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Resumen
Debido a las regulaciones en materia de emisiones y CO2 la industria automotriz a

desarrollado diferentes tecnoloǵıas inovadoras. Estas tecnologias incluyen combustibles
alternativos y nuevos modos de combustión, entre otros.

De aqúı surge la necesidad del desarrollo de nuevos métodos para el control de
la combustión en estas condiciones mencionadas. Por este motivo, en este trabajo se
han desarrollado diferentes modelos e indicadores orientados al diagnóstico y control
de la combustión tanto en condiciones normales como anormales.

Para los casos de combustion normal, se ha desarrollado un modelo de com-
bustion, cuyo objetivo es estimar la media de la evolución de la fracción de la masa
quemada y la presión dentro del cilindro. Se implementó un observador, basado en la
señal de knock, con la finalidad de mejorar la estimación en condiciones transitorias y
poder aplicar aśı el modelo a diferentes tipos de combustibles. También se presenta
un modelo de variabilidad ćıclica, en el cual, a partir del modelo de combustión, se
propaga una distribución en dos de los parametros de dicho modelo. Ambos modelos
han sido aplicados para un motor de encendido provocado y un motor de combustión
de encendido por chorro turbulento.

En los casos de combustion anormal, se ha includo un analisis de la resonancia
dentro de la cámara de combustion, en donde también se desarrollaron dos modelos
capaces de estimar la evoluación de la resonancia.

Estos modelos, tanto para condiciones normales como anormales, se utilizaron
para el diagnóstico de la combustión. Por una parte, para la detección de knock, en
donde tres estrategias de detección de knock fueron desarrolladas: dos basadas en el
sensor de presión en cámara y una en el sensor de knock. Por otra parte, se realizó
una aplicación de un modelo de resonancia para la mejora de la estimación de la masa
atrapada a partir de la resonancia.

Finalmente, para mostrar el potencial de los modelos de diagnóstico, dos aplica-
ciones a control se desarrollaron: una para el control de knock a través de la actuación
de la chispa, y otra para el control de gases residuales, a través de la actuación de la
distribución variable, realizando paralelamente una optimización de la combustión a
través de la actuación de la chispa.



Resum
Impulsada per les regulacions en matèria d’emissions i CO2 la indústria automotriu

a desenvolupat diferents tecnologies inovadore. Aquestes tecnologies inclouen com-
bustibles alternatius i nous modes de combustió, entre altres.

D’aćı sorgix la necessitat posar en pràctica nous mètodes per al control de la
combustió. En aquest context, el present trevall proposa diferents models i indicadors
orientats al diagnòstic i control de la combustió tant en condicions normals com
anormals.

Per als casos de combustió normal, es proposa un model de combustió, l’objectiu
del qual és estimar la mitjana de l’evolució de la fracció de la massa cremada i la
pressió dins del cilindre. Es va implementar un observador, basat en la senyal de
knock, amb la finalitat de millorar l’estimació en condicions transitòries i poder
aplicar aix́ı el model a diferents tipus de combustibles. També es presenta un model
de variabilitat ćıclica, en el qual, a partir del model de combustió, es propaga una
distribució en dos dels parametres del dit model. Ambdós models han sigut aplicats
a un motor d’encesa provocada i un motor de combustió d’encesa per doll turbulent.

Als casos de combustió anormal, s’ha inclos un anàlisi de la ressonància dins de
la cambra de combustió, on també es van desenvolupar dos models capaços d’estimar
l’evolució de la ressonància.

Aquests models, tant per a condicions normals com anormals, s’utilitzen per
al diagnòstic de la combustió. Per una part, per a la detecció de knock, on tres
estratègies de detecció de knock s’han desenvolupat: dues basades en el sensor de
pressió a la cambra de combustió i una altra basada en el sensor de knock. Per altra
part, es va realitzar una aplicació d’un model de ressonància per a la millora de
l’estimació de la massa atrapada a partir de la ressonància.

Finalment, per a mostrar el potencial dels models de diagnòstic, dos aplicacions
de control es van desenvolupar: una per al control de knock a través de l’actuació de
l’espurna, i una altra per al control de gasos residuals, a través de l’actuació de la
distribució variable, realitzant paral·lelament una optimització de la combustió a
través de l’actuació de l’espurna.



Abstract
The need to satisfy emissions and CO2 regulations is pushing the automotive

industry to develop different innovative technologies. These technologies include
alternative fuels and new modes of combustion, among others.

Therefore, the need for the development of new methods for combustion control
in these mentioned conditions arises. For this reason, in this work different models
and indicators have been developed aimed at the diagnosis and control of combustion
in both normal and abnormal conditions.

For normal combustion cases, a combustion model has been developed, the
objective of this model is to estimate the mean of evolution of the mass fraction
burned and the in-cylinder pressure. An observer had been implemented, based
on knock sensor signal, in order to improve the estimation in transient conditions
and also to be able to make use of the model with different fuels. A cyclic vari-
ability model is also presented, where from the combustion model, a probability
distribution is propagated over two of the parameters of such model. Both models had
been applied for a spark ignition engine and a turbulent jet ignition combustion engine.

For the abnormal combustion cases, an analysis of the resonance within the
combustion chamber had been included, where two models capable of estimating the
evolution of the resonance were also developed.

These models, for both normal and abnormal conditions, were used for the
diagnosis of combustion: on the one hand, for knock recognition, where three knock
detection strategies were developed: two based on the in-cylinder pressure sensor and
one on the knock sensor. On the other hand, an application of a resonance model
was carried out in order to improve the estimation of the trapped mass from the
resonance excitation.

Finally, to show the potential of such models and applications, two control
strategies were developed: one for the control of knock through the actuation of the
spark advance, and a second for the control of residual gases, through the actuation
of the variable valve timing, while optimizing the combustion through the actuation
of the spark advance.
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1.1 Background

Internal combustion (IC) engines are the main propulsion systems in road
transport, since they represent the 99 % of global transport [1]. In the past
decades, the number of vehicles produced has increased, being the passenger
cars the ones with the highest percentage compared to the commercial ones.
The word production of IC engines is illustrated in Figure 1.1.
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Figure 1.1: Word vehicles production. Data extracted from [2].

Nerveless, environment is of great concern these days due to the climate
changes and one of the main challenges of the industry is to generate a low
environmental impact. Climate changing is producing global warming on the
earth surface, since 1980 the mean global temperature has increased over 1 �

C, as illustrated in Figure 1.2, where the distribution over the years of the
temperature anomaly is shown.
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Figure 1.2: Global Temperature probability distributions. Data extracted
from [3].

As a consequence, states have translated society concerns into policies set
to keep global warming below 2 oC [4]. Global warming in mainly caused by
human activity, the concentrations of some of greenhouse gases is increasing
in the atmosphere, especially: carbon dioxide (CO2), methane(CH4), nitrous
oxide (N2O) and fluorinated gases, among others. Being CO2 the responsible
for 64% of global warming related with human activity [5]. Because of the
impact of CO2 emissions on climate change, a reduction on greenhouse gas
emissions more than 55% below 1990 levels is expected by 2030 [5].

Passenger cars transport contributes around 23 % of global CO2 emis-
sions [6], as is shown in Figure 1.3and road transport is responsible for more
than 70 % of the CO2 emissions from transport [5].
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Figure 1.3: CO2 emissions produced by different economic sectors. Data
extracted from [6].

Currently, IC engine future is on discussion, and as a consequence, the
evaluation of various powertrain solutions is underway, e.g Electrical Vehicles
(EV) and Hybrid Electrical Vehicles (HEV). But the benefits in CO2 emissions
of EV is associated to the electricity production emissions [7]. Regarding the
future of IC technology, OPEC considers that, by 2045, a 16% of vehicles will
be operating with non-oil fuels, as shown in Figure 1.4.

Figure 1.4: Composition of the global vehicle fleet, 2019–2045 million. Source
OPED [8].
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As is shown in Figure 1.4, IC engines will continue to be dominant in the
road transport sector, being HEV and Natural Gas (NG) vehicles the third
highest percentage.

In this context, and with the aim of controlling transport emissions, gov-
ernments legislated the emission targets limits in the last two decades. The
current pollution emissions values for the European Union (EU), the United
States (USA) and Japan are illustrated in Figure 6.6. The emissions shown are:
carbon monoxide (CO), non-methane organic gases (NMOG), CO2, particulate
matter (PM) and particle number (PN).

Figure 1.5: Pollutant emission limits for EU, USA and Japan (mg/km,
PN/km). Source [9].

Regarding the future of IC engines technology, the main target is to
increase the efficiency and fulfill the emissions regulations. In this sense, fuel
consumption of compression ignition engines (CI) compared to spark-ignited
(SI) demonstrated important benefits. But in terms of emissions, the after
treatment system for CI engines is more complex and costly than for SI en-
gines [10]. In this sense, several alternatives fuels had been studied in order to
improve CI engines emissions performance [11,12].

Regarding SI technology, according to [13], the registration of new gasoline
cars during 2020 in the EU is about the 47 %, as is shown in Figure 6.7.
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Figure 1.6: EU New passenger cars classified by fuel type. Source [13].

For this reason, in the last years new technologies raised in SI in order to
reduce the gap in terms of fuel consumption, and maintaining the advantages
in exhaust emissions. These new technologies included direct injection (DI),
exhaust gas re-circulation (EGR), turbocharging and downsizing, diversifica-
tion of fuels, lean combustion, among others [9].

In recent years, EGR became a good alternative to achieve similar effi-
ciency levels to CI engines. With EGR the engine is kept at stoichiometric
conditions (λ � 1) while diluting the oxygen concentration. One advantage of
cooled EGR is the mitigation of knock phenomena at high load conditions [14].
The main problem with EGR in SI combustion, is that high EGR rates are
not possible to achieve due to misfire and stability [15,16].

Respecting the engine operation at lean conditions (λ ¡ 1), the main
problem is that the after-treatment in SI engine is not compatible with this
combustion concept [17], and then NOx emissions will not satisfy the target
limits. An alternative to implement lean combustion for SI combustion is
the Turbulent Jet Ignition concept (TJI), which make used of a pre-chamber
connected to the main combustion chamber across a set of orifices [18].

Nowadays, downsizing is a design trend in SI engine, on the one hand
small volume engines allows to reduce heat, pump and friction losses [19].
The reduction of the displacement in downsizing engines needs the increase of
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Brake Mean Effective Pressure (BMEP) to keep equal engine torque, in order
to cope this problem turbocharging seem to be the best solution [19].

Regarding diversification of fuels, other alternatives to petroleum based
fuels are being analyzed: Bio-fuels, Liquefied Petroleum Gas (LPG), alcohols
(e.g ethanol), Compressed Natural Gas (CNG) are alternative fuels which
can be used in IC engines [20, 21]. Concerning ethanol as fuel, it has an
octane number (RON) higher than gasoline, which improves thermal efficiency
by using higher compression ratios [22]. LPG is comparatively easier to im-
plement than CNG, but because is a refinery product it is not suitable on
future applications [23]. SI engine fueled with CNG exhibit a performance
drop, but shows better emissions compared with gasoline [24] due to its low
carbon content. According to OPEC, CNG it is one of the key fuels as an al-
ternative to conventional fuels due to its lower emission of greenhouse gasses [8].

1.2 Engine control

In this context, engine control optimization has an important role in
IC engine development. The engine control can be divided in combustion,
air-path and after-treatment controls [25]. Actually, IC engines are controlled
by Electronic Control Units (ECUs), which stores Open Loop (OL) maps
on memory in order to manage some of the different control variables of the
engine, and different control oriented models [26]. OL control exhibit good
results since is predictable and robust because of the extensive knowledge in
this field. The problem with this approach is the extensible calibration experi-
ments necessary for each operating condition. In addition, some variables, e.g
lambda or knock, are controlled by CL controls in order to correct the control
variable with the feedback information [27].

In recent years, evolution of computational capabilities of ECUs presents
an opportunity in order to implement more advanced control strategies based
in more complex models [27]. On-board diagnosis of combustion were im-
plemented over the last few years, and due to the increasing functions of IC
engines, the development of the control electronic management has become
more complex.

In order to improve engine performance, the process needs to be precisely
controlled, so model-based control is required, not only to estimate off-line
parameters but to be implemented in real-time. Progressively, control oriented
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models have been included in ECUs in order to provide more information to
the system and for a more efficient operation [28].

Recently, more complex control techniques have been published: online
learning [29–31], Model Predictive Control (MPC) [32] or on-board calibra-
tions [33,34], all of them aimed to adapt the engine control to a wider spectrum
of conditions at the expense of the increase in control complexity.

1.3 Scope of the work

Future IC engine technologies focused on combustion efficiency will need
accurate combustion indicators for on-board diagnosis and control. This disser-
tation presents a set of combustion diagnosis indicators, some of them based
on the extensive use of information from the in-cylinder pressure sensor, and
some of them relying on conventional sensors currently used in state-of-the-art
engines. These indicators aim to model the engine operation condition under
normal and abnormal combustion, being able to adapt to different fuels.

The work is divided in modeling and diagnosis part, which includes an
average and variability combustion model, resonance characterization of in-
cylinder pressure signal, and knocking recognition methods based on in-cylinder
pressure and knock sensor. And a second part which includes the control
applications of the diagnosis and models developed in the first part of the
work, showing the potential of such models and indicators.

1.4 Objectives

The main objective of this work is the development of combustion indica-
tors for combustion diagnosis and control. This objective is implemented in
the following partial objectives:

• Developing a control oriented combustion model able to predict the
average of the combustion in a SI engine. (Chapter 4)

• Identification and modeling of the combustion variability in SI engine.
(Chapter 5)
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• Providing a model able to predict resonance evolution of the in-cylinder
pressure for different combustion modes. (Chapter 6)

• Designing different knock recognition methods, in-cylinder pressure
based, and knock sensor based. (Chapter 7)

• Proposal of two control applications for knock control and combustion
optimization. (Chapter 8)

1.5 Methodology

In order to achieve such objectives, this dissertation is divided in 5 parts
which consist of 9 different chapters as is shown in Figure 1.7.

Chapter 1
Introduction

Chapter 2
Combustion 

diagnosis

Chapter 3
Experimental set 

up

Chapter 4
Combustion 

modeling

Chapter 5
Cycle to cycle 

variability

Chapter 6
Resonance 
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Chapter 7
Combustion 

diagnosis

Chapter 8
Combustion 

control

Chapter 9
Conclusions

Concepts & tools Control oriented 
modeling

Applications to combustion 
diagnosis

and control

Overview Conclusions

Figure 1.7: Chapters organization.

The second part, concepts and tools, is composed of two chapters: the
state of the art in combustion and control topic, and the experimental facilities
used to carry out experimental activities, where the engines and test benches
configurations are described.

The third part, control oriented modeling, is organized in three chapters:
Chapter 4, the combustion modeling, where a control oriented model to repre-
sent the combustion in an average sense, i.e. without considering cycle-to-cycle
dispersion is presented. The model makes use of available signals on the ECU
as input variables. An observer is designed in order to improve the estimation
of such model under transient conditions. Chapter 5, where the variability
causes in IC engines is analyzed. Previous analysis have led to the development
of a model able to capture cycle-to-cycle dispersion in an statistical way. And
Chapter 6, a resonance analysis of in-cylinder pressure is performed, where two
models are developed. This models aims to reproduce the amplitude evolution
of resonance in the combustion chamber. These models can improve control
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oriented analysis of resonance for applications such as knock recognition or
trapped mass estimation.

The fourth part, applications to combustion diagnosis and control, is
organized in two chapters: in Chapter 7 offline applications of the modeling
block for trapped mass estimation and knock recognition methods are devel-
oped, where knock recognition methods are two in-cylinder pressure based,
and one knock sensor based. Chapter 8 presents two control applications to
point out the potential of such models. In the first control application, a
map-based knock control which makes use of in-cylinder pressure sensor is
described. In the second control application, a residual gas fraction control
with combustion optimization based on the combustion model developed in
Chapter 4 is presented. Both controllers are validated on a SI engine.

Finally, the last part, Chapter 9 which includes main conclusions of the
work and future implementation in industry of the methods and models pre-
sented.

1.6 Publications

Most of the contents included in this dissertation have been published in
international journals and conferences. In this section, the publications by the
author are listed with the chapter which include the publication information.

Journal papers

1. Pla, B., De la Morena, J., Bares, P., & Jiménez, I. (2020). Cycle-to-
cycle combustion variability modelling in spark ignited engines for control
purposes. International Journal of Engine Research, 21(8), 1398-1411. (Chap-
ter 4 and 5)

2. Novella, R., Pla, B., Bares, P., & Jiménez, I. (2020). Acoustic charac-
terization of combustion chambers in reciprocating engines: An application
for low knocking cycles recognition. International Journal of Engine Research,
1468087420980565. (Chapters 6 and 7)

3. Pla, B., Bares, P., Jiménez, I., Guardiola, C., Zhang, Y., & Shen,
T. (2020). A fuzzy logic map-based knock control for spark ignition engines.
Applied Energy, 280, 116036. (Chapter 8)
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4. Pla, B., De La Morena, J., Bares, P., & Jiménez, I. (2021). Adaptive
in-cylinder pressure model for spark ignition engine control. Fuel, 299, 120870.
(Chapter 8)

5. Pla, B., Bares, P., Jiménez, I., Guardiola, C. (2022). Increasing knock
detection sensitivity by combining knock sensor signal with a control oriented
combustion model. Mechanical Systems and Signal Processing (MSSP) (Chap-
ter 7).

Conference papers

1. Pla, B., De La Morena, J., Bares, P., & Jiménez, I. (2020). Knock
Analysis in the crank angle domain for low-knocking cycles detection (No.
2020-01-0549). SAE Technical Paper. (Chapter 7)

2. Pla, B., Bares, P., Jiménez, I. & Guardiola, C. (2021). Model-based
residual gas fraction control with spark advance optimization. Engine and
Powertrain Control, Simulation and Modeling, E-COSM 2021, Tokyo, Japan.
(Chapter 8)
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2.1 Introduction

In-cylinder pressure is the most important variable to analyze the com-
bustion process in IC engines, and can be used used as feedback signal for
closed-loop combustion control and diagnostics. In-cylinder pressure sensors
are the most precise measurement for combustion analysis [1], by providing a
direct measurement of the combustion process. These sensors are widely used
for combustion detection, to evaluate different combustion parameters such as
the crank angle where the 50 % of the heat release (CA50), knock recognition,
thermal efficiency, Indicated Mean Effective Pressure (IMEP), cycle-to-cycle
variability, cylinder-to-cylinder dispersion, among others.

In-cylinder pressure signal of IC engine can be decomposed into three
different frequency bands: motored, combustion and resonance [2]. The mo-
tored pressure, which corresponds to compression and expansion, is associated
with the piston movement, so the frequency depends on the engine speed,
and its energy depends mainly on the load. Combustion is also affected by
engine speed and injection settings, and in-cylinder resonance depends on the
resonant modes excitation, and load.

Different types of in-cylinder pressure transducers can be found, such
as balanced disk type, variable inductance or resistance, piezoelectric with
different levels of accuracy, being piezoelectric transducers the most widely
used for in-cylinder pressure measurement in modern engines, due to the high
frequency response and small size [3]. Despite their high accuracy, in-cylinder
pressure sensors, still suffer from cost and durability issues, and also require
modifications in the cylinder head to be installed. Even though in-cylinder
pressure sensors are extensively used in the engine research field or in some
engines brands, the application on production engines is not so extended [4].

For this reason, model-based control has become an interesting tool for
IC engine control [5]. Virtual sensors can be used to improve the estimation of
in-cylinder pressure by obtaining information about combustion characteristics,
such as ignition delay, peak cylinder pressure and its location.

The first part of the chapter presents a survey of the use of the in-cylinder
pressure sensors for engine diagnosis and control. Then, in order to replace the
used of in-cylinder pressure sensors, indirect combustion diagnosis methods
are presented. After, knock recognition methods based in both, in-cylinder
pressure and knock sensor, are introduced. Finally, combustion control tech-
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niques for combustion optimization and knock control are presented.

2.2 Direct combustion diagnosis

In-cylinder pressure is the most direct signal for combustion diagnosis,
since provides an accurate information about the thermodynamic process
during combustion and engine power [6], for this reason, is widely used to
study combustion phenomena in IC engine. During this section, some of the
information that can be extracted from in-cylinder pressure sensors to evaluate
combustion development will be presented.

2.2.1 In-cylinder pressure modeling

Otto Thermodynamic cycle is divided in four stages: intake, compression,
combustion, and combustion stoke [7]. In Figure 2.1 the Otto cycle stages are
represented.

𝑖𝑛𝑡𝑎𝑘𝑒 𝑠𝑡𝑟𝑜𝑘𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑠𝑡𝑟𝑜𝑘𝑒 𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛 𝑠𝑡𝑟𝑜𝑘𝑒 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝑠𝑡𝑟𝑜𝑘𝑒

Figure 2.1: Otto thermodynamic cycle stages.

The compression and expansion stages can be represented by a polytropic
evolution, which assumes an adiabatic process [8]: where the realtion between
the pressure pcyl and the volume V is computed as :

pcylV
κ � K (2.1)

where K is a constant and κ the polytropic coefficient, which considered the
discrepancies with the adiabatic assumption, i.e. wall heat transfer. In most
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of the application κ is one or two constant values: one for compression (κc)
and an additional for expansion (κe). Once κ is determined, the compression
and expansion pressures can be obtained through:

pcomppθq � ppIVCq
�
V pIVCq
V pθq


κc
(2.2)

pexppθq � ppEOCq
�
V pEOCq
V pθq


κe
(2.3)

where IVC is the Intake Valve Closing, θ the crank angle, and EOC the End
Of Combustion. In Figure 2.2, the polytropic pressure modeled during com-
pression and expansion is represented with the measured in-cylinder pressure.

Figure 2.2: Adiabatic in-cylinder pressure evolution during compression and
expansion compared with the in-cylinder pressure measured.

During combustion, the in-cylinder gas can be described by an open
thermodynamic system, where the combustion chamber represents the system
boundary as is shown in Figure 2.3.
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𝑑𝑄ℎ−𝑤𝑑𝑄𝑐

𝑑𝑊

Figure 2.3: Combustion model system.

The first law of thermodynamic for this system is as following:

dU � dQ� dW �
¸
hidmi

cyl (2.4)

where dQ is the heat added to the system (combustion), dU represents the
change in system internal energy, dW is the work performed by the system, and
the enthalphy flux is represented by

°
hidmi

cyl. The combustion is modeled
as a release of heat given by the difference between the chemical energy, dQc,
and the heat transferred to the cylinder walls dQh�w, such as:

dQ � dQc � dQh�w (2.5)

Then, Equation (2.4) can be written as:

dU � dQc � dQh�w � dW �
¸
hidmi

cyl (2.6)

Assuming ideal gas conditions in the combustion chamber during condi-
tions:

pcylV � mcylRT (2.7)

dU can be expressed as following:

dU � mcylcvdT � udmcyl (2.8)
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where mcyl represents the trapped mass, cv the heat-capacity at constant
volume and u is the specific internal energy.

From the ideal gas law presented in Equation (2.7) differential of T can
be expressed as following:

dT � 1
mcylR

pV dpcyl � pcyldV �RTdmcylq (2.9)

Assuming R to be a constant, replacing Equations (2.6) and (2.9) in
Equation (2.6). Substituting cv � R

γT , where γ is the ratio of specific heat, the
following differential in pcyl can be obtained:

dpcyl � � γ

V
pcyldV�γ � 1

V
pdQc�dQh�w�

¸
hidmi

cylq�
1
V
pRT�pγ�1quqdmcyl

(2.10)
The simplified differential equation of pcyl by assuming mcyl constant is

expressed as:

dpcyl � � γ

V
pcyldV � γ � 1

V
pdQc � dQh�wq (2.11)

The evolution of the heat in the control volume of the combustion chamber
is expressed as:

Qc � γ

γ � 1pcyldV � 1
γ � 1V dpcyl � dQh�w (2.12)

where Qc is the evolution of the heat in the combustion chamber, pcyl repre-
sents the in-cylinder pressure, V is the instantaneous volume in the combustion
chamber which can be derived from geometrical data of the engine, γ the
specific heat capacities ratio, and dQh�w the wall heat transfer.

The value of the specific heat capacities ratio, γ, can be estimated through
semi-empirical models. In order to determine gases properties, in lean mixtures
some models used the air to fuel ratio, the Mass Fraction Burned (MFB), and
the temperature of the gases (T ) [9, 10]. But in stoichiometric conditions, as
SI combustion, γ can be approximated with much more simple functions, such
as in [11], where γ is proportional to the temperature. In SI combustion, the
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model presented in [12] can be used:

γ � 1.38 � 0.2e
900
T (2.13)

The wall heat transfer should be modeled in order to obtain the heat
release from fuel, as:

Qw � hAwpT � Twq (2.14)

where Tw the temperature, Aw represents the area of the walls, and h is the
convective coefficient. One of the most widely used models was developed
in [13], and modeled the evolution of h as a function of pressure, temperature,
and engine speed, as following:

h � C1D
�0.2p0.8T�0.53 rC2c� C3Khpp� pmqs0.8 (2.15)

where pm is the motored in-cylinder pressure, c the mean piston speed, C1,
C2, and C3 are constants, and Kh is obtained from the volume displace, Vdis,
at the Intake Valve closing (IVC), as following:

Kh � VdisTIV C
pIV CVIV C

(2.16)

2.2.1.1 Cylinder geometry

The instantaneous volume evolution V of the combustion chamber is
modeled as a slider-crank-mechanism as:

V pθq � Vcc � πD2

4 rLc � Lr p1 � cospθqq �
a
L2
c � L2

r sinpθq2s (2.17)

where Lr is the rod length, D is the bore, Lc is the crank length, and Vcc is
the minimum combustion chamber volume. Expression of Equation (2.17) ne-
glected pressure deformations, which can be assumed for practical applications.
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2.2.1.2 In-cylinder temperature

The in-cylinder temperature evolution, Tcyl, can be modeled by estimating
the exhaust temperature, Texh, and fitted during the end of the expansion.
The exhaust temperature can be calculated using polytropic expansion as
suggested in [14]:

Texh � k1p
κ�1
κ

cyl (2.18)

where the temperature to pressure ratio k1 is fitted considering that Texh
= Tcyl during the end section of the expansion stroke, where Tcyl can be
approximated from the perfect gas law as:

Tcyl � pcylV

Rmcyl
(2.19)

where mcyl is the trapped mass, V the volume, and R the constant of the gases.

2.2.1.3 Mass fraction burned

The MFB describes the process of chemical energy liberate as a function
of the Crank Angle Degree (CAD), and the determination of MFB is frequently
based on the burning rate analysis. In the present text, we will consider the
normalized version of the MFB (between 0 and 1) by dividing by the total
fuel Heat Release Rate per crank angle(HRR), dQc

dθ , is a difficult parameter to
model due to the complexity of the phenomena, and the dependency on several
factors such as fuel-injection, chemical combustion rates, among others. Some
authors use an alternative formulation of Equation (2.12), which enforces to
represent the losses with a single parameter, κ, such as:

HRR � dQ

dθ � κ

κ� 1pcyl
dV
dθ � 1

κ� 1V
dpcyl
dθ (2.20)

MFBQ � HRR

maxpHRRq (2.21)

The approximation in Equation (2.20), named apparent heat release, is
widely employed in control applications due to the low computational bur-
den. A commonly value used for κ in SI combustion is 1.3, which is used to
compensate the errors of the estimation due to the underestimating HRR at



Direct combustion diagnosis 25

compression stroke, and the overestimating HRR at the expansion.

The expression in Equation (2.20), is usually precise enough in combustion
phase estimation for control purposes but exhibits significant inconsistency in
total HRR. In addition, the prediction of EOC by analyzing this expression
is one of the major issues. One way to compensated this error is assuming
that HRR before the Spark Advance (SA) is zero. Another solution is the
approximation of the MFB evolution at SI combustion by one combustion
event with a vibe function shape [15], as following:

MFBw � 1 � exp

�
�k1

θ � SOC

EOC � SOC


mw�1
(2.22)

where k1 and mw are relate to the duration and shape of the heat-release profile.

An alternative to computed the MFB is the pressure ratio procedure
presented in [16,17]. Where, the MFB is computed by comparing the actual
pressure with the motored one, such as:

MFBp �
pcylpθq
pmpθq

� 1

max
�
pcyl
pm

	
� 1

(2.23)

Figure 2.4 shows the MFB obtained through Equations (2.21),(2.23) and
(2.22).

Figure 2.4: Mass fraction burned of a cycle of SI combustion.
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2.2.2 Combustion indicators definitions

Pressure peak amplitude: The maximum pressure amplitude is an
important variable of combustion which is restricted by the structural limita-
tions of the engine. Maximum peak pressure amplitude and location can be
calculated as:

pmax � maxppcylpθqq (2.24)
θpmax � argθmaxppcylpθqq (2.25)

Start of combustion (SOC): Is the point where combustion is initiated,
which gas an impact on the combustion evolution, and affects the engine
efficiency [7]. The SOC position can be estimated by identifying the point
where the HRR curve starts to rapidly increase, without heat released.

CAx The evolution of the combustion is studied by analyzing the crank
angle position (CAx) where a determined percentage of the energy released is
achieved, which accomplishes:

» α�CAx
HRRdα � xHR

100 (2.26)

where x is a value comprised between 0 ant 100. Note that CA0 � SOC and
CA100 � EOC. The CA10 is usually used to indicated the SOC, due to noise
and inaccuracies near to zero.

Time Of Combustion (TOC): The time of combustion is defined as
the duration in angle or time between 0% and 100% of MFB. In practice, is
expressed as the angular distance between CA10 and CA90.

Indicate Mean Effective Pressure (IMEP): Defined as the engine
work normalized with the cylinder displacement volume Vd, such as:

IMEP � 1
Vd

¾
pcyldV (2.27)

If the pressure is integrated over the entire four-stroke cycle, the net IMEP
is obtained, conversely, if the pressure is integrated only in the compression
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and expansion strokes, the gross IMEP is computed.

Efficiency: The total thermal efficiency is the relation between the work
output of the engine cycle and the chemical energy stored in the injected fuel,
as:

η � W

qLHVmf
(2.28)

where mf is the injected fuel mass, qLHV is the lower heating value of the fuel,
and W the work. Depending on the work involve in this relation will be the
efficiency obtained: mechanical, thermal, etc.

2.3 Indirect combustion diagnosis

In-cylinder pressure sensors provide a direct measurement of combustion
process, as is shown in section 2.2 can be used to estimate parameters such
as the SOC, TOC, CAx, IMEP, among others. In-cylinder pressure sensors
disadvantages are durability and high cost, which makes its application lim-
ited in large scale production engines. Therefore, virtual sensors to estimate
combustion parameters for diagnosis and control are developed. Some of these
virtual sensing strategies are based on the analysis of engine vibration [18, 19],
engine speed fluctuation [20–22], in-cylinder ion current [23, 24] and engine
acoustic emission [25,26].

The relation between crankshaft speed fluctuations and the combustion
process has been widely explored, several works aim to model the in-cylinder
pressure signal from instantaneous speed signal measured by a crankshaft
speed sensor [27–29].

It was found that among ion current, crankshaft speed fluctuations and
knock sensor signals, the most utilized signal for combustion metric estimation
is knock sensor or accelerometer signal [1]. This is due to the low cost, high
reliability, durability and easy mounting. In the present work, knock sensor
signal will be used in further chapters to estimate combustion metrics.
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2.3.1 Combustion diagnosis through vibration signal

Knock sensors are mounted externally on the engine block or the engine
head, and measure the vibration signal which is transferred from the in-cylinder
oscillations to the engine structure [1]. Nevertheless, other noise sources, such
as valve dynamics, must to be eliminated in order to obtained combustion
metric from this sensor. From vibration signal different combustion metrics can
be computed, such as SOC [30], the CA50 [31], pressure peak location [4, 32],
among others.

In order to evaluate the correlation between the information contained
in knock sensor signal the signal is analyzed in frequency domain in Figure
2.5, where the vibration signal and in-cylinder pressure are illustrated for 200
cycles in SI combustion.

Figure 2.5: In-cylinder pressure and vibration signal in frequency domain.

Three frequency bands are highlighted, low frequencies associated with
the piston movement, combustion frequencies and resonance frequencies. In
order to evaluate the relation in a fixed frequency band, the coherence function
is used [33]. Frequencies above 20 kHz can be considered background and
sensor noise. As shown in Figure 2.5, the combustion pressure trace has higher
energy concentrated in the combustion zone than knock sensor trace. The
coherence function computes the ratio between the cross power spectral density
of the in-cylinder pressure Pp,ppfq and knock sensor signals Pk,kpfq, to the
product of the power spectral density of each signal Pp,kpfq, as:

Cp,kpfq � |Pp,kpfq|2
Pp,ppfqPk,kpfq (2.29)
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Figure 2.6: Coherence between vibration signal and in-cylinder pressure for
a given cycle.

Analyzing Figure 2.6, specific points have a high coherence function value,
indicating a strong relationship between the spectral components. These points
corresponds to the combustion and the resonance frequencies. For this reason,
from the vibration signal analysis is possible to extract combustion parameters.

One of the combustion parameters that can be estimated through the
vibration signal is the pressure peak location. In [32] a method which consists
on band-pass filter the signal is suggested. The band-pass filter is used to
separate the harmonic components, which is used to find the zero-crossing
acceleration angle, that is characteristic of the pressure peak location, be-
cause the zero-crossing represents the beginning of the negative vibration
oscillation, which is characterized by the maximum amplitude from in-cylinder
pressure [34].

Based on previous results, the vibration signal has been band-pass filtered
in a frequency range of 200-1400 Hz. In Figure 2.7 the in-cylinder pressure
signal of each cylinder and the filtered knock sensor signal are represented as
example.



30 State of the art: Combustion modeling and control

Figure 2.7: Pressure peak location estimation: Low-pass in-cylinder pressure
compared with band-pass knock sensor signal.

Note that the pressure peak location is significantly correlated to the
zero-crossing position of band-pass vibration signal Kbp after the first peak.
A blue circle shows the zero-crossing angle, which represents the maximum
of the pressure peak location obtained through the vibration signal, and in
grey hatched line the maximum pressure peak location measurement from
in-cylinder pressure signal is also highlighted.

2.4 Abnormal combustion: knock recognition meth-
ods

Knock phenomenon is an abnormal combustion which is caused by the
spontaneous auto ignition of the end gas [35], this rapid auto-ignition heav-
ily excites resonance in the combustion chamber. The auto-ignition process
causes a reduction of the engine efficiency, noise and if oscillations are heavily
excited can damage the engine [36]. Knock research is important, since is
directly associated with fuel consumption, emissions, engine durability and
performance [37].

In new combustion modes, such as TJI combustion, normal combustion
heavily excites resonance, so knock cannot be easily identified from normal
combustion [38,39].

Knock recognition techniques can be divided in three groups: ion current
signal based [40], methods based on vibration signal [41,42], and methods based
on in-cylinder pressure signal. The most reliable technique for knock recogni-
tion are in-cylinder pressure based, since provides accurate information about
pressure oscillations [43]. Because of it simplicity, vibration signal is the most
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employed signal for knock recognition in production engines, the issue with
knock sensors is the quality of recognition since is usually affected by noise [35].

During this section knock recognition methods based on in-cylinder pres-
sure measurement and knock sensor signal are introduced.

2.4.1 In-cylinder pressure based

In recent years, several knock recognition techniques based on in-cylinder
pressure sensors have been published. Several authors quantify pressure os-
cillations to compute knock [43, 44]. Other works analyzes HRR, in [45] a
0D model is presented, where a heat transfer correlation is used to predict
knock event. Additional methods employ frequency domain to compute knock
indexes, as for example wavelet transform or Fourier transform [46,47]. Low-
knocking cycle recognition is important, since substantially improves controller
performance [48].

One of the most widely employed indicator for knocking recognition is
the Maximum Amplitude Pressure Oscillation (MAPO). This indicator is
obtained by filtering the in-cylinder pressure within the resonance frequency
band pfmin � fmaxq and computing the maximum, such as:

MAPO � maxp|pfmin�fmaxcyl�bp |q (2.30)

Another knock indicator is the Integral of Modulus of Pressure Oscillations
(IMPO), which is computed as:

IMPO �
» θend
θ0

|pfmin�fmaxcyl�bp | (2.31)

where pθ0, θendq is the integration interval in the crank angle space.

In order to apply this indicators for knock recognition, a pre-selected
threshold should be provided, so if the limit is not properly established, normal
combustion will not be differentiated from knock.

A more accurate method can be found in [49], where a low-knocking cycle
recognition method is presented. Here, the excitation produced by combustion
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is compared with that associated with knock by windowing the band-pass
pressure. The problem with this method is if combustion and knock have
similar amplitudes or location in CAD, the method is not able to differentiate
them. This can be crucial for knock recognition in new combustion modes [50].

2.4.2 Knock sensor based

Sensing vibrations caused by knock is the most widespread method for
knock recognition in automotive industry [51]. The mechanical vibrations is
transformed into an electrical signal by a piezoelectric element. This signal
contain complex information, and it is difficult to detect low knock [52].

Several works have been developed for vibration signal processing and
knock recognition: traditional frequency analysis such as Short Time Fourier
Transform (STFT) [53,54], Empirical Mode Decomposition (EMD) [55,56], or
Wavelet transform [57].

A similar IMPO and MAPO knock index definitions for vibration signal
are proposed in [52] and [58] respectively, where the Integral of Modulus of
Accelerometer Oscillations (IMAO) is defined as:

IMAO �
» θend
θ0

|Kfmin�fmax
s�bp | (2.32)

where Ks�bp is the band-pass knock sensor signal. And The maximum ampli-
tude of knock sensor oscillating signal (KS) is defined as:

KS � maxp|Kfmin�fmax
s�bp |q (2.33)

Both, KS and IMAO are compared with MAPO and IMPO respectively
in Figure 2.8 over 5000 cycles in SI combustion, in hatched line a linear model
between both indexes is represented.
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Figure 2.8: In-cylinder pressure index compared with knock sensor. Left:
MAPO and KS (R2 = 0.74). Right: IMPO and IMAO (R2 = 0.85).

As can be seen in Figure 2.8, both knock sensor based method show a
linear relation with the corresponding in-cylinder pressure indicators. But for
the case of IMAO index, R2 value is higher, being a stronger linear dependence.

2.4.3 Knock control

Spark advance is often controlled by look up tables stored at the ECU.
These look up tables are initially calibrated for all the engine map operating
points [59]. The main disadvantage with this control strategy is the absence of
feedback information, since knock phenomena is influenced by the operating
condition, hence a CL control is usually necessary [60]. One of the most
employed feedback signal is vibration measurement, but as discussed above
this method lacks precision.

Regarding CL strategies, two groups can be identified: model-based con-
trols and stochastic controls [49]. The former tend to predict the SA of knock
onset, while the latter group aim to keep knock probability below a desired
value by controlling the SA. The most extensively knock controller employed in
literature is the conventional deterministic strategy [61], consists on advancing
the SA by a quantity Kadv in order to achieve higher efficiency, and retard
a higher quantity Kret when a knock is recognized. The strategy can be
expressed as:

SAkconv �
"
SAk�1

conv �Kret if knock
SAki�1

conv �Kadv otherwise
(2.34)

where k is the cycle number. Kadv and Kret are the controller gains, which
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are associated by the knock probability, such as:

Kret � 1 � pth
pth

Kadv (2.35)

Higher values of Kadv permits the controller to achieve the optimal SA
faster, but the variability of the SA will be also higher. Because its easy
implementation, this strategy is extensively used in industry applications, but
the issue with this strategy is high variance associated with the SA, and hence
high variability on IMEP.

Other stochastic methods use the likelihood ratio to control the SA.
In [62], the controller gains are scaled by the likelihood ratio between the
observation and the desired knock probability. In [63], knock probability
estimation is conducted by a beta distribution and the likelihood ratio test is
used adjust the SA. Despite stochastic methods for SA control exhibit good
results in steady operating conditions, during transient have a delayed re-
sponse due to the estimation of statical properties of knock phenomena [64,65].

The objective of model-based knock control strategies is to predict the SA
of knock onset. Some strategies makes uses of physical models, as for example
the auto-ignition prediction model presented in [66]. Other strategies can be
map based models, which are easily calibrated, however these methods are not
flexible, and can lead to explore dangerous SA zones [67]. In order to cope
this issue, map learning techniques have been developed recently [68, 69]. But
these methodologies need a prior calibration and the probability set is around
1%, what means that under transient conditions a large number of cycles are
necessary to achieve the 1 % with adequate precision. This can be solved by
working with a low-knocking cycle recognition method, in order to update
faster the models.

2.5 Conclusions

From in-cylinder pressure and knock sensor signals different combustion
parameters can be estimated by combining them with the instantaneous vol-
ume, which is obtained from the crank angle evolution. This information can
be used as an input for closed-loop controls or control oriented combustion
models, such as knock recognition, in-cylinder pressure models, in order to
control variables like the spark advance, the variable valve timing, among
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others.
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3.1 Introduction

Several engines with different combustion modes were used in this disser-
tation. During the first part of the chapter, the experimental facilities and
acquisition system of each engine are described. After, the main character-
istics of experimental tests are summarized, for steady and transient conditions.

3.2 Experimental set-up

3.2.1 Engines

In this dissertation, three engines, one commercial SI engines, and two
research engines working with new combustion concepts, i.e. Reactivity Con-
trolled Compression Ignited (RCCI) and TJI, are used. Each engine is iden-
tified with a letter, from A to C, with which it will be labeled in future sections.

Table 3.1: Main characteristics of engines.

A B C
Combustion mode SI TJI / SI RCCI

Cylinders [-] 4 1 6
Bore length [mm] 72 80 110

Stroke length [mm] 81.2 80.5 135
Rod length [mm] 128 133.8 212.5
Compression ratio 10.6:1 13.4:1 12.2:1

Vdis [cc] 1300 404 7700
Injection GDI PFI PFI/DI

Engine A
A four cylinder Euro 6 SI production engine fueled with gasoline was used

to analyze and characterize in-cylinder pressure evolution during normal and
knocking combustion. The engine is equipped with Variable Geometry Tur-
bocharger (VGT), Variable Valve Timing (VVT) system, and direct gasoline
injection (GDI) system.
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Xth

XTGV

XVVT

XSA
Ypcyl

Yp-int

Yp-exh

Y𝝀

Ytorque
Yspeed

Xgasoline

XEGR

Ym-air

Yknock

Figure 3.1: Experimental set-up of Engine A: Control variables (X) and
sensors (Y ).

The control of the test bench was performed by AVL-PUMA software,
allowing speed (Yspeed) and engine torque (Ytorque) control by the use of a
dynamo-metric brake. A prototyping system from National Instruments (PXI)
was used to acquire, process and control the engine. Intake and exhaust
pressure (Yp�int and Yp�exh) was measured by a piezo-resistive pressure sensor,
a fuel balance was used for fuel mass flow metering, the air-to-fuel ratio was
estimated from a lambda sensor at the exhaust (Yλ), and a knock sensor
was mounted in the engine block (Yknock). In-cylinder pressure was collected
with a sampling accuracy of 0.2 CAD with a spark-plug integrated pressure
sensors (Ypcyl). The SA (XSA), VVT system (XV V V ), gasoline mass (Ygasoline)
and throttle valve (Xth) were controlled by ECU by-pass, while the VGT
position (XV GT ) was directly controlled with a Field Programmable Gate
Array (FPGA) full pass system.

Regarding the VVT system, it is a hydraulic system and enables to ad-
vance or delay the camshaft timing in a range of 40 for both intake and exhaust
sides, while keeping constant the valve lift and opening duration. In Figure
3.2, the VVT lift law for intake and exhaust are shown.
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Figure 3.2: VVT lift law.

Engine B
Engine B is a single cylinder research version of a 4-stroke SI engine mod-

ified to operated in SI and TJI combustion. The boost pressure was provided
by an external compressor, the engine is equipped with intake and exhaust
manifold piezo-resistive pressure sensors, an in-cylinder pressure sensor with a
resolution of 0.5 CAD per sample. The scheme of the experimental set-up of
engine B is shown in Figure 3.12.

Xth

XVVT
XSA

Ypcyl

Yp-int

Yp-exh

Y𝝀

Ytorque

Yspeed

Xgasoline

Ym-air

XEGR

Figure 3.3: Experimental set-up of Engine B.

As can be seen in Figure 3.3, the conventional spark plug and the pre-
chamber are located at the cylinder head, facilitating the change of operation
between SI and TJI combustion.

Engine C
Engine C is a six cylinder heavy-duty diesel engine, modified to run in

dual-fuel combustion by adding a port fuel injector (PFI) at each cylinder
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(Ygasoline). The engine is equipped with VGT (XTGV ), with intake and ex-
haust piezo-resistive pressure sensors, and in-cylinder pressure sensors with a
sampling frequency function of the engine speed using a research encoder set
with a resolution of 0.2 CAD per sample. Figure 3.4 shows the scheme of the
experimental set-up of engine C.

XTGV

XVVT

Ypcyl

Yp-int

Yp-exh

Ytorque
Yspeed

Xgasoline Xdiesel

XEGR-LP

XEGR-HP

Figure 3.4: Experimental set-up of Engine C.

3.2.2 Acquisition and control structure

Regarding the engine control approach for engine testing, two main alter-
natives can be found, full-pass and by-pass. In figure 3.5, a general scheme of
these control and acquisition structures are shown.
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ECU

Prototyping & 
acquisition

ENGINE

Monitoring

Full-pass
By-pass

Actions

Sensors

ECU sensors

Actions

ECU infoBy-pass actions

Figure 3.5: General scheme for sensor acquisition and engine control.

• By-pass acquisition and control: Usually, in production engines,
the ECU controls the engine by open-loop 2D tables in function of the
intake pressure and engine speed previusly calibrated [1]. These OL
tables in some cases are combined with grey box models [2, 3], or with
low-complexity feed-back controls [4]. The bypass approach consists of
replacing ECU control signals by their equivalent implemented in the
prototyping system.

In order to send and receive information from/to the ECU, an interface
system is required. The interface system requires of a representation of
the ECU structure, which is included in an ASAP2 description file (a2l
file), and a detailed information of the calibration of the engine, which
is in a hexadecimal source file (hex) file [5].

• Full-pass acquisition and control: For some applications in research
engines field, the ECU can be total or partially replaced by directly
sending the information to the actuators. These information is send by a
prototyping and acquisition systems, such as real-time PXI (programmed
with Labview).
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3.2.2.1 Engine A acquisition and control layout

Engine A acquisition and control layout is shown in Figure 3.6. The engine
was controlled with a real-time system National Instrument (NI) PXI-8110
embedded controller with a 2.26 GHz quad-core processor. A NI-9759 module
was used with a PXI 7813R for programming in FPGA the full-pass control of
the VGT and EGR valves.

PXI

ENGINE

Actuators

ETAS 
910

ECU

Labview INCA

INTERCrio

sensors

CAN ETK

ETH ETH

Actuators

FPGA

𝑋𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒

𝑋𝑡ℎ

𝑋𝑆𝐴

𝑋𝑉𝑉𝑇

𝑋𝐸𝐺𝑅
𝑋𝑉𝐺𝑇

sensors

𝑌𝑝𝑐𝑦𝑙 𝑌𝑝−𝑖𝑛𝑡𝑌𝑘𝑛𝑜𝑐𝑘

𝑌𝑚−𝑎𝑖𝑟

𝑌λ

Figure 3.6: Acquisition and control layout of engine A.

Three ECU control variables are used in this work: SA, VVT, and throttle,
which are controlled by modifying the ECU commands through Ethernet by
pass.

3.2.2.2 Engine B acquisition and control layout

Engine B acquisition and control layout is shown in Figure 3.7. The
control of the engine has been implemented with a FPGA chasis and modules
for analog acquisition up to 16kHz, and the control of port fuel injection,
spark, throttle and EGR valves control. A parallel system has been used
for high frequency acquisition and pressure processing (PXI), which allows
an acquisition up to 1 MHz and computation capabilities of a 3.06 GHz,
Quad-Core PXI Controller in real time. Both systems, FPGA and PXI, are
connected by Ethernet and monitored by an external computer.
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Figure 3.7: Acquisition and control layout of engine B.

3.2.2.3 Engine C acquisition and control layout

Engine C acquisition and control layout is shown in Figure 3.8. The
injection settings control at each cylinder, the Duration Of Injection (DOI)
and the Start Of Injection (SOI), was carried out using a FPGA chassis
compactRIO and modules of NI. The VGT is controlled by the ECU, and both
low pressure and high pressure, EGR valves are controlled by the Controller
Area Network (CAN). The acquisition of the in-cylinders pressure and intake
pressure different signals was handled by a 16 analog channels acquisition card
connected to the real-time controller (PXI), which was used to process and
save the cycle-to-cycle data.

PXI

ENGINE

FPGA

Sensors

DOI, SOI
𝑋𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒
𝑋𝑑𝑖𝑒𝑠𝑒𝑙

ECU
𝑋𝑉𝐺𝑇

Actuators

Actuators

𝑌𝑝𝑐𝑦𝑙

𝑌𝑝−𝑖𝑛𝑡

𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔

Figure 3.8: General scheme control structure of engine C.

Main characteristics of controllers and sensors for engines A, B and C are
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summarized in Table 3.2.

Table 3.2: Main characteristics of acquisition and control systems.

Engine A B C
Make Ypcyl AVL Kistler Kistler
Model Ypcyl ZI33 6061B 6125C
Make Yknock Bosch - -
Model Yknock KS4-R2 - -

Sampling accuracy Ypcyl [CAD] 0.2 0.5 0.2
flow [Hz] 4500 4000 2500
fhigh [Hz] 20000 15000 15000

Make Yp�int Kistler Kistler
Model Yp�int 4045A5 4045A10

Sampling accuracy Yp�int [CAD] 0.2 0.5 0.2
Make Yp�exh Kistler - -
Model Yp�exh 4045A5 -

Sampling accuracy Yp�exh [CAD] 0.2 0.5 0.2
Amplifier - - -
Controller PXI-8110 PXIe8133 PXIe-8135

Acquisition module PXI-6123 / PXI-6251 PXIe-6358
FPGA controller cRIO 9114 PXI cRIO 9024 PXI cRIO 9024
FPGA module NI-9759 / PXI 7813R NI 9152/ NI 9751/ NI 9758
CAN interface PXI-8513 - PXI-8512

3.2.2.4 Real time combustion analysis

The real-time combustion analysis computations was run in LabVIEW
RT inside timed loops on the real-time system. The in-cylinder pressure was
measured with piezo-electric transducers, where the signal given by these
sensors is as:

pcyl � Cspc � ∆p (3.1)

where pcyl is the sensor signal, pc the actual pressure, Cs the sensor conversion
factor and ∆p the sensor offset.

In Figure 3.9 the in cylinder pressure processing scheme for the different
parameters calculation is shown.
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Figure 3.9: In-cylinder pressure acquisition and processing.

The in-cylinder pressure analog signal from sensors (Ycyl) is digitized by
DAQmx module. Then, the in-cylinder pressure is filtered in order to eliminate
non-desired components: a low pass filter is set in order to extract information
from combustion and a band pass filter used for resonance analysis. The
cutoff frequency was selected according to the resonant frequency of the first
circumferential mode in a cylindrical volume such as [6]

f cut�offlow�pass � a
B10
πD

(3.2)

where a is the sound speed, B10 Bessel constant of the first circumferential
mode, and D the engine bore.

After, the low-pass in-cylinder pressure pegging was done using the intake
pressure at IVC. The in-cylinder pressure signal is collected at constant angular
sampling by an external digital signal provided by an encoder.

3.3 Experimental tests

In this section, experimental tests conducted on the engines A, B and C
will be described. Various test campaigns were performed to calibrate models,
and to analyze resonance excitation within the combustion chamber and also
the response of the control applications. Experimental tests are divided in
two parts: in the first part the steady test carried out on each engine are
introduced. And in the second part, the transient tests are presented.
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3.3.1 Steady tests

Each engine was used to analyze the combustion evolution and resonance
excitation at different operating conditions. Steady-state test campaigns,
which will be used in later sections, are explained below.

Engine A
Figure 3.10 illustrates the 14 operating conditions (OPA), characterized

by intake pressure (and hence air mass flow) and engine speed, are represented.
At each steady-state operating condition, various SA settings were performed,
lambda has been maintained at 1 to ensure stoichiometric conditions.

Figure 3.10: Operating conditions tested in Engine A.

Steady test performed in engine A were conducted without EGR, except
for those cases highlighted in Figure 3.10. In Figure 3.11 the variations in SA
performed at each operating condition (OPA) are shown. Each SA step have
been maintained until the number of cycles recorded was enough for knock
probability estimation, ensuring in each set a minimum of 500 cycles.
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Figure 3.11: SA variations for each operating condition tested in engine A.

Engine B
Engine B data set was included 39 operating conditions shown in Figure

3.12 (left). Different colors have been used to highlight the fuel used for each
test.

Figure 3.12: Operating conditions tested in Engine B.

The SA variations for each operating condition (OPB) are represented in
Figure 3.13.
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Figure 3.13: SA variations for each operating condition tested in engine B.

All the operating points (OPB) were ignited with TJI combustion, and a
few of them with SI combustion: 5, 38 and 19. During all steady tests lambda
was maintained at stochoimetric conditions and without EGR, only at the
indicated OPB conditions variations of λ between 1 and 1.5 and EGR between
0 and 5 % were performed. Fuel Research Octane Number (RON) are shown
in Table 3.4.

Engine C
Operating conditions tested in engine C are summarized in Table 3.3.

Each operating condition is characterize by the speed and IMEP. For each
operating condition, the EGR, SOI of pilot and main injection setting are
shown.
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Table 3.3: Operation points tested in engine C.

OPC N [rpm] IMEP [bar] SOIpilot SOImain EGR [%]
1 1200 6.28 60 50 0
2 1200 6.62 60 50 0
3 1200 6.43 40 30 0
4 1100 5.9 60 50 0
5 1200 6 60 50 0
6 1200 5.72 60 50 0
7 1200 6.84 60 50 0
8 1200 6.87 60 50 11
9 1200 5.69 60 50 0
10 1200 4.45 60 50 0
11 1200 5.19 30 15 0
12 1200 5 30 15 0
13 1200 5.1 30 15 0
14 1200 4.8 35 15 0
15 2000 3.7 21 10 54
16 2000 3.77 23 12 55
17 2000 3.2 20 10 48
18 1800 4.35 23 12 50
19 1500 4.63 22 11 46
20 2200 4.61 27 17 43
21 1500 2.9 28 16 52
22 1500 3 24 13 54
23 2200 3 28 16 48
27 1800 3.8 29 18 53

Please notice that the subindex with the engine letter and numbers are
used to label every steady-state operating condition for each engine, which
will be used for identifying them in future sections.

Table 3.4: Fuel specifications for Engines A, B & C.

Fuel Gasoline CNG Diesel
RON 95 120 -
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3.3.2 Transient tests

To analyze the combustion and resonance models, and control application
of knock recognition and combustion model, several transient tests have been
designed. Transient tests are labeled by letter T and the number of the test
from 1 to 13.

3.3.2.1 Close loop knock control

In order to validate two novel detection methodologies, which will be
described in Chapter 7, the conventional knock controller strategy, explained
in Chapter 2, was selected. Four tests were performed, two for each novel
methodology, by varying the controller gains Kadv and Kret. These two gains
are related by the knock probability (pk), as following:

Kret � 1 � pk
pk

Kadv (3.3)

the time response of the controller is characterize by Kadv: high values allow
the controller to reach the optimal value faster, but with a high SA variation
and hence, higher knock amplitudes are also expected. Kret is greater than
Kadv so the SA slowly advances during non-knocking cycles, but it is rapidly
retarded if a knock event is recognized.

The main characteristics of the controller at four tests are summarized in
Table 3.5.

Table 3.5: Test performed in engine A with conventional knock control.

MAPO Method 1 MAPO Method 2
Test T1 T2 T1 T2 T3 T4 T3 T4

Timerss 600 800 600 800 600 800 600 800
KadvrCADs 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02

pr%s 0.6 0.6 2 2 1 1 8 8
KretrCADs 1.99 3.98 0.49 0.98 0.99 1.98 0.115 0.23
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3.3.2.2 Load transient

For validation purposes different throttle transients were performed. In
Figure 3.14, the intake pressure and the throttle actuation are represented.

Figure 3.14: Throttle transients performed in Engine A

3.3.2.3 Speed transient

For validation purposes different throttle transients were performed. In
Figure 3.15, the speed and intake pressure evolution are shown.
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Figure 3.15: Speed transients performed in Engine A.

3.3.2.4 Tip in-tip out

Next, a tip-in test was performed in Engine A in order to evaluate the
model dynamics. This test is shown in Figure 3.16, where the pedal demand
and the intake pressure is plotted.

Figure 3.16: Short tip-in test Engine A.

3.3.2.5 Cycles

Two different transients, in which more than two control variables were
changed, in order to evaluate model dynamics. First, in Figure 3.17, a transient
test of 990 s has been recorded for validation purposes. The transient test
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consist in step variations at various conditions (different of those used for
training) in order to validate the method at diverse operating conditions and
in transient operation.

Figure 3.17: Tip-in and tip-out test Engine A.

Finally, a SA and throttle valve transient is performed in Engine B, with
the engine running at 2500 rpm.
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Figure 3.18: Tip-in and tip-out test Engine A.
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4.1 Introduction

In-cylinder pressure is the most accurate variable to analyze the combus-
tion process in IC engines, since is used to analyze the evolution of the different
combustion parameters such as HRR, and it can be considered the most direct
measured of the combustion evolution. These sensors can be implemented as
feedback signal for CL combustion control and diagnostics. However, pressure
sensors are still affected by issues such as durability and cost, which limit their
application in production vehicles [1].

This chapter presents a control oriented model for SI combustion engines.
The model inputs are available signals in the ECU, such as SA, air mass,
intake pressure, lambda, among others, aims to predict the mean value of the
combustion evolution. Additionally, in order to provide a better estimation of
in-cylinder pressure, an observer is proposed by using the vibration signal in
an Extended Kalman Filter (EKF).

First part of the chapter is devoted to present the combustion model.
Then, with the aim of improving the model estimation, an observer design is
presented. After, both, the combustion model and the model with the observer
are compared. Next, an application to different fuels is examined in engine B,
where the potential of the observer is analyzed. And finally, main conclusion
of this chapter are discussed.

4.2 Combustion model

The combustion model presented in this section was introduced in [2].
Which consists of a quasi-stationary two-zone physic-based turbulent com-
bustion model [3], where the laminar flame speed (Sl) and the turbulence
intensity (ut) are used to predict the MFB during combustion.

The model separates the combustion chamber in two zones during com-
bustion: burned and un-burned zones. It assumes that the entrained mass can
be modeled by the following Equation (4.1), which is later burned in a time τ
according to Equation (4.2).
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δme

δt
� ρubAf put � Slq (4.1)

δmb

δt
� me �mb

τ
� ρubAfSl (4.2)

where me represents the entrained mass, mb the mass burnt, ρub the density
of un-burnt gases, Af the flame front area, ut the turbulent intensity, and Sl
the laminar flame speed.

4.2.1 Combustion variables

Three parameters have a significant influence in this model: Laminar
flame speed, turbulence intensity and the characteristic burning time, which
will be following introduced.

Laminar flame speed: The laminar flame speed has been extracted
from the semi-empirical expressions suggested in [4], such as:

Sl � X1Sl,0pλq
�
Tub
Tint


αpλq�pcyl
pint


εpλq
p1 � 2.06RGF 0.77q (4.3)

where X1 represents a calibration factor, Tint and pint the temperature and
pressure at the inlet. The initial flame speed (Sl0) and the coefficients α and
ε depends on the fuel properties, in [4] proposed Sl,0 � 0.281, α � 2.129, and
ε � �0.217, for gasoline and stoichiometric conditions (λ � 1).

Turbulence intensity: Is the main component of the flame propagation
speed, which has an important impact in the burning rate. The turbulent flow
is assumed isotropic in the combustion chamber, and was estimated from an
expression suggested in [5], as following:

ut � ut0

�
ρub

ρubpSOCq

 1

3
(4.4)

where ut0 is the initial value of turbulent intensity, and can be computed as is
proposed in [6]:

ut0 � X2up

d
ρpSOCq
ρpIV Cq (4.5)
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where up is the medium piston velocity, and X2 is a calibration parameter.

Characteristic time (τ): is the time taken to burn-up an eddy at the
laminar flame speed, and can be as expressed as suggested in [5]:

τ � λm
Sl

(4.6)

where λm is the microscale length.

The microscale length can be computed from the integral length scale (L)
as:

λm
L

� C
?
Re (4.7)

where Re is the Reynolds number. L can be obtained from the distortion
theory [7], concluding with an expression as follows:

λm � X3

d
µhcpSOCq

ut0
pρubpSAqq

1
3

�
1
ρub


 5
6

(4.8)

where X3 is a constant particular of each engine, and µ is the dynamic vis-
cosity. µ is assumed to be the viscosity of the air for un-burned gases, following:

µ � p3.3.10�7qT 0.7
ub (4.9)

4.2.2 Flame geometry

In this model, the flame geometry is assumed spherical until reaches the
piston wall, after a semi-spherical geometry is assumed as suggested in [8].
The corresponding scheme is shown in Figure 4.1. The burned radius (rb) and
flame front area (Af ) can be calculated as:

Af �
"

2πr2
b if rb ¤ hc

2πrbhc otherwise, (4.10)

where hc is the chamber height, rb is the radius of the burned gases. The
burning radius is computed by assuming that 4ρb � ρub [9], and estimating
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the volume from the previously mentioned geometries as:

Vf �
" 2

3πr
3
b if rb ¤ hc

πr2
bhc � 1

3πh
3
c otherwise, (4.11)

hrb rb
rb

Figure 4.1: Flame geometry.

4.2.3 Model execution

To implement the combustion model, two zones of the combustion cham-
ber have to be characterized; moreover, gas properties will also depend on the
phase of the cycle. From intake valve closing (IVC) to ignition (SOC), the
in-cylinder pressure can be computed by assuming no heat transfer, therefore,
γ is replace by a single constant parameter: κ. In that conditions, the pressure
evolution, pcyl, follows:

pcylpkq � ppIV Cq
�
V pIV Cq
V pkq


κ
(4.12)

where k is the discrete instant of the time-step, that for the model is the time
corresponding to the ∆t step considered.

The rest of thermodynamic variables can be computed as following:
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Tcylpkq � pcylpkq
ρpkqR (4.13)

ρpkq � m

V pkq (4.14)

mcyl � mair �mfuel

1 �RGF
(4.15)

λ �
1

14.6
mfuel
mair

(4.16)

where mcyl is the trapped mass, mair and mfuel mass flows from sensors, RGF
the residual gas fraction.

The SOC is assumed at the SA, and the initial burning radius has to
be determined. Therefore, after studying the experimental data, the initial
burned radius was assumed to be a constant of value 0.5 mm. After, the two
volumes, namely burned and un-burned, can be computed as:

Vb � Vf (4.17)
Vub � V � Vf (4.18)

Then, the un-burned mass (mub), burned mass (mb), and un-burned
density (ρub) values can be obtained according to [9] by solving:

ρubpkq � mcyl � 3mbpkq
V pkq (4.19)

mubpkq � mcyl �mbpkq (4.20)

mubpkq � ρubpkq
Vubpkq (4.21)

The instantaneous heat released (Qb) can be computed from the fuel
burned mass (mb�fuel), and the lower calorific value (Hf ):

Qbpkq � pmb�fuelpkq �mb�fuelpk � 1qqHfηc (4.22)

Qbpkq � pmbpkq �mbpk � 1q
1 � 14.6λ qp1 �RGF qHfηc (4.23)
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where Hf is 46.6 MJ/kg for gasoline, and ηc is a correction factor of the
combustion efficiency, which will be calibrated in following section.

At k � SOC, the in-cylinder pressure can be computed by Equation
(2.12), as:

pcylpkq � pcylpk � 1qQbpk � 1q � pcylpk � 1qdV pk � 1q κ

κ� 1 (4.24)

At the ignition time (SOC), the un-burned temperature can be computed
as Equation (4.14). After, Af and µ can be obtained from Equations (4.10) and
(4.9), respectively. With these parameters, Sl: Equation (4.3), ut: Equations
(4.5) and (4.4), Taylor microscale: Equation (4.8) can be calculated at SOC.
With these values defined, the combustion process can be solved at each time
step t.

4.2.4 Residual Gas Fraction estimation

The RGF is a required input of the combustion model. In this work, the
in-cylinder pressure model of previous cycle is used to estimated the RGF of
the forthcoming cycle, following:

RGF k�1 � mk
res

mk�1
cyl

(4.25)

where mres represents the residual gas mass, and mcyl the cylinder trapped
mass, notice that the time step of k is one cycle. The residual gas mass of the
forthcoming cycle can be computed as:

mk�1
res � pkcylpEV CqV pEV Cq

RT kexh
(4.26)

where ppEV Cq and V pEV Cq are the in-cylinder pressure and volume at the
EVC, R is the gas constant, a value for a mixture of air and burned gases R
= 286 J/Kg.K, and Texh is the exhaust temperature which can be obtained
from Equation (2.18) as introduced in Chapter 2. The cylinder mass in the
cycle k can be calculated as:
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mk
cyl � mk

fuel �mk
air �mk�1

res (4.27)

where mair and mfuel are obtained from sensors and models at the ECU.

An initial RGF has to be assumed, in this work an initial value of 4 % is
used to initialized the model.

4.2.5 Model calibration

The model has been calibrated by using the training data presented in
Chapter 3, operating points: OPA. In order to improve the combustion model,
three parameters have been mapped as a function of the engine speed and
the intake pressure. Two parameters related with the HRR calculation (Qb),
namely the combustion efficiency ηc, and κ, and a one degree of freedom for
the combustion model, X2.

4.2.5.1 Calibration of combustion parameters

Two combustion parameters need to be calibrated: κ, which is associated
with the compression stroke, and ηc, which is associated with the combustion
efficiency and with additional phenomena which are not included in the com-
bustion model (blow-by, SOC, etc).

Figures 4.2 shows the OL maps obtained for κ (left) and ηc (right). The
training operating points used for calibration are highlighted with circles.

1.2

1.25

1.3

0.8

0.85

0.9

0.95

Figure 4.2: Open loop maps for HRR calculations.
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4.2.5.2 Calibration of model constants

After ηc and κ can be obtained from the operating conditions defined by
pint and n, as:

κ � fκppint, nq (4.28)
ηc � fηppint, nq (4.29)

the parameters X1, X2, and X3 from the laminar flame speed, turbulent
intensity and microscale length can be calibrated.

In Figure 4.3 (top plot) the mean value of burning rate at operating
condition OPA � 12 is represented in dashed line, and in continuous line the
modeled value for three possible fittings values of X1 and X2 are plotted. The
magenta line is the optimal calibration value obtained by least square method:
X1 � 0.67 and X2 � 0.91, in blue the effect of decreasing X2 is shown, while
in grey line the fitting value of X1 when decreasing X2. The medium plot and
top plot shows the effect of the calibration constant variations in the laminar
flame speed and turbulent intensity evolution.

Figure 4.3: Values of X2 obtained as a function of SA.
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As it can be seen in Figure 4.3, X1 is directly associated with Sl, while
X2 and X3 are associated with the evolution of the ut and with the effect
in the burning rate. If X1 or X2 are increased, the combustion rate will be
accelerated, and the opposite effect is expected from X3.

The main parameter to calibrate in the combustion model is X2, since the
turbulent intensity is modeled by assuming the SOC at SA, and in consequence
the inconsistencies of the model will depend on the operating conditions and
with the SA.

In Figure 4.5 the best fitting of X2 value is represented as a function of
the SA, when setting X1 � 0.5 and X3 � 10. Eight tests groups with different
intake pressure and engine speed are represented.

Figure 4.4: Values of X2 against SA values.

As it is shown in Figure 4.5, X2 seems to have a linear dependence with
the SA, where the slope is 0.02 per CAD. Therefore, an adaptation of the
calibration constant X2 is proposed as follows:

X2 � X20pn, pintq � 0.02SA (4.30)

where X20 is mapped as a function of the operating condition (pint and n). In
Figure 4.5 the values of the final map of X20 is shown.
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Figure 4.5: Values of X2 obtained as a function of SA.

4.3 Observer design

In order to provide to the combustion model a permanently estimation of
the laminar burning velocity (Sl) an observer is designed in this section. The
observer objective is to update a bias in the pressure peak location in order
to estimate X1. The pressure peak location will be estimated cycle-to-cycle
through the structural vibration sensor signal.

4.3.1 Pressure peak location estimation

As already explained in Chapter 2, the pressure peak location can be
estimated through the vibration signal, by making use of the signal from
the vibration signal, as suggested in [10]. This method band-pass filter the
vibration signal in order to separated the harmonic components, which is
used to find the zero-crossing acceleration angle, characteristic point of the
maximum pressure location.

In Figure 4.6 the location computed from vibration signal is compared
with the measured from in-cylinder pressure sensor during transient T6. On
the left plot, the pressure peak location of each of the cycles during the test
are represented, and on the right plot the correlation of both pressure peak
locations.
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Figure 4.6: Pressure peak location computed from in-cylinder pressure sensor
and vibration signal during transient T6.

As it can be seen in Figure 4.6, most of the points computed from the
vibration signal are within the range yF it� σ during the transient test.

The maximum pressure location was also estimated over SA sweeps at
operating condition OPA � 2. The histogram of the estimated values from
vibration signal (Ploc�k) and from in-cylinder pressure signal (Ploc�p) and the
cumulative distribution function (cdf) are shown in Figure 7.28 over 2000 cycles.
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Figure 4.7: Pressure peak location computed from in-cylinder pressure sensor
and vibration signal. R2 = 0.84: Left plot: Histogram. Right plot: Cumulative
distribution function of both measurements.

As is illustrated in Figures 4.6 and 4.7, the values computed through
the vibration signal are good estimations of the maximum pressure location.
Thereby, for each cylinder, cycle by cycle, a feedback of Ploc is obtained from
the vibration signal, and used to design an observer. In Figure 4.8 the pressure
peak location is computed from vibration signal for all four cylinders during
500 cycles of transient test T12.

Figure 4.8: Pressure peak location computed from in-cylinder pressure sensor
and vibration signal for all cylinders during 500 cycles of test T12.

As is shown in Figure 4.8, the vibration signal is able to capture the
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evolution of the pressure peak location for each one of the four cylinders,
hence, the pressure peak location computed from the vibration signal can be
in an observer in order to improve the model estimation.

4.3.2 Observer: Extended Kalman Filter

In order to provide the system a estimation of the maximum in-cylinder
pressure location Ploc, an Extended Kalman Filter (EKF) is used. The EKF is
a data fusion technique which combines data obtained from different sources,
in this case model and vibration measurement, through the EKF an optimal
estimation for a Gaussian noise can be obtained [11]. In this case, an EKF
is applied to estimate the optimal value of the calibration value X1 in a
cycle-by-cycle basis in order to minimize the difference between the maximum
pressure location computed from vibration measurement and model. The EKF
is designed with a cycle step (k) as:

xk�1 � fpxk, ukq � wk (4.31)
yk � hpu, xkq � vk (4.32)

where x is the state, and y the outputs of the model described by the combus-
tion model h, u represents the inputs of the combustion model, v the noise
related to y, and v the noise related to x.

This system is composed from the following state x and measurement y:

X1 � X1
y � Ploc�k

(4.33)

An state vector of the EKF can be defined as:

x̂k|k�1 � fpx̂kq
ek � yk � hpuk, x̂k|k�1q
x̂k � x̂k|k�1 �Kkek

(4.34)

A gain value (Kk) is updated cycle-by-cycle, such as:
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P k|k�1 � F kP k�1F k
T �W k

Kk
k � P k|k�1HkT pHkP k|k�1HkT �Rkq�1

P k � pI �Kk
kH

kqP k|k�1
(4.35)

where Wk and Rk are Gaussian distribution matrices which modeled w and v.
F k and Hk are the linear state matrices, and these equations are linearized as
following:

F k � dpfpu, xkqq
dxk

� fpu, xkq � fpu, xk � ∆xkq
∆xk

(4.36)

In Figure 4.11 the complete combustion model with the observer proposed
is shown. From the vibration signal (Ksignal) the location of the pressure
peak (Ploc�k) is estimated, and the calibration parameter X1 is updated by
making use of the combustion model presented in section 4.2. From the
in-cylinder pressure model and signal the following combustion parameters
can be extracted: CA10, CA50, CA90, IMEP, or RGF.

𝐾𝑠𝑖𝑔𝑛𝑎𝑙
𝑘 𝑃𝑙𝑜𝑐−𝑘

𝑘

𝑋1
𝑘

𝑢𝑘

𝐶𝐴10
𝑘

𝐶𝐴50
𝑘

𝐶𝐴90
𝑘

𝐼𝑀𝐸𝑃𝑘

𝑅𝐺𝐹𝑘

Combustion 
parameters

KNOCK SENSOR 
MODEL

EKF

COMBUSTION 
MODEL

Figure 4.9: Model observer scheme.

The performance of the EKF is characterized by the noises, where low
noises related to the measured signal (Ploc�k) show a fast adaptation, and low
noises related to the combustion model shows a more filtered signal of the
output. In Figure 4.10, Ploc computed from the observer is represented when
two combination of noises v and w (Noise A and Noise B) are used during



76 Control oriented combustion model

transient test T9. Noise A values are collected in Table 4.1, and Noise B
shows the effect of applying a lower noise at the prediction of X1.

Figure 4.10: EKF response under different noises.

Table 4.1: Noise suggested for EKF

Variable Type Value [unit]
X1 state 0.005 [-]
Ploc output 1[deg]

In order to fix the initial value of X1 the combustion model with observer
is applied in steady condition to evaluated the convergence in Figure 4.11:
left plot shows the X1 value when different initial values are considered, and
right plot presents the measured pressure peak location and the output of
the combustion model with the observer. As it can be seen in Figure 4.11,
regardless of the initial value of X1, the observer converges to the solution in
between 5 and 6 seconds regardless on the initial conditions.
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Figure 4.11: Convergence of X1 parameter for different initial values: X1
values (left) and pressure peak location measured and model (right).

In order to analyzed the adaptation of the calibration constant X1 during
transient conditions, the load transient T11 is analyzed in Figure 4.12, where
the state X1 is shown for each one of the four cylinders of engine A.

Figure 4.12: X1 value during test T11 for all cylinders

As it is shown in Figure 4.12, at steady state condition (before 10 s) each
cylinder calibration constant X1 estimated by the observer is almost constant.
After 10 s, when the transient starts, the observer estimates the calibration
value from the pressure peak location estimated from the vibration signal.
Once steady state conditions are reached, after 12 s, the calibration value for
each cylinder is almost constant in a different value. In summary, the model
with observer allows the calibration of each cylinder separately, i.e. during
a transient and through the estimation of the pressure peak location of each
cylinder, the observer is able to re-calibrate cycle-by-cycle the constant pa-
rameter of the combustion model X1 for a better estimation of the in-cylinder
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pressure.

4.4 Results and discussion

In this section, both the combustion model and the model with the ob-
server will be validated over two data sets: training data set (OPA) and
validation data set.

4.4.1 Training data set

Figure 4.13 shows the combustion model pressure evolution compared
with the observer and the in-cylinder measured pressure. On the top plot, the
in-cylinder pressure evolution is shown. In continuous grey line the 150 cycles
are represented and in continuous black line the mean value, dashed line is
used to represent both mean modeled pressure, in pink the observer and in
grey the combustion model. On the bottom plot the mean relative error over
150 cycles (OPA � 6) of both models is represented.
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Figure 4.13: Combustion model results at OPA � 6: In-cylinder pressure.
Top plot: In-cylinder pressure in grey 150 cycles and black line mean value, in
dashed line both models. Bottom plot: Mean relative error evolution for both:
combustion model and observer.

As shown in Figure 4.13, the relative error during the steady test is lower
for the observer case. For combustion model case, the relative error grows
significantly at the end of the combustion. In Figure 4.14 (top), the mean
MFB over the 150 cycles represented in Figure 4.13 is shown. On the bottom
plot, the absolute error of both,the combustion model and the observer, are
represented.
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Figure 4.14: Combustion model results at OPA � 6: MFB. Top plot: in
black line mean MFB over 150 cycles, in dashed line both models. Bottom
plot: Mean absolute error evolution for both: combustion model and observer.

The mean relative error of the in-cylinder pressure is computed over all
operating points OPA in cylinder 2, in Figure 4.15, the mean relative error
for each engine speed group: 1500, 2000 and 3000 rpm is shown. Different
markers are used to identify the different engine speeds, and different colors
to identified the model: lighter grey the combustion model and magenta the
observer.

Figure 4.15: Relative error over all training points divided in three engine
speed groups: 1500, 2000 and 3000 rpm.
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As shown in Figure 4.13, before combustion the relative error of both
models is similar, but after TDC the observer clearly outperforms the model
results, specially in crank angle interval where combustion appears.

4.4.2 Validation data set

In order to compare the results of the model and the observer, two per-
spectives are used to analyzed data: the cycle-to-cycle combustion parameters
for one cylinder, and the cylinder to cylinder modeling.

Cycle-to-cycle: First, the cycle-to-cycle combustion parameters will be
compared for one cylinder (cylinder 3 as example). The CA10, CA50, CA90,
IMEP, and RGF will be compared during a load transient test (T6) in Figure
4.16, for the model and the observer.

Figure 4.16: Combustion model results at transient test T6 for cylinder 3.
(a) : pressure peak location, (b) : CA10 (c) : CA50, (d): CA90, (e): IMEP
and (f): RGF.

Analyzing Figure 4.16, the improvement of the observer in terms of the
peak pressure location (Ploc) is translated to noticeable improvements in the
combustion indicators (CAx, IMEP or RGF). The absolute error histograms of
the combustion indicators represented in Figure 4.16 are exhibit in Figure 4.17.
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The values of both methods, combustion model and observer, are compared
with the obtained from the measured from in-cylinder pressure signal.

Figure 4.17: Error histograms of estimation from combustion model and
observer. (a) : pressure peak location, (b) : CA10, (c) : CA50, (d): CA90,
(e): IMEP and (f): RGF

As it can be seen in Figure 4.17, mean absolute error and maximum error
obtained through observer are lower than combustion model, showing a better
estimation of the combustion parameters under transient conditions.

Cylinder to cylinder: The models are also compared over the different
cylinders during test T6. In Table 4.2 the mean error between the measurement
and the models for the parameters represented in Figure 4.17 are summarized.
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Table 4.2: Mean absolute error of both models combustion parameters for the
four cylinders during test T6.

Cylinder 1 2 3 4
Observer Model Observer Model Observer Model Observer Model

Ploc [deg] 1.3 5.6 0.8 3.5 0.15 2.1 0.8 2.8
CA10 [deg] 1.7 2.22 1.67 2.19 0.25 1.64 0.95 3.5
CA50 [deg] 5.4 8.64 5.55 8.6 0.45 2.93 1.26 4.3
CA90 [deg] 3.5 8.25 3.4 07.05 2.28 2.12 1.2 3.5
IMEP [bar] 0.16 0.33 0.58 1.14 0.3 0.78 0.5 1.29
RGF [%] 0.55 0.98 0.11 0.21 0.23 0.9 0.3 0.65

The in-cylinder pressure evolution of a given cycle is shown in Figure 4.18,
where the in-cylinder pressure for each cylinder corresponding to cycle t � 13s
of the tip-in shown in Figure 4.12 is analyzed. Where the measured in-cylinder
pressure, the pressure obtained through the observer, and the combustion
model are represented.

Figure 4.18: In-cylinder pressure evolution measured compared with combus-
tion model and observer during test T11 cycle labeled in Figure 4.11.

As shown in Figure 4.18, the model with the observer is able to better
predict the in-cylinder pressure evolution.
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In Figure 4.19 Ploc for both models, are compared with the pressure peak
location from the in-cylinder pressure sensors during the tip-in T11.

Figure 4.19: Combustion parameters obtained from in-cylinder pressure,
combustion model and observer during test T11. Left top: cylinder 1, right
top: cylinder 2, bottom left: cylinder 3, bottom right; cylinder 4.

In the case of the combustion model the output is the same for all cylinders,
since the inputs (cycle operating conditions) are the equal for all cylinders.
Furthermore, in the case of the observer, the output from each cylinder is
different, being able to better represent each cylinder.

In Figure 4.20 the mean absolute error of the pressure peak location,
CA10, CA50 and CA90 are shown for each cylinder. Different colors are used
to differentiate the combustion model and observer.
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Figure 4.20: Combustion parameters absolute error of combustion model and
observer during test T11. From top to bottom: pressure peak location, CA10,
CA50 and CA90.

As it can be seen in Figure 4.20, the error in the estimation for each
cylinder is remarkable higher for the combustion model case than for the
observer.

4.5 Application to different fuel types

The last section was devoted to compared the combustion model and
the observer. It was demonstrated that the in-cylinder pressure and the com-
bustion parameters estimated though the observer shows better results than
the combustion model, being able to reproduce the combustion under steady
and transient operating conditions. In this section, the observer benefits for
two types of fuels will be presented on Engine B. The combustion model was
calibrated for engine B with SI combustion fueled with gasoline.

As explained above, X1 is the calibration factor of the laminar flame
speed. The initial laminar flame speed Sl0 and the temperature and pressure
exponents of the laminar flame speed correlation presented in Equation (4.3)
depend on fuel properties. In particular, In order to compensate the exponents
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effect on the laminar flame speed, the cycle-to-cycle calibration of X1 was
proposed in previous section. In this section, the effect on the value X1 for
different fuel types is analyzed by fitting the combustion model for each cycle.

Two operating points, OPB � 13 and OPB � 38, will be compared by
fitting the calibration constant X1 stating from the same calibration value. In
this case, at each cycle, the value of the calibration constant was obtained by
finding the minimum of constrained nonlinear multi-variable function (fmincon
Matlab function) with the same starting value x0.

Figure 4.21: X1 fitting value impact for different fuels in engine B for two
operating points: OPB � 13 (left) and OPB � 38 (right).

As shown in Figure 4.21, for both operating conditions X1 for gasoline
cases is higher than CNG cases, which corresponds with experimental studies
which demonstrates that at equal equivalence ratio the laminar flame speed is
lower for CNG than gasoline [12]. In Figure 4.22, the mean in-cylinder pressure
from the model and sensor is represented in operating condition OPB � 38,
in grey the in-cylinder pressure of all cycles is also shown. On left plot for
gasoline case, and on right plot for CNG case.
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Figure 4.22: In-cylinder pressure evolution over OPB � 38 for two fuels:
Gasoline (left) and CNG (right).

As it can be seen in Figure 4.21, the model is capable of reproducing the
mean in-cylinder pressure for both cases by fitting the calibration constant
X1, which means that with the observer the model is able to compensate the
effect of the fuel type without a complete re-calibration of the model for each
fuel type.

For this reason, and taking into account what is shown in Figure 4.11
about the convergence of the X1 parameter for different initial values, from
the observation of the pressure peak location is possible to capture the fuel
effect and to model the in-cylinder pressure by updating the X1 constant.

4.6 Conclusions

A two-phase 0D control oriented model has been presented in this chapter,
the model is able to predict the mean combustion phase evolution. In order to
improve the model under transient conditions, an observer has been designed
to provide the model feedback information from vibration signal. A calibration
parameter of the laminar flame speed is updated cycle-to-cycle by using an
EKF. The observer is able to improve the model prediction, not only for the
estimation of combustion indicators, but also to provide more information to
analyze each engine cylinder.

An application for two different fuels was performed in engine B, show-
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ing that the observer is also able to adapt the model to different fuels by
re-calibrating the constant X1 of the combustion model.
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5.1 Introduction

The cyclic and cylinder-to-cylinder variability can cause a decrease in
efficiency and uncomfortable noise due to vibration [1], which makes variability
one of the major challenges to optimize combustion in SI engines. In addition,
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cycle-to-cycle variability produces undesired noise in combustion indicators,
which makes combustion control challenging in IC engines.

Some of the cycle-to-cycle combustion variability causes have been identi-
fied in SI engines [1,2], such as variations of the in-cylinder mixture, turbulent
intensity, difference of the mean flow speed, among others. In addition, many
factors such as the spark timing, the dilution of the mixture, the spark plug,
do not cause cyclic variability in combustion themselves, however affect the
extent of cycle-to-cycle variability caused by other factors [3]. In recent years,
different control strategies had been developed in order to reduce cycle-to-cycle
variability under lean conditions in SI engines by controlling the SA and EGR
valve [4, 5], the SA and the throttle valve [6] among others. In addition, in [7]
the IMEP and its variability is model in order to control the cycle-to-cycle
variability under transient conditions.

The first part of the chapter is devoted to analyze the impact of the
combustion phasing, type of ignition and stratification on the combustion
variability for two different fuels: gasoline and CNG. The second part of
the chapter aims to characterize the distribution of the variability over the
HRR pattern in engine A. Then, a cycle-to-cycle variability model of the
HRR pattern for SI combustion is presented, the model aims to reproduce
the causes of cycle-to-cycle variation by introducing a probability distribution
on the combustion model presented in Chapter 4, particularly at the lami-
nar speed, Sl, and at the turbulent speed, ut. Finally, conclusions are discussed.

5.2 Experimental analysis of fuel effect on combus-
tion variability

In this section the cycle-to-cycle variability will be analyzed by examining
the HRR pattern in engine B. The impact on the variability of the combustion
phasing, the type of combustion and the dilution will be analyzed for different
fuels.

Combustion phasing impact

The first part of the experimental analysis includes four SA sweeps per-
formed in engine B (Operating point: OPB � 12). In Figure 5.1 the impact
of the combustion phasing is shown for gasoline (left) and CNG (right). On
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the top plot the average of the combustion location at each percentage of
combustion over 200 cycles is represented, and on the bottom plot the standard
deviation. Different grey scale colors are used to exhibit each SA.

Figure 5.1: Combustion phasing effect for TJI combustion fueled with gasoline
95 (left) and CNG (right). Average (top plot) and the standard deviation
(bottom plot) of the CAx over each percentage. Operating point: OPB � 12
200 cycles

As it can be noticed in Figure 5.1, the combustion variability over the heat
release pattern is affected by the combustion location. In both cases, gasoline
and CNG, the cycle-to-cycle variability decreases as the SA, and therefore the
combustion phasing, moves into compression stroke, as it is experimentally
studied in [8, 9].

When comparing the effect of the fuel at equal SA, it can be noticed that
at the end of the combustion, i.e. between the 85-100 % of the MFB, the
variability is increased for gasoline case is higher than the rate for CNG case.
This is due to the slow burning rate observed for gasoline case, which increases
significantly the variability at this stage.

Ignition method

SI and TJI ignition methods are analyzed in Figure 5.2, where the HRR
pattern over two different operating conditions are shown. In Figure 5.2 (top)
the CAx at each percentage of combustion is shown, in black for SI combustion
and in pink for TJI combustion. On the bottom plot the standard deviation
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for each test group is represented.

Figure 5.2: Ignition method effect in engine B fueled with gasoline 95 (left)
and CNG (right). Average (top plot) and the standard deviation (bottom plot)
of the CAx over each percentage. Operating point: OPB � 31 (left) OPB � 11
(right) 200 cycles.

As it can be seen in Figure 5.2, the cycle-to-cycle variability for both
operating conditions, and hence fuels, is lower for TJI combustion. As it can
be noticed, for the SI combustion fueled with gasoline (left), the variability
at the end of the combustion is increased due to the slow burning rate that
is observed on the top plot. The cycle to cycle variability in both operating
conditions is lower in TJI combustion due to the fast burning rate induced by
the jet flame [10].

Lean combustion:

TJI combustion engines extend the lean burn limitations of gasoline
engines and show an improvement in burning rates [10]. Lean combustion
consist in diluting the air-fuel mixture with air or EGR [9], which leads to a
reduction of pumping losses, and an improvement of thermal efficiency. The
cycle-to-cycle variability sensitivity to λ is shown in Figure 5.3 for two fuels in
engine B fueled with gasoline (left) and CNG (right).
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Figure 5.3: Lambda effect in engine B TJI combustion fueled with gasoline
95 (left) and CNG (right). Average (top plot) and the standard deviation
(bottom plot) of the CAx over each percentage. Operating point: OPB � 11
200 cycles

As it can be seen in Figure 5.3, for cases with more diluted combustion
the cycle-to-cycle variability over the HRR pattern is higher, but for CNG
cases the exhibit variability is lower than for gasoline cases.

The EGR dilution impact on combustion variability for TJI combustion
is shown in Figure 5.4 for two cases with the engine running at the same
operating condition: On the left side the engine in fueled with gasoline, and
on the right side with CNG.
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Figure 5.4: EGR effect in engine B TJI combustion fueled with gasoline 95
(left) and CNG (right). Average (top plot) and the standard deviation (bottom
plot) of the CAx over each percentage. Operating point: OPB � 13 200 cycles.

It is noticeable that combustion fueled with CNG has more tolerance to
air diluted conditions from the point of view of cycle-to-cycle variability.

As shown in this section, the sources of combustion variability are various
and complex. Because of the different event that triggers the cycle-to-cycle
combustion variability, for every operating tested condition the combustion
flame characteristics might have a different probabilistic distribution [3], whose
modeling will be the focus of the next section.

From this study four points may be highlighted:

• The delay between the spark and the SOC introduces certain variability
as the combustion does not start always at the same point. This can
be attributed to both the local turbulence and air-to-fuel ratio near the
spark plug.

• The TJI ignition method has less variability than SI, which can be
associated to the fast burning rate of TJI combustion.

• Lean combustion increases the cycle to cycle variability in TJI combus-
tion.

• The effect on the combustion variability under lean combustion is higher
when the engine is fueled with gasoline in TJI combustion
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5.3 Cycle-to-cycle variability distribution

In order to model the combustion variability in SI combustion, a previ-
ous analysis from experimental data was performed in engine A fueled with
gasoline. With the aim to obtain information about the distribution of the
variability, the crank angle values at 10 %, 50% and 90% of the total MFB
were collected on for each cycle, the data is represented in histograms in Figure
5.5.

Figure 5.5: Crank angle histograms for 10 % (left), 50 % (middle) and 90 %
(right) of the MFB for operating test OPA � 6.

To evaluate if all operating points adjust to a normal distribution, two
hypothesis tests algorithms were selected: Lilliefors and Anderson-Darling.
These tests are used to check the statistical characteristic of the crank angle
values at each percentage of combustion. Detailed information about the
hypothesis tests can be found in Appendix 5.A.

These hypothesis tests were performed over 12 operating conditions OPA
at 4 SA settings, which leads to 48 sets, results are shown in Figure 5.6. Where,
H = 0 indicates that the distribution is normal and H = 1 otherwise.
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Figure 5.6: Hypothesis tests performed over OPA operating points for 10 %
(left), 50 % (middle) and 90 % (right) of the MFB.

As it can be seen in Figure 5.6, although some sets are not normally
distributed, most sets from experimental data can be described as a normal
distribution (see Table 5.1). In next section the variability will be modeled by
a normal probability distribution, regardless of the disturbance it is triggering
the variability.

Table 5.1: Percentage of H = 0 cases for each CAx.

Test CA10 CA50 CA90
Anderson Darling 93.87 87.75 81.63

Lilliefors 89.79 79.6 79.56

5.4 Cycle to cycle variability model

In previous sections was shown that the cycle-to-cycle variability in IC
engines depends on several factors such as combustion phasing, fuel type, λ,
EGR or ignition system, and that the distribution of such variability can be
described by a normal distribution in most of the cases for engine A. In this
section, a cycle-to-cycle variability model for SI engines running at stochio-
metric conditions without EGR is presented.

The combustion model presented in Chapter 4 has been calibrated to
reproduce the mean engine performance in steady conditions. However, in SI
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combustion important cycle-to-cycle variability can be observed, even during
steady state conditions. For this reason, the combustion parameters can
not be calculated in a deterministic manner [11]. The procedure to analyze
the cycle-to-cycle variability is based on computing the standard deviations
of the CAD at different percentages of the MFB, CAx where x represents
the combustion percentage. The MFB will be divided every 5% in this analysis.

The modeling process of the combustion variability will be divided into
two different parts: first, the description of the variability model by using the
error propagation theory. Then, the calibration procedure of the constants
standard deviation. It was decided not to include X3 constant to model the
cycle-to-cycle variability, because as it was discussed in Chapter 4, X3 is a
constant that is calibrated for a given engine, and it is independent on the
operating condition point.

5.4.1 Variability model

In Figure 5.7 (top plot) the combustion phase evolution over 30 cycles is
shown in grey line, the average over 200 cycles is represented in black line. In
bottom plot the standard deviation of the CAx for these 200 cycles at each
combustion location is also represented.

Figure 5.7: Average (top plot) and the standard deviation (bottom plot) of
the CAx at each percentage of combustion over 200 cycles at OPA � 16 with
the SA at -2 CAD-ATD.

The combustion phase variability shown in Figure 5.7, and hence the
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combustion phase location, are directly related with the IMEP variability, and
in consequence with the combustion efficiency. For this reason, the combustion
efficiency is also affected by the cycle-to-cycle variability.

Because in the combustion model there is no expression to be able to
compute the variance, i.e. an expression to compute the derivative, the vari-
ability will be modeled by the error propagation theory, by assuming that, no
matter which is the disturbance triggering the variability, it can be modeled
by a normal probability distribution at Sl and ut. Such as:

σCAxp%q � fσ
�
N1pX1,CV1q,N2pX2,CV2q

�
(5.1)

where fσ is the function which propagates two distributions, namely N1 and
N2, on the combustion model presented in Chapter 4.

Normal distributions are characterized by a mean value that represent
the mean combustion phase evolution, X1 and X2, and a variability, which
can be defined as the coefficient of variation CV as:

CV1 � σpX1q
X1

100,CV2 � σpX2q
X2

100 (5.2)

In Figure 5.8 the experimental variability found in OPA � 16 at each
CAx location is shown in dashed line, three cases of CV1 and CV2 are also
represented in continuous line: the optimal one, only CV2, and only CV1.

Figure 5.8: Variability found with experimental data and 3 combinations of
CV1 and CV2. Operating condition: OPA � 16.
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All possible values for X1 and X2 should be analyzed, as:

MFBpi, j, θq � fcpX1i, X2jq (5.3)

where MFB(i, j, θ) is the mas fraction burned at CAD = θ when Sl and ut are
modeled by constants X1i and X2j respectively. Subsequently, the position at
each % of the combustion (CAxij) is computed, and then, the mean (CAx)
and the standard deviation (σpCAxq) can be obtained as following:

CAx �
¸
i

¸
j

CAxijPij (5.4)

σpCAxq �
d¸

i

¸
j

Pij
�
CAxij � CAx

�2 (5.5)

where Pij represents the probability density function of each possible combina-
tion of X1i and X2j , which must satisfy that the sub-indexes i and j are used
for each execution at each constants, and note that the axis are normalized in
order to represent the proportional effect at each constant. Henceforth:

A1i � X1i{X1, A2j � X2j{X2 (5.6)

¸
i

¸
j

Pij � 1 (5.7)

The problem with this model is that computing all the possible variations
leads to a high computational burden. Figure 5.9 (left) shows the normalized
probability density functions, in right plot for the optimal solution, namely
CV1 � 8% and CV2 � 2.2% is represented. For a sufficient precision, 100
values are used at each dimension: CV1 and CV2. These implies that to
compute all the possible combustion phase combinations the model should be
executed 100x100 times.
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Figure 5.9: Left: Probability density function for CV1 � 8% and CV2 � 2.2%.
Right: Optimal probability function Pij : CV1 � 8% and CV2 � 2.2%.

In order to develop a model with lower computational burden, two hy-
pothesis have been made:

• The cross effects between the two dimensions, namely A1 and A2, can
be neglected, and the following assumption may be done:

CAxpA1, A2q � σpA1, 1q � σp1, A2q (5.8)

• A quadratic dependence of CAx with each parameter is assumed, i.e.
the second derivatives of the CAx with respect to X1 and X2 variations
are constant:

dCA2
x

d2∆X1
� X12 (5.9)

dCA2
x

d2∆X2
� X22 (5.10)

(5.11)
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Integrating and combining Equations (5.9):

CAx � m2
i

2 ∆xi � dXi0∆xi � CAx0 (5.12)

where CAx0 is the mean CAx, mi and dxi0 are constants values for
each parameter which define the dependence of CAx respect to the
dimensions: A1 and A2.

Making these assumptions, the variability can be computed by executing
the model 5 times. In Figure 5.10 the five iterations selected are marked with
crosses: one at the mean value value (X1 and X2) and the remains using
a 20% variation (A1 � r0.8, 1.2s and A2 � r0.8, 1.2s). The derivatives are
computed by Euler finite differences. Finally, a projection from these points
of the evolution of the derivative is done (pointed out by circles in Figure 5.10).

Figure 5.10: Proposed simulations to obtain the variability at all the range.

The estimations must be updated cycle by cycle, since the model inputs
(intake pressure, air mass flow, SA, and engine speed) lead to modify the
function (5.1).

In Figure 5.11 the impact on the CA50 when A1 and A2 are modified is
represented. In black, the value computed at 100 iterations along A1 and A2
is shown, and in grey the linear interpolation is represented.
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Figure 5.11: Variation of CA50 as a function of X1 and X2.

Note that increasing A1 by 0.1, i.e. increasing X1 by a 10%, then the
CA50 increases 1 CAD (combustion advanced). When reducing A1 by 0.1,
the combustion is retarded 1.5 CAD. Hence, the effect is lower near the SOC,
while the effect leads to increase near the EOC. Even though the function is
not linear, the linear approximation behaves with sufficient accuracy, values
below 15%.

In Figure 5.12 the discrepancies between the complete model (100x100)
and the 5 iteration simulation is represented: on top the variability and bottom
plot the error between both simulations. As can be seen, the error of the
five-points approximation is below the 4 % for all the combustion evolution.
But the time consumed for 100x100 case was 51 s, while for 5 iteration case
less than 0.1 s.
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Figure 5.12: Probability calculation OPA � 16. Top plot: Variability mea-
sured compared with 100x100 and 5 iteration model. Bottom plot: Differences
in percentage between the 100x100 calculation and the five-point iterative
method.

5.4.2 Calibration of the variability model

The combustion variability model calibration is performed by least-squares
adjustment between the variability model curve and the experimental data
curve. These curves represent the CAD standard deviation values at a certain
CAx. Figures 5.13 shows the calibration of such functions over the conditions
tested (OPA).
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Figure 5.13: Open loop map for σ1 (left) and σ2 (right).

Nevertheless, in order to determine σ1 and σ2 a correction needs to be
set when the SA is far away from the TDC since both parameters tend to be
reduced. This correction has been only applied at low load condition where
the SA was at early locations reducing hence the variability. The final value is
obtained by:

σ1 � σOL1pn, pintq � fσc1pn, SAq (5.13)
σ2 � σOL2pn, pintq � fσc2pn, SAq (5.14)

The correction applied is shown in Figure 5.14.
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Figure 5.14: Corrections applied to σ1 and σ2 in order to contemplate the
effect of the SA.

5.5 Validation

5.5.1 Training data-set

Figure 5.15 shows the mean absolute error (top) and the mean relative
error (bottom) of the model, the variability propagation is computed at each %
of the combustion evolution. The left plot shows the results from all operating
points OPA at 2000 rpm and right plot at 3000 rpm.
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Figure 5.15: Mean absolute error (top) and mean relative error (bottom) for
the variability model at each % of the evolution for training data set: left 2000
rpm and right 3000 rpm.

Note that for both cases, the model is able to reproduce the cycle-to-cycle
variability with a relative error bellow 4% in cases where the noise is updated
at each operating condition, on the other hand, if the noise is obtained from
OL maps the error is less than 10 % for 2000 rpm cases, and less than 15 % for
3000 rpm cases. To obtain a better approximation, the operating conditions
should be updated with at least three inputs (SA, n, pint). The error between
SOC and CA5 are above 20% because of the assumption that the SOC is
located at the SA and no initial variability is considered for this parameter.

5.5.2 Transient data-set

The model was validated in transient conditions in engine A during
transient T12. For a quantitative analysis, the average CAx and its variation
have been quantified with two IIR filters, as:

CAxk�1 � kfmCAxk � p1 � kfmqCAxk�1 (5.15)
σ2
k�1 � kfσσ

2
k � p1 � kfσqσ2

k�1 (5.16)

where kfm and kfσ are fixed at 0.96 and 0.98 respectively, which are used to
filter the CAx and the variability measured from in-cylinder pressure sensors.
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The variance at each cycle (σ2) is obtained from:

σ2
k � pCAxk � CAxkq2 (5.17)

In Figure 5.16 a portion of the test is shown: where the CA20 (top plot),
CA50 (medium plot), and the CA90 (bottom plot) are represented. Cycle
to cycle measurements are illustrated with magenta crosses, and the model
output is represented with a black line.

Figure 5.16: Cycle-to-cycle evolution and model output of the CA20 (top
plot), CA50 (medium plot), and CA80 (bottom plot).

In Figure 5.17 the evolution of the CA50 (top plot) and its variability
(bottom plot) during the complete transient test are shown. The experimental
values are shown in black line, while the model output is represented in ma-
genta line.
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Figure 5.17: CA50 evolution and its variability during the transient test.

The mean relative error of the model at each % of the combustion is
represented in Figure 5.18. During this transient test the combustion model
was able to predict the mean value with an average error of 5% at each % of
the combustion, while the error on the variability model predicted was of the
15 %.

Figure 5.18: Mean relative error of the CAx and its variation predicted by
the model.
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5.6 Conclusions

In this Chapter the combustion variability has been analyzed and modeled.
The first part of the Chapter analyzed experimental data, and the impact of
fuel on cycle-to-cycle variability. Then, the combustion variability distribution
in engine A was analyzed, concluding that the variability over training data set
is normally distributed. Then, the combustion model for SI engines presented
in Chapter 4 has been used to predict the average combustion phase evolu-
tion, and during this Chapter a variability model to predict the cycle-to-cycle
variability at each % of the combustion has been developed.

The variability was modeled by the propagation of a probability distribu-
tion on the laminar flame speed, and a second one over the turbulent intensity
of the model introduced in Chapter 4. The model was validated in engine A,
where the engine speed, the SA, and the VGT were modified. The propagation
of the variability is able to predict the cycle-to-cycle variability with a mean
relative errors of 15% under transient and steady conditions.

5.A Hypothesis test

A normal distribution can be fitted at each combustion percentage for
this operating points. The mean of the data and the variance can be estimated
as:

M � 1
N

Ņ

i�1
Ai (5.18)

σ �
gffe 1
N � 1

Ņ

i�1
|Ai �M |2 (5.19)

For these tests two hypotheses are raised, the null hypothesis H0, and the
alternative hypothesis H1, which can be described as:

H0 : H � 0 : the distribution is normal : X ∼ N pµ, σ2q
H1 : H � 1 : the distribution is not normal : X � N pµ, σ2q
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In this work a 5% significance level are chosen to evaluate the distributions.

pvalor ¡ α : does not reject H0 (5.20)
pvalor   α : reject H0 (5.21)

(5.22)

Bellow, each hypothesis test is explained in detail [12].

• Lilliefors: Is a normality test based on the Kolmogorov-Smirnov test.
The statistic DL is the largest absolute difference observed between
the observed cumulative distribution function SnpXq and the normal
cumulative distribution function F �pXq, as:

DL � max1¤j¤n|F �pXjq � SnpXjq| (5.23)

If DL ¤ Dα : does not reject H0 (5.24)
If DL ¡ Dα : reject H0 (5.25)

(5.26)

where Dα is tabulated, and for a normal distribution and α � 0.05,
Dα � 0.895 [13].

• Anderson-Darling: The statistic is defined as:

A2 � �n� S (5.27)

where S is computed as:

S �
ņ

j�1

2j � 1
n

rlnpF pXjq � lnp1 � F �pXn�1�jqqs (5.28)
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where the expected cumulative distribution function of the specific dis-
tribution is F �pXjq .

If the test statistic A2 is less than the critical value from the previous
point, the null hypothesis H0 cannot be rejected; otherwise, it is rejected.
For a normal distribution and α � 0.05, the critical value is Aα 0.752 [14].

If A ¤ Aα : does not reject H0 (5.29)
If A ¡ Aα : reject H0 (5.30)

(5.31)
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6.1 Introduction

In-cylinder pressure oscillations are a consequence of different factors
that must be controlled for safe and optimum operation of IC engines [1]. In
SI engines, the auto-ignition of the end gas heavily excites resonance, what
causes a reduction on the combustion efficiency and can damage the engine [2].
In compression ignited (CI) engines the in-cylinder resonance excitation is
mostly caused by the amount of premixed combustion due to a long ignition
delay [3]. A common strategy to reduce noise level in CI engines consists
on using multiple injection to minimize the resonance excitation [1]. In new
combustion modes, for example homogeneous charge compression ignition
(HCCI), RCCI or TJI, combustion heavily excite resonance due to fast burning
rates and normal combustion can be classified as knock [4].

In this chapter the in-cylinder resonance excitation in IC engines is ana-
lyzed and characterized in three different combustion modes: SI, TJI and RCCI.
First, the resonance theory is presented, where Drapers equation is analyzed
and a different approach that takes into account factors such as the viscosity
of the fluid is investigated. Then, the in-cylinder pressure time-frequency anal-
ysis is explained, there the tools used are presented and in-cylinder pressure
signal processing is described. Next, engines A and B are used to devel-
oped a model able to reproduce the amplitude evolution during knocking
and normal combustion, by assuming a constant attenuation during the cycle.
After, a different approach is presented: a pressure resonance attenuation
model, where engines A, B and C are used to developed a model able to predict
the attenuation evolution during a cycle of the in-cylinder resonance excitation.

6.2 Resonance theory

In-cylinder pressure oscillations are the product of complex phenomenon
including the transport of pressure waves in the combustion chamber. In this
sense, they can be studied by means of the so-called wave equation, which is
derived from the conservation of momentum equation, where the following
hypothesis are considered:
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• No mass generation.

• Viscous effects are neglected.

• The process is isentropic: No heat transfer and no internal losses.

The wave equation is expressed as following:

B2p

Bt2 � a2∇2p (6.1)

where p represents the pressure, a the speed of sound in the combustion
chamber, ∇2 is the Laplacian operator and t is time.

In order to describe the in-cylinder resonance pressure oscillations in
the combustion chamber, the 3D wave equation (6.1) can be written in the
cylindrical coordinates, as following:

B2p

Br2 �
1
r

B2p

Br2 �
1
r2

B2p

Bφ2 �
B2p

Bz2 � 1
a2

B2p

Bt2 (6.2)

The analytic solution for Equation (6.2) was solved in [5], where the au-
thor gave a general solution with cylindrical contour conditions by introducing
Bessel functions.

p �
¸
Ai,j,gJapBi,jrqe2πft

"
cos

sin

*
piφqcospgπ

h
zq (6.3)

Ai,j,g are constant for every mode represented by sub indexes i, j and g. The
proposed solution leads to the following expression for the resonance frequency:

fpi,jq � a

c
pBpi,jq

πD
q2 � p g2hq

2 (6.4)

where g are the axial modes, which can be neglected near the TDC since the
bore (D) is high compared with the height of the chamber (h) (h   D) [6],
a the speed of sound and Bpi,jq are the Bessel constants of each mode (i,j),
where i is the number of circumferential modes and j is the number of radial
pressure modes [7]. Assuming ideal gas, the speed of sound can be computed
from the trapped mass mcyl, the in-cylinder pressure pcyl, and estimating the
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instantaneous volume of the chamber V , as following:

a �
d
γpcylV

mcyl
(6.5)

where γ is the specific heat capacities ratio of the gases, which can be modeled
such as suggested in [8], where polynomial expressions are use to represent
the in-cylinder temperature .

Figure 6.1 shows the first 4 circumferential modes, Bessel constants for
this modes are collected in Table 6.1.

Figure 6.1: Resonant mode shapes of first 4 modes.

Table 6.1: Bessel constants for first 4 resonant modes

i j Bpi,jq

1 0 1.841
2 0 3.054
0 1 3.831
3 0 4.021

Figure 6.2 (bottom) shows the spectrograms of the in-cylinder pressure
signal whose high-pass (f ¡ 4000 Hz) filtered signal is shown in Figure 6.2
(top). The theoretical resonant frequency evolution of the first mode described
by Equation (6.4) is represented in red dashed line.
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Figure 6.2: In-cylinder signal. Top plot: High pass in-cylinder pressure.
Bottom plot: Time-frequency spectrum of the in-cylinder pressure signal in
engines: A (left), B (middle) and C (right).

As can be seen in Figure 6.2, the most excited frequency in the pressure
signal is the first mode for all engines, and please note that DA   DB   DC

and this has an impact on the resonance frequency. Drapers equation is the
most widely used method to analyze the knocking frequencies [9], but it must
be noticed that Equation (6.4) only computes the resonance frequency, but not
the amplitude of such oscillation. Such amplitude depends on how combustion
excites the acoustic field inside the combustion chamber, and such oscillation
is attenuated during the piston stroke because of the finite impedance of the
walls and the viscosity of fluid. However, the resonance intensity evolution
is an important parameter to take into account in order to analyze knock
phenomenon [10].

In order to develop a model able to predict the evolution of the amplitude
of the resonance, an approach to real frequency attenuation in ducts presented
in [11] is analyzed. In [11], the viscous effect during the resonance attenuation
has been studied, where the damping of the amplitude of such oscillation
was modeled by a constant as a function of the oscillation frequency and the
thermodynamic conditions of the gases. Nevertheless, this study analyzes the
propagation of the wave along ducts and the real impedance of the walls was
not considerated. In this case, the stationary wave solution was derived as a
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function of the distance to the source (z), such as:

p � Aejωtejβz (6.6)
where A is the initial amplitude, ω the angular speed and the constant wave
number. The constant wave number (β) is divided in a real part (k0), repre-
senting the oscillation frequency, and a imaginary part (α), which represents
the attenuation.

β � �k0 � α� jα (6.7)
When solving the equations (6.6) and (6.7) with the aforementioned as-

sumptions the damping coefficient is obtained as:

α � 1
ra
pωµ2ρ q

1
2 (6.8)

where r is the radius of the duct, µ the viscosity, and ρ the density of the gas.

The approximation presented in Equation (6.6) will be used during follow-
ings sections to model the attenuation amplitude in the combustion chamber.

6.3 In-cylinder pressure time-frequency analysis

In this section the in-cylinder pressure time-frequency analysis is pre-
sented. The section is divided in two parts: first, time-frequency analysis tools
used are presented and discussed, and then, the in-cylinder signal processing
based on the tools previous introduced is described.

6.3.1 Time-frequency tools

The Fast Fourier Transform (FFT) is an extensively used tool used for
the analysis of a signal in frequency domain, which decomposes the signal sptq
in constant frequency harmonics F pfq as:

F pfq �
» 8

�8
sptqe�j2πftdt (6.9)
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which can be discretized in the crank angle (θ) domain:

F pfq �
8̧

�8

sptqpθqe�j2πftpθq∆tpθq (6.10)

where ∆tpθq is defined as:

∆tpθq � ∆θ
6npθq (6.11)

where n is the engine speed, and ∆θ the crank angle resolution.

In-cylinder pressure signal is not stationary, i.e the amplitude and spec-
trum of the signal change in time. If the spectrum of the signal is time
dependent, sufficiently short elements needs to be used to analyze the spec-
trum, with the certainty that the spectrum is constant over each segment.

In order to separate these two phenomena time-frequency analysis is nec-
essary, such as Short Time Fourier transform (STFT) or Wigner Distribution
(WD). The STFT provides the amplitude for a given signal in the frequency
domain at time or CAD position by windowing the in-cylinder pressure signal
and moving the window along different CAD position. This permits to reduce
the order of discontinuity at the boundary of the observation interval, more
detail information about window function can be found in Appendix 6.A. The
STFT is computed as:

PSTFT pθ, fq � |F pfq|2 �
φ�8̧

φ��8

spθqpφqwpφ� θqe�j2πftpφq∆tpφq (6.12)

However, high resolution in both, time and frequency, is not possible, i.e.
for an adequate frequency analysis large windows are required, while such
windows induce frequency components of the surrounding and as a consequence
reduce the time resolution by filtering the estimation in time.

On the other hand, WD is a quadratic time-frequency distribution [12],
which is defined as:
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PWDpθ, fq �
φ�8̧

φ��8

spθ � 1
2φqspθ �

1
2φqe

�j2πftpφq∆tpφq (6.13)

The issue with WD are the cross terms (interference terms) due to its
quadratic nature. In Figure 6.3 two spectrograms computed by STFT and
WD are compared: on the top plots STFT (left) and WD (right) spectrograms
and on the bottom plot the band pass in-cylinder pressure. For STFT a
Blackman�Harris window is chosen for time-frequency analysis, the effect
of the window is discussed in Apendix 6.A.

Figure 6.3: Time frequency analysis of the in-cylinder pressure signal of
engine C. Top left: spectrogram computed by STFT. Top right: spectrogram
computed by WD. Bottom plot: Band-pass in-cylinder pressure.

The WD provides the highest possible temporal-frequency resolution, but
the computational burden for the WD distribution is higher than for the
STFT, which discards the real-time application.

STFT and WD both present issues for real-time applications as the com-
putation burden associated is high [13]. In order to characterize resonance
evolution within the combustion chamber, a resonance indicator proposed
in [14] is used. The authors propose a modified Fourier transform which
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contemplates the resonance theory by using a convolution with harmonics.
Here, the indicator proposed is provided by widowed the in-cylinder pressure
signal, and the intensity of the resonance is measured at each CAD position,
and is defined as:

Irpθq �
θ�θ2̧

θ�θ1

wpθ � θ1qpbppθqe�2π
°ψ�θ
ψ�0

B
?
γpψqplppψqV pψq
πD

?
m

Tspθq (6.14)

where θ1 and θ2 define the CAD interval where the resonance analysis is per-
formed, the window function w has a length of θ2 � θ1, Tspθq is the sampling
period, which can be assumed as constant only in time-based acquisition or
if the instantaneous engine speed fluctuations are negligible, B is the Bessel
constant (1.842 for first radial mode), D is the cylinder bore, V the chamber
volume, m the in-cylinder trapped mass, plp and pbp are the low-pass and the
band-pass in-cylinder pressure respectively. Here, a Blackman-Harris window
function has been used.

The resonance amplitudes evolution computed from the STFT, WD and
Ir are compared in Figure 6.4.

Figure 6.4: Resonance attenuation evolution for case presented in Figure
6.3 computed by STFT, WD and Equation (6.14).

As shown in Figure 6.4, Ir case presented in Equation (6.14) and STFT
has a simillar amplitude evolution, i.e the same window function was used
for both analysis, but for WD the evolution is slightly different. In terms of
computational time, the Ir is 4 times faster than the STFT, and the STFT
100 times faster than the WD.
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6.3.2 In-cylinder pressure signal processing

The resonance amplitude evolution will be computed from in-cylinder
pressure signal from Equation (6.14). STFT or WD are not selected since the
computational burden is considerably higher than computed the resonance
indicator [6].

Other parameter to be analyzed during this chapter is the attenuation of
the resonance excitation. From in-cylinder pressure signal, the experimental
resonance attenuation is computed following the scheme presented in Figure
6.5.

𝐹𝐹𝑇 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (6.14)
𝜕𝐼𝑟
𝜕𝑡
𝐼𝑟

𝑓𝑟𝑎𝑛𝑔𝑒 𝐼𝑟(θ) 𝛽𝑒𝑥𝑝(θ)𝑝𝑐𝑦𝑙

Figure 6.5: Experimental attenuation procedure scheme.

The first step is to compute the FFT in order to find the frequency range of
the mode to analyze. A second step is added where the resonance indicator (Ir
) is calculated, and finally the attenuation is obtained by deriving Ir and divid-
ing by the amplitude. As example, the scheme procedure is shown in Figure 6.6.
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Figure 6.6: Experimental attenuation procedure: STFT (left), Ir (middle)
and αexp (right).

In Figure 6.6 left plot, the FFT of the in-cylinder pressure of engine C is
shown, and in grey dashed line the frequency range frange of the first radial
mode is marked. The middle plot shows the resonance amplitude evolution
computed by the Equation (6.14), and in right plot the experimental attenua-
tion is represented.

6.4 Pressure resonance amplitude evolution model

This section is devoted to developed a model able to predict the ampli-
tude of in-cylinder pressure resonance evolution over normal and knocking
combustion by assuming a constant attenuation during a cycle. During the
section two engine are used to developed the model: A and B engines.

6.4.1 Model description

In order to model the resonance evolution during normal and knocking
combustion, the approximation found in [15] is analyzed. The attenuation
introduced in Equation (6.7), which is used to represent the real acoustical
evolution of the combustion chamber due to the impedance of the chamber
walls, the movement of the piston, and the viscosity of the medium, among
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others. In this section, the value of the β is assumed to be constant during a
given cycle. In order to model the resonance amplitude evolution, a first order
system is used, which in discrete time domain can be described as [16]:

Gdrzs � z

z � eβTs
� 1

1 � kdz�1 (6.15)

where z�1 represents a unit delay, kd � eβTs is the parameter that characterizes
the attenuation in the discrete domain, and Ts is the sampling period.

The resonance amplitude evolution can be computed from the transfer
function in Equation (6.15), and the excitation of resonance upzq, such as:

Apzq � Gdrzsupzq (6.16)

The amplitude of the pressure resonance depends on how combustion
excites the acoustic field, for that reason, it is not possible to recognize the
amplitude of the resonant mode in a concrete time step, nevertheless a diluted
estimation after a window can be applied. From now on, it can be assumed
that the estimation in Equation (6.14) is proportional to the intensity of the
oscillation at the frequency of the oscillation in a time window.

Irpzq9W rzsApzq (6.17)

where W rzs is the window function which consists in a zero-phase filter with
a Blackman-Harris window weighing as:

W rzs �
J{2̧

j��J{2
wjz

j (6.18)

where J represents the window size in samples, and wj the window factors
that complies:

°
wj � 1.

In Figure 6.7 an scheme of the amplitude resonance model is shown. The
unknown variable is how the combustion excites the resonance field: upzq,
which should be modeled as a function of the cycle combustion parameters.
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Figure 6.7: Resonance model scheme.

In order to model the the amplitude upzq two hypothesis are taken:

• For normal combustion, the combustion resonance excitation (uC) is
assumed to be produced by the heat fluctuations, so it was assumed to
be proportional to the HRR. Which means that the highest resonance
excitation is caused at the maximum HRR, and all the combustion
process has a contribution to the final resonance amplitude evolution.

uCpzq � C �HRRpzq (6.19)

• For knocking combustion, all the excitation, is assumed to be released
in a small step located just after EOC. The intensity of the fluctuations
cannot be measured online, which is mainly caused to the fuel burnt in
auto ignition conditions. A step function of 0.5 CAD length with an
intensity of |uA| � Îr has been used to model the rapid pressure rise in
knock event.

The attenuation constant of Equation (6.15), kd, and the proportional
relation between the HRR and C, might depend on the engine operating
conditions, however its expected to be almost constant, and can be identified
cycle-by-cycle on-line.

The final algorithm to compute the amplitude of the resonance excitation
uses as an input cycle-to-cycle combustion data to update the C and kd by
using an infinite input response (IIR) filter, as following:

kk�1
d � kkdαup � pkkdp1 � αupq (6.20)

Ck�1 � Ckαup � pCkp1 � αupq (6.21)
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where pkd and pC are the identified damping and combustion excitation param-
eters, and αup is the IIR filter coefficient weighting the impact of previous
cycle value (k) and innovation (k � 1).

6.4.2 Adaptation of model parameters

Engines A and B are used to evaluate the parameters, kd and C, under
normal combustion over 500 consecutive cycles. In Figure 6.9 the histogram
with the identified time constant (kd) is represented, and in Figure 6.10 the
proportional relation (C) between the HRR and the resonance intensity (Ir)
is shown. Engine A was operated at OPA � 5 and the MAPO average was of
0.18 bar. Engine B was operated at OPB � 10 with an average MAPO of 0.48
bar. The average value and the variation, evaluated by the standard deviation,
of both analysis has been summarized in Table 6.2. The characteristic time τ
constant of both, engine A and B, was of 0.80 and 0.93 ms respectively (see
Figure 6.8), and was computed from:

τ � 1
β
� Ts

lnpkdq (6.22)

Figure 6.8: Characteristic time τ identified at 500 cycles with conventional
combustion. Left plot: Engine A OPA � 5. Right plot: Engine B OPB � 10.

Notice that in Figure 6.9, the value of kd for engines A and B is similar
while the value of τ is not, this is because the sampling period Ts for both
engines is different, since engine A in-cylinder pressure is sample every 0.2
CAD and in engine B case every 0.5 CAD.

Analyzing Figures 6.9 and 6.10, the shape of both histograms is not
symmetrical, and has a small cue at lower values of attenuation and higher
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Figure 6.9: Attenuation identified at 500 cycles with conventional combustion.
Left plot: Engine A OPA � 5. Right plot: Engine B OPB � 10.

Figure 6.10: Proportional relation between HRR and resonance intensity
identified at 500 cycles with conventional combustion. Left plot: Engine A.
Right plot: Engine B.

values of the combustion excitation. This deviation can be attributed to
cycles where the pressure oscillations are not completely caused by combustion
excitation, and other sources such as noise interfered. According to Table 6.2,
the obtained distributions also show that the variability of the attenuation
can be neglected, in engine A represented a 0.6 % and in Engine B a 0.4 %.
Besides, the combustion excitation variation (σpCqC ) is estimated around a 30 %.

Table 6.2: Model parameters

Engine A Engine B
kd 0.9795 0.9651

σpkdq 0.0059 0.0043
C 0.0184 0.1125

σpCq 0.0051 0.0352
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Moreover, the model has been evaluated under transient conditions in
engine B, where the SA and throttle valve (Xth) were changed during transient
T13. In Figure 6.11 the evolution of the model parameters: the attenuation
(kd) and the combustion excitation (C) characteristics have been continuously
adapted by Equations (6.20) and (6.21), where αup � 0.98. However, note
that this parameters are not sensitive to the operating engine condition.

Figure 6.11: Evolution of C and kd during transient conditions. Engine B
test number T13.

6.4.3 Results and discussion

The model was validated in engines A and B during SA sweeps at operat-
ing condition OPA � 12 and OPB � 20. Each cycle the relative error of the
model was computed as :

Er � |°pIr � Imodelq|
Ir

100 (6.23)

where Imodel can be the resonance expected for combustion or for auto ignition.

The relative error of the models are represented in Figure 6.12 and 6.13,
where the relative error for both, auto ignition and combustion model is shown
on the left. Two cycles are highlighted: crosses are used to represent one cycle
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with relative error of auto ignition model lower than combustion model, and
circles are used to represent the opposite case.

Figure 6.12: Resonance model evolution results for engine A OPA � 12.
Left: Relative error of combustion and auto ignition models. Right: Detailed
cycles.

Figure 6.13: Resonance model evolution results for engine B OPB � 20.
Left: Relative error of combustion and auto ignition models. Right: Detailed
cycles.

As can be seen in Figures 6.12 and 6.13 the estimated resonance evolution
for normal combustion (Ir) looks closer to the combustion model (Ic�model)
in no knocking conditions. Otherwise, when a knock event occurs (1x1 case)
it seems more correlated with the auto ignition model (Ia�model). This ap-
proximation will be used during the following Chapter 7 to develop a knock
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recognition procedure.

6.5 Pressure resonance attenuation model

In the previous section the attenuation of the resonance excitation was
assumed as constant during a cycle, this section aims to developed a model
able to predict the attenuation of in-cylinder pressure resonance over a cycle.
The experimental resonance attenuation is computed from in-cylinder pressure
sensors following the scheme presented in Figure 6.5, and three combustion
modes are used to analyzed and characterized the resonance damping: SI, TJI
and RCCI.

6.5.1 Dimensional analysis

The attenuation over different operation points can be described as func-
tion of parameters in Equation (6.8) as:

β � Kac1µc2ρc3f c4Dc5nc6 (6.24)

where K is a constant value which must be calibrated, and cj , with j from 1
to 6, are the exponents of the different parameters.

Applying dimensional analysis, Equation (6.24) in International System
of units results as:

1
s
�
�m
s

	c1 �
�
kg

ms


c2

�
�
kg

m3


c3

�
�

1
s


c4

�mc5 �
�

1
s


c6

(6.25)

During the expansion stroke, the evolution of all thermodynamic proper-
ties can be associated to the movement of the piston as:
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ρ � P
RT � k1

V �γ
V 1�γ

a � ?
γRT �

a
γRk2V 1�γ

f � a
Bi,j
D �

a
γRk2V 1�γ Bi,j

D

µ � k3T
0.7 � k3pV 1�γq0.7

(6.26)

where R is the gas constant, ki constant values, V the volume, T the in-
cylinder temperature. The expression for the dynamic viscosity was computed
according to [17]. In order to compensate energy losses, the adiabatic index
(γ) will be replaced by a constant polytropic coefficient (κ).

Henceforth, according to Equations (6.8) and (6.26), in the expansion
stroke, where a polytropic evolution is assumed, the attenuation of the res-
onance in a given cycle should be described in term of the volume evolution by:

β � K1V
�c0 (6.27)

where K1 is a constant in function of the gas conditions defined in Equations
(6.26).

Constants relations must also satisfy (6.27). According to (6.26) and
(6.27) the following relation is obtained:

c0 � p1 � γqc1
2 � p1 � γqc20.7 � c3 � p1 � γqc4

2 (6.28)

6.5.2 Calibration of the model parameters

The first step is to calibrate constants of Equation (6.27), namely K1 and
c0, which were calibrated by least squares method as:

b � A � x (6.29)
b � logpβq (6.30)
A � rlogp1q � logpV qs (6.31)

rK1, c0s � A b (6.32)
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In Figure 6.14, the mean variables K1 and c0 and 95 % confidence interval
for the mean of the training points are shown.

Figure 6.14: Calibration β model for engine A and B: K1 (top) and c0
(bottom).

As it can be seen in Figure 6.14, the operating condition has not significant
impact on c0 fitted value for both engines.

Taking a look to the system of Equations, (6.25) and (6.27), we have now
x unknowns and y equations. In order to find a solution to the system of
equations, two unknowns parameters must be determined. The effect of the
speed and diameter are analyzed, by maintaining the rest of thermodynamic
parameters constant.

First, the effect of the speed is analyzed in Figure 6.15 over the training
points of engines A and B.
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Figure 6.15: Mean attenuation and 95% confidence interval for the mean at
different engine speed of engine A and B.

As can be seen in Figure 5 there is a linear relation between engine speed
and attenuation, so the constant c6 will be defined as 1.

In order to examine the cylinder size effect, and therefore the c5 value,
similar thermodynamic points were selected. In Figure 6.16 (left) the tempera-
ture and pressure for a θp = 40 CAD are shown, the grey area shows the tests
where similar conditions are achieved with both engines. Across this points
the ratio between the attenuation is analyzed by defining a parameter χ as
following:

χ � βA
βB

� pDADB qε

ε � logDA
DB

pβAβB q
(6.33)

where ε quantify the effect of the diameter.

In Figure 6.16 (right), the mean ε value and 95% confidence interval is
shown. Cases 1 and 2 correspond to operating points contained in grey area,
while cases 3 to 8 corresponds to cases contained in pink area.
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Figure 6.16: Diameter effect for engine A and B: Temperature and pressure
points (left), mean ε and standard deviation for 9 cases over 50 cycles.

From Equations (6.25) and (6.28), using c0 � �0.58, and assuming a
linear effect of the speed from experimental analysis (c6 � 1), the following
relations are obtained:

c1 � �2c2 � c5 � 0.8298 � c5

c2 � �c5 � c4 � 2 � �0.4149

c3 � �c2 � 0.4149

c4 � 1.58 � c5

(6.34)

Figure 6.17 shows the fitting results for K constant (Equation (6.24) for
all training points and both engines and both, engines A and B.
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Figure 6.17: K calibration. Left: Fitting results for each test. Right:
Histogram for both engines calibration constant (right).

Table 6.3: Model calibration values

Constant Value
c1 1.5
c2 -0.42
c3 0.42
c4 0.92
c5 -0.66
c6 1
K 6.86e�10

6.5.3 Results and discussion

In this section results of the attenuation resonance model are presented
from three perspectives: firstly, the in-cycle results are shown, where the
resonance attenuation model over a cycle is compared with the experimental
attenuation. Secondly, the mean attenuation over several cycles results are
presented, where one value is used to characterize the complete cycle attenua-
tion. And finally, the engine diameter effect over engine A is analyzed.
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6.5.3.1 In-cycle results

Figure 6.18 the resonance attenuation obtained from in-cylinder pressure
signal and the model evolution are compared over one cycle.

Figure 6.18: Model in-cycle attenuation results: Engine A (left) , engine
B (right). Resonance amplitude evolution (top) and resonance attenuation
(bottom)

Figure 6.18 (top) shows the band-pass in-cylinder pressure and Ares, in
Figure 6.18 (bottom) the attenuation from experimental data (βexp) and the
model (βmodel) are represented over the expansion stroke. Notice that when
the oscillation drop below 200 1

s , there is insufficient sensitivity to calculate
the attenuation and the model deviates from the measurement.

Figure 6.19 shows the mean relative error of the model evolution over 100
cycles. The relative error is computed as:

err%s � βmodel � βexp
βexp

� 100 (6.35)

The analysis performed in Figure 6.19 is performed till 40 CAD the EOC,
after that, β value is low and there is no sensibility on the measurement.
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Figure 6.19: Mean relative error between experimental in-cycle attenuation
and model over 100 cycles (validation tests): Engine A (left), engine B (middle)
and engine C (right).

Note the the model is able to reproduce the evolution of the attenuation,
not only for the calibration engines (A and B), but for engine C with an error
of less than 10 %.

6.5.3.2 Mean attenuation

The mean value of attenuation obtained from experimental data was com-
pared with the mean attenuation of the model, in Figure 6.20 the attenuation
from training data (left) and validation data (right) are compared with the
model results. Different colors are used to highlight engine A and B results,
and validation results from engine C are marked with crosses. In continuous
line the agreement is shown and in dashed line the expected error (10 %).

Figure 6.20: Calculated attenuation: Training data (left) and validation data
(right). – Agreement line, - - 10 % relative error

As shown in Figure 6.20, the model is able to reproduce the mean attenu-
ation over a cycle within a 10 % of error, in both engines used for calibration



138 In-cylinder resonance modeling

(A and B) and a third engine used only in the validation section (engine C).

6.5.3.3 Engine diameter

In an attempt to compare the diameter effect with engine A, the attenua-
tion cross-ratio (χ) from Equation (6.33) is used.

χexp � αexp�C
αexp�A

(6.36)

χ �
�
DB

DC


ε
� 0.7821 � χexp (6.37)

In this section the analysis of the attenuation is performed at the same
thermodynamic starting point (temperature and pressure). In Figure 6.21 the
temperature and pressure at the same crank angle location for each case are
represented. In pink, the area selected to compute the attenuation cross-ratio
is shown.

Figure 6.21: Temperature and pressure points at 30 CAD ATDC.

In Figure 6.22 (left) the relation χexp evolution between engines B and C
over 100 cycles is represented, the mean of the model over the cycles is plotted
in continuous black and dashed line is used to highlight the χ calculated with
the model, based on the ratio between diameters. Figure 6.22 (right) shows
the mean and the 95% confidence interval for the mean over 6 cases for B and
C comparison, and 7 cases for A and C comparison.
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Figure 6.22: Relation χ: In-cycle evolution of χexp, χmod and χ (left). Mean
and 95% confidence interval for the mean of χexp for different cases and mean
χmod (right)

As shown in Figure 6.22, when comparing engine A and B with engine C,
the model is able to predict the mean effect of the diameter on attenuation.

6.6 Resonance with different fuels

In this section results from engine B fueled with two different fuels (gaso-
line and CNG) will be shown.

First, the amplitude resonance model will be evaluated under the same
operating condition in a normal combustion cycle. In Figure 6.23, the reso-
nance indicator is shown in black line in two cases: engine fueled with gasoline
(right) and fueled with CNG (left) during a normal combustion cycle. In grey
line, the model for normal combustion case (Imodel�c) is illustrated. In slight
grey the high pass in-cylinder pressure is also represented. Both cases were
computed with values shown in Table 6.2.
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Figure 6.23: Resonance model evolution results for engine B OPB � 20 with
the engine fueled with CNG (left) and gasoline (right).

As it can be seen in Figure 6.23, the model is able to reproduce the
resonance amplitude evolution in both cases, since the resonance evolution is
modeled as a function of the HRR, which is affected by the fuel.

In the same operating condition, the attenuation was computed from
the in-cylinder pressure signal. In Figure 6.24, the histogram of the mean
attenuation obtained during 200 cycles is represented together with the value
obtained from the model. On the left plot CNG cases, and on right plot
gasoline.

Figure 6.24: Histogram of mean experimental and modeled attenuation during
OPB � 20 with the engine fueled with CNG (left) and gasoline (right).

As shown in Figure 6.24, the attenuation of the resonance is independent
of the used fuel, i.e depends on the operating conditions and the combustion
chamber. In Figure 6.25, the attenuation from a cycle of Figure 6.23 is repre-
sented for both cases.
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Figure 6.25: Attenuation evolution during cycle of Figure 6.23 for CNG
(left) and gasoline (right).

In both cases analyzed in Figure 6.25 the model is able to reproduce the
evolution of the attenuation in both, gasoline and CNG, thus the resonance
evolution and the attenuation are independent of the fuel type. As a con-
sequence, for a given engine and combustion mode, the models are able to
reproduce the resonance in the combustion chamber.

6.7 Conclusions

In this chapter resonance amplitude evolution was analyzed. A resonance
model evolution for combustion and knocking combustion is presented, consid-
ering an attenuation constant during a cycle. This model will be used in the
following chapter to developed a knocking cycle recognition method. A second
approach is presented, by modeling the attenuation during a cycle for engines
A, B and C, demonstrating that the model is able to reproduce resonance
attenuation evolution in three different combustion modes.

6.A Windows function

Windows are used in harmonic analysis to reduce the undesirable ef-
fects related to spectral leakage. There are several different types of window
functions that can be applied depending on the signal. In Figure 6.26, four
windows function are shown, on left plot in time domain and on right plot in
frequency domain.
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Figure 6.26: Window functions. Left: time domain. Right: frequency
domain.

Note that Hamming window function does not reach zero, while the
remaining three reach zero at both ends . This permits to eliminating all
discontinuity when computing the STFT as is illustrated in Figure 6.27.
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Figure 6.27: Optimal window location over a transient.

Following recommendations of window use in [18], the selected window
for the frequency analysis is the Blackman-Harris window.
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7.1 Introduction

In this chapter, the models developed in Chapters 4 and 6 will be used
to develop tools for combustion diagnosis. This chapter is devoted to two
applications, on the one hand, knock recognition methods, and on the other
hand, in-cylinder trapped mass estimation.

First section present two knock recognition methods based on in-cylinder
pressure signal, which makes use of the resonance evolution model presented
in Chapter 6, and one method based on knock sensor signal, which combines
the combustion model presented in Chapter 4 and one of the methods based
on in-cylinder pressure signal. In addition, an application to different fuels of
methods based on in-cylinder pressure is presented and results are analyzed.

Second section introduce an application of the attenuation model pre-
sented in Chapter 6 in order to improve the trapped mass estimation based
on in-cylinder pressure signal.

Finally, in the last section, the main conclusions of the chapter are dis-
cussed.

7.2 Knock recognition

7.2.1 Low-knock recognition: MAPO limitations

As it was introduced in Chapter 2, one of the most extended indica-
tor based on in-cylinder pressure signal for knock diagnosis in IC engines is
MAPO [1]. In order to recognize knock events with MAPO criterion, a thresh-
old must be previously calibrated for a given engine and different operating
conditions [2]. In this sense, MAPO criteria consists of considering a maximum
threshold for the high-pass filter of the in-cylinder pressure (php), above which
knocking conditions are considered, such as:

MAPO � maxpphpq (7.1)

In Figure 7.1 the high-pass in-cylinder pressure is shown for two cases, on
the left a cycle with a low MAPO value (0.2 bar), and on the right a cycle
with a high MAPO amplitude (0.9 bar). In order to analyze the excitation of
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the resonance, the HRR is also represented.

Figure 7.1: High-pass in-cylinder pressure signal for two cases: Low MAPO
(left) and high MAPO (right).

Analyzing Figure 7.1, for left case, resonance is excited during the com-
bustion, i.e. around the maximum of the HRR, on the other hand, for the
right case, resonance is excited at the end of the combustion. Due to the
auto-ignition process a second peak is observed in the HRR profile in the right
case, which is associated with the fast burning rate of the end gas. As it can
be seen in Figure 7.1, MAPO recognition is successful if the auto-ignition of
the end gas produces an excitation of the resonance such that the amplitude
of the phenomenon is high, however during this section the MAPO limitations
are analyzed.

First, knocking and non-knocking events are analyzed in engines A and
B in Figure 7.2. The spectrograms of the in-cylinder pressure signal for no-
knocking cycles (left) and low-knocking cycles (right) are represented. The
frequency spectrograms are computed by STFT using a Blackman-harris win-
dow of 30 CAD length, in dashed line the CA50 and CA90 are highlighted.
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Figure 7.2: Top plot: Engine A. Bottom plot: Engine B. CA50, CA90 and
their spectrogram for two cycles: no-knocking cycle (left) and low-knocking
cycle (right). Operation point: OPA � 5 and OPB � 12.

The evolution of the high-pass in-cylinder pressure of Figure 7.2 are in-
cluded in Figure 7.3, where the evolution of Ir introduced in Chapter 6 is also
shown.
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Figure 7.3: Top plot: Engine A. Bottom plot: Engine B. HRR, CA50,
CA90 and their spectrogram from two cycles: no-knocking cycle (left) and
low-knocking cycle (right). Operation point: OPA � 5 and OPB � 12.

Analyzing Figures 7.2 and 7.3, the maximum MAPO for both no-knocking
and low-knocking cycles are similar for a given engine: 0.25 bar in engine
A and 1.25 bar in engine B. Regardless similar MAPO amplitudes, in no-
knocking cycles the resonance frequencies are excited near CA50, while in
knocking cycles near CA90 which represents the end of combustion. Hence, if
a low MAPO threshold is considered, normal combustion will be classified as
knock (error type I), on the other hand, if a high MAPO threshold is chosen
low-knocking cycle will be classified as normal combustion (error type II).

In order to analyzed SI and TJI combustion, MAPO probability distribu-
tions over 300 cycles at different SA settings is shown in Figure 7.4: left plot
shows MAPO probability from Engine A, and right plot MAPO probability
from Engine B.
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Figure 7.4: Distribution of MAPO amplitude over SA sweeps. Left plot:
Engine A (OPA � 5). Right plot: Engine B (OPB � 12).

For TJI combustion (engine B), resonance levels are considerable higher,
i.e. conventional combustion can achieve a MAPO level of 0.8 bar. In SI com-
bustion, as SA is advanced MAPO distribution moves towards higher values.
On the other hand, MAPO is less sensitive to SA in the TJI combustion. In
dashed line, the MAPO threshold proposed for both engines is included, for
engine A a MAPO threshold of 0.4 bar is chosen, and for engine B a MAPO
threshold of 1 bar is chosen.

7.2.2 Methods based on in-cylinder pressure

In this section, two low-knock recognition methods based on in-cylinder
pressure sensor will be presented by using the resonance indicator introduced
in Chapter 6. First, a recognition method based on instantaneous combustion
is presented. And after, a knock recognition method based on the amplitude
resonance model presented in Chapter 6 is introduced. Both methods are
validated in real-time operation in engine A at the end of this section.
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7.2.2.1 Method 1: Recognition based on instantaneous combustion
assumption

As discussed above, increasing the SA in a SI combustion produces higher
temperature and pressure peaks in the combustion chamber, which leads to
a higher knock probability. The parameter Ir introduced by Equation (6.14)
was studied at different engine speeds, SA, and intake pressure conditions to
analyze knocking events in engine A. In Figure 7.5, three cases are represented:
normal combustion (left), low-knocking (middle) and knocking (right). The
high-pass filtered in-cylinder pressured is represented on top plots, and Ir
evolution is compared with the HRR evolution on bottom plots.

Figure 7.5: Detail of three cycles at Engine A OPA � 5. Left : No knock.
Middle: low knocking cycle. Right: knocking cycle. Top plots high-pass filtered
pressure and bottom plots normalized HRR plots Ir evolution.

As it can be seen in Figure 7.5, the three cases show different locations
where the cylinder resonance is excited with respect to the HRR evolution.
Considering this effect, the resonance indicator (Ir) has been studied at two
different CAD position: one at the CA50 (center of combustion) and the
second one 10 CAD after CA50 which is assumed to be representative of the
EOC. These two position were considerate since if the resonance is excited
near the EOC, the source of such oscillation is the auto ignition process [1].
These positions are illustrated in Figure 7.6 for the third case of Figure 7.5
(right).
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Figure 7.6: Crank angle position of resonance analysis.

In Figure 7.7 two groups of data of 1000 cycles length have been analyzed.
Both groups have been recorded at OPA � 5 at two different SA: 4 CAD-
BTD (grey) and 12 CAD-BTD (black), i.e. low knocking and high knocking
probability respectively. The value of the Ir at the main combustion (CA50)
and EOC has been analyzed: on left plot the Ir value at CA50 is computed
for both groups and on the right plot the value of Ir at CA50 + 10CAD is
evaluated.

Figure 7.7: Distribution of Ir in Engine A OPA � 5 in two conditions:
normal combustion and knock. Left plot: CA50. Right plot: CA50+10.

Analyzing Figure 7.7, it may be noticed that at the CA50 (left plot)
the amplitude of the indicator is similar in both SA settings with a small
standard deviation, while in CA50+10 (right) the differences between the
two groups is noticeable: the standard deviation for high knock probability
data is considerably higher than for low-knock probability group. Thus, the
maximum amplitude of Ir, as well as the location of the maximum seem to be
both important parameters to identify knock.

Aiming to characterize resonance at different SA, a total of 1000 cycles at
six SA settings have been examined. The maximum Ir amplitude and location
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calculated from the CA50, were computed for each cycle. The frequency in
terms of number of events have been illustrated with grey color intensities in
Figure 7.8: darker colors the most probable locations and amplitudes, and
lighter colors the most improbable ones for each SA setting.
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Figure 7.8: Number of events of the maximum resonance indicator location
and amplitude at different SA. Engine A OPA � 5.

In low probability setting, SA = 4 and SA = 5, the maximum Ir is located
between 3 and 8 CAD after the main combustion (CA50), with a maximum
amplitude above 0.4 bar. As SA advances, SA = 10, an additional shadow
located 10 CAD after CA50 raise. These points represents knocking cycles,
which excited resonance near EOC. When SA = 12, apart from being the
percentage of knocking cycle higher, the maximum amplitude increases, which
is a consequence of more auto ignited fuel. As a summary: in cycles with low
knock probability, the maximum value of the resonance indicator is located
near CA50 with low amplitude, as knock probability increases, the location of
maximum indicator is located near EOC.

Minimum oscillation
Figure 7.8 analysis is used as starting point to develop a knocking criteria

as a function of the amplitude and location of the resonance excitation phe-
nomena. In order to establish the minimum oscillation in which the end gas
auto ignites, the HRR is analyzed. The evolution of the heat in the combustion
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chamber (Qc) can be expressed as:

Qc � κ� 1
κ

pcyldV � 1
κ� 1V dp (7.2)

where pcyl the in-cylinder pressure, κ a constant, and V the instantaneous
volume of the combustion chamber. The resonance intensity in a knocking
cycle is related to the in-cylinder pressure rise rate due to the auto-ignition of
the end gas, which can be considered as an instantaneous and therefore can be
modeled as a constant volume combustion [3]. With this assumption, the heat
released by the fuel (Qf ) during a knocking event can be computed as following:

Qf � mf�aHp (7.3)

where Hp is the lower heating power of the fuel (45 MJ/kg for gasoline), and
mf�a the fuel mass burnt by the auto-ignition of the end-gas.

Assuming complete combustion and no wall heat transfer, the pressure
difference can be expressed from Equations (7.2) and (7.3) as:

dp � κ� 1
V

mfaHp (7.4)

where mfa, i.e. represents the fuel left from the main combustion when knock
occurs, and can be expressed as a function of the mass fraction burnt (MFB):

mfa � mf p1 �MFBq (7.5)

If auto ignition takes place at CA80, 20% of the total fuel would be auto
ignited, while if auto ignition takes place at CA99 a 1% will be auto ignited.

If we assume that the knock resonance amplitude excitation is proportional
to the sudden rise of pressure due to the auto ignition event, the resonance
amplitude can be expressed as a function of the MFB, pcyl, V , and mf , as
following:

Ir�minimum � G
κ� 1
V

mfHpp1 �MFBq (7.6)
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where G represents the transference from the auto ignition event to the exci-
tation of the resonance modes.

The mass fraction burnt, is calculated with the HRR introduced in Chap-
ter 2, such as:

HRR � κ� 1
κ

pdV � 1
κ� 1V dp (7.7)

And MFB can be computed from HRR as:

MFBpθq �
³θ
θSOC

HRRpθqdθ³θTOC
θSOC

HRRpθqdθ
(7.8)

Knock recognition
In order to obtain a more precise recognition of knock, the minimum

oscillation required to auto ignite the end gas is used as a threshold. If the
Ir of a given cycle is higher than the expected resonance Ir�minimum at the
angle where Ir is maximum, then knock is detected as following:

if Îr ¥ Ir�minimumpθpÎrqq then knock (7.9)

where Îr is the maximum of Ir in the considered cycle.

Cases shown in Figure 7.5 (no knock, low knock, and knock cycles), are
used to represent the knocking criteria of Equation 7.9 in Figure 7.9, where the
Ir evolution is represented with a black line, and the threshold obtained by us-
ing a G of 0.08 with dashed line. G value was previously calibrated for engine A.
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Figure 7.9: Ir evolution and Ir�minimum for three cases. Left: no knock
cycle. Middle: low knock cycle. Right: a knock cycle. Cases in Figure 7.5.

In low knocking and knocking cases, Îr is higher than the expected reso-
nance, on the other hand, in normal combustion, Îr is bellow the expected
resonance.

The method 1 knocking criteria is applied over 300 cycles at operating
condition OPA � 5 with SA = 11 CAD-BTDC in Figure 7.10, where the
maximum amplitude of Ir is represented against the location referenced to the
CA50. Different markers are used to highlight knocking recognition of method
1 (circles) and MAPO 0.4 (crosses). In order to illustrate the advantage of
method 1 knocking recognition, three cycles have been marked with squares,
and analyzed on the right side of the figure.
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Figure 7.10: Method 1 results in engine A. Left: the maximum Ir against its
location for 300 cycles at OPA � 5 (SA = 11 CAD-BTDC). Right: Detailed
points are marked with squares and zoomed.

Analyzing Figure 7.10, point number 1 is classified as knocking for a
MAPO threshold of 0.4 bar and Îr is higher than points 2 and 3. Points
number 2 and 3 have similar Îr amplitude but at different location with respect
to the CA50. It must be notice that points 1 and 3 are knocking cycles: the
HRR has second a peak at the EOC, but MAPO fails to detect cycle 3 as a
knocking cycle while the proposed method is able to capture the low knocking
intensity observed.

7.2.2.2 Method 2: Recognition based on resonance model

Method 2 knock recognition method is based on resonance model pre-
sented in Chapter 6. As explained above, in a given operating condition, the
resonance excitation amplitude due to combustion (Ic) and auto ignition (Ia)
are expected to be:

Icpzq �W rzsGdrzsuCpzq (7.10)

Iapzq �W rzsGdrzsuApzq (7.11)
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where the combustion excitation uCpzq is assumed to be proportional to the
HRR: uCpzq � C �HRRpzq. The resonance excitation due to auto ignition is
assumed to be located after the EOC as a step function of 0.5 CAD length,
and with an intensity |uA|.

As was introduced in Chapter 6, C is updated cycle-to-cycle, but due to
the assumptions taken and uncertainties on the measurement of C a variability
can be found. In this work, a Gaussian probability distribution is assumed
for C: N pC, σpCqq, where C is the value updated cycle-to-cycle and σpCq
is the measured variation of C. Hence, the expected maximum of the res-
onance excitation due to combustion is a value between I�c and I�c : C�3σpCq.

In sever knocking cycles, the resonance excitation amplitude is much
higher than I�c , therefore sever knock can be recognized as following:

maxpIkr q ¡ maxpIkc q� (7.12)

where k is the cycle number.

Even so, in cases where the Îr measured is in an uncertainty region, the
evolution of the oscillation can give a comprehension about what triggered
the resonance. In order to recognize knock in these cases, the resonance
evolution estimated from in cylinder pressure Ir is normalized and compared
with both, combustion and auto ignition models, also normalized. In this work,
the error metric proposed is an euclidean distance along the crank angle such as:

Ecpθ1 : θ2q �
°θ�θ2
θ�θ1

}Ic�normpθq � Ir�normpθq}
Eapθ1 : θ2q �

°θ�θ2
θ�θ1

}Ia�normpθq � Ir�normpθq}
(7.13)

where θ1 : θ2 the interval of analysis of resonance which corresponds to the
main part of the combustion process: between CA10 and after CA90. In this
work, a window of analysis from SA to SA+100 CAD is proposed.

In order to evaluate knock, both model errors are compared: if Eapθ2q  
Ecpθ2q, then knock is assumed, if not normal combustion is assumed. In Figure
7.11 the complete scheme for shape criteria proposed for knock recognition is
shown.
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Figure 7.11: Scheme of the shape criteria procedure for knock recognition.

The complete knock recognition procedure involve a double criteria for
the adaptation of the model parameters (C, kd) and for knock classification.
Resonance attenuation constant kd is continuously updated, the combustion
excitation is only updated when a cycle is classified as normal combustion. The
complete scheme for knock recognition and adaptation of the model parameter
is illustrated in Figure 7.12.

Unknown:
Analyze intensity

Unknown:
Analyze shape

Knock:
Update 𝑘𝑑

max 𝐼𝑐
+ > max 𝐼𝑟

0

1

No knock:
Update 𝑘𝑑 & 𝐶

Knock:
Update 𝑘𝑑

𝐸𝑎 > 𝐸𝑐

0

1

Intensity criteria

Shape criteria

Figure 7.12: Scheme of the complete procedure for knock recognition Method
2.

Method 2 for knocking recognition was analyzed over 1000 cycles in engine
B in TJI combustion, for that SA was varied from 25 to 40 CAD before TDC.
In Figure 7.13 (left) the error Ea is represented against Ec, in dashed line the
knocking criteria limit is illustrated: cycles bellow this limit are classified as
normal combustion and above as knock. In black dots cycles with MAPO ¡
0.6 bar are represented, and with crosses cycles with MAPO ¡ 1 bar. Pink
squares are used to highlight three cycles which are detailed on the right side
of the figure.
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Figure 7.13: In left side, Ea versus Ec for 1000 cycles at OPB � 10 SA
from 25 to 40 CAD BTDC. Detailed points are marked with blue circles and
zoomed at the right side.

Points 1 and 2 are classified as normal combustion with method 2 defi-
nition, but according to MAPO classification, they were classified as knock
when a threshold of 0.6 bar is applied. Points 3, is not classified as knock
for a MAPO threshold of 0.6 bar, but as it can be seen on the detailed plot
(right side) this cycle is a knocking case: the resonance is excited at the end of
combustion. As a summary, this method is able to recognize knocking cycles
independently of the amplitude of the oscillation, which is a more precise
definition for new combustion modes.

7.2.2.3 Validation results of methods 1 and 2

As discussed in Chapter 2,increasing the sensitivity of the knock detection
used allows the SA control to work with higher knock probabilities, which
finally leads to better control performance. In order to show this improvement.
In this section the two low-knocking recognition methods based on in-cylinder
pressure signal have been implemented in real time with a conventional knock
controller in engine A. The conventional knock controller is characterized by
setting the SA of the cycle k according to the result of the previous cycle as
following:
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SAkconv �
"
SAk�1

conv �Kret if Knock
SAk�1

conv �Kadv otherwise
(7.14)

where k is the cycle number, and Kadv, Kret are the controller gains. Kret

is greater than Kadv: the SA is slowly advanced during normal combustion
cycles, and it is rapidly retarded if a knock event is recognized. The gains of
the conventional knock controller are associated by the knock probability (pk)
as:

Kret � 1 � pk
pk

Kadv (7.15)

Equation (7.15) shows how increasing the knock probability, reduces the
asymmetry between the rate of SA advance and retard, then contributing to a
lower SA variation. In order to set the controller knock probability, both meth-
ods are compared with MAPO knock probability when a threshold of 0.4 bar is
applied. Results are illustrated in Figure 7.14, left side show the result for all
SA sweeps and on the right plot a zoom between 0 and 2 % of MAPO is shown.
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Figure 7.14: Method 1 and 2 compared with MAPO during OPA � 5. Left:
Knock probability for different SA settings and methods. Right: MAPO (0.4
bar) probability versus Method 1 and 2 knock probability.

For Method 1 a MAPO knock probability of 0.6 % is chosen, which
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correspond to a knock probability of method 1 of 2 %. For method 2, a MAPO
probability of 1 % is selected, which represents a 8 % for method 2 criteria.
The tests performed for each case are summarized in Table 3.5, where the
characteristics of both controllers are shown.

In Figure 7.15 results for method 1 during tests T1 and T2 are shown.
In black line the SA output when MAPO definition is applied, and continuos
black line is used to represent SA output when using method 1 knock definition.

Figure 7.15: SA control output using MAPO and method 1 definition in
engine A. Top: Test number T1. Bottom plot: Test number T2.

In Figure 7.16 the controller response for method 2 definition is compared
with MAPO knock criteria during test T3.

Figure 7.16: SA control output using MAPO and method 2 definition. Engine
A: Test number T3.

A summary of results in terms IMEP, MAPO and SA is shown in Table
7.1 for both methods.
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Table 7.1: Results of tests performed with conventional knock control. Engine
A

MAPO 0.4 bar M1 MAPO 0.4 bar M2
TEST T1 T2 T1 T2 T3 T4 T3 T4
pr%s 0.6 0.6 2 2 1 1 8 8

pMAPOr%s 0.6 0.6 0.58 0.61 1 1 1.05 1
SAmeanrdegs 6.66 6.37 6.59 6.39 8.82 8.84 9.3 9.47
SAmaxrdegs 10.84 10.82 9.88 9.9 10.84 10.82 9.88 9.9

σSA 0.66 1.44 0.37 0.45 0.57 0.97 0.2 0.3
IMEPmeanrbars 11.62 11.60 11.59 11.63 11.4 11.58 11.62 11.78
IMEPstdrbars 0.158 0.141 0.115 0.122 0.15 0.16 0.1 0.11
MAPOmaxrbars 0.783 1.411 0.399 0.406 0.95 0.98 0.45 0.57

The SA results for Tests T1, T2, T3 and T4, are represented with box
plots in Figure 7.17, for MAPO definition and Method 1 (M1) and method
2 (M2) definitions. A higher SA average was achieved with both new knock
event definitions, and the variability of the controller was significantly reduced.
The higher averaged of SA imply a higher thermal efficiency, and the lower
SA variability avoids dangerous SA conditions while reducing unnecessary
vibrations.

Figure 7.17: SA values when using conventional knock control for MAPO
and Method 1 and 2 knock recognition methods.

The main advantage of being able to recognize low amplitude knocking
cycles, thus allowing to set the controller with a higher probability than apply-
ing MAPO criteria, is that the higher sensitivity to knock allows the controller
with the proposed methods to avoid SA areas where high knocking intensity
(high MAPO values) can be reached. Maximum MAPO amplitudes in Table
7.1 confirm this benefit. Results of Table 7.1 highlights that the two new
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definition offers more information about knock, which is used to improve the
controller performance, being able to reduced the SA variability, and therefore
IMEP variability and achieving a more efficient average value. In MAPO case,
where SA variability is higher, makes the controller to work in more advance
SA values, which can lead to unsafe conditions. This is shown in maximum
MAPO: 0.4 bar and 0.78 bar, for method 1 and MAPO criteria respectively,
and 0.57 bar and 0.98 bar, for method 2 and MAPO criteria respectively.

7.2.3 Method based on knock sensor signal

Despite in-cylinder pressure signal is the most accurate method for knock
diagnosis and widely used in research field, the application in production IC
engines is limited due to factors such as durability and cost. Thereby, a knock
recognition method based on knock sensor signal is presented in this section.
Method 1 study is used to analyzed the knock sensor signal, and develop a
method able to recognize knocking events as MAPO criteria.

7.2.3.1 Time-frequency analysis of knock sensor signal

This section presents the time-frequency analysis of the in-cylinder and
knock signals. The main objective is to identify the information related to
the knock phenomena from the engine block vibration. First, the vibration
signal was referenced to the cylinder to be analyzed, for this case cylinder 2.
Then, the referenced knock sensor and in-cylinder signals were windowed in
order to separate the combustion from other cylinders. A window between 0
and 100 CAD was chosen to analyzed both signals. In Figure 7.18, the STFT
spectrum of the in-cylinder pressure and knock sensor signals is represented
(bottom plot) while the top plots show the band-pass filter of both signals.
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Figure 7.18: Time-frequency analysis of pressure and knock signal. Top
plots: In-cylinder band-pass pressure signal (left) and knock sensor signal
(right). Bottom plots: Time-frequency analysis of pressure and knock signal
STFT spectrum.

In order to select the frequency band to examine knock phenomena the
value of the coherence function between both signals is analyzed in Figure
7.19. The coherence function was defined in Chapter 2 Equation (2.29); the
coherence is ranged from 0 (i.e. no correlated) to 1 (i.e. high correlated).
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Figure 7.19: Coherence function between in-cylinder pressure and knock
signal.

Three peaks are highlighted in Figure 7.19, one at 9 kHz, a second one
at 14 kHz and a third at 16 kHz, which corresponds to the first, second and
third circumferential modes described in Figure 6.1 (see Chapter 6). The
coherence function between the in-cylinder pressure and the knock sensor sig-
nal was calculated over 200 cycles in engine A, results are shown in Figure 7.19.

Figure 7.20: In-cylinder pressure (left) and knock sensor (right) spectrograms.
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As can be seen in Figure 7.19, the coherence reach high values in specific
frequency bands: peaks occurring between 200 Hz and 4 kHz are a direct
results of combustion process, and higher frequencies with resonance modes of
the combustion chamber. Then, showing that the knock sensor signal, specially
in selected bandwidths, contain information related to the in-cylinder pressure
resonance.

7.2.3.2 Method 3: knock recognition method based on knock sensor
signal

In this section a knock recognition method based on knock sensor signal
is performed by analyzing the resonance indicator computed from the knock
sensor, and compared with the resonance indicator obtained from in-cylinder
pressure sensor. The resonance indicator for knock sensor signal is computed as:

Ir�kpθq �
θ�θ2̧

θ�θ1

wpθ � θ1qknbppθqe�2π
°ψ�θ
ψ�0

B
?
γpψqknlppψqV pψq

πD
?
m

Tspθq (7.16)

where knbp and knlp are the band and low pass knock sensor signal respectively.
In Figure 7.21 the resonance indicator evolution during a knocking cycle is
computed from knock sensor is represented in grey line, and compared with
the resonance indicator obtained from in-cylinder pressure in black line, both
normalized.

Figure 7.21: Resonance indicator from in-cylinder pressure compared with
knock sensor.

As it is shown in Figure 7.21, the evolution of the Ir computed from both
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signals shows that despite some degradation (the Ir is distributed within a
wider CAD range), it is still able to capture the cylinder pressure resonance
phenomena and its location.

Figure 7.22 compares the resonance indicator maximum amplitude (left
plot) and the resonance maximum amplitude location (right plot) from in-
cylinder pressure sensor and knock sensor over 3000 cycles at operating point
OPA � 15. In Figure 7.22 (right) the amplitude of the resonance indicator
from in-cylinder pressure is represented in grey scale color.

0

0.5

1

1.5

Figure 7.22: Resonance indicator from in-cylinder pressure compared with
knock sensor. Left: maximum resonance indicator amplitude. Right: maximum
resonance indicator location.

As it can be seen in Figure 7.22 (left) the dispersion of the amplitude ob-
tained from knock sensor signal is maintained for all intensities. On the other
hand, the location of the maximum amplitude (right plot) is only correlated
in cases with high amplitude of resonance.

With the knock sensor signal it is possible to developed a recognition
method, based on location and amplitude of resonance indicator, as method 1.
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Because the location of the maximum obtained with the knock sensor is only
correlated for cases where the maximum amplitude is high, it is not possible
to detect low knocking cycles, but the detection is adequate for the case of
the knocking cycles with sufficient excitation.

As it was shown in Chapter 4, it is possible to estimate the CA50 through
the combination of the combustion model and the knock sensor signal. In
Figure 7.23, the number of occurrences of the maximum Ir against the CA50
is shown for three SA settings: -2, -4 and -5 CAD. Top plots illustrates the
number of occurrences by computing the resonance indicator and CA50 are
equivalent but with in-cylinder pressure sensors, and bottom plots with the
knock sensor and combustion model.

Figure 7.23: Knock sensor resonance indicator: Number of occurrences of the
maximum resonance indicator location and amplitude at different SA settings.
Engine A OPA � 15. Top plot: in-cylinder pressure sensor results. Bottom
plot: knock sensor results.

As is shown in Figure 7.23, in low probability knocking cycles, i.e SA =
- 2 CAD, the maximum of the resonance indicator from in-cylinder pressure
Ir�p is located between -5 and 5 CAD of the CA50. For the knock sensor case,
Ir�k, and additional cloud of low intensity at 20 CAD after CA50 appears,
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this is associated with noise of the signal. When advancing the SA (SA = -4
and -5 CAD) a cloud located around 0 and 10 CAD after CA50 varying its
intensity emerge for both cases. This additional cloud of points represents the
knocking cycles, which are located near the EOC, and the intensity levels vary
between low to high.

An approximation to method 1 based on in-cylinder pressure can be per-
formed by using the combustion model presented in Chapter 4. The minimum
oscillation required (Equation (7.6)) can be estimated through the MFB of
the model as:

Ir�k�minimum � Gk
κ� 1
V

mfHpp1 �MFBmodelq (7.17)

where Gk is a constant to be calibrated and MFBmodel the MFB from the
combustion model presented in Chapter 4. In Figure 7.24 the scheme for
method 3 recognition procedure based on knock sensor signal is presented.

Combustion 
model with 

observer

Eq (7.16)

Ksensor FILTER
Eq (7.17)

𝑀𝐹𝐵𝑚𝑜𝑑𝑒𝑙
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Figure 7.24: Scheme of method 3 knock recognition procedure.

In Figure 7.25 the resonance indicator computed from knock sensor signal
is shown for 3 cases: no knock, low knock and high knock. In grey continuous
line the high pass filtered in-cylinder pressure is represented. In black dashed
line the minimum oscillation (Ir�k�minimum) is plot, and in grey dashed line
the CA90.
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Figure 7.25: Resonance indicator and minimum oscillation for knock sensor
signal at OPA � 15, two cases are illustrated: Left: normal combustion.
Middle: low knock. Right: High knock.

As shown in Figure 7.25, with the combination of knock sensor signal and
the combustion model it is possible to recognize knocking events. Nevertheless,
replacing an in-cylinder pressure sensor, by an indirect pressure resonance
method such as the knock sensor leads to some performance penalty, in this
case preventing the detection of some cycles with low knock intensity (see
upper plots in Figure 7.25). The same analysis was performed over 5000
cycles in engine A, results are shown in Figure 7.26. In grey line the MAPO
amplitude of each cycle is represented, with crosses the knock recognition by
applying method 1 and in grey circles method 3.

Figure 7.26: Method 3 detection compared with MAPO amplitude and method
1 for engine A at OPA � 15.
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In order to quantify results shown in Figure 7.26, a confusion matrix is
performed by comparing the method based on knock sensor signal (method
3) and the method 1 based on in-cylinder pressure. Results are illustrated
in Figure 7.27, where a confusion matrix is used to show the percentage of
positives and negatives captured by the proposed method.

57.307%

42.693%

0.980%

99.915%

Figure 7.27: Confusion matrix between methods 1, based on in-cylinder
pressure, and 3 based on knock sensor.

As is shown in Figure 7.27, method 3 is able to recognize a 57 % of
the knocking cycles, based on the high sensitivity recognition, and the false
negatives cycles are less than the 1 %.

7.2.4 Comparative of methods with MAPO

In this section methods 1 and 2, based on in-cylinder pressure sensor, and
method 3, based on knock sensor, are compared with classical MAPO defini-
tion. Various steps of SA were performed in engine A in order to compared
the different knock recognition methods. In Figure 7.28, the percentage of
knocking cycles computed from several knock recognition criteria at each SA
is shown for operating point OPA � 5.
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Figure 7.28: Knock probability for different SA settings and methods.

Notice that in SA = 1 a vertical line is representing the starting point of
knocking conditions when methods 1 and 2 are taken as reference. As is shown
in Figure 7.28, when MAPO threshold is set at 0.4 bar, only high knock events
are recognized, while if MAPO threshold is set at a lower value, 0.2 bar, cycles
at no knocking conditions are classified as knock. On the other hand, methods
1 and 2, are capable of recognizing knocking cycles with low amplitude, being
the knock probability higher than for MAPO 0.4 and lower than MAPO 0.2.
Besides, method 3 is able to detect cycles with a probability of MAPO 0.4 bar,
but with the benefit that in-cylinder pressure is not required for this method.

In order to compare all the methods with MAPO 0.4 bar at different
operating conditions, knock probability was computed for all SA sweeps at
four operating conditions; results are illustrated in Figure 7.29.
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Figure 7.29: Knock probability for MAPO 0.4 bar and methods 1, 2 and 3
at different operating conditions.

As it can be seen in Figure 7.29, with methods 1 and 2 low knocking
conditions are recognized, i.e a higher knock probability at each operating
condition. Despite that method 3 is not capable of recognizing low knocking
cycles, it is capable of recognizing a number of knocking events similar to
MAPO criteria, thus being able to replace in-cylinder pressure sensor if the
target is to detect only high knocking events.

MAPO definition has difficulty in recognition low knocking cycles without
false recognition in SI engines. This is solved by being able to detect where
resonance is excited by the proposed two in-cylinder pressure methods. If low
knocking cycles is not required for the application, method 3 is able to detect
high knocking events without in-cylinder pressure sensors.

7.2.5 Application to different fuels

Knock detection methods based on in-cylinder pressure sensor was also
validated for different fuels in engine B. First, the effect of the fuel on the
resonance indicator was analyzed in Figure 7.30, where the number of events of
the maximum resonance indicator location against the amplitude at different
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SA is shown: on top cases with the engine fueled with gasoline and on bottom
cases fueled with CNG.

Figure 7.30: Number of events of the maximum resonance indicator location
against amplitude at different SA settings and fuels. Operating condition
OPB �. Top: Gasoline. Bottom: CNG.

As expected, knock tendency, i.e resonance intensities are lower for CNG
cases. This is thanks to the higher knock resistance for gaseous fuels compared
with gasoline, which is due to the higher RON of CNG [4,5].

As it was explained above, both knock recognition methods 1 and 2 are
independent on the fuel type, i.e the recognition method is based on the cylin-
der pressure signal (independently of the fuel that has lead to this evolution).
In Figure 7.31 the knock threshold for method 1 criteria is shown for gasoline
(left) and CNG (right) when SA = -20 CAD over 200 cycles.
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Figure 7.31: Minimum expected resonance for knock occurrence. Left:
Gasoline. Right: CNG. Operating condition OPB � SA = -20 CAD.

As introduced in Equation (7.6), the minimum oscillation required for the
end gas to auto ignite is a function of the lower calorific value of the fuel and
the evolution of the MFB, therefore, the method is independent on the fuel
type.

Both knock recognition methods based on in-cylinder pressure signal are
analyzed at engine B over OPB � in Figure 7.32. In grey the cycles fueled
with gasoline and the threshold is represented, and in black cases fueled with
CNG.

Figure 7.32: Methods 1 and 2 over all SA settings at OPB �. Left: Method
1. Right: Method 2. Two cycles classified as knock for both methods are
highlighted.

As it can be seen in Figure 7.32, over the same operating conditions,
cases fueled with gasoline exhibit more knocking cycles. In blue two cycles
are highlighted, one for gasoline and another one for CNG. These cycles are
represented in Figure 7.33, where the high-pass pressure and HRR are shown
on top plot, and the resonance indicator is compared with resonance models
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for combustion and auto ignition on bottom plots.

Figure 7.33: Detail cycle for Gasoline (left) and CNG (right). Bottom plots:
HRR and high pass pressure. Top plots: Resonance indicator compared with
resonance model for combustion and auto ignition.

For both cases resonance model fit better with the resonance evolution in
the combustion chamber in a knocking case independently on the fuel type.
As it was demonstrated during this section, both methods based on in-cylinder
pressure are capable of adapting not only to different types of combustion,
but also to different fuels without the need to re-calibrate the models.

7.3 In-cylinder trapped mass estimation

In-cylinder pressure resonance excitation has been extensively used for
knock analysis and recognition, nevertheless, in recent years an algorithm to
estimate the trapped mass has been developed in [6], by using signal analysis
techniques. The method used to determine the trapped mass from resonance
might be erratic if no sufficient resonance exist or if some noise is analyzed. In
order to overcome this, the attenuation model can be used as a tool to iden-
tify the optimal range to analyze the pressure oscillations for a trapped mass
estimation by detecting normal resonance damping from other noise sources [6].
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In Figure 7.34 (left) the experimental attenuation is compared with the
model during the expansion stroke in a cycle at 1500 rpm of engine B, on right
plot the relative error is represented.

Figure 7.34: Optimal window for trapped mass estimation: Attenuation
evolution and model (left), relative error of the model during expansion stroke
(right).

The relative error between the attenuation and the model indicates the
optimal window where resonance is more clear over background noise. There-
fore, the optimal window can be obtained by finding the range with minimum
error by computing the mean error at different window range (wa) as:

Erange � meanp|βmodepwaq � βexppwaq|q (7.18)

The optimal window location procedure scheme proposed is shown in
Figure 7.35, where wopt represents the CAD at the center of the window for
the calculations. In this work the initial window size was of 40 CAD.

𝐌𝐢𝐧𝐢𝐦𝐮𝐦(𝐄)
𝑤𝑜𝑝𝑡

Trapped mass 
estimation 

method

𝑚𝑡𝑟𝑎𝑝𝐸

𝛽𝑒𝑥𝑝(𝑤𝑎
𝑗)

𝛽𝑚𝑜𝑑𝑒𝑙(𝑤𝑎
𝑗)𝛽𝑚𝑜𝑑𝑒𝑙

𝛽𝑒𝑥𝑝

𝑝𝑐𝑦𝑙
𝑗 − 𝑙𝑜𝑜𝑝

𝐄𝐫𝐚𝐧𝐠𝐞

Figure 7.35: Optimal window procedure for trapped mass estimation.

The optimal window location will be the range with the minimum error.
This criteria was also implemented over a IMEP transient, by computing the
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trapped mass as shown [7]. The trapped mass results over the transient are
shown in Figure 7.36, where the mass calculated from air mass flow sensor
and injected fuel is compared with that obtained from the resonance method.
The moving average (Mm) over 20 cycles and the moving standard deviation
(σm) are highlighted in points and dashed line respectively.

Figure 7.36: Optimal window procedure for trapped mass estimation.

Additionally, in Figure 7.37, the evolution of the optimal window location
for each cycle is represented. Three locations are highlighted with dashed line:
40, 30 and 20 CAD.

Figure 7.37: Optimal window location over a transient.
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As it can be seen in Figure 7.37, a moving window provides a better
approximation of the trapped mass estimation, since permits to differentiate
resonance from other noise sources, which depends on the combustion and the
attenuation evolution.

7.4 Conclusions

In this chapter the models developed in the second part of the dissertation
were used for different combustion diagnosis applications: on the one hand, for
knock recognition methods, and on the other hand, to improve the estimation
of the trapped mass from the resonance excitation.

In the first part of the chapter 3 knock recognition methods had been
developed, two based on in-cylinder pressure signal and one based on knock
sensor signal:

Method 1 defines a minimum oscillation required based on the constant vol-
ume combustion of the fuel mass that is not burnt by the SI flame development.

Method 2 is based on a resonance evolution model capable to distinguish
normal combustion from auto ignition, this method is based on the shape of
the resonance evolution, and not only its intensity, will permit the recognition
of knock in new combustion modes, where the resonance is highly excited by
combustion, while it will facilitate the recognition of low-knocking cycles in SI
engines.

Method 3 is based on the combustion model presented in chapter 4 and the
method 1. This method aims to make use of knock sensor signal to estimate
the minimum oscillation and compared with the resonance indicator from the
knock sensor.

It has been demonstrated that methods 1 and 2 are able to recognize low
knocking cycles in SI combustion, which is use full to update online models
based on knock observation. Moreover, the methods are able to differentiate
combustion from resonance in new combustion modes where normal combus-
tion heavily excites resonance, such as TJI combustion. One of the great
advantages of methods 1 and 2 is the flexibility that provides for different
fuels and combustion type, such as gasoline or CNG, and SI or TJI combustion.
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Regarding method 3, knock sensor based, results show that this method is
not able to detect low-knocking cycles, but is capable of recognized knocking
cycles with a MAPO criteria of 0.4 bar. One of the major advantages of this
method is that it does not make use of in-cylinder pressure sensors.

In the second part of the chapter, an optimization of the window to com-
pute the trapped mass from the resonance is presented, where the attenuation
model can be used to identify resonance from other noise sources, identifying
the optimal range for resonance analysis. Results shows that the model gives
more information about resonance, allowing a better estimation of the trapped
mass.
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8.1 Introduction

Two of the most fundamental issues related to IC engines are the energy
efficiency and emissions performance, which are influenced by the combustion
quality [1]. In order to optimize IC engine performance many actuators are
used, such as SA or VVT, between others [2]. One of the main combustion
control parameters in SI engines is the SA [3], since it allows to modify the
combustion timing and therefore combustion efficiency, avoiding knocking
conditions. Additionally, RGF, which is defined as the ratio of the residual
gas mass to the total gas burned in a cycle [4], is an important parameter for
managing the combustion quality since influences in emissions, stability and
volumetric efficiency.

Chapter 4 has presented a combustion model with an observer, which
makes use of signals available in the ECU and a knock sensor. Chapter 7
proposed two low-knocking cycles recognition based on in-cylinder pressure.
This chapter is devoted to point out the potential of such models: first, method
1 knock criteria is used to update a map-based model for SA knock control,
this controller is compared with the conventional knock controller in steady
and transients conditions. Then, the combustion model presented in Chapter
4 is implemented in real-time, where two control variables are used: SA and
VVT, with the aim to control the RGF and optimizing the combustion with
the SA; RGF may be controlled with VVT actuation.

8.2 Fuzzy logic knock control

Knock control can be divided in two main groups: feedback and model
based methods. The issue with feedback methods is the high variation of the
spark timing and the slow response of these controllers [5]. On the other hand,
model based controllers can rely on physical models, which are very complex,
or map-based models, which required a high amount of cycles to adapt under
transient conditions.

In this section a knock control combining both feedback and adaptive
methods is presented. In order to update the map-based model fast, the
low-knocking recognition method presented in Chapter 7 is used, since rec-
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ognize low-knocking cycles permits to shorten the time to identify stochastic
properties, and hence, adapt the model faster [6].

In order to achieve this purpose, a SA control based on map learning
technique combined with a conventional knock controller (see Chapter 2) for
SA control is proposed. Figure 8.17 shows the general scheme of such control
algorithm.

Hypothesis 
test

Kevent (0,1)

𝑎 & 𝑏 𝑚𝑎𝑝𝑠

Combustion 
analysis

Learning map layer
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𝑝𝑡ℎ

Operation condition
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k)

Control decision layer

𝑍−1

Optimal 
SA

Engine

Figure 8.1: SA knock controller based on map learning and conventional
controller proposed.

The proposed control structure has two main layers: learning and control.
The first layer consist of two maps, namely a and b, which are probability
distribution maps. The distribution maps are modeled as a function of the
intake pressure (pint) and the SA. The output of the learning layer is the
predicted knock probability over the different operating conditions modeled
as a function of pint and SA. Then, the optimal SA module, estimates the SA
leading to the desired knock probability (pth).

The second layer, the control layer, is used to evaluate the knock proba-
bility model. This layer consist of two parts: a hypotheses test and a decision.
In the first part, the hypotheses test, the knock probability expected obtained
from the model is contrasted with the probability computed from most recent
knocking events. The second part, the decision, determines the control action:
if the probability of the model is near the observed probability during the
recent past, the control action used is SAmod, on the other hand, if there
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is a discrepancy between both probabilities, the control action used is the
SA from a conventional knock controller SAconv. Between both extremes, a
combination between model and conventional control is applied. During next
sections both layers will be introduced in detail.

8.2.1 Learning map layer

As introduced in [7], no matter the knock amplitude probability density
function, knocking events are binomial distributed. The binomial signal of
knock is computed from detection method 1, described in Chapter 7, and
the distribution of knock probability is learned by using Bayes theorem as
is introduced in [8]. The distribution learned is a beta distribution with a
and b parameters: Betapp | a, bq. Where a represents knocking events, and b
normal combustion. The probability that a given cycle is classified as knock,
Prtknock � 1u, is denoted as pk.

Knock event distribution is learned from the Bayesian learning process [9],
where pk, in this case, adopts a beta distribution, so the mean and the variation
can be estimated as:

M rpks � a

a� b
(8.1)

V arrpks � ab

pa� bq2pa� b� 1q (8.2)

The calculation process is illustrated in Figure 8.2: on the left the events
from cycle k to k � 2 are represented, crosses are used for cycles classified as
knocking and filled circles for cycles classified as normal combustion. On the
right plot, the distribution for each cycles is shown. In cycle k, 10 cycles had
been passed: 3 knocking (ak � 3) and 7 with normal combustion (bk � 7). One
cycle after, k � 1, a knocking event is observed, then ak�1 � 4 and bk�1 � 7,
and a modification on the distribution is observer on the right side. The
same for cycle k � 2, where the cycle is classified as normal combustion, so
ak�2 � ak�1 and bk�2 � 8.
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Figure 8.2: Map learning process for SA control. Left plot: a and b parameters
evolution. Right plot: Beta distribution of cases on left plot.

The engine operating conditions can be characterized in a two dimensional
grid (x1,x2) for every engine speed. Where x1 is the intake pressure pint and
x2 the combustion phasing represented by the SA. The grid to characterize the
engine operating condition is represented on the left side of Figure 8.3, where
a grey dot are used to highlight the actual operating condition characterized
by x1,op, x2,op.

Because the engine does not always work precisely on the grid points, the
grid should be updated following an adaptation method. Several adaptation
methods can be found on literature: Kalman filter [10], Gaussian filter [11],
etc. In this work, a Gaussian filter is applied to update knock probability
distribution map, where the weight (φ) for each grid point X (X : rx1,op, x2,ops)
is updated as following:

φ � 1?
2πσx1

e
� 1

2
px1�x1,opq2

σ2
x1 � 1?

2πσx2

e
� 1

2
px2�x2,opq2

σ2
x2 (8.3)

σx1 and σx2 determines the smoothness of map. In Figure 8.3 (right plot) the
effect of increasing σx1,x2 is represented: in grey the updated with σx1,x2 � 1
and in blue for σx1,x2 � 2.
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Figure 8.3: Proposed probability map learning algorithm for knock control.

The parameters of beta distribution, a and b, are updated as:

ak�1 � ak � φ if knock

bk�1 � bk � φ otherwise
(8.4)

A normalization needs to be applied to these parameters [8]:

a� b � Ns (8.5)
where Ns is the normalization magnitude, if Ns is high, the effect of new data
on learning is slow, otherwise, the effect of innovation is fast. In the present
work a normalization size of 200 is used.

After parameters a and b are computed, the knock probability at each
grid point can be calculated by Equation (8.3). The σ value in each dimension
should not be very high: an elevated number could lead to overestimate
knock probability at points near the operating point. In the present work, the
smoothness chosen is σx1,x2 � pr2, 1sq.

Another aspect to consider is that knock probability for a given operating
condition is never decreasing for increasing SA points [12], i.e. advancing the
SA leads to higher knock probability points. This phenomenon is considerate
to calculate the optimal SA, but is not taken into account to update the
distributions models a and b. In Figure 8.4 the knock probability map and the
map with the constraint is represented: magenta map is the updated knock
probability map and grey map is the model to calculate the SA for a given
knock probability.
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Figure 8.4: Proposed probability constraint map learning for spark advance
control.

8.2.2 Control decision layer

As explained above, the decision layer is divided in two parts. In this
section both, hypothesis test and decision blocks, will be introduced.

8.2.2.1 Hypothesis test

The hypothesis test block in Figure 8.17 is used to compare the knock
probability modeled and observed knock probabilities. The probability of
detecting ki knocking events in kn cycles is calculated as proposed in [13]:

pkikn �
�
a
b



pkikip1 � pkiqpkn�kiq (8.6)

where pkiki is the probability of observing ki knocking cycles and pki the knock
probability.

The likelihood ratio test Lh is largely employed in knock control, some
examples can be found in [13, 14]. Lh is used to evaluate evaluate two sta-
tistical models, for this particular case the expected knock probability, p0,
compared with the observed knock probability, pobs. The observed knock prob-
ability can be computed as: pobs � ki{kn. The Likelihood ratio is calculated as:

Lh � Lpp0 | Nknq
Lppobs | Nknq �

pkn0 p1 � p0qpkn�kiq
pkiobsp1 � pobsqpkn�kiq

(8.7)

ki represents the number of knock events in kn cycles. Nkn is the observed
sequence of knocking cycles. An illustration of the likelihood ratio as a function
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of kn is represented in Figure 8.5 for a knock probability p0 � 0.1.

Figure 8.5: Example of likelihood ratio for different number of knocking
events (p0 � 0.1).

A value of Lh � 1 shows that the expected probability p0 perfectly match
with the observation knocking rate pobs, on the other hand, Lh close to zero
indicates a mismatch. For example, as is shown in Figure 8.5, the maximum
of Lh at each ki case match with the knock probability p0, i.e. after 50 cycles
(kn � 50) and five knocking cycle (ki � 5), the maximum Lh for that case is
located at ki

kn
� 10 cycles.

In order to compute the observed knock probability First In First Out
(FIFO) buffers are used. In this case, two FIFO buffers are used: 100 cycles and
5 cycles length. The first buffer is used to calculate the knock probability of a
given operating condition, and the second buffer is used to detect consecutive
knocking events. The observed probability of both FIFO buffers is computed
as following:

pbuffer �
°Nbuffer
j�1 kji
Nbuffer

(8.8)

where kji is the boolean (true = 1/false = 0) knock signal, and Nbuffer is the
length of the buffer.

Therefore, the Lh defined in Equation (8.7) is calculated as:

Lh �
pkk�mapp1 � pk�mapqpkn�kiq
pkibufferp1 � pbufferqpkn�kiq

(8.9)
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where pk�map represents the probability obtained from the model, and pbuffer
is the observed probability over the FIFO buffers.

8.2.2.2 Decision block

The second block define the control action of SA, where a combination
of the model and conventional controller is implemented in a fuzzy logic con-
trol system. If knock probability from the model, pk�map, match with the
observed knock probability, pbuffer, then the SA command will be obtained
from the model. Otherwise, the SA output will be a combination of model
and conventional controller.

The final SA is a fuzzy set between model and conventional knock con-
troller, which is supervised by a gain αc as:

SAkc � p1 � αcqSAkconv � αcSA
k
mod (8.10)

αc will be 1 when the model matches the observation, and 0 if mismatch.

As explained above, two values of likelihood ratio are computed, one from
the long buffer (LhL) and from the short buffer (LsL). Both Lh are used to
compute αc as is illustrated in Figure 8.6.

Figure 8.6: αc for both buffers for different Lh ratio values.

The LhS limit value was calibrated by observing how consecutive knocking
cycles affect to the likelihood ratio from the short buffer, while the function
LhL was fetermine as an arbitrary function between 1 and the limit from the
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LhS .

The final fuzzy logic value to control the transition between model and
conventional controller, αc, is computed as the product between both α values,
αL and αS .

8.2.3 Simulation of map learning process

In order to show the learning process a simulation over transient T6 in
engine A is performed. During transient test T6, the SA was controlled by
a conventional knock control with a set knock probability of 8 %. In Figure
8.7, the knock probability from the buffer of 100 cycles, the control knock
probability (pk�c) and the map knock probability for each cycle are represented.

Figure 8.7: Knock probability during transient T6: from the map pk�map,
from the long buffer pbuffer and the controller set probability pk�c.

Note that pk�map initial number is zero, while knocking events are de-
tected the map probability increase up to a probability around the probability
set at the conventional controller. In Figure 8.8 (left), the updated grid
points during the transient are shown for four sets of cycles, and right plot
shows the trajectory over the 2000 cycles of the knock probability over the grid.
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Figure 8.8: Updated grid points during transient T6. Left: grid points
updated over each set cycles. Right: knock probability trajectory over the grid
points.

The updated maps at the end of each set cycles shown in Figure 8.8 are
represented in Figure 8.4.

Figure 8.9: Knock updated map of cycle: 100 (left top), 1000 (right top),
2000 (left bottom) and 4000 (right bottom).

As shown in Figure 8.4, on cycle 100 the map is basically empty, after 1000
cycles, the map is mainly updated at 0.9 bar intake pressure, which is the mean
in-cylinder pressure during first 1000 cycles during transient T6. Afterwards,
in cycle 2000 more points of in-cylinder pressure and SA are updated. Note
that at the end of the transient test, the map is updated around all transient
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operating points (pint,SA).

In Figure 8.10 the same SA sweeps were performed in engine A over
operating condition OPA � 5, two cases are plotted: with and without EGR.

Figure 8.10: Knock updated map with and without EGR.

As is shown in Figure 8.10, the knock probability model is able to update
under different operating conditions over the same grid points. As expected,
for the EGR case, the knock probability becomes considerably lower than in
the case without EGR.

8.2.4 Validation results and discussion

8.2.4.1 Learning

Initially, the knock probability maps are empty, so the SA output is con-
trolled by the conventional knock control, i.e. αc � 0. In the learning process,
the knock probability map is cycle by cycle updated. In order to illustrate
this process, the engine operating conditions were maintained constant at
operating point OPA � 5. In Figure 8.11 results are represented: top plot
shows the control action, SAc and the optimal SA obtained from the model,
SAmod. In the middle plot, the knock probability updated of the model is repre-
sented with the knock probability set at the controller, pth. In the bottom plot,
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the decision gain αc and the likelihood ratio of the 100 cycles buffer are plotted.

Figure 8.11: Learning process results. Top plot: SA controller output. Middle
plot: knock probability from model. Bottom plot: Likelihood ratio from long
buffer and αc value.

As it can be seen in Figure 8.11, along the learning process the knock
probability of the model reaches the threshold of the controller pth, and once
the model is updated, the likelihood ratio takes values near to 1, and the
model is able to represent the actual knock probability. Hence, the control
action of SA will be a combination between model and conventional knock
control according to αc value. The cycles required to fill the model are 1200
cycles with the engine running at 2000 rpm, what is translated into 80 seconds.

8.2.4.2 Steady state results

The performance of the fuzzy logic controller is validated in steady state
condition and contrasted with a conventional knock control strategy. In Figure
8.13 the response of both controllers are shown in two operating conditions:
OPA � 4 (left) and OPA � 12 (right). The controller gain Kret was set at 0.5
CAD. Note that for OPA � 4 case at cycle 140 the SA is delayed, this is a
consequence of consecutive knocking cycles observed, what lead to αc near zero.
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Figure 8.12: Control performance at different load conditions. Left plot:
OPA � 12 . Right plot OPA � 4 . Top plot: SA controller output. Middle
plot αc value. Bottom plot: MAPO.

In Table 8.1 the mean and the variation of SA and IMEP, the maximum
MAPO value, and the knock probability computed for a MAPO threshold
of 0.4 bar with the conventional controller (pk�M ), and method 1 criteria
presented in Chapter 7 combined with the Fuzzy Logic Controller (pk�I) are
shown. Comparing both, conventional knock controller and fuzzy logic at the
same operating condition, similar mean SA value is found. Nevertheless, the
variation of SA is considerably higher for conventional controller, which might
lead to dangerous SA zones. The variation of SA is also reflected in IMEP
standard deviation, which for OPA � 4 case is three times higher.
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Table 8.1: Control performance at 2000 rpm and operating conditions.

Conventional Fuzzy logic
OPA 12 4 12 4

Kretrdegs 0.5 0.5 0.5 0.5
σSA 0.34 0.31 0.1 0.006

SArdegs 13.77 10.86 13.86 11.07
σIMEP 0.13 0.12 0.12 0.09

IMEP rbars 9.18 10.4 9.4 10.66
ˆMAPOrbars 1.2 0.96 0.86 0.7

pk�MAPOr%s 3.98 2.72 1.99 1.7
pk�M1r%s 10.6 10.4 10.1 9.97

In order to evaluate the proposed controller under different operating
conditions, a summary of six points is represented in Figure 8.13, where the
thermal efficiency (left) and the maximum MAPO (right) are compared for
both controllers. The conventional controller results are represented against
fuzzy logic results. Knock probability was set at 10 % and the gain Kret was
set at 0.5 CAD, thermal efficiency was computed from in-cylinder pressure as:

ηth �
¶
pcyl dV

mfqLHV
(8.11)

mf is the fuel amount injected during one combustion cycle, qLHV is the lower
heating power of the fuel, which takes a value of 45 MJ/kg for gasoline, pcyl is
the in-cylinder pressure, dV is the rate of the volume change.

Figure 8.13: SA comparison for six operating points at steady condition.
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A box and whiskers plot of the SA-BTDC corresponding to each steady
point is represented in Figure 8.14. Where the letter C is used to represent
results from conventional controller and FL results from fuzzy logic controller.

Figure 8.14: MAPO comparison for six operating points at steady condition.

Analyzing Figure 8.13, while comparing the same operating conditions,
fuzzy logic controller exhibit an improvement in terms of ηth and safety (lower
maximum MAPO). Results from Figure 8.14 show that the controller proposed
achieved a higher SA average and significantly reduced the variability of the
control for the six steady points.

8.2.4.3 Transient state results

Fuzzy logic controller is validated in transient conditions: transients tests
T6 and T7. The knock probability of the controller was set at 10 %. In
Figure 8.15 results from test T7 are shown. Analyzing Figure 8.15, during
the first throttle step, around cycle 800, various cycles with MAPO over 1
bar are observed. This is because the conventional controller (only feedback
control) is slower when delaying SA than fuzzy logic controller. During the
second throttle step, around cycle 1200, the SA controlled by conventional
strategy takes more time to reach an optimum value, which is translated in
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less performance during the transient.

Figure 8.15: Control performance of Test T7. Top plot: SA. Middle plot:
IMEP. Bottom plot: MAPO

The 100 size buffer knock probability during transient T6 is represented
in Figure 8.16 for both controllers. As it can be seen, the observed probability
for conventional controller case achieves a 6 % of knock probability (for MAPO
criterion) during the load transient. Since the variability of the SA is higher
for the conventional controller case, and the knock probability of 6 %, the
controller output might lead to dangerous operating conditions.
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Figure 8.16: Knock probability observed for conventional and fuzzy logic
controllers during transient T6.

In Table 8.2 results from transients T6 and T7 are summarized, where
the mean value of SA and IMEP, the maximum MAPO, percentage of cycles
with MAPO over 0.4 bar (pk�MAPO), percentage of cycles computed as knock
with method 1 (pk�M1), and the thermal efficiency for both controllers is shown.

Table 8.2: Control performance: Test T6 & T7.

Conventional Fuzzy logic
Test T7 T6 T7 T6
SA 10.6 9.9 10.95 10.53

IMEP rbars 10.8 11.1 11.18 11.4
ˆMAPOrbars 1.72 1.4 0.86 0.9

pk�MAPOr%s 6 4 2.4 2
pk�M1r%s 17.8 15.6 10.3 10.2
ηthr%s 24.22 24.97 25.17 25.33

Fuzzy logic controller is able to reach higher IMEP while MAPO max-
imum is lower than conventional control strategy. The improvement of the
thermal efficiency was of 2 % for the proposed strategy for both, test T6 and T7.
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8.3 Model based control for residual gas fraction
with combustion optimization control.

Residual gas fraction and combustion phase are two important variables
in SI engines since affect thermal efficiency, emissions and combustion stability.
In-cylinder pressure sensors are the most extended signal used as feedback for
closed loop SA and RGF control. However, pressure sensors are still affected
by challenges such as durability and cost. This section presents a model-based
RGF control with SA optimization: first the controller design is presented,
where the application of the combustion model presented in Chapter 4 is
explained. And then, experimental results in steady and transient conditions
are shown.

8.3.1 Controller design

The controller proposed in this work is shown in Figure 8.17. Where, the
combustion model presented in Chapter 4 is used to estimate the in-cylinder
pressure each cycle k. Then, the in-cylinder pressure obtained from the com-
bustion model is used for two purposes: first, to obtain the optimal SA for
a given operation point (Uk), and a second one to estimate the RGF and
predict the VVT of the exhaust required for a given set-point. The RGF set-
point are arbitrary values in order to evaluate the performance of the controller.

REAL TIME 
MODEL

ITERAT 
SA

CONVENTIONAL 
CONTOLLER

ηiSAi

𝑆𝐴𝑜𝑝𝑡
𝑘

𝑃𝑆𝐴−𝑜𝑝𝑡
𝑘

𝑆𝐴𝑐
𝑘

𝑉𝑉𝑇𝑐
𝑘

𝑈𝑖

𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧 𝒊 − 𝐒𝐀

ITERAT 
VVT

RGF

𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧 𝒋 − 𝐕𝐕𝐓

VVTj RGFj

RGFset−point
k

Engine

Figure 8.17: Controller scheme proposed.

In the iteration loop i� SA, the thermal efficiency (ηi) is estimated from
the combustion model at different SA SAi through Eq8.12. When the itera-
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tion loop reach the maximum efficiency stops, and the optimal value SAkopt is
obtained. The iteration loop j � V V T , is used to estimate the VVT needed
for a RGF set-point.

Then, a conventional knock controller is applied to delay SA if knock is
recognized. Knock detection is performed by knock sensor signal, applying
the recognition procedure introduced in Chapter 2.

8.3.1.1 Iterative algorithm

In this section, thee algorithms used for each iteration loop presented
Figure 8.17 are introduced.

• Iteration i� SA : In order to find the maximum efficiency each cycle,
each iteration i the thermal efficiency is computed as:

ηi �
¶
ppSAiqdV
mfqLHV

(8.12)

Each iteration i, a value of SA is computed by an iterative fixed point
algorithm, which is shown in Figure 8.18. The value SAi is used as
an input in the combustion model to evaluate ηi, when the maximum
is reached the iteration loop stop, and the optimal value of SA is obtained.

𝑆𝐴𝑖 = 𝑆𝐴𝑖−1

𝑖𝑓 𝑠 = 1

𝑆𝐴𝑖−1 = 𝑆𝐴𝑖 1 + Δ𝑆𝐴
𝑒𝑙𝑠𝑒

𝑆𝐴𝑖−1 = 𝑆𝐴𝑖 1 − Δ𝑆𝐴
𝑒𝑛𝑑

MODEL

𝜂𝑖

𝜂𝑖−1𝑆𝐴𝑖−1
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𝑢𝑝𝑑𝑎𝑡𝑒 𝑆𝐴 𝑣𝑎𝑙𝑢𝑒

𝑆𝐴𝑐
𝑘 = 𝑆𝐴𝑖

𝑆𝐴𝑖−1 = 𝑆𝐴𝑐
𝑘

𝑆𝐴𝑖 = 𝑆𝐴𝑖 1 + Δ𝑆𝐴

𝑢𝑝𝑑𝑎𝑡𝑒 𝑆𝐴 𝑣𝑎𝑙𝑢𝑒
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𝑖𝑓 η𝑖−1 > η𝑖
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𝑒𝑙𝑠𝑒
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𝑒𝑛𝑑
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𝑖𝑓
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Figure 8.18: Iteration proposed for SA optimization.
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• Iteration j � V V T : The method presented in [15] is used to estimate
the RGF from the combustion model as following :

RGFj �
�
P kSA�optpEV Cjq
P kSA�optpEV Ojq

�γ
V pEV Cjq
V pEV Ojq (8.13)

where P kSA�optpEV Cjq is the in-cylinder pressure from the model at
the EVC position, P kSA�optpEV Ojq is the in-cylinder pressure from the
model at the EVO position.

The V V Tj is computed by a bisection iterative algorithm as it is shown
in Figure 8.19.

𝑏 =
a + 𝑐

2

𝑎 = 𝑉𝑉𝑇𝑚𝑖𝑛

𝑏 = 𝑉𝑉𝑇𝑚𝑎𝑥

𝑖𝑓 𝑓𝑅𝐺𝐹 𝑎 − 𝑓𝑅𝐺𝐹 𝑏 < 0
𝑐 = 𝑏
𝑒𝑙𝑠𝑒
𝑎 = 𝑏

𝑖𝑓
𝑎 − 𝑐 < 𝑒

𝑠𝑡𝑜𝑝

𝑉𝑉𝑇𝑐
𝑖 = 𝑏

Figure 8.19: Iteration proposed for RGF control.

8.3.2 Experimental results

This section is divided in two parts: the first part, the optimal SA com-
puted through the model is compared against the thermal efficiency during a
SA sweep. The second part, the validation of the controller is shown in both,
steady and transient conditions.

8.3.2.1 Optimization of SA obtained from the model

The optimal SA computed from the iteration i loop is compared against
the efficiency obtained at different SA sweeps for three different engine speeds
in Figure 8.20.
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Figure 8.20: Spark advance sweeps: Thermal efficiency at three engine speeds
compared with the model optimal value.

As it can be seen in Figure 8.20, the optimal SA obtained by the itera-
tion loop proposed is correlated with the experimental value for maximum
combustion efficiency.

8.3.2.2 Controller validation

The controller was validated during steady and transient conditions. In
Figure 8.21 a steady test at operating point OPA � 2 is shown, where the
RGF target is arbitrary changed during the test to check the performance of
the controller.
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Figure 8.21: Steady test validation (operating condition OPA � 2). Top plot:
RGF evolution. Middle plot: VVT and SA controller output. Bottom plot:
Absolute error between RGFset� point and RGFmeasured

Analyzing Figure 8.21, note that the maximum absolute error (1 % of
RGF) is reached during VVT changes, nevertheless in steady conditions the
absolute error is maintained below 0.5 %. Also must be noticed that the
SA controller output is the one obtained from the model, since no knocking
conditions are reached.

The proposed controller was also validated in transients conditions (tests:
T5 and T10), results are shown in Figure 8.22. During this tests the RGF
target was maintained at 5 % by controlling the VVT and optimizing the SA.
The top plots shows the RGF computed through each in-cylinder pressure
sensor, the RGF target is highlighted in red line, the bottom plots shows the
controller outputs, i.e VVT and SA commands.
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Figure 8.22: Transient test validation. Left plot: Test T5 (load transient).
Right plot: test T10 (speed transient).

As it can be seen in Figure 8.22, in T5 case, the SA controller out put
corresponds to the optimal value until medium load its reached (pint = 0.9
bar). After this points, knocking conditions are reached, and the SA is delayed
by the conventional knock controller. In Figure 8.23, the mean RGF and the
standard deviation during the transient tests is represented.
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Figure 8.23: Mean RGF and standard deviation for tests T5 and Test T10.

As it can be seen in Figure 8.23, during both tests the controller is able
to keep the mean value of the RGF for all the cylinders close to the target
value of 5 %.

In Figure 8.24 the transient corresponding to test T8 is shown. In this
test the RGF target value was changed. On the top plot the RGF evolution is
represented, and on the bottom plot the controller out puts.
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Figure 8.24: Transient test validation (test T8). Top plot: RGF value from
in-cylinder pressure signals and model. Bottom: VVT and SA commands.

It must be noticed that even if the operating conditions change, all the
cylinders follows the RGF set point. The error during the transient test T8 is
evaluated in Figure 8.25 for all cylinders.
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Figure 8.25: Error between RGF target and RGF from each cylinder: Test
T8.

As it can be seen in Figure 8.25, the mean absolute error of cylinders 1,
2, and 3 is near zero, while cylinder 4 shows a slight deviation.

8.4 Conclusions

This chapter presents two combustion control applications of the combus-
tion diagnosis and model developed in previous Chapters. First, method 1
knocking recognition criteria is used to update a knock probability model to
control the SA. And then, an application for the combustion model presented
in Chapter 4 is developed, where the RGF is controlled by the command of
the VVT while the SA is optimized at the optimal value.

From this study, the following conclusions can be point out:

• Fuzzy logic knock controller: With this control strategy an improvement
of the thermal efficiency between 1%– 6.2% in steady conditions was
achieved, while MAPO value was maintained at safe levels. One of
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the advantages of this method is no need of initial calibration. Under
transient conditions, the controller was able to achieve a faster response
than conventional controller, and presented less SA variability which
leads to a more stable operation.

• RGF model based-controller: The controller was able to estimate the
optimal combustion phasing while controlling the RGF with a maximum
absolute error of 1 %. During this work the potential to replace in-
cylinder pressure sensors by a combustion model was shown.
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9.1 Main contributions

This work presented a set of combustion diagnosis indicators oriented to
combustion control. For that purpose, different topics have been covered along
this dissertation:

• A control oriented combustion model for SI combustion able to predict
the average and expected combustion variability was developed. The
combustion model provides a continuous estimation of combustion pa-
rameters such as: CAx, IMEP, RGF, with no need from information

215
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currently available in the Engine Control Unit and without dependence of
in-cylinder pressure measurement. The model estimation was improved
with an observer of the knock sensor signal and an EKF.

• Resonance was analyzed and modeled for three different combustion
types: SI, TJI and RCCI. Two models of the amplitude of resonance
evolution where presented. The first model was calibrated for SI and
TJI combustion by assuming a constant attenuation during a cycles,
where two cases were analyzed: normal and knocking combustion. The
second model aims to reproduce the attenuation over a cycle, this model
can be used to improve algorithms that makes use of resonance, such as
trapped mass estimation.

• An application of the first resonance model was developed by using the
model to recognize knocking cycles for SI and TJI combustion. The
model is able to distinguish between normal combustion, even when
normal combustion heavily excites resonance.

• A low-knocking cycle recognition method was developed by using a crank
angle dependent threshold. This model was validated in SI combustion,
demonstrating the improvement in control applications.

• Two control applications of the combustion indicators were presented.
First, one of the previously developed methods for knock recognition
based on in-cylinder pressure signal was used to update a map-based
model. Secondly, an application of the combustion model for SA opti-
mization and RGF control has been developed. Both control applications
have shown to improve the performance of conventional controllers in
the tested cases.

Following, an overview of these points and the main conclusions are pre-
sented.

9.1.1 Combustion modeling

The combustion process was modeled by a two zone model. The inputs of
the model are available signals in commercials ECU. The average combustion
model is composed of three OL tables, two variables for HRR calculation and
one to characterize the combustion model, as a function of the engine speed
and the intake pressure. And the variability model propagates two probability
distributions over two variables of the combustion model, i.e the laminar flame
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speed and turbulent intensity.

Both, average and variability combustion models, were validated over the
training and the validation data sets in engine A. The complete model can be
used off-line to simulate the real combustion and to implement control strate-
gies with no need to carry out experimental tests, or implemented in real time
to estimate combustion parameters and use it for control feedback information.

An observer was designed, allowing a better estimation of the mean com-
bustion parameters under transient conditions. The observer corrects the
laminar flame speed by the use of the knock sensor signal, and uses this estima-
tion, and information from the combustion model, to improve the in-cylinder
pressure estimation. When comparing the combustion model and the observer,
with the later an improvement of the relative error over a 10 % was achieved
over the estimated CAx, IMEP and RGF, and their values can be adapted to
the different cylinders. Despite the improvements of the estimations, one of
the disadvantages of the model with observer is the need of a knock sensor
signal with a fast acquisition.

In addition, the variability model was able to predict the cycle-to-cycle
variation with an error bellow a 20 % after the CA5, before CA5 the error
found over transient and steady points was higher to the assumption of the
start of combustion at the spark advance.

9.1.2 In-cylinder resonance characterization

The resonance indicator Ir proposed in [1], was used to described the
resonance evolution in the combustion chamber in three different combustion
modes: SI, TJI and RCCI.

Taking as starting point the expression of the amplitude resonance evolu-
tion found in [2], two resonance models have been developed.

Model of amplitude evolution: This model was developed by as-
suming a constant attenuation of the resonance amplitude for a given cycle.
The resonance amplitude was modeled for two cases: normal and abnormal
combustion. For normal combustion, the resonance excitation source has been
assumed from the HRR. For knocking combustion, the resonance source has
been modeled to be released in a small step. Results shows that, independently
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of the combustion type, the model is able to reproduce the resonance amplitude
evolution with an error bellow 10 %. This model was used in a later chapter
to develop a knock recognition method.

Model of attenuation evolution: An additional model was developed
in order to predict the attenuation over a cycle. The model was calibrated in
engines B and C, and validated in all, engines A, B and C. Results shows that
the attenuation of the resonance excitation is independently of the source of
the combustion, i.e depends on thermodynamic properties and the dimension
of the combustion chamber. In larger engines, the resonance is damped slower.
An application of the model for trapped mass estimation was performed over
engine C, where the model is used to estimate the best window location for
the calculation of the trapped mass from resonance method.

9.1.3 Knock recognition methods

Three knock recognition methods, two based on in-cylinder pressure and
one on knock sensor signal, were developed in this work.

Knock recognition based on in-cylinder pressure sensors: Two
methods were developed in this work: the first method was based on a thresh-
old as a function of the mass fraction burned, the second method was based on
a resonance model which is able to predict the resonance amplitude evolution
under normal and abnormal combustion. For engine A case, both methods
were able to recognized low-knocking cycles under SI combustion. And for
engine B case, the methods were able to recognized knock in TJI combustion,
where normal combustion heavily excites resonance. Both models were online
validated in engines A, where an improvement in terms on efficiency, safety
and cycle-to-cycle variability was achieved. With low-knocking cycles recog-
nition the controller can be set at a higher knock probability, being able to
obtain lower SA variability, i.e lower IMEP variation, and avoiding high knock
probability areas. Because both methods depend on parameters obtained
from the in-cylinder pressure sensor and how combustion evolves, they are
applicable to different fuels.

Knock recognition based on vibration signal: A knock recognition
method that combines the combustion model and the knock sensor signal was
developed. The method was validated in engine A over different operating
conditions and SA settings, where the knock probability obtained was compa-
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rable to a MAPO threshold of 0.4 bar. The main advantage of this method
is does not rely on in-cylinder pressure sensors, as is based on a model and
knock sensor signal.

9.1.4 Combustion control applications

Part of the work presented along this dissertation was used to develop
combustion control applications.

Model based knock controller: One of the low-knocking cycles recog-
nition method based on in-cylinder pressure was used to update a map-based
knock probability model. The model was used to obtain the optimal SA
setting, and a conventional knock controller was employ in case the probability
of the model does not agree with the real one measured through a FIFO
buffer. The controller was validated in engine A, and compared with a full
conventional knock controller. An improvement in terms of efficiency and vari-
ability was achieved, i.e the model-based control maintain an optimal SA level
without performing delays of SA in necessary. During transient conditions, the
proposed controller was able to maintain the MAPO values under safety values.

Model based RGF control and combustion optimization: The
combustion model developed in this work was used to obtain cycle-by-cycle the
optimal SA and the VVT position for a given RGF set-point. A conventional
knock controller was used in case knock was detected through the vibration
measurement. Results show that the RGF was controlled in all four cylinders
under steady and transient operation, with an absolute error bellow 2 % during
transient and bellow 1 % at steady state.

9.2 Future work

As it was demonstrated, the aim of this work is to present algorithms
which can be embedded in on-board ECUs.

Improvement of the combustion model: With the measurement of
the instantaneous engine speed, is possible to obtain more information from
the combustion process. With this information, more complex observers can
be developed in order to improve the combustion estimation.

Model based RGF control: This controller can be implemented in
order to control the RGF to control emissions, as well as control knock proba-
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bility, since knock is not only affected by the SA, but also by the VVT timming.

Test cell implementation: The attenuation model developed can be
implemented in real time to improve the estimation of the trapped mass from
the in-cylinder resonance method. This estimation can be implemented in
close-loop control strategies of EGR, RGF, etc. Besides, the knock recognition
methods based on in-cylinder pressure are reliable techniques to implement
in real time on a test bench. Moreover, both knock recognition methods
have been implemented in real time in the prototyping system of engine A
introduced in Chapter 3.

On-board implementation of knock recognition methods: The
implementation of low-knocking cycles recognition methods in commercial
ECUs has to face two points: first the in-cylinder pressure acquisition above
15 kHz in order to capture resonance excitation, and second the computational
cost of method 2 may overcome the ECU capabilities. This last point must be
studied to determine the viability of such implementation. For the method
based on vibration measurement, the only point to face is the signal acquisition:
also a frequency above 15kHz is required to analyzed resonance from the knock
sensor signal.

Virtual engine: By combining the combustion and the variability model,
with air path models, and knock model, is possible to model the complete
engine operation, and use it for testing during the early development of control
algorithms.

Close loop control: Some of the systems in the engine ECUs are con-
trolled by open-loop or adaptive tables, such as VVT or SA. In order to
improve this adaptation, the combustion model can be implemented for those
control strategies in production engines. Actually, the knock sensor signal
is used to retard the calibrated optimal value of SA, one possibility is the
application of the knock sensor based knock recognition method to control
the SA with a conventional knock controller.
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