.

We will show that this class of methods has an order barrier. One of the conditions at order h5 is not independent.
It is possible to obtain 4th-order methods that are optimised in the sense that contributions at higher orders can
be vanished leading to superior methods to (2) for a number of problems but, in general, 5th-order methods can
not be obtained. In addition, once the coefficients ai are fixed, it is also possible to find another set of values for
the coefficients bi such that the embedded method is of order three, allowing for sharper error estimators than the
estimators for extrapolation methods.

To get higher order methods one has to add another map. We illustrate the procedure by considering combinations
of symmetric schemes (to consider symmetric schemes simplify the analysis, but a non-symmetric sequence could be
considered) as, for example

Ψ
[m,3]
h =

k∑
j=1

bjSajh ◦ S(1−2aj)h
◦ Sajh (4)

whose performance has to be compared with the 6th-order extrapolation method

Φ
[6]
h =

81

40
Sh/3 ◦ Sh/3 ◦ Sh/3 −

16

15
Sh/2 ◦ Sh/2 +

1

24
Sh (5)

that uses the more economical harmonic sequence (other sequences for extrapolation methods would require more
than three maps per step and usually show slightly worst performance [11]).

2. Fourth and sixth-order methods

The goal of this section is not to obtain the most efficient 4th and 6th-order methods of this class but to illustrate that
the performance of the extrapolation methods can be further raised, and we illustrate it with the following schemes:

• An optimised 2-stage 4th-order method

Ψ
[4,2]
h = b3S(1−a3)h

Sa3h + b2S(1−a2)h
Sa2h + b1S(1−a1)h

Sa1h, (6)

with
a1 = 0.185083473675167899, a2 = − 1

10 a3 = 1
10 ,

b1 = 8.200177124779414591, b2 = 1.277318043040618944, b3 = 1− b1 − b2,
b̂1 = 1, b̂2 = −0.912528759429160013, b̂3 = 1− b̂1 − b̂2.
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The embedded method, say Ψ̂
[3,2]
h is of order three and corresponds to an scheme similar to Ψ

[4,2]
h but replacing

the coefficients bi by b̂i.

• An optimised 3-stage 6th-order method

Ψ
[6,3]
h =

5∑
i=1

biSaih S(1−2ai)h Saih (7)

with an embedded method of order five

a1 = 1.128520493860176762 b1 = −0.031183710241561175 b̂1 = −1/10

a2 = 0.790595004758162983 b2 = 0.587534847838132073 b̂2 = 0.722848812595572664

a3 = 0.604432933065477058 b3 = −1.141887280735286118 b̂3 = −1.177391519427465008

a4 = −0.022021631480667294 b4 = −0.116862322614714864 b̂4 = −0.143395596461239863

a5 = 33
100 b5 = 1− b1 − b2 − b3 − b4 b̂4 = 1− b̂1 − b̂2 − b̂3 − b̂4.

2.1. Numerical example

Let us consider the two-dimensional Kepler problem with Hamiltonian

H(q, p) = T (p) + V (q) =
1

2
pT p− 1

r
.

Here q = (q1, q2), p = (p1, p2), and we take initial conditions q1(0) = 1−e, q2(0) = 0, p1(0) = 0, p2(0) =
√

1+e
1−e ,

so that the trajectory corresponds to an ellipse of eccentricity e and period T = 2π. We integrate until tf = 30 with
the 4th- and 6th-order methods, and compute the maximum error in the vector (q, p) along the whole integration (we
compare with a highly accurate numerical solution). Figure 1 shows the maximum error versus the highest number
of force evaluations of any of the processors (two and three evaluations per step for the 4th and 6th-order methods,
respectively). Solid lines correspond to the new methods and dashed lines to extrapolation methods. Similar lines
with circles show the results if the whole integration was carried out with the associated embedded methods. The left
picture shows the results of the 4th-order methods and the right picture for the 6th-order ones. The embedded methods
also provide sharper error bounds.

We clearly observe that, while the new 4th-order methods is only slightly superior to the extrapolation method,
the improvement of the new 6th-order method is significant, and this is due to the fact that one has more parameters
available for optimisation purposes.

3. Order conditions

Let us consider, for simplicity in the presentation, the autonomous equation (the results remain also valid for the
non-autonomous case too)

x′ = f(x) = Y1x, Y1 ≡ f(x)
∂

∂x

whose solution can formally be written as x(t) = φt(x0) = etY1x0. A symmetric second order scheme, Sh, can
be seen as the exact solution of a perturbed differential equation (backward error analysis [10]) where the perturbed
vector field only has even powers of h, i.e.

x′ = fh(x) = f(x) + h2f3(x) + h4f5(x) + . . . , or x′ = (Y1 + h2Y3 + h4Y5 + . . .)x,

where f3, f5, . . . and their associated operators, Y3, Y5, . . . depend on the particular method, and formally we can
writte

Sh = ehY1+h3Y3+h5Y5+..., so Sah = eahY1+a3h3Y3+a5h5Y5+....

3
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Figure 1: Maximum error in positions vs. the number of evaluations of the basic S[2]
h scheme for the Kepler problem. Solid lines correspond to the

novel 4th- and 6th-order methods and the dashed lines correspond to the extrapolation ones, and with circles are the results if integrated only with
the associated embedded methods. Left figure show the results for the 4th-order methods while the right figure shows the results for the 6th-order
ones.

Taking into account the BCH formula for non-commuting operators

eXeY = eX+Y+ 1
12 ([X,[X,Y ]]+[Y,[Y,X]])+...

where [X,Y ] = XY − Y X , and the symmetric BCH formula

eXeY eX = e2X+Y− 1
6 [X,[X,Y ]]+ 1

6 [Y,[Y,X]]+...

we obtain that

S(1−a)hSah = exp
(
hY1 + g3,1h

3Y3 + g4,1h
3[Y1, Y3] + g5,1h

5Y5 + g5,2h
5[Y1, [Y1, Y3]] . . .

)
,

with
g3,1 = a3 + (1− a)3, g4,1 = 1

2 (a3(1− a)− a(1− a)3),
g5,1 = a5 + (1− a)5, g5,2 = 1

12 (1− 2a)(a3(1− a)− a(1− a)3).
(8)

If we now consider the symmetric BCH formula and the Taylor expansion of the exponential we have

S(1−a)hSah

= exp
(1

2
hY1

)
exp

(
g3,1h

3Y3 + g4,1h
3[Y1, Y3] + g5,1h

5Y5 + ḡ5,2h
5[Y1, [Y1, Y3]] +O(h6)

)
exp

(1

2
hY1

)
= exp

(1

2
hY1

)(
I + g3,1h

3Y3 + g4,1h
3[Y1, Y3] + g5,1h

5Y5 + ḡ5,2h
5[Y1, [Y1, Y3]] +O(h6)

)
exp

(1

2
hY1

)
,

where ḡ5,2 = g5,2 + 1
6g3,1. Then, we can write

Ψ
[m,2]
h =

k∑
j=1

bjS(1−aj)h
◦ Sajh

= exp
(1

2
hY1

)(
I +G3,1h

3Y3 +G4,1h
3[Y1, Y3] +G5,1h

5Y5 + Ḡ5,2h
5[Y1, [Y1, Y3]] +O(h6)

)
exp

(1

2
hY1

)
,

(we always assume the consistency condition is satisfied,
∑k

j=1 bj = 1) and

G`,n =

k∑
j=1

bjg
j
`,n
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where gj`,n denotes g`,n when a is replaced by aj and Ḡ5,2 = G5,2− 1
6G3,1. Then the 4th-order extrapolation method

(2) satisfies

G3,1 = G4,1 = G5,2 = 0, G5,1 =
1

4
.

The goal with the new methods is to look for a set of coefficients ai, bi such that G5,1 = 0 is also satisfied, leading to
a 5th-order method. Unfortunately, it happens that

G5,2 =
1

60
− 1

12
G3,1 +

1

15
G5,1

and G5,2, G3,1, G5,1 can not be simultaneously vanished. We considered the scheme (6) that allows to get a method
with

G3,1 = G4,1 = G5,1 = 0, G5,2 =
1

60

(we leave two free parameters among the coefficients ai) that, in general, leads to more accurate results. In addition,
we can easily find another set of values for the coefficients bi with the same values of ai that lead to a third-order
method as an embedded method, i.e. to consider a set of coefficients b̂i, ı = 1, . . . , k such that

∑k
i=1 b̂i = 1 and

G3,1 = 0. We have taken one solution, as an illustration, that is not necessarily the optimal one.
Similarly, we have that

SahS(1−2a)hSah = exp
(
hY1 + f3,1h

3Y3 + f5,1h
5Y5 + f5,2h

5[Y1, [Y1, Y3]] . . .
)

= exp
(1

2
hY1

)
(
I + f3,1h

3Y3 + f5,1h
5Y5 + f̄5,2h

5[Y1, [Y1, Y3]] +
1

2
f23,1h

6Y 2
3 + f7,1h

7Y7 +O(h7)
)

exp
(1

2
hY1

)
,

with
f3,1 = 2a3 + (1− 2a)3, f5,1 = 2a5 + (1− 2a)5,
f7,1 = 2a7 + (1− 2a)7, f5,2 = 1

12 (1− a)(1− 2a)a(a2 − (1− 2a)2).
(9)

If we denote (as previously, f j`,n corresponds to f`,n when a is replaced by aj)

F`,n =

k∑
j=1

bjf
j
`,n, with F6,1 =

k∑
j=1

bj(f
j
3,n)2, F8,1 =

k∑
j=1

bj(f
j
3,nf

j
5,n)

then the 6th-order extrapolation method (5) satisfies

F3,1 = F5,1 = F5,2 = F6,1 = 0, F7,1 = 0.0277.

The scheme Ψ
[6,3]
h in (7) has 10 parameters to satisfy the 5 order conditions to reach order six (including consistency).

Three processors would suffice to have enough parameters, for example, by taking b4 = b5 = 0, and there would
still have one free parameter. Such free parameter could be used, for example, to vanish F7,1 but even in this case the
methods we obtain did not show in practice a higher performance that the extrapolation method. We have added two
extra processes in order to vanish higher order error contributions as well as to have enough parameters b̂i to build a
5th-order embedded method that is different from the method itself.

At order seven there are four independent terms, Y7, [Y1, [Y1, Y5]], [Y1, [Y1, [Y1, [Y1, Y3]]]], [Y3, [Y1, Y3]] whose
coefficients can not be canceled with linear combinations of this family of 3-map symmetric compositions. Notice
that each function f jn,i is a polynomial function of degree n in the variable aj , and we can write it as follows

f jn,i =

n∑
`=0

A`a
`
j so Fn,i =

k∑
j=1

bjf
j
n,i =

n∑
`=0

A`

 k∑
j=1

bja
`
j


and only n independent conditionsFm,i = 0 can be satisfied (the same number as independent equations,

∑k
j=1 bja

`
j =

0, ` = 1, 2, . . . , n). This introduces a limit in the highest degree we can reach with the scheme (10), but still allows to
choose which conditions at order seven or higher can be convenient to vanish for different classes of problems.
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We took a5 as a free parameter and used the remaining four extra parameters to vanish the coefficients of
Y7, [Y1, [Y1, [Y1, [Y1, Y3]]]] at order seven, Y3Y5 at order eight and Y9 at order nine. Different optimisation crite-
rion could be used for different purposes that will depend on each problem with its particular algebra. Once the values
ai are fixed, we took b̂1 as a free parameter and got the remaining coefficients b̂i, i = 2, 3, 4, 5 such that the resulting
embedded method satisfies F3,1 = F5,1 = F5,2 = 0 in addition to consistency, i.e. it is of order five (instead of four
as it happens for extrapolation).

We have shown that this new family of methods can provide highly efficient methods and the next step is to carry
a deep analysis of the order conditions and optimisation procedures in order to obtain the most efficient schemes with
a moderately low number of processors. Once we have identified the problem to reach methods of order higher than
six with the composition (7), it is then natural to consider the more general composition

Ψ
[m,3]
h =

k∑
j=1

cjS(1−aj−bj)hSbjhSajh. (10)

The number of order conditions increase due to the loss of symmetry of the compositions but there are more free
parameters that could circumvent the order barrier we found in the previous symmetric compositions. This long and
elaborated analysis will be carried and published elsewhere.

If one is interested in forward integration, we can fix the values of the coefficients ai, bi to guarantee forward
integration, and then to solve the linear equations with the coefficients ci (with some few more processors). Methods
with complex coefficients as well as preservation of time-symmetry and other qualitative properties to higher orders
than the order of the method can also analysed [5].
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