CONTENTS

Introduction	1
Achieving cell diversity	3
An overview of the eukaryotic gene expression.	
The making of a neuron.	
The cilium - a sensory organelle	21
Basic morphological features of the cilium.	23
The intraflagellar transport machinery.	26
Key stages of ciliogenesis.	29
Functional diversity of sensory cilia	31
When cilia fail: the ciliopathies.	33
Caenorhabditis elegans and its ciliated system	37
C. elegans as a model organism.	37
General architecture of the ciliated system.	39
Overview of sensory perception mediated by ciliated neurons.	47
Phenotypes & behaviours of ciliary mutants.	53
Transcriptional regulatory logic of cilium formation	55
The RFX family of transcription factors.	55
FOX genes, FOXJ1 and the regulation of the motile ciliogenic program	61
Interplays between ciliary transcriptional networks	68
The making of specialised cilia	71
Motivation & Aims	77
Materials & Methods	81
Experimental procedures	83
C. elegans strains and maintenance.	83
Worm lysis for genomic DNA preparations	83
Generation of fluorescent reporters: fusion PCR.	83
Generation of reporter transgenic lines	85
Strain crossing.	89
Genotyping.	90
Microscopy & Scoring.	91
Bioinformatic analysis of regulatory sequences	92
Identification of candidate transcription factors.	93
In-vivo analysis of transcription factors expression	93
Dye-filling assays.	94
fkh-8 ChIP-seq analysis	95

Enrichment analysis.	
Population synchronization	
RNA extraction	
fkh-8 RNA-seq analysis.	
CRISPR-based generation of a fkh-8 null allele.	
Rescuing experiments.	1
Site directed mutagenesis of xbx-1 cis-regulatory region	_ 1
Behavioural assays.	_ 1
Statistical analysis	_1
Materials	_ 1:
Results	1
1. A regulatory-motif enrichment analysis of the <i>C. elegans</i> ciliome	_ 1:
Subsets of ciliated neurons maintain the expression of ciliary genes in the abser	ice
daf-19	_ 1
Generation of a bona-fide list of ciliary genes	_ 1
De novo motif enrichment analysis of ciliary gene regulatory sequences.	_ 1
RFX/DAF-19 binding sites are enriched in the promoters of structural ciliary ge	nes
	_ 1
Additional TF binding motifs are enriched in structural ciliary genes with RFX	
binding motifs	_1
2. FKH-8 is expressed in all sensory ciliated neurons of <i>C. elegans</i>	13
Ten transcription factors are highly and specifically enriched within the ciliated	
sensory neurons of <i>C. elegans</i> .	
FKH-8 is broadly expressed across the whole ciliated system of <i>C. elegans</i>	
3. FKH-8 preferentially binds regulatory regions of ciliome genes	_ 1 -
FKH-8 preferentially binds to ciliome genes when compared to the binding of o	the
TFs	_ 1
Genomic binding analysis of FKH-8.	1
4. RNA-seq profiling of fkh-8 and daf-19 single and double mutants	1
Downregulated genes in young adult <i>fkh-8(tm292)</i> mutants do not enrich ciliary	
terms or functions.	
Downregulated genes in double <i>daf-12</i> and <i>daf-19</i> young adult mutants relate to	
	1
Deregulated genes in double <i>daf-12</i> and <i>daf-19</i> young adult mutants with FKH-8	
binding enrich ciliary features.	
Innate immune response might be impaired in young adult <i>fkh-8(tm292)</i> mutar	
	1

5. Generation of a new null mutant allele of fkh-8	190
fkh-8(tm292) is likely a hypomorphic allele.	190
fkh-8(vlc43): an engineered full deletion of the fkh-8 locus.	
fkh-8 mutants do not exhibit dye-filling defects.	192
6. In vivo reporter gene expression analysis uncovers the role of FK	Н-8
regulating structural ciliary genes	193
Animals with whole deletion of the fkh-8 locus show stronger defects in the	
expression of cilium-related reporters.	193
fkh-8 mutation affects the expression of structural ciliary genes in a cell-type	
manner.	196
fkh-8 acts cell-autonomously.	199
cis-mutation of putative FKH binding sites strongly affects expression of the	
panciliary gene xbx-1	199
7. fkh-8 mutants display defects in a wide range of sensory-mediate	d
behaviours	206
fkh-8 mutants show normal response to body touch.	206
fkh-8 mutants display nose touch defects.	
fkh-8(vlc43) mutants are defective in chemotaxis to a volatile attractant	
fkh-8(vlc43) mutants show defects in the avoidance response to a volatile rep	
	210
fkh-8 mutants do not show chemotaxis defects to the water-soluble attractan	t NaCl.
	212
fkh-8 mutants display defects in the avoidance response to water-soluble tox	
substances	213
8. fkh-8 & daf-19 exhibit cross-regulation and synergistic effects.	215
fkh-8(tm292) mutation has no major effect over the expression of daf-19	219
Long daf-19 isoforms repress fkh-8 expression in non-ciliated neurons	220
daf-19 and fkh-8 act synergistically in the regulation of some structural ciliary	genes.
	224
Discussion	229
daf-19 does not act alone in the regulation of ciliary features in <i>C. elegans</i>	231
In-silico approaches help decipher transcriptional regulatory signatures	232
Expression analyses allow for the identification of candidate regulators of the cilia	ited fate.
	235
A multi-angle approach reveals $fkh-8$ is a terminal selector of the ciliated fate	
elegans	236
cis-mutation of FKH sites suggests compensatory effects upon fkh-8 loss.	
Interplay between RFX and FKH members is also seen in <i>C. elegans.</i>	244

RNA-seq uncovers a role for fkh-8 in the regulation	n of the innate immune response in
C. elegans.	245
Concluding remarks	
Conclussions	251
Annexes	255
References	285