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The main content of a webpage is often surrounded by other boilerplate elements related to the template, such as menus, advertisements,
copyright notices, comments, etc. For crawlers and indexers, isolating the main content from the template and other noisy information
is an essential task, because processing and storing noisy information produce a waste of resources such as bandwidth, storage space,
computing time, etc. Besides, the detection and extraction of the main content is useful in different areas, such as data mining, web
summarization, content adaptation to low resolutions, etc. This work introduces a new technique for main content extraction. In
contrast to most techniques, this technique not only extracts text, but also other types of content, such as images, animations, etc. It is
a DOM-based page-level technique, thus it only needs to load one single webpage to extract the main content. As a consequence, it is
efficient enough as to be used online (in real-time). We have empirically evaluated the technique using a suite of real heterogeneous
benchmarks producing very good results compared with other well-known content extraction techniques.
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1 INTRODUCTION

The information contained in a webpage can be classified as relevant or irrelevant content according to the user needs.
For this reason, extracting information (relevant or irrelevant) from webpages is a productive task for computer systems
and humans. The relevant content in a webpage is often referred to as main content [3, 5, 8, 24, 38]. It can be formed
from text, images, and any other multimedia; and it is usually surrounded by or even mixed with noisy information
such as headers, footers, menus, banners, advertisements, etc. Removing this noisy and irrelevant information from a
webpage is essential to extract the relevant data for the user (see, e.g., Figure 1).

The focus of this paper are HTML-structured webpages, thus it ignores webpages built with alternative technologies
such as Flash. From an engineering point of view, a webpage corresponds to a set of Document Object Model (DOM)
nodes [10]. Accordingly, the main content of a webpage can be defined as a subset of those nodes, and it contains the
meaningful information of a webpage.
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Fig. 1. Main webpage of ACM’s website and its main content (extracted with our web content extraction tool).

The main content is a key element for indexers and crawlers:

• Gibson et al. [16] determined that template elements comprise almost half of all the data on the Web. This fact
justifies the importance of using techniques such as main content extraction, or template extraction [33, 38] as a
preprocess method.

• Processing the noisy elements of webpages can lead to a waste of resources like storage, bandwidth, or time.
Thus, indexers and crawlers preprocess the webpages to isolate the main content from the noisy content. Due to
its relevance, the main content is indexed and stored in another way.

Our approach to main content extraction uses DOM structures for representing webpages. Roughly, given an arbitrary
webpage, (1) we first assign weights to several features of its DOM nodes. This allows us to (2) represent DOM nodes as
points in a four-dimensional Euclidean space R4, and then (3) we compute the Euclidean distance between the points
and isolate those nodes further away than the median because this set probably contains the main content. Then, (4) the
selected DOM nodes are analyzed to identify the part of the web page’s DOM tree that contains the main content. The
main contributions of this work are: (i) the new four-dimensional Euclidean space proposed and the algorithms used to
extract the main content in such a space; (ii) the implementation of our technique as a public and open-source official
Firefox add-on. The open-sourced implementation of six other content extraction algorithms that were not public; and
(iii) an extensive empirical evaluation of the most important content extraction techniques.

2 THEWEBPAGE’S MAIN CONTENT

In general, it is easy for humans the identification of the main content in a rendered image of a webpage. When we
represent a webpage with a DOM tree, however, there usually exist several nodes whose subtree contains the main
content. Often, DOM nodes form a complex hierarchy where one node can contain exactly the same text and images as
some of its ancestors (e.g., a DIV element with a single child). So, what node should be chosen? The answer to this
question should be given according to a design policy. In order to provide a definition of main content in a DOM tree,
first, we need to formally define the concepts of website and webpage.

Definition 2.1 (Webpage). A webpage 𝑃 is a tree (𝑁,𝐴) formed from a finite set of nodes 𝑁 . Every non-leaf node
𝑛 ∈ 𝑁 contains an HTML tag (including its attributes). Leaf nodes can be text nodes, CDATA section nodes, or comment
nodes. The root node corresponds to the body HTML tag.𝐴 is a finite set of arcs such that (𝑛 → 𝑛′) ∈ 𝐴, with 𝑛, 𝑛′ ∈ 𝑁 ,
Manuscript submitted to ACM
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if and only if the tag or text associated with 𝑛′ is inside the tag associated with 𝑛, and there does not exist an unclosed
tag between them.

Given a node 𝑛 in a webpage 𝑃 , ancestors(𝑛) is a set of nodes that contains all the nodes that are in the path from the
root to 𝑛, descendants(𝑛) are those nodes that belong to the subtree of 𝑛, subtree(𝑛) = descendants(𝑛) ∪ {𝑛}, leaves(𝑛)
is the number of leaves in descendants(𝑛), childNodes(𝑛) is the number of children of 𝑛, depth(𝑛) and maxDepth(𝑃)
are, respectively, the maximum depth of subtree(𝑛) and 𝑃 , words(𝑛) is the total number of words in descendants(𝑛)
excluding those that belong to hyperlinks, and distance(𝑛1, 𝑛2) is the length (measured in number of edges) of the path
between two nodes 𝑛1 and 𝑛2. Given the domain𝑊 of webpages, the set of hyperlinks is a relation 𝑅 ⊆𝑊 ×𝑊 . We
represent with hyperlinks(𝑃) the set of hyperlinks of a webpage 𝑃 .

A website consists of webpages sharing a prefix in their URI, and all of them (possibly except for the main webpage)
are reachable from another webpage of the website. Hence, all the webpages are linked by at least one hyperlink in
another webpage of the same website (i.e., all webpages have an indegree greater than 0).

Definition 2.2 (Website). A website 𝑆 is a set of webpages such that

• ∃ 𝑈 : ∀ 𝑃 ∈ 𝑆, 𝑈 is a non-empty prefix of 𝑃 ’s URI.
• ∃ 𝑃𝑟𝑜𝑜𝑡 ∈ 𝑆 : ∀ 𝑃 ′ ∈ 𝑆, 𝑃𝑟𝑜𝑜𝑡 ≠ 𝑃 ′ : (𝑃𝑟𝑜𝑜𝑡 , 𝑃 ′) ∈ hyperlinks(𝑆)∗, where hyperlinks(𝑆) = ∪𝑄 ∈𝑆 hyperlinks(𝑄),
and 𝑋 ∗ is the reflexive and transitive closure of 𝑋 .

We can now provide a definition of main content. Roughly, we can define the main content as the information
provided by a webpage excluding template data, side information like comments or advertisements, and meta data like
publication date. However, it is important to remark that the main content of a webpage is subjective. A clear example
is found in a webpage that displays a news article: the comments of the readers are considered main content by some
people (thus, they should be extracted together with the new), while others consider that this part does not belong to
the new (and thus they should not be extracted). Therefore, providing a definition of main content is controversial.

We follow an engineering perspective based on the structure of the webpage. To provide a definition that is
independent of any method, for a webpage 𝑃 = (𝑁,𝐴), we assume the existence of a labelling relevant (𝑛) for the leaf
nodes that identifies those leaves in the webpage that should belong to the main content. Formally,

Definition 2.3 (Main content). The main content of a webpage 𝑃 = (𝑁,𝐴) is a set of DOM nodes𝑀 ⊂ 𝑁 such that:

(1) All relevant nodes belong to the subtrees of the main content nodes:

∀ 𝑛 ∈ 𝑁, relevant (𝑛) . 𝑛 ∈ subtree(𝑛′ ∈ 𝑀).
(2) All nodes that belong to the subtrees of the main content nodes are relevant:

∀ 𝑛 ∈ 𝑙𝑒𝑎𝑣𝑒𝑠 (𝑛′ ∈ 𝑀) . relevant (𝑛).
(3) The set of main content nodes is minimal:

�𝑀 ′ ⊂ 𝑀 . ∀ 𝑛 ∈ 𝑁, relevant (𝑛), 𝑛 ∈ subtree(𝑛′ ∈ 𝑀 ′).

Definition 2.3 is useful when we have a way to provide the relevant labelling. This is the case, for instance, when
one is evaluating benchmarks. If one does not have available the relevant labelling, this must be approximated. In the
following sections, we propose a method to automatically create the relevant labelling.

3 MAIN CONTENT EXTRACTION

The main content extraction technique proposed ranks the DOM nodes with features to identify the main content of a 
webpage. The technique inputs a webpage and it outputs a set of DOM nodes representing its main content. As it is 
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a page-level technique, it only loads and analyzes one single webpage to detect the main content. This is especially
important because loading and analyzing one single webpage increases the speed of the algorithm.

Our technique is divided into four phases:

(1) An algorithm selects some DOM nodes of the webpage and, for each one, several weights (word ratio, hyperlink
ratio, children ratio, and position ratio) are computed.

(2) For each node with its weights assigned, an algorithm standardizes the value of its weights.
(3) Once the weights are standardized, each node is considered a point in R4. Then, an algorithm visits all these

nodes (points) and computes the centroid. The set of DOM nodes (points) that are farther than the centroid are
added to a set of candidate nodes.

(4) The nodes in the set of candidate nodes are analyzed in the following way:
• Those nodes that are descendants of other nodes in the set are removed if they have exactly the same text
nodes as their ancestors.

• The algorithm searches for the node with a better ratio between words and tags. This node together with its
siblings that belong to the set of candidate nodes are selected as the main content.

The following sections describe these four phases.

3.1 Weighting DOM nodes

This section introduces a metric to identify those DOM nodes that can potentially be the root node of the webpage’s
main content. All the ideas proposed have been empirically validated with a set of 65 webpages taken from the TECO
benchmark suite (see section 4).

First, the DOM tree of the webpage is explored in order to compute and assign a weight to each DOM node meeting
the following criteria:

(1) It is not a leaf of the DOM tree.
(2) It is a node of type element 1 and its tagName is different from the following: “A”, “NAV”, “UNDEFINED”, “HR”,

“SPAN”, “EM”, “BODY”, “SCRIPT”, “HEADER”, “H1”, “H2”, “H3”, “H4”, “H5”, “BR”, and “IFRAME”. Nodes of type
different from element (e.g., text nodes, comments, etc.) are not considered. Note, however, that the weighted
nodes may contain blocks of text.

(3) If the depth of the webpage from the “BODY” DOM node (measured as the number of nodes with the tagNames
listed in bullet 2) is less than the number of children of the “BODY” DOM node (measured with the same criterion),
the main content of the webpage corresponds to the union of the children of the “BODY” DOM node. This
idea has been empirically validated with a set of 65 webpages. Since none of the 65 webpages selected from
TECO met the criterion, we selected 65 random webpages from the CleanEval dataset. As a result, 11 of the
65 webpages met the criterion. We measured the percentage of text of the whole webpage that also belong to
the main content, obtaining an average value of 91.07%, which means that the main content of that webpages
corresponds practically to the whole webpage. It should be highlighted that we observed that this phenomenon
only occurs in old webpages.

The rationale behind these criteria is that, in the DOM model, text nodes are always leaves, and they are always inside
an element node. Thus, it is always possible to select a text (or image, etc.) by selecting the element node that contains
this text. Moreover, element nodes that are leaves do not contain any visible information (text, images, etc.). Therefore,
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the main content can be always selected with an element node that is not a leaf. This is why we discard leaves and nodes
that are not elements. In addition, the tagNames listed above (bullet 2) cannot be the main content or there are other
tags that subsume them and, thus, they are also discarded. Finally, the third criteria only applies to webpages that are
very wide and thus the content is distributed between various branches. This criterion was determined empirically, and
it avoids selecting a branch with a small concentration of text. Note that this does not mean that the main content node
has at most the third of the text of the whole webpage, because the parent node can be selected. It just discards those
nodes that contain small amounts of text. Its application increases the precision in 1-5% (see the empirical evaluation in
Section 4).

It has been observed (see, e.g., [36]) that the main content of a website usually contains a high density of text and
images; but, in general, this density is not enough by itself to detect the main content [19]. In the following, we propose
several properties that complement the text and images density and that must be considered to appropriately detect the
main content. All these properties are quantified objectively and they are properly combined to form a weighting that
can be used to identify the main content DOM nodes.

Definition 3.1 (Node properties). Given a webpage 𝑃 = (𝑁,𝐴), every node 𝑛 ∈ 𝑁 with descendants(𝑛) ≠ ∅ is rated
according to the following properties:

Word ratio: It considers the number of words not included in an hyperlink and their depth. The algorithm assigns a
higher value to the words nearer the node:

wordRatio(𝑛) = ∑
𝑘∈leaves (𝑛) words (𝑘)/distance (𝑘,𝑛)

where parent (𝑘) .tagName ≠ “𝐴”

Hyperlink ratio: It is computed considering the amount of hyperlinks contained in the descendants of a node 𝑛:

hyperlinkRatio(n) =

{
1 if links = 0
1/links if links > 0

where links = hyperlinks (subtree (𝑛))

Children ratio: It checks whether a node 𝑛 has more than two children:

childrenRatio(n) =

{
0 if childNodes (𝑛) ≤ 2
1 if childNodes (𝑛) > 2

Position ratio: It is computed using the following function:

positionRatio(n,P) =

{
1 if depth(𝑛) ≤ maxDepth(𝑃 )/2
maxDepth(𝑝 )
depth(𝑛) − 1 if depth(𝑛) > maxDepth(𝑃 )/2

TheWord ratio property defines a metrics to account for the amount of text words contained in the descendants of
a DOM node. The value is cumulative for all descendants, and it is computed for each descendant as the amount of
words it contains divided by the distance from the node to 𝑛. Therefore, this metrics encourages the DOM nodes with a
high amount of text in its nearest descendants. The farther the text is from a DOM node, the lower its word ratio is.
Our experiments reveal that, as an average, each main content node contains 2.91 words (outside hyperlinks), while
non-main content nodes contain 0.68 words (4.29 times less words).

The Hyperlink ratio property computes the number of hyperlinks contained in a DOM node and its descendants. The
more hyperlinks, the lower the link ratio. The main content of a webpage contains less hyperlinks than other blocks, 
such as the main menu, the footer, etc. Therefore, this metric penalizes those DOM nodes with many hyperlinks in 
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their descendants. Our experiments reveal that, as an average, 70.43% of the hyperlinks in the webpages did not belong
to the main content.

The Children ratio property promotes those nodes with more than two children. The main content of a webpage
usually contains several element nodes with text nodes between their descendants. Therefore, those nodes with two
children or more are assigned a higher weight because they allow for the inclusion of intermediate text nodes in the
DOM tree. Our experiments reveal that, as an average, 96.92% of the main content nodes have more than 2 children.

The Position ratio property evaluates the depth of a DOM node in the DOM tree. The main content is often located in
the first half of the DOM tree. Therefore, this metric progressively penalizes those DOM nodes located at the lower
positions in the DOM tree. In our experiments, in 87.69% of the webpages, the main content’s root node belong to the
first half of the DOM tree.

Once computed, these properties are assigned to each node in the DOM tree. A higher value for these properties
indicates that the DOM node is more likely to contain the main content of the webpage. As these properties are
dissimilar from each other, there is not a ponderation used to combine them all. However, we developed a novel method
to compare the rated DOM nodes in order to determine which ones probably contain the main content. This technique
is explained in the following subsections.

3.2 Properties standardization

Our algorithm introduces a novel technique to compute the differences between DOM nodes. The four ratios assigned in
Definition 3.1 represent a DOM node as a point in a four-dimensional Euclidean space R4. Then, the relative Euclidean
distance between these points can be used to compare the DOM nodes in the webpage. The four ratios have been
designed to distinguish the main content node from the rest, so that most DOM nodes must be relatively close to
each other in R4, but a DOM node that contains the main content should be located farther the rest of nodes. This
is validated in the empirical evaluation (see Section 4) and relies on the fact that the value of the node properties is
considerably different whether a node contains the main content or not. A node that contains the main content usually
contains a large amount of text between its descendants, less hyperlinks between its descendants than other nodes,
several children, and a position located in the first half of the DOM tree. Most of the nodes in the DOM tree do not
meet these properties, hence the centroid is located with a high probability near them in R4 and, therefore, far from
the nodes that contain the main content. Prior to the DOM node comparison, the four ratios computed in Section 3.1
must be standardized. The standardization process ensures that all the ratios do have the same impact on the distance
measurement [24]. The standardization process replaces the value of a ratio with the difference between that value and
the average of the values taken by it divided by the standard deviation.

Definition 3.2 (Node standardization). The different ratios of a node 𝑟 are standardized with the following formula:

𝑟𝑖 = (𝑟𝑖 − 𝑟𝑖 )/𝑠𝑟𝑖 (1)

where 𝑟𝑖 is the average of the values taken by 𝑟𝑖 , and 𝑠𝑟𝑖 is the standard deviation.

In the following we represent DOM nodes as points in R4.

Definition 3.3 (DOM nodes representation in R 4). A  DOM node 𝐴  is represented in a  Euclidean space R 4 with a 
quadruple (𝑎, 𝑏, 𝑐, 𝑑), where 𝑎, 𝑏, 𝑐, 𝑑 are the four ratios assigned in Definition 3 .1. Two nodes 𝐴  =  (𝑎, 𝑏, 𝑐, 𝑑 ) and 
𝐴′ = (𝑎′, 𝑏′, 𝑐′, 𝑑′) are the same node if and only if 𝑎 = 𝑎′ ∧ 𝑏 = 𝑏′ ∧ 𝑐 = 𝑐′ ∧ 𝑑 = 𝑑′.
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The use of R4 provides interesting advantages over other approaches. For instance, the technique MenEx [2] also
uses different ratios to identify the DOM node that represents a menu, but they judge the importance of a DOM node
with the sum of the different ratios. This means that they cannot distinguish between two DOM nodes with the same
values for different ratios, e.g., (1, 2, 3, 4) = (4, 3, 2, 1) because 1 + 2 + 3 + 4 = 4 + 3 + 2 + 1. Representing DOM nodes
as points in the Euclidean space automatically distinguish between any combination of ratios, and it also defines a
distance between them: the Euclidean distance.

Definition 3.4 (Euclidean distance). The Euclidean distance between a node 𝐴 and a node 𝐵 for 𝑛 ratios (in R𝑛) is
computed with the following formula:

eucli_distance(𝐴, 𝐵) =

√√
𝑛∑
𝑖=0

(𝐴.ratio[𝑖] − 𝐵.ratio[𝑖])2 (2)

This distance also provides interesting properties. For instance, to empirically determine the best ponderation for the
ratios used in [2], the authors had to limit the number of experiments they did due to the combinatorial explosion. For
instance, they tried with 0.1 ∗ 𝑟𝑎𝑡𝑖𝑜1 + 0.2 ∗ 𝑟𝑎𝑡𝑖𝑜2 + ..., with 0.2 ∗ 𝑟𝑎𝑡𝑖𝑜1 + 0.2 ∗ 𝑟𝑎𝑡𝑖𝑜2 + ..., and so on. In contrast, the
Euclidean distance automatically allows us to determine how far one point is from another, in spite of them having the
same values for different ratios.

3.3 c-SET computation

In this section, the DOM nodes that are more likely to contain the main content of the webpage are added to the set
of candidate nodes (c-SET). The c-SET is further analyzed in order to identify the DOM node that contains the main
content.

The first step to obtain the c-SET is to compute the centroid of the nodes. The centroid is the arithmetic mean
position of all the points in R4 represented by the rated DOM nodes.

Algorithm 1 computes the centroid of all the rated nodes in a webpage. The centroid is a DOM node surrounded (in
R4) by nodes that very unlikely contain the main content. Note that the value of the properties (see Definition 3.1)
assigned to non-content nodes is close to zero, so they must be located near the coordinate axes. Therefore, the set of
candidate nodes (c-SET) is built with the DOM nodes located farther from the centroid in R4, since the value assigned
to their properties is significantly high. This is computed with Algorithm 2, which measures the distance from all the
rated DOM nodes in the webpage to the centroid, and it selects the 𝑐 nodes farther from it. In our implementation, the
value of 𝑐 has been determined with an empirical evaluation. It is explained in section 4.

The nodes in the c-SET must be analyzed to select the one that more likely contains the main content.

Algorithm 1 Centroid computation

Input: A set of rated DOM nodes ratedNodes = {𝑛1 . . . 𝑛𝑖 }
Output: The centroid c of ratedNodes
begin

for 𝑝𝑟𝑜𝑝 = 0 to 3
𝑐.ratio [𝑝𝑟𝑜𝑝 ] = (∑𝑖

𝑛𝑜𝑑𝑒=1 𝑛𝑛𝑜𝑑𝑒 .ratio [𝑝𝑟𝑜𝑝 ])/𝑖 ;
return 𝑐 ;

end
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Algorithm 2 c-SET computation

Input: A set of rated DOM nodes ratedNodes, its centroid cent, and its size 𝑐
Output: A set of DOM nodes c−SET
begin

foreach (𝑛1 in ratedNodes)
𝑠𝑢𝑚 = 0;
for 𝑖 = 0 to 3

sum = sum + (𝑛1 .ratio [𝑖 ] − cent .ratio [𝑖 ])2 ;
𝑛1 .distance =

√
sum;

c−SET = ∅
for 𝑖 = 1 to 𝑐

node = 𝑛 ∈ ratedNodes . �𝑛′ ∈ ratedNodes, 𝑛′.distance > 𝑛.distance;
ratedNodes = ratedNodes\{𝑛};
c−SET = c−SET ∪ {𝑛};

return c−SET ;
end

Algorithm 3 c-SET reduction
Input: A set of candidate DOM nodes c−SET
Output: A set of candidate DOM nodes c−SET
begin

foreach (𝑛1 in c−SET )
foreach (𝑛2 in c−SET )

if 𝑛1 .innerText == 𝑛2 .innerText and 𝑛1 ∈ ancestors (𝑛2)
𝑐−𝑆𝐸𝑇 = 𝑐−𝑆𝐸𝑇 \{𝑛2 };

return c−SET ;
end

3.4 Selecting the main content nodes

In this section we show how to identify the main content nodes among the nodes in the c-SET .
Firstly, Algorithm 3 reduces the number of elements in the c-SET by checking whether two or more nodes from the

c-SET contain the same text nodes. This can only happen if one is a descendant of the other. Given two nodes in the
c-SET, if a descendant of a node contains the same text nodes as one of its ancestor, then the descendant is removed
from the c-SET. The goal of selecting the ancestor is to avoid missing all the non-textual information, such as images
that surround the text nodes.

For this, Algorithm 3 explores the c-SET and removes the nodes with an ancestor in the c-SET that contains exactly
the same text nodes. Then, Algorithm 4 explores the remaining DOM nodes in the c-SET to select the main content
nodes as follows:

• For all the nodes in the c-SET, it computes the ratio between words and tags.
• The node with the highest ratio is selected as the main content node if it does not have any siblings that belong
to the c-SET. In case of a tie between two or more nodes, the algorithm selects them all as the main content
nodes.

• If the c-SET contains siblings of the node with the highest ratio, then all of them are selected as the main content
nodes.

In Algorithm 4, function getSiblings(n, set) returns the sibling nodes of 𝑛 that belong to the set of nodes 𝑠𝑒𝑡 .

3.5 Final post-process

We observed that, in some webpages (around 5%), the extracted main content contains groups of links that do not 
belong to the main content (e.g., breadcrumbs, links to other sections of the website, etc.). We can remove those groups 
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Algorithm 4 Main content selection
Input: A set of candidate DOM nodes c−SET
Output: A set of DOM nodes mainContent
begin

maxRatio = 0;
maxNode = 𝑛𝑢𝑙𝑙 ;
foreach (𝑛 in c−SET )

𝑛.textPond = |𝑛.innerText |/ |𝑛.tags |;
if 𝑛.textPond > maxRatio

maxRatio = 𝑛.textPond;
maxNode = 𝑛;

siblings = getSiblings (maxNode, c−SET ) ;
if siblings == ∅

mainContent = maxNode;
else

mainContent = {𝑛} ∪ siblings;
return mainContent;

end

of links, thus improving the precision, with a very cheap post-process. Algorithm 5 explores the main content nodes
extracted by Algorithm 4 and it removes the groups of links that do not belong to the main content, if any. The process
is done as follows:

• For all the nodes in the mainContent set, it computes a ratio called textRatio as the amount of text of a node
divided by the amount of text of the node excluding its hyperlinks. It also computes the number of hyperlinks in
the descendants of the node.

• The nodes with a textRatio higher than a computed threshold tr, and with a number of hyperlinks higher than
another threshold hr, are removed from the mainContent set.

• If all children of a DOM node have the same tagName, and in turn, each one only contains one child node whose
tagName is “A”, they are removed if there are not images in their descendants.

Algorithm 5 Post-process

Input: A set of DOM nodes mainContent, a text threshold tr , and a hyperlinks threshold hr
Output: A set of DOM nodes mainContent excluding some groups of links
begin

foreach (𝑛 in mainContent)
m = n − {hyperlinks (n) }
𝑛.textRatio = |𝑛.innerText |/ |𝑚.innerText |;
𝑛.links = |hyperlinks (𝑛) |;
if (𝑛.textRatio > tr and 𝑛.links > hr)

mainContent = mainContent − 𝑛;
found = true;
siblings = getSiblings (n,mainContent) ;
foreach (𝑖 in siblings)

if (𝑖 .tagName == 𝑛.tagName)
if ( |i.children | == 1 and 𝑖 .𝑐ℎ𝑖𝑙𝑑.tagName == “A”)

foreach (𝑐ℎ𝑖𝑙𝑑 in i.child .children)
if (𝑐ℎ𝑖𝑙𝑑.tagName == “IMG”)

found = false;
else

found = false;
else

found = false;
if (found == false)

mainContent = mainContent − {n.parentNode}
return mainContent;

end
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4 EMPIRICAL EVALUATION

This technique has been implemented as a WebExtension, which is compatible with several browsers, such as Google
Chrome, Mozilla Firefox, Microsoft Edge, Opera, etc. It has been officially published by Firefox.2 This addon comes in the
form of a single button of the browser. When it is pressed, the plugin extracts the main content of the current webpage,
which is automatically displayed3 (and it can be saved). If it is pressed again, the original webpage is displayed.

The evaluation of our method was done using the Template Detection and Content Extraction Benchmark Suite
(TECO).4 TECO is a suite of real and heterogeneous benchmarks with different layouts and page structures. It has
been especially designed to evaluate template and content extractors: The HTML elements (textual information, but
also pictures, embedded media, etc.) are labelled so that we can detect the main content with our technique and know
its exact precision and recall. In the experiments, we used TECO 4.0, which contains 130 benchmarks. We used 65
benchmarks to evaluate the metrics proposed in Section 3.1, 15 bechmarks to train our algorithm, and 50 benchmarks
as the evaluation set.

Most content extraction techniques in the literature use the recall, precision, and F15 metrics of the retrieved words.
This is somehow limited because it assumes that the main content of the webpage is only text. In our evaluation we
overcome this limitation by measuring the retrieved DOM nodes. Therefore, we perform an evaluation that considers
that the main content can include text, video, images, animations, and any other contents. Moreover, in order to compare
our technique with the related work, we have also evaluated the technique using retrieved words as a metrics. Besides
retrieved words, a wide range of different metrics (see, e.g., [4, 7, 31, 34]) are used for the evaluation and comparison of
content extraction algorithms. Therefore, to perform a proper comparison of our technique with other mainstream
algorithms, we also adopted and implemented some of these metrics. The obtained results are detailed in section 5.

Precision, recall, and F1 evaluation. We built a testing version of our WebExtension to automate the evaluation.
For all the webpages of the benchmark suite (TECO), it sequentially executes the content extraction algorithm. For each
benchmark, it computes the recall, precision, F1, and the execution time of the retrieved words and the retrieved DOM
nodes. First of all, it is necessary to determine the optimal size of the set of candidate nodes (the 𝑐 value of the c-SET.
See Section 3.3). We randomly selected a training subset of 15 benchmarks and computed the recall, precision and F1 of
the retrieved DOM nodes and text words for several c-SET sizes.

Table 1 presents the results of the experiments conducted with the training set and with a c-SET size from 1 to
8. Each row shows the average Recall, Precision, and F1 of executing the algorithm for all the benchmarks in the
training subset with a different value for 𝑐 in the c-SET. The table contains the average results for both, retrieved text
words and retrieved DOM nodes.

The table shows that a n-SET with n=3 produces the best results. 3-SET obtains the best F1 value in retrieved DOM
nodes (82.95%) and the best F1 value in retrieved words (87.65%). Therefore, even though in our implementation the
size of the n-SET is configurable, we use a 3-SET by default. The table also shows that the size of the c-SET can have a
considerable impact on the recall and precision. In contrast, it has a very little impact on the performance: the average
runtimes are similar for all the tested c-SETs (e.g., the difference between the average runtime of the 1-SET and the
average runtime of the 8-SET is only 0.03 seconds).

2Firefox runs several rounds of review, after which those addons whose quality is above the Firefox standards become part of the Firefox distribution.
3The nodes that do not belong to the main content are properly hidden by changing their visibility and display attributes to hidden or none, respectively.
Therefore the main content is isolated and it appears in the same place as in the original webpage.
4http://personales.upv.es/josilga/retrieval/teco/
5Computed as (2 ∗ 𝑃 ∗ 𝑅)/(𝑃 + 𝑅), where 𝑃 is the precision and 𝑅 is the recall.



11

DOM nodes Words
Size Rec. Prec. F1 Rec. Prec. F1 Runtime
1 85,14 % 73,24 % 69,93 % 88,40 % 82,21 % 79,75 % 0,54 s.
2 85,77 % 83,43 % 77,82 % 88,42 % 87,86 % 83,03 % 0,55 s.
3 83,16 % 91,94 % 82,95 % 87,95 % 94,69 % 87,65 % 0,55 s.
4 80,33 % 93,73 % 81,80 % 84,85 % 95,70 % 85,77 % 0,55 s.
5 78,65 % 90,93 % 78,37 % 82,13 % 92,43 % 82,10 % 0,56 s.
6 72,23 % 82,61 % 66,75 % 74,74 % 86,47 % 74,07 % 0,56 s.
7 66,68 % 81,17 % 59,31 % 69,62 % 84,54 % 68,40 % 0,56 s.
8 72,16 % 81,17 % 64,03 % 75,40 % 84,54 % 72,92 % 0,57 s.

Table 1. Determining the optimal size of the c-SET

The table also shows that a bigger c-SET does not necessarily obtain higher F1 values. This happens because increasing
the size of the c-SET also increases the probability of selecting one or several nodes that are descendants from the main
content root node or nodes. Therefore, as Algorithm 4 has more possible nodes to select, in some benchmarks it can
select descendants from the root node or nodes, thus the recall decreases. This can be observed in the dip for 𝑛 = 7.
It happens because there are two benchmarks where Algorithm 4 selects different main content nodes for 𝑛 = 7 and
for 𝑛 = 8. The selected nodes for 𝑛 = 8 contain more main content nodes than the selected nodes for 𝑛 = 7 in these
benchmarks. Therefore, the recall and the F1 are higher for 𝑛 = 8 than for 𝑛 = 7.

We also evaluated the impact of the post-process phase (see Section 3.5). Using a 3-SET, for the training subset of 15
benchmarks, we determined the best values for the tr and hr thresholds in the following way:

• We tried tr values from 1.25 to 3 in steps of 0.25, and hr values from 1 to 8.
• For each tr value, we selected the best F1 results for both, DOM nodes and retrieved text words.

Table 2 presents the results of the experiments carried out to determine the tr and hr thresholds. Each row shows the
best combination of results for each tr value. We can observe that, for each tr value, the best F1 results are obtained
with a hr threshold equal to 7 or 8 (both hr thresholds obtain the same results). Note that tr values higher than 1.5
obtain the same results. The last row of the Table shows the results obtained without applying the post-process phase,
which are more than 1% lower than the best results obtained with the application of the post-process.

DOM nodes Words
tr hr Rec. Prec. F1 Rec. Prec. F1
1,25 [7..8] 81,52 % 93,36 % 83,13 % 85,84 % 95,69 % 87,31 %
1,5 [7..8] 82,99 % 93,38 % 83,96 % 87,12 % 95,69 % 88,02 %
1,75 [7..8] 82,99 % 93,38 % 83,96 % 87,12 % 95,69 % 88,02 %
2 [7..8] 82,99 % 93,38 % 83,96 % 87,12 % 95,69 % 88,02 %
2,25 [7..8] 82,99 % 93,38 % 83,96 % 87,12 % 95,69 % 88,02 %
2,5 [7..8] 82,99 % 93,38 % 83,96 % 87,12 % 95,69 % 88,02 %
2,75 [7..8] 82,99 % 93,38 % 83,96 % 87,12 % 95,69 % 88,02 %
3 [7..8] 82,99 % 93,38 % 83,96 % 87,12 % 95,69 % 88,02 %
No post-process 83,16 % 91,94 % 82,95 % 87,95 % 94,69 % 87,65 %

Table 2. Determining tr and hr thresholds

The evaluation subset was formed from 50 benchmarks. For each benchmark, the number of DOM nodes and the
number of DOM nodes classified as main content; and the Recall, Precision, and F1 of the retrieved DOM nodes
and the retrieved words was computed. Additionally, the Runtime in seconds was also registered. The average results,
computed with a 3-SET, are shown in Table 3.
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Number of nodes DOM nodes Words
Benchmark Webpage MainContent Rec. Prec. F1 Rec. Prec. F1 Runtime
www.jdi.org.za/ 626 199 67,34 % 59,29 % 63,06 % 90,73 % 94,35 % 92,50 % 0,21 s.
www.u-tokyo.ac.jp/ 602 97 95,88 % 87,74 % 91,63 % 100,00 % 100,00 % 100,00 % 0,06 s.
www.savethechildren.net/ 751 54 68,52 % 100,00 % 81,32 % 99,14 % 100,00 % 99,57 % 0,22 s.
college.harvard.edu/ 1090 397 98,74 % 53,99 % 69,81 % 96,04 % 74,05 % 83,62 % 0,31 s.
www.unicef.org/ 1052 381 99,21 % 98,95 % 99,08 % 98,33 % 100,00 % 99,16 % 0,22 s.
www.linuxfoundation.org/ 588 38 92,11 % 87,50 % 89,75 % 99,40 % 100,00 % 99,70 % 0,30 s.
clinicaltrials.gov/ 543 101 88,12 % 76,72 % 82,03 % 91,17 % 96,63 % 93,82 % 0,22 s.
cordis.europa.eu/ 959 164 97,56 % 99,38 % 98,46 % 98,62 % 100,00 % 99,31 % 0,31 s.
www.informatik.uni-trier.de/ 3085 3021 76,33 % 100,00 % 86,58 % 83,43 % 100,00 % 90,97 % 2,43 s.
parents.berkeley.edu/ 283 184 96,20 % 77,29 % 85,71 % 98,19 % 100,00 % 99,09 % 0,10 s.
www.bbc.co.uk/ 2991 1360 92,57 % 56,13 % 69,89 % 89,44 % 52,87 % 66,46 % 1,21 s.
techcrunch.com/ 2576 586 96,76 % 99,82 % 98,27 % 100,00 % 100,00 % 100,00 % 0,85 s.
www.turfparadise.com/ 1057 213 96,24 % 67,66 % 79,46 % 91,24 % 100,00 % 95,642 % 0,39 s.
www.cleanclothes.org/ 1335 928 99,68 % 86,94 % 92,88 % 96,83 % 93,30 % 95,03 % 0,31 s.
www.afp.com/ 1199 789 99,87 % 99,12 % 99,49 % 100,00 % 100,00 % 100,00 % 0,30 s.
news.discovery.com/ 2896 800 20,75 % 100,00 % 34,37 % 78,04 % 100,00 % 87,67 % 1,19 s.
www.history.com/ 1246 260 91,15 % 29,37 % 44,43 % 76,92 % 33,51 % 46,68 % 0,44 s.
detroit.cbslocal.com/ 1256 98 96,94 % 98,96 % 97,94 % 100,00 % 100,00 % 100,00 % 0,28 s.
www.rocklists.com/ 765 184 99,46 % 99,46 % 99,46 % 100,00 % 100,00 % 100,00 % 0,23 s.
www.lashorasperdidas.com/ 1822 722 99,86 % 56,86 % 72,46 % 100,00 % 58,36 % 73,71 % 0,87 s.
www.arduino.cc/ 830 340 87,06 % 100,00 % 93,08 % 86,20 % 100,00 % 92,59 % 0,14 s.
today.java.net/ 698 354 99,15 % 99,72 % 99,43 % 99,96 % 100,00 % 99,98 % 0,22 s.
clotheshor.se/ 459 228 45,61 % 100,00 % 62,65 % 44,56 % 100,00 % 61,65 % 0,11 s.
ruzafagallery.com/ 439 176 86,36 % 100,00 % 92,68 % 100,00 % 100,00 % 100,00 % 0,10 s.
www.raspberrypi.org/ 392 209 96,17 % 99,50 % 97,81 % 94,15 % 100,00 % 96,99 % 0,12 s.
doodle.com/ 572 82 56,10 % 100,00 % 71,88 % 96,15 % 100,00 % 98,04 % 0,16 s.
www.newprosoft.com/ 832 681 99,85 % 99,85 % 99,85 % 100,00 % 100,00 % 100,00 % 0,29 s.
worryfreelabs.com/ 511 190 99,47 % 99,47 % 99,47 % 100,00 % 100,00 % 100,00 % 0,12 s.
www.intelligencetest.com/ 592 269 97,40 % 98,50 % 97,95 % 97,35 % 100,00 % 98,66 % 0,21 s.
www.ikea.com/ 1545 991 92,18 % 99,90 % 95,88 % 69,87 % 100,00 % 82,26 % 0,55 s.
www.trendencias.com/ 2426 1042 82,73 % 99,88 % 90,50 % 71,10 % 100,00 % 83,11 % 1,09 s.
users.dsic.upv.es/∼dinsa/ 241 160 98,75 % 94,61 % 96,64 % 100,00 % 100,00 % 100,00 % 0,07 s.
googleblog.blogspot.com.es/ 5084 1507 99,93 % 99,74 % 99,83 % 100,00 % 100,00 % 100,00 % 2,46 s.
www.robyncarr.com/ 292 200 99,50 % 99,50 % 99,50 % 100,00 % 100,00 % 100,00 % 0,10 s.
www.annmalaspina.com/ 400 206 6,80 % 100,00 % 12,73 % 71,07 % 100,00 % 83,09 % 0,11 s.
users.dsic.upv.es/∼jsilva/ 203 34 32,35 % 100,00 % 48,89 % 37,35 % 100,00 % 54,39 % 0,04 s.
foodsense.is/ 334 192 95,31 % 82,06 % 88,19 % 96,15 % 89,29 % 92,59 % 0,07 s.
diarium.usal.es/ 603 524 99,62 % 99,81 % 99,71 % 99,31 % 100,00 % 99,65 % 0,17 s.
www.folj.com/ 559 384 99,74 % 88,66 % 93,87 % 100,00 % 99,46 % 99,73 % 0,05 s.
oneminutelist.com/ 490 217 65,44 % 100,00 % 79,11 % 39,00 % 100,00 % 56,12 % 0,12 s.
en.citizendium.org/ 1083 633 29,23 % 100,00 % 45,24 % 48,18 % 100,00 % 65,03 % 0,43 s.
www.filmaffinity.com/ 1333 976 98,46 % 99,48 % 98,97 % 86,73 % 100,00 % 92,89 % 0,68 s.
stackoverflow.com/ 6450 5891 98,47 % 99,97 % 99,21 % 59,62 % 100,00 % 74,70 % 5,67 s.
www.meneame.net/ 760 423 96,69 % 100,00 % 98,32 % 97,98 % 100,00 % 98,98 % 0,21 s.
www.strangehorizons.com/ 634 403 99,75 % 99,75 % 99,75 % 100,00 % 100,00 % 100,00 % 0,20 s.
www.accountkiller.com/ 501 279 48,03 % 100,00 % 64,89 % 74,53 % 100,00 % 85,41 % 0,10 s.
study.com/ 7321 5424 99,98 % 99,98 % 99,98 % 100,00 % 100,00 % 100,00 % 8,29 s.
c.mi.com/it/ 3490 541 90,94 % 100,00 % 95,26 % 100,00 % 100,00 % 100,00 % 4,09 s.
frances.forosactivos.net/ 813 495 99,19 % 78,06 % 87,37 % 97,63 % 69,92 % 81,48 % 0,26 s.
alumni.harvard.edu/ 2004 219 69,86 % 100,00 % 82,26 % 92,18 % 100,00 % 95,93 % 1,03 s.
Average 1372,26 676,92 84,87 % 91,47 % 84,54 % 88,93 % 95,23 % 90,32 % 0,75 s.

Table 3. Evaluation of the precision, recall, F1, and runtime

The obtained results show an average F1 of 84.54% for retrieved DOM nodes, and an average F1 of 90.32% for retrieved
words.6 As far as we know, this is the best F1 obtained with these metrics in a page-level heterogeneous technique
evaluated with real websites. In particular, other techniques that have been also evaluated using heterogeneous websites
obtain the following F1 results for retrieved words: Shanchan et al. 82% [37], Gottron et al. 77% [17], and Insa et al.
obtain 74% [19]. There also exist techniques that have been evaluated using prepared datasets (BIG5, MYRIAD40, MSS,

6The F1 average is the average of the values in collumn F1, and not the F1 computed with the average precision and the average recall. 
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etc.), RSS feeds, or prepared websites7. Unfortunately, it is not possible to fairly compare precisely different techniques
if they use different evaluation datasets or if they know a priori the structure of the website from which they are going
to extract the content. For instance, other techniques that evaluated prepared websites reported high F1 values (Adam
et al. obtain 93% [1], Zhao et al. 88% [23], Pasternack et al. 95% [26], and Qureshi et al. 94% [28]). But these F1 results
are significantly reduced if heterogeneous websites are used.

Runtime evaluation. Figure 2 shows the relationship between the number of rated nodes (see section 3.1) and the
time needed to extract the main content from this webpage. Most of the runtime is used by Algorithm 1, which has an
asymptotic cost of O(𝑛2), being 𝑛 the number of rated nodes.

It can be observed that 82% of the benchmarks took less than 1 second and 74% of them took less than half a second.
Only nine benchmarks (all of them very big websites with more than 600 rated nodes) took more than 1 second. Figure 2
shows that, for most webpages, the tool can extract the main content in less than 1 second.

Fig. 2. Relationship between # rated nodes and runtime

5 COMPARISONWITH OTHER TECHNIQUES

We made an extensive evaluation to properly compare our technique with other relevant state of the art techniques. To
produce a fair comparative evaluation, we made three different comparisons. Each comparison uses a different dataset
(the one originally used by the other techniques). Some of the datasets are composed of heterogeneous websites, while
others are sets of webpages collected from the same website. We used the original implementation when it was available,
and we implemented it from scratch when the implementation was not public. The benchmarks and all the tools we
implemented are publicly available and open-source. They are accesible at http://personales.upv.es/josilga/retrieval/teco/
(benchmarks) and http://personales.upv.es/josilga/retrieval/Web-TemEx/ (tools and experiments). So a side contribution
of this work is an open implementation of several state-of-the-art techniques. This collection of techniques implemented
in a single workbench can be a reference framework to evaluate and compare any new technique.

7Automatically generated webpages that share the same template.

http://personales.upv.es/josilga/retrieval/teco/
http://personales.upv.es/josilga/retrieval/Web-TemEx/
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We compared our technique with both page-level and site-level extraction techniques using different specific datasets.
The obtained results are explained in the following subsections.

5.1 Comparison with site-level techniques

The comparison of our technique with site-level content extraction algorithms was not possible using the data published
by their authors. The dataset used to evaluate each technique was totally different: some of them used real websites,
others used artificial benchmarks including randomly generated webpages and webpages with templates known a
priori. Some of them used large data sets and others used only a reduced subset of 5 webpages, etc. Moreover, they used
different metrics to measure the content retrieved: some of them used characters, others used DOM nodes, and others
used words.

The only way to fairly compare our technique with other state-of-the-art techniques is to evaluate all of them with
the same dataset, with the same metrics, and in the same context (to properly compare runtimes). We have done it. This
part of the work is an important contribution because it provides for the first time a fair comparison (same dataset,
same evaluation measures: words and DOM nodes) of various important tools. We selected six well-known site-level
algorithms in the literature ([3, 4, 32, 33, 35, 38]). Unfortunately, their implementation was not always available, or it
was not public (i.e., proprietary code), so we had to implement some of them from scratch. We have published all of
them, so they are open-source and publicly available at: http://personales.upv.es/josilga/retrieval/Web-TemEx/

The results of the accuracy and performance comparison with the evaluation set are shown in Table 4. It can be
observed that for both, retrieved DOM nodes and retrieved text words, the best F1 values are achieved by our algorithm.
TemEx is in the second position, with very similar values. Our algorithm also has the best precision of all algorithms.
Moreover, because our algorithm is page-level, its performance is quite good compared to most of the other algorithms.
For instance, the average runtime of TemEx is 10 times higher than our new algorithm.

DOM nodes Words
Algorithm Rec. Prec. F1 Rec. Prec. F1 Runtime

SST (2003) [38] 65,10 % 47,42 % 51,66 % 72,64 % 59,92 % 61,26 % 18,75 s.
RTDM-TD (2006) [33] 99,39 % 51,53 % 63,10 % 99,98 % 67,35 % 77,57 % 7,27 s.
IWPTD (2008) [35] 70,29 % 61,86 % 61,94 % 79,28 % 64,33 % 68,78 % 3,64 s.
RBM-TD (2009) [32] 100,00 % 52,45 % 65,10 % 100,00 % 67,84 % 77,84 % 5,87 s.
TemEx (2015) [3] 90,62 % 81,28 % 83,05 % 94,39 % 88,82 % 90,18 % 4,87 s.
ConEx (2018) [4] 83,91 % 88,07 % 80,93 % 86,13 % 90,57 % 83,06 % 8,47 s.
Our algorithm 84,87 % 91,47 % 84,54 % 88,93 % 95,23 % 90,32 % 0,47 s.

Table 4. Empirical evaluation and comparison with six site-level web content extraction algorithms

To ensure a fair comparison of runtimes, the experiments were done with the same computer, software configuration,
and load. All of them are implemented using the same technology (as WebExtensions). To provide more independence
to the experiments the first iteration was always discarded, thus the influence of aspects such as the influence of
dynamically loaded libraries persisting in physical memory, data persisting in the disk cache, etc. was avoided. For each
benchmark and tool, the experiments were repeated until a window of ten executions in a row produced a standard
deviation under 10% of the sample average. The statistic value returned is the average of this window.

Except for TemEx and ConEx, the rest of the algorithms obtain sensibly lower F1 values for both retrieved DOM nodes 
(between 51% and 65%) and retrieved words (between 61% and 78%). RBM-TD and RTDM-TD are clearly conservative 
algorithms as they focus on recall, not on precision (RBM-TD achieved 100% recall in all experiments, and RTDM-TD 
achieved 99.39% average recall). Therefore, when retrieving the maximum amount of main content is critical, RBM-TD 

http://personales.upv.es/josilga/retrieval/Web-TemEx/
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and RTDM-TD are the best choices. RBM-TD and RTDM-TD obtain similar F1 values for retrieved DOM nodes and
retrieved words. SST obtained the lowest F1 values for both retrieved DOM nodes and retrieved words. TemEx obtained
the best performance for site-level algorithms (our algorithm is excluded because it is page-level).

It is important to point out that the F1 value for retrieved words is higher than the F1 value for retrieved DOM nodes
in all algorithms. This is a consequence of the fact that these algorithms are more geared towards text retrieval. In fact,
some of them use internal metrics based on the amount of words of their DOM nodes or HTML tags.

On the basis of the results obtained, our algorithm should be used if precision or both recall and precision are important.
RBM-TD or RTDM-TD should be used for those applications that need to maximize the recall. For applications that
need a high performance our algorithm should also be used.

5.2 Comparison with page-level techniques

In contrast to most site-level techniques (see Section 5.1), many page-level content extraction algorithms have been
evaluated with publicly available datasets such as Cleaneval [7]. This has facilitated the comparison of our technique
with them. Nevertheless, many algorithms use their own metric to measure the content retrieved. Therefore, to fairly
compare our technique with the results reported by other techniques, in each case, we used the datasets and metrics
proposed by the authors of those techniques.

Firstly, we used the metrics and datasets proposed in [31]. They use 3 publicly available datasets (CleanEval; Big 5,
which contains sets of webpages from New York Times, BBC, Yahoo, Ars Technica, and Wikipedia; and Chaos, which
contains webpages from Google News, WordPress, and Blogger). We evaluated our algorithm with their evaluation
sets and then, we computed the recall, precision, and F1 using their metrics. We compared our algorithm with the
algorithms included in [31] plus WLR and CEHTD-DS (see Table 5). Our experiments, compared to theirs, reveal that,
for most of the datasets, CECTD-DS obtains the best F1. It also obtains the best average F1, and the best precision and
recall for several datasets. In addition, other CETD variants (CETD-DS, CECTD-S and CEHTD-DS) obtain high average
F1 values (over 90%). Our algorithm obtains the best recall for one set from the Big 5 dataset (Yahoo). WLR obtains
the best precision in almost all the sets and the best overall average precision (98.79%). The rest of algorithms obtain
average F1 values between 68% and 86%, except for FE, which obtains an average F1 around 9%.

It is important to highlight that the CETD algorithms are only based on the text of the DOM nodes. Therefore, in
contrast to our algorithm, they ignore the images, video, animations, and other media that belong to the main content.

However, the metrics proposed in [31] uses the longest common subsequence algorithm (LCS). If a is the text
extracted and b is the text in the gold standard, the precision is computed as the length of the LCS between a and b

divided by the length of a, and the recall is computed as the length of the LCS between a and b divided by the length of
b. F1 is computed as in Section 4. This means that this metrics (proposed by themselves and used in Table 5) computes
the largest subsequence of text that is common to two strings and, hence, the results of Table 5 favor their algorithms
because only content of type text is considered.

We also evaluated our algorithm using the metrics proposed in [34] for the CleanEval dataset. Before they compute
their metrics, they use a dynamic programming algorithm to find the optimal alignment between the HTML page
and the gold standard from CleanEval. Then, they also align the obtained text content with the gold standard from
CleanEval. Finally, they compare both aligned texts and, to decide whether a node should be kept or not, they use a
heuristics: if 2/3 or the node’s content is present in the gold standard at that location, they mark it as "content". In
addition to the CleanEval dataset, they also propose another evaluation dataset which contains 148 webpages selected
by them from the CleanEval dataset. Table 6 shows the comparison results. Our algorithm obtain the best F1 value for
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Fig. 3. Image gallery from NASAS’s website extracted with our web content extraction tool.

the CleanEval dataset (87%), and the best recall for both datasets, the CleanEval original test dataset and the CleanEval
web2text’s test dataset (obtaining 90% and 92%, respectively). Web2text obtains the best accuracy for both datasets.
Boilerpipe algorithm obtains the best precision for both datasets. Moreover, we downloaded the publicly available
implementation of the algorithms proposed in [34] and we measured their performance. Column Runtime in table 6
shows significant differences in the runtimes. This is due to the fact that the algorithms are implemented using different
technologies, such as Java, Scala, Python, Perl, etc.

It is important to highlight that all the page-level algorithms in this section are focused on text extraction. This fact is
evidenced by the metrics used by most researchers to evaluate their algorithms, since they only consider the extracted
text. However, as it can be observed in Figure 3, our algorithm extracts the main content of a webpage regardless of its
type (it not only extracts text, but also images, animations, etc.). Hence, the metrics used in this section (those proposed
by the other techniques) do impair our technique, because they do not consider the non-textual information extracted
by our algorithm.

CleanEval NYTimes Yahoo Wikipedia
Algorithm Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1
BTE (2001) [14] 88,87% 95,83% 92,22% 62,22% 98,38% 76,23% 54,94% 95,06% 69,64% 83,91% 81,60% 82,74%
DSC (2002) [27] 91,94% 62,01% 74,07% 98,58% 85,67% 91,68% 96,54% 73,14% 83,23% 81,67% 34,61% 48,62%
FE (2005) [11] 73,87% 9,97% 17,56% 97,51% 3,62% 6,98% 99,08% 4,94% 9,41% 98,79% 1,48% 2,91%
K-FE (2005) [12] 79,28% 69,61% 74,13% 73,82% 71,35% 72,56% 69,49% 56,97% 62,61% 73,76% 44,60% 55,59%
LQF (2005) [25] 88,60% 94,02% 91,23% 90,02% 97,10% 93,42% 64,54% 90,65% 75,40% 83,60% 76,41% 79,85%
CCB (2008) [18] 80,61% 92,71% 86,24% 57,61% 96,09% 72,03% 46,90% 93,45% 62,46% 63,22% 73,14% 67,82%
CETR (2010) [36] 91,26% 86,08% 88,59% 85,19% 90,58% 87,80% 69,36% 77,65% 73,27% 94,69% 72,77% 82,30%
CETD-DS (2011) [31] 92,96% 94,52% 93,73% 98,38% 95,84% 97,09% 83,16% 85,90% 84,51% 98,31% 97,22% 97,77%
CECTD-S (2011) [31] 90,35% 92,60% 91,46% 96,72% 96,56% 96,64% 80,33% 93,34% 86,35% 98,02% 97,61% 97,81%
CECTD-DS (2011) [31] 95,87% 97,15% 96,51% 99,69% 98,16% 98,92% 84,59% 93,99% 89,04% 98,25% 92,77% 95,43%
WLR (2013) [19] 96,60% 65,76% 78,25% 99,75% 86,45% 92,62% 99,66% 65,28% 78,89% 99,06% 82,70% 90,15%
CEHTD-DS (2015) [29] 94,97% 94,07% 94,52% 99,72% 95,96% 97,80% 91,99% 88,59% 90,26% 96,58% 90,41% 93,39%
Our algorithm 92,79% 92,35% 92,57% 98,55% 87,68% 92,79% 67,16% 97,29% 79,47% 98,90% 94,61% 96,71%

6 RELATEDWORK

Web mining is an information retrieval discipline that tries to isolate different functional blocks from a  webpage. 
Therefore, this discipline includes techniques such as content extraction, template extraction, menu detection, etc. 
There exist different web mining approaches (see, e.g., [9, 18, 19, 36, 37]) and a competition called CleanEval [7] which 
provided a dataset and a gold standard to score the success of boilerplate detection systems.
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BBC Ars Technica Chaos Average
Algorithm Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1
BTE (2001) [14] 69,09% 97,09% 80,73% 68,25% 97,91% 80,44% 76,36% 92,80% 83,78% 71,95% 94,10% 80,83%
DSC (2002) [27] 89,27% 78,89% 83,76% 95,82% 90,52% 93,09% 94,45% 80,27% 86,79% 92,61% 72,16% 80,17%
FE (2005) [11] 98,95% 3,71% 7,15% 0,01% 0,00% 0,00% 72,59% 6,22% 11,46% 77,26% 4,28% 8,97%
K-FE (2005) [12] 63,84% 65,02% 64,43% 81,35% 82,73% 82,03% 73,97% 66,04% 69,78% 73,64% 65,19% 68,73%
LQF (2005) [25] 77,03% 92,17% 83,93% 88,40% 98,43% 93,15% 82,76% 93,98% 88,01% 82,14% 91,82% 86,42%
CCB (2008) [18] 53,52% 92,19% 67,72% 64,05% 96,27% 76,92% 64,45% 91,05% 75,47% 61,48% 90,70% 72,66%
CETR (2010) [36] 68,93% 86,58% 76,76% 83,06% 93,93% 88,16% 78,75% 86,92% 82,63% 81,61% 84,93% 82,78%
CETD-DS (2011) [31] 84,39% 95,21% 89,48% 97,81% 98,85% 98,33% 93,59% 94,99% 93,59% 92,66% 94,65% 93,50%
CECTD-S (2011) [31] 82,55% 93,77% 87,80% 94,61% 93,56% 94,08% 89,64% 91,22% 91,22% 90,33% 93,97% 92,24%
CECTD-DS (2011) [31] 86,15% 97,95% 91,67% 98,04% 99,51% 98,77% 96,21% 96,10% 96,15% 94,11% 96,52% 95,21%
WLR (2013) [19] 98,45% 66,97% 79,71% 99,98% 94,40% 97,12% 98,03% 70,05% 81,71% 98,79% 75,94% 85,49%
CEHTD-DS (2015) [29] 95,55% 96,46% 96,00% 98,12% 98,83% 98,48% 94,74% 96,42% 95,57% 95,95% 94,39% 95,15%
Our algorithm 93,15% 91,42% 92,28% 97,81% 97,03% 97,42% 95,01% 91,88% 93,42% 91,91% 93,18% 92,09%

Table 5. Empirical evaluation with CETD’s metrics

Cleaneval test Web2text’s test
Method Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Runtime
BTE (2001) [14] 79% 79% 89% 83% 75% 76% 84% 80% 0,08 s.
CRF (2008) [30] 82% 87% 81% 84% 82% 88% 81% 84% 0,13 s.
Default-ext (2010) [21] 80% 89% 75% 81% 79% 89% 74% 81% 0,05 s.
Article-ext (2010) [21] 72% 91% 59% 71% 67% 89% 50% 64% 0,05 s.
Largest-ext (2010) [21] 60% 83% 36% 52% 59% 93% 33% 48% 0,05 s.
Unfluff (2014) [15] 71% 90% 57% 70% 68% 90% 51% 65% 0,52 s.
Web2text (2018) [34] 84% 88% 85% 86% 86% 87% 90% 88% 0,05 s.
Our algorithm 83% 83% 90% 87% 84% 83% 92% 87% 0,27 s.

Table 6. Empirical evaluation with Web2text’s metrics

Bar-Youssef et al. [6] defined a pagelet as a self-contained logical region within a page that has a well-defined topic

or functionality. While content extraction deals with the detection and isolation of the main content pagelets of the
webpage, template extraction deals with the isolation of the template. Therefore, both techniques are closely related
because they are almost complementary.

Block detection techniques can be further classified depending on the way in which they internally represent the
webpages:

(i) HTML-based approaches use the textual information. Many of them assume that the main content on a webpage
contains a high text density and a low tag density. Namely, Ferraresi et al. [13] analyze the HTML code and define the
main content as the largest continuous text area with the fewer amount of HTML tags. Kohlschütter et al. [20] examine
a small set of shallow text features to classify the text elements of a webpage. Weninger et al. [36] developed the CETR
algorithm (Content Extraction via Tag Ratios), which computes the CETR ratio by analyzing the HTML code and, for
each tag, counting its number of characters and tags.

(ii) Another approach is to use a rendered image of the webpage on the browser. These techniques (e.g., Burget et al.
[8]) are based on the assumption that the main content of a webpage is usually placed in its mid-section, and all or part
of it is visible to the user. The main drawback of this kind of techniques is that rendering webpages for classification is
a computational expensive operation (Kohlschütter et al. [22]).
(iii) Currently, the most extended approach is to use the representation of a webpage as a DOM tree. This third

approach is where our technique falls. In 2002, Bar-Yossef et al. [6] introduced a method that infers information from
the webpage’s DOM tree and computes the frequent pagelet sets. Yi et al. [38], Vieira et al. [33] and Alarte et al. [3]
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also proposed template detection techniques that use the DOM tree representation of the webpage. Roughly, these
techniques identify the template by finding common DOM subtrees in different webpages of a website.
In particular, Yi et al. [38] proposed a new data structure that summarizes information from various DOM trees, called
Site Style Tree (SST). Authors assume that the most repeated nodes in the SST are template nodes. Sun et al. [31]
proposed a general method for extracting content from diverse webpages. It introduces two metrics that measure the
importance of nodes: Text Density and Composite Text Density. Insa et al. [19] used a similar notion of density that, for
each DOM node, computes a ratio between the number of words and leaves in its subtree. Then, among the nodes with
higher density of text, they identify the main content. In [31], the approach is based on computing the ratio between
the amount of chars and tags in the subtree of a node.

7 CONCLUSIONS

This paper presents a novel technique for content extraction from heterogeneous webpages. The main novelty of
our technique is the new metric proposed, the representation of the DOM node features as points in a 4-dimensional
Euclidean space R4, and the way in which the main content is detected in such a space. The features considered in the
metrics and their ranked values have proven to be useful to isolate the containers of the main content nodes. For this
reason, those DOM nodes whose features are clearly different to most of the nodes probably contain the main content
information. The representation of the DOM node features as points in R4 is helpful to easily and quickly identify the
candidate nodes by means of the standard Euclidean distance between the points.

We have carried out an extensive evaluation with over 10000 experiments and with different data sets used in other
techniques. The evaluation and comparison of our tool with other state-of-the-art tools revealed that it achieves the
best results in various datasets. We first compared it with well-known site-level techniques, which we had to implement
from scratch (they are now open-source and publicly available). Then, we compared it with other well-known page-level
techniques using different datasets and metrics. As a result of the comparison (from the best of our knowledge, the
one with more datasets, metrics, and tools), we have provided a general view of the weak and strong points of each
technique, identifying the best tool for different possible scenarios. One strong point of our technique is that, contrarily
to most techniques, which are only focused on text extraction, it is able to extract the main content regardless of its
type. That is, it not only extracts text, but also animations, images, etc. Our implementation is open and free (it is being
distributed as an official Firefox addon).
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